
U N D M AT H E M AT I C S

M AT H 2 0 8 :
D I S C R E T E
M AT H E M AT I C S

D E PA R T M E N T O F M AT H E M AT I C S

T H E U N I V E R S I T Y O F N O R T H D A K O TA

Copyright © 2017 UND Mathematics

published by department of mathematics

the university of north dakota

http://arts-sciences.und.edu/math//

Copyright © 2005, 2006, 2007, 2008, 2009, 2014, 2015, 2016, 2017 University of North Dakota Mathematics

Department

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with

no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in

the section entitled "GNU Free Documentation License".

Second corrected edition, Second printing: December 2017

http://arts-sciences.und.edu/math//

Contents

1 Logical Connectives and Compound Propositions 25

1.1 Propositions 25

1.2 Negation: not 26

1.3 Conjunction: and 27

1.4 Disjunction: or 27

1.5 Logical Implication and Biconditional 28

1.5.1 Implication: If . . . , then . . . 28

1.5.2 Biconditional: . . . if and only if . . . 29

1.6 Truth table construction 29

1.7 Translating to propositional forms 30

1.8 Bit strings 30

1.9 Exercises 32

2 Logical Equivalence 35

2.1 Logical Equvalence 35

2.2 Tautologies and Contradictions 36

2.3 Related If . . . , then . . . propositions 36

2.4 Fundamental equivalences 36

4

2.5 Disjunctive normal form 37

2.6 Proving equivalences 38

2.7 Exercises 40

3 Predicates and Quantifiers 41

3.1 Predicates 41

3.2 Instantiation and Quantification 42

3.3 Translating to symbolic form 43

3.4 Quantification and basic laws of logic 44

3.5 Negating quantified statements 45

3.6 Exercises 46

4 Rules of Inference 49

4.1 Valid propositional arguments 50

4.2 Fallacies 53

4.3 Arguments with quantifiers 53

4.4 Exercises 55

5 Sets: Basic Definitions 57

5.1 Specifying sets 57

5.1.1 Roster method 57

5.1.2 Set-builder notation 58

5.2 Special standard sets 58

5.3 Empty and universal sets 58

5.4 Subset and equality relations 59

5

5.5 Cardinality 60

5.6 Power set 60

5.7 Exercises 61

6 Set Operations 63

6.1 Intersection 63

6.2 Venn diagrams 63

6.3 Union 63

6.4 Symmetric difference 64

6.5 Complement 64

6.6 Ordered lists 64

6.7 Cartesian product 65

6.8 Laws of set theory 65

6.9 Proving set identities 67

6.10 Bit string operations 67

6.11 Exercises 68

7 Styles of Proof 69

7.1 Direct proof 69

7.2 Indirect proof 72

7.3 Proof by contradiction 72

7.4 Proof by cases 74

7.5 Existence proof 75

7.6 Using a counterexample to disprove a statement 75

7.7 Exercises 77

6

8 Relations 79

8.1 Relations 79

8.2 Specifying a relation 80

8.2.1 By ordered pairs 80

8.2.2 By graph 80

8.2.3 By digraph: domain=codomain 81

8.2.4 By 0-1 matrix 81

8.3 Set operations with relations 82

8.3.1 Subset relation using matrices 82

8.4 Special relation operations 83

8.4.1 Inverse of a relation 83

8.4.2 Composition of relations 83

8.4.3 Composition with matrices: Boolean product 84

8.5 Exercises 85

9 Properties of Relations 87

9.1 Reflexive 87

9.2 Irreflexive 88

9.3 Symmetric 88

9.4 Antisymmetric 89

9.5 Transitive 89

9.6 Examples 89

9.7 Exercises 91

10 Equivalence Relations 93

10.1 Equvialence relation 94

7

10.2 Equivalence class of a relation 94

10.3 Examples 95

10.4 Partitions 97

10.5 Digraph of an equivalence relation 97

10.6 Matrix representation of an equivalence relation 97

10.7 Exercises 99

11 Functions and Their Properties 101

11.1 Definition of function 102

11.2 Functions with discrete domain and codomain 102

11.2.1 Representions by 0-1 matrix or bipartite graph 103

11.3 Special properties 103

11.3.1 One-to-one (injective) 104

11.3.2 Onto (surjective) 105

11.3.3 Bijective 105

11.4 Composition of functions 106

11.5 Invertible discrete functions 106

11.6 Characteristic functions 108

11.7 Exercises 109

12 Special Functions 111

12.1 Floor and ceiling functions 111

12.2 Fractional part 111

12.3 Integral part 112

12.4 Power functions 112

8

12.5 Exponential functions 112

12.6 Logarithmic functions 113

12.7 Laws of logarithms 113

12.8 Exercises 115

13 Sequences and Summation 117

13.1 Specifying sequences 117

13.1.1 Defining a Sequence With a Formula 118

13.1.2 Defining a Sequence by Suggestion 118

13.2 Arithmetic sequences 119

13.3 Geometric sequences 120

13.4 Summation notation 120

13.5 Formulas for arithmetic and geometric summations 122

13.6 Exercises 124

14 Recursively Defined Sequences 125

14.1 Closed form formulas 126

14.1.1 Pattern recognition 126

14.1.2 The Fibonacci Sequence 126

14.1.3 The Sequence of Factorials 127

14.2 Arithmetic sequences by recursion 128

14.3 Exercises 129

15 Recursively Defined Sets 131

15.1 Recursive definitions of sets 131

15.2 Sets of strings 133

15.3 Exercises 135

9

16 Mathematical Induction 137

16.1 Mathematical induction 138

16.2 The principle of mathematical induction 139

16.3 Proofs by induction 140

16.4 Examples 142

16.5 Second principle of mathematical induction 144

16.6 Exercises 148

17 Algorithms 149

17.1 Properties of an algorithm 149

17.2 Non-algorithms 150

17.3 Linear search algorithm 150

17.4 Binary search algorithm 151

17.5 Presenting algorithms 151

17.6 Examples 153

17.7 Exercises 156

18 Algorithm Efficiency 159

18.1 Comparing algorithms 160

18.2 Exercises 163

19 The Growth of Functions 165

19.1 Common efficiency functions 166

19.2 Big-oh notation 166

19.3 Examples 167

19.4 Exercises 168

10

20 The Integers 169

20.1 Integer operations 169

20.2 Order properties 172

20.3 Exercises 173

21 The divides Relation and Primes 175

21.1 Properties of divides 175

21.2 Prime numbers 176

21.3 The division algorithm for integers 177

21.4 Exercises 179

22 GCD’s and the Euclidean Algorithm 181

22.1 Euclidean algorithm 182

22.2 Efficiency of the Euclidean algorithm 183

22.3 The Euclidean algorithm in quotient/remainder form 184

22.4 Exercises 186

23 GCD’s Reprised 187

23.1 The gcd(a, b) as a linear combination of a and b 187

23.2 Back-solving to express gcd(a, b) as a linear combination 188

23.3 Extended Euclidean Algorithm 189

23.4 General Linear Combinations for gcd(a, b) 192

23.5 Exercises 194

11

24 The Fundamental Theorem of Arithmetic 195

24.1 Prime divisors 195

24.2 Proving the Fundamental Theorem 196

24.3 Number of positive divisors of n 197

24.4 Exercises 198

25 Linear Diophantine Equations 199

25.1 Diophantine equations 200

25.2 Solutions and gcd(a, b) 200

25.3 Finding all solutions 201

25.4 Examples 202

25.5 Exercises 204

26 Modular Arithmetic 205

26.1 The modulo m equivalence relation 206

26.2 Equivalence classes modulo m 207

26.3 Modular arithmetic 207

26.4 Solving congruence equations 209

26.5 Exercises 211

27 Integers in Other Bases 213

27.1 Converting to and from base-10 213

27.2 Converting between non-decimal bases 215

27.3 Computer science bases: 2, 8, and 16 216

27.4 Exercises 217

12

28 The Two Fundamental Counting Principles 219

28.1 The sum rule 219

28.1.1 Counting two independent tasks 220

28.1.2 Extended sum rule 221

28.1.3 Sum rule and the logical or 221

28.2 The product rule 221

28.2.1 Counting two sequential tasks: logical and 222

28.2.2 Extended product rule 222

28.2.3 Counting by subtraction: Good = Total − Bad 223

28.3 Using both the sum and product rules 224

28.4 Answer form←→ solution method 226

28.5 Exercises 227

29 Permutations and Combinations 229

29.1 Permutations 229

29.2 Combinations 231

29.3 Exercises 233

30 The Binomial Theorem and Pascal’s Triangle 235

30.1 Combinatorial proof 235

30.1.1 Constructing combinatorial proofs 236

30.2 Pascal’s Triangle 238

30.3 The Binomial Theorem 239

30.4 Exercises 241

13

31 Inclusion-Exclusion Counting 243

31.1 Inclusion-Exclusion principle 243

31.2 Extended inclusion-exclustion principle 245

31.3 Inclusion-exclusion with the Good=Total-Bad trick 247

31.4 Exercises 249

32 The Pigeonhole Principle 251

32.1 General pigeonhole principle 252

32.2 Examples 252

32.3 Exercises 254

33 Tougher Counting Problems 255

33.1 The Basic Donut Shop Problem 256

33.2 The More Realistic Donut Shop Problem 257

33.3 The Real Donut Shop Problem 257

33.4 Problems with order and some repetition 259

33.5 The six fundamental counting problems 260

33.6 Exercises 261

34 Counting Using Recurrence Relations 263

34.1 Recursive counting method 263

34.2 Examples 266

34.3 General rules for finding recursive solutions 269

34.4 Exercises 271

14

35 Solutions to Recurrence Relations 273

35.1 Solving a recursion by conjecture 273

35.2 Solving a recursion by unfolding 274

35.3 Exercises 276

36 The Method of Characteristic Roots 277

36.1 Homogeneous, constant coefficient recursions 277

36.1.1 Basic example of the method 278

36.1.2 Initial steps: the characteristic equation and its roots 280

36.2 Repeated characteristic roots. 280

36.3 The method of characteristic roots more formally 281

36.4 The method for repeated roots 283

36.5 The general case 284

36.6 Exercises 286

37 Solving Nonhomogeneous Recurrences 287

37.1 Steps to solve nonhomogeneous recurrence relations 287

37.2 Examples 289

37.3 Exercises 292

38 Graphs 293

38.1 Some Graph Terminology 293

38.1.1 Representing a graph in a computer 294

15

38.2 An Historical Interlude: The origin of graph theory 296

38.3 The First Theorem of Graph Theory 304

38.4 A Brief Catalog of Special Graphs 305

38.5 Graph isomorphisms 307

38.6 Walks 309

38.6.1 Eulerian trails and circuits 311

38.6.2 Hamiltonian cycles 311

38.6.3 Some facts about eulerian and hamiltonian graphs 312

38.7 Trees 314

38.8 Exercises 316

A Answers 319

B GNU Free Documentation License 321

1. APPLICABILITY AND DEFINITIONS 322

2. VERBATIM COPYING 324

3. COPYING IN QUANTITY 324

4. MODIFICATIONS 325

5. COMBINING DOCUMENTS 328

6. COLLECTIONS OF DOCUMENTS 328

7. AGGREGATION WITH INDEPENDENT WORKS 329

8. TRANSLATION 329

9. TERMINATION 330

10. FUTURE REVISIONS OF THIS LICENSE 330

11. RELICENSING 331

ADDENDUM: How to use this License for your documents 331

List of Figures

4.1 A logical argument 52

6.1 Venn diagram for A ∩ B 63

6.2 Venn diagram for A ∪ B 64

6.3 Venn diagram for A⊕ B 64

6.4 Venn diagram for A− B 64

6.5 Venn diagram for A = U − A 64

8.1 Example bipartite graph 81

8.2 Example digraph 81

8.3 Composing relations: R ◦ S 84

11.1 Graph of y = x2
102

11.2 A function in 0-1 matrix form 103

12.1 Floor function 111

12.2 Fractional part function 112

12.3 Integral part function 112

12.4 2x and log2(x) functions 113

16.1 4× 5 chessboard 143

16.2 23 × 23 chessboard 143

16.3 Divided 23 × 23 chessboard 144

16.4 23 × 23 board with domino 144

30.1 Pascal’s Triangle 238

30.2 Pascal’s Triangle (numeric) 238

31.1 A ∪ B = (A− B) ∪ B 243

18

38.1 Nonisomorphic grades with the same degree sequences. 308

38.2 Isomorphic graphs 308

38.3 More Isomorphic graphs 309

38.4 Walks, trails, and paths 310

38.5 Tree for exercise 38.6 318

List of Tables

1.1 Logical Negation 27

1.2 Logical Conjunction 27

1.3 Logical or and xor 28

1.4 Logical Implication 28

1.5 Logical biconditional 29

1.6 Truth table for (p ∧ q)→ r 30

2.1 Prove p→ q ≡ ¬p ∨ q 36

2.2 Logical Equivalences 37

4.1 Basic rules of inference 51

4.2 Proof of an argument 52

4.3 Quantification rules 54

6.1 Laws of Set Theory 66

11.1 A simple function 102

19.1 Problem size vs. CPU time used 165

19.2 Common efficiency functions for small values of n 166

19.3 Efficiency functions where n = 1000000 166

23.1 i: 6567(si) + 987(ti) = ri, qi−1 190

23.2 gcd(107653, 22869) 191

33.1 Basic counting problems 255

33.2 Six counting problems 260

37.1 Particular solution patterns 288

List of Algorithms

17.1 Linear search (repeat/until). (A B indicates a comment follows.) 152

17.2 Linear search (for loop) 152

17.3 Calculate bm/nc 153

17.4 Calculate bm/nc (again) 154

17.5 Make change 155

18.1 Maximum list value 162

Introduction

Discrete math has become increasingly important in recent

years, for a number of reasons:1 1 The Art of Problem Solving http:

//www.artofproblemsolving.com/

articles/discrete-mathDiscrete math is essential to college-level mathematics —
and beyond.

Discrete math — together with calculus and abstract algebra — is one

of the core components of mathematics at the undergraduate level. Stu-

dents who learn a significant quantity of discrete math before entering

college will be at a significant advantage when taking undergraduate-

level math courses.

Discrete math is the mathematics of computing.

The mathematics of modern computer science is built almost entirely

on discrete math, in particular combinatorics and graph theory. This

means that in order to learn the fundamental algorithms used by

computer programmers, students will need a solid background in these

subjects. Indeed, at most universities, a undergraduate-level course in

discrete mathematics is a required part of pursuing a computer science

degree.

Discrete math is very much ”real world” mathematics.

Many students’ complaints about traditional high school math — al-

gebra, geometry, trigonometry, and the like — is "What is this good

for?" The somewhat abstract nature of these subjects often turn off

students. By contrast, discrete math, in particular counting and prob-

ability, allows students — even at the middle school level — to very

quickly explore non-trivial "real world" problems that are challenging

and interesting.

http://www.artofproblemsolving.com/articles/discrete-math
http://www.artofproblemsolving.com/articles/discrete-math
http://www.artofproblemsolving.com/articles/discrete-math

24 math208: discrete mathematics

Discrete math shows up on most middle and high school
math contests.

Prominent math competitions such as MATHCOUNTS (at the middle

school level) and the American Mathematics Competitions (at the high

school level) feature discrete math questions as a significant portion

of their contests. On harder high school contests, such as the AIME,

the quantity of discrete math is even larger. Students that do not have

a discrete math background will be at a significant disadvantage in

these contests. In fact, one prominent MATHCOUNTS coach tells us

that he spends nearly 50% of his preparation time with his students

covering counting and probability topics, because of their importance

in MATHCOUNTS contests.

Discrete math teaches mathematical reasoning and proof
techniques.

Algebra is often taught as a series of formulas and algorithms for

students to memorize (for example, the quadratic formula, solving

systems of linear equations by substitution, etc.), and geometry is often

taught as a series of ”definition-theorem-proof” exercises that are often

done by rote (for example, the infamous ”two-column proof”). While

undoubtedly the subject matter being taught is important, the material

(as least at the introductory level) does not lend itself to a great deal of

creative mathematical thinking. By contrast, with discrete mathematics,

students will be thinking flexibly and creatively right out of the box.

There are relatively few formulas to memorize; rather, there are a

number of fundamental concepts to be mastered and applied in many

different ways.

Discrete math is fun.

Many students, especially bright and motivated students, find algebra,

geometry, and even calculus dull and uninspiring. Rarely is this the

case with most discrete math topics. When we ask students what their

favorite topic is, most respond either ”combinatorics” or ”number

theory.” (When we ask them what their least favorite topic is, the

overwhelming response is ”geometry.”) Simply put, most students find

discrete math more fun than algebra or geometry.

1

Logical Connectives and Compound Propositions

Logic is concerned with forms of reasoning. Since reasoning

is involved in most intellectual activities, logic is relevant to a broad

range of pursuits. The study of logic is essential for students of com-

puter science. It is also very valuable for mathematics students, and

others who make use of mathematical proofs, for instance, linguistics

students. In the process of reasoning one makes inferences. In an in-

ference one uses a collection of statements, the premises, in order to

justify another statement, the conclusion. The most reliable types of

inferences are deductive inferences, in which the conclusion must be

true if the premises are. Recall elementary geometry: Assuming that

the postulates are true, we prove that other statements, such as the

Pythagorean Theorem, must also be true. Geometric proofs, and other

mathematical proofs, typically use many deductive inferences. (Robert

L. Causey)1 1 www.cs.utexas.edu/~rlc/whylog.htm

1.1 Propositions

The basic objects in logic are propositions. A proposition is a state-

ment which is either true (T) or false (F) but not both. For example in

the language of mathematics p : 3 + 3 = 6 is a true proposition while

q : 2 + 3 = 6 is a false proposition. What do you want for lunch? is a

question, not a proposition. Likewise Get lost! is a command, not a

proposition. The sentence There are exactly 1087 + 3 stars in the universe

is a proposition, despite the fact that no one knows its truth value.

Here are two, more subtle, examples:

www.cs.utexas.edu/~rlc/whylog.htm

26 math208: discrete mathematics

(1) He is more than three feet tall is not a proposition since, until we are

told to whom he refers, the statement cannot be assigned a truth

value. The mathematical sentence x + 3 = 7 is not a proposition

for the same reason. In general, sentences containing variables are

not propositions unless some information is supplied about the

variables. More about that later however. Sometimes a little common sense is

required. For example It is raining is a

proposition, but its truth value is not

constant, and may be arguable. That

is, someone might say It is not raining,

it is just drizzling, or Do you mean on

Venus? Feel free to ignore these sorts of

annoyances.

(2) This sentence is false is not a proposition. It seems to be both true

and false. In fact if is T then it says it is F and if it is F then it says

it is T. It is a good idea to avoid sentences that refer to themselves.

Simple propositions, such as It is raining, and The streets are wet,

can be combined to create more complicated propositions such as It

is raining and the streets are not wet. These sorts of involved proposi-

tions are called compound propositions. Compound propositions are

built up from simple propositions using a number of connectives to

join or modify the simple propositions. In the last example, the con-

nectives are and which joins the two clauses, and not, which modifies

the second clause.

It is important to keep in mind that since a compound proposition

is, after all, a proposition, it must be classifiable as either true or false.

That is, it must be possible to assign a truth value to any compound

proposition. There are mutually agreed upon rules to allow the deter-

mination of exactly when a compound proposition is true and when

it is false. Luckily these rules jive nicely with common sense (with

one small exception), so they are easy to remember and understand.

1.2 Negation: not

The simplest logical connective is negation. In normal English sen-

tences, this connective is indicated by appropriately inserting not in

the statement, by preceding the statement with it is not the case that, or

for mathematical statements, by using a slanted slash. For example,

if p is the proposition 2 + 3 = 4, then the negation of p is denoted

by the symbol ¬p and it is the proposition 2 + 3 6= 4. In this case,

p is false and ¬p is true. If p is It is raining, then ¬p is It is not rain-

ing or even the stilted sounding It is not the case that it is raining. The

logical connectives and compound propositions 27

negation of a proposition p is the proposition whose truth value is

the opposite of p in all cases. The behavior of ¬p can be exhibited in

a truth table. In each row of the truth table we list a possible truth

value of p and the corresponding truth value of ¬p.

p ¬p

T F

F T
Table 1.1: Logical Negation

1.3 Conjunction: and

The connective that corresponds to the word and is called conjunc-

tion. The conjunction of p with q is denoted by p ∧ q and read as

p and q. The conjunction of p with q is declared to be true exactly

when both of p, q are true. It is false otherwise. This behavior is ex-

hibited in the truth table.

p q p ∧ q

T T T

T F F

F T F

F F F
Table 1.2: Logical Conjunction

Four rows are required in this table since when p is true, q may be

either true or false and when p is false it is possible for q to be either

true or false. Since a truth value must be assigned to p ∧ q in every

possible case, one row in the truth table is needed for each of the four

possibilities.

1.4 Disjunction: or

The logical connective disjunction corresponds to the word or of

ordinary language. The disjunction of p with q is denoted by p ∨ q,

and read as p or q. The disjunction p ∨ q is true if at least one of p, q is

true.

Disjunction is also called inclusive-or, since it includes the possi-

bility that both component statements are true. In everyday language,

there is a second use of or with a different meaning. For example, in

the proposition Your ticket wins a prize if its serial number contains a 3 or

a 5, the or would normally be interpreted in the inclusive sense (tick-

ets that have both a 3 and 5 are still winners), but in the proposition

With dinner you get mashed potatoes or french fries, the or is being used

in the exclusive-or sense.

The rarely used (at least in mathematics)2 exclusive-or is also 2 In a mathematical setting, always
assume the inclusive-or is intended
unless the exclusive sense is explicitly
indicated.

called the disjoint disjunction of p with q and is denoted by p ⊕ q.

Read that as p xor q if it is necessary to say it in words. The value of

p⊕ q is true if exactly one of p, q is true. The exclusion of both being

28 math208: discrete mathematics

true is the difference between inclusive-or and exclusive-or. The truth

table shown officially defines these two connectives.

p q p ∨ q p⊕ q

T T T F

T F T T

F T T T

F F F F
Table 1.3: Logical or and xor1.5 Logical Implication and Biconditional

The next two logical connectives correspond to the ordinary language

phrases If · · · , then · · · and the (rarely used in real life but common

in mathematics) · · · if and only if · · · .

1.5.1 Implication: If . . . , then . . .

In mathematical discussions, ordinary English words are used in

ways that usually correspond to the way we use words in normal

conversation. The connectives not, and, or mean pretty much what

would be expected. But the implication, denoted p → q and read

as If p, then q can be a little mysterious at first. This is partly because

when the If p, then q construction is used in everyday speech, there

is an implied connection between the proposition p (called the hy-

pothesis) and the proposition q (called the conclusion). For example,

in the statement If I study, then I will pass the test, there is an assumed

connection between studying and passing the test. However, in logic,

the connective is going to be used to join any two propositions, with

no relation necessary between the hypothesis and conclusion. What

truth value should be assigned to such bizarre sentences as If I study,

then the moon is 238, 000 miles from earth?

Is it true or false? Or maybe it is neither one? Well, that last option

isn’t too pleasant because that sentence is supposed to be a proposi-

tion, and to be a proposition it has to have truth value either T or F.

So it is going to have to be classified as one or the other. In everyday

conversation, the choice isn’t likely to be too important whether it is

classified it as either true or false in the case described. But an impor-

tant part of mathematics is knowing when propositions are true and

when they are false. The official choices are given in the truth table

for p→ q. We can make sense of this with an example.

p q p→ q

T T T

T F F

F T T

F F T
Table 1.4: Logical ImplicationExample 1.1. First consider the statement which Bill’s dad makes to Bill: If

you get an A in math, then I will buy you a new car. If Bill gets an A and

logical connectives and compound propositions 29

his dad buys him a car, then dad’s statement is true, and everyone is happy

(that is the first row in the table). In the second row, Bill gets an A, and his

dad doesn’t come through. Then Bill’s going to be rightfully upset since his

father lied to him (dad made a false statement). In the last row of the table

he can’t complain if he doesn’t get an A, and his dad doesn’t buy him the

car (so again dad made a true statement). Most people feel comfortable with

those three rows. In the third row of the table, Bill doesn’t get an A, and his

dad buys him a car anyhow. This is the funny case. It seems that calling dad

a liar in this case would be a little harsh on the old man. So it is declared

that dad told the truth. Remember it this way: an implication is true unless

the hypothesis is true and the conclusion is false.

1.5.2 Biconditional: . . . if and only if . . .

The biconditional is the logical connective corresponding to the

phrase · · · if and only if · · · . It is denoted by p←→ q, (read p if and only if q),

and often more tersely written as p iff q. The biconditional is true

when the two component propositions have the same truth value,

and it is false when their truth values are different. Examine the truth

table to see how this works.

p q p←→ q

T T T

T F F

F T F

F F T
Table 1.5: Logical biconditional

1.6 Truth table construction

The connectives described above combine at most two simple propo-

sitions. More complicated propositions can be formed by join-

ing compound propositions with those connectives. For example,

p ∧ (¬q), (p ∨ q) → (q ∧ (¬r)), and (p → q) ←→ ((¬p) ∨ q) are

compound propositions, where parentheses have been used, just as

in ordinary algebra, to avoid ambiguity. Such extended compound

propositions really are propositions. That is, if the truth value of each

component is known, it is possible to determine the truth value of the

entire proposition. The necessary computations can be exhibited in a

truth table.

Example 1.2. Suppose that p, q and r are propositions. To construct a truth

table for (p ∧ q) → r, first notice that eight rows will be needed in the table

to account for all the possible combinations of truth values of the simple

30 math208: discrete mathematics

component statements p, q and r. This is so since there are, as noted above,

four rows needed to account for the choices for p and q, so there will be those

four rows paired with r having truth value T, and four more with r having

truth value F, for a total of 4 + 4 = 8. In general, if there are n simple

propositions in a compound statement, the truth table for the compound

statement will have 2n rows. Here is the truth table for (p ∧ q) → r,

with an auxiliary column for p ∧ q to serve as an aid for filling in the last

column.

p q r p ∧ q (p ∧ q)→ r

T T T T T

T T F T F

T F T F T

T F F F T

F T T F T

F T F F T

F F T F T

F F F F T
Table 1.6: Truth table for (p ∧ q)→ r

Be careful about how propositions are grouped. For example, if

truth tables for p ∧ (q → r) and (p ∧ q) → r are constructed, they

turn out not to be the same in every row. Specifically if p is false,

then p ∧ q is false, and (p ∧ q) → r is true. Whereas when p is false

p ∧ (q→ r) is false. So writing p ∧ q→ r is ambiguous.

1.7 Translating to propositional forms

Here are a few examples of translating between propositions ex-

pressed in ordinary language and propositions expressed in the

language of logic.

Example 1.3. Let c be the proposition It is cold and s : It is snowing, and

h : I’m staying home. Then (c ∧ s) → h is the proposition If it is cold and

snowing, then I’m staying home. While (c ∨ s) → h is If it is either cold

or snowing, then I’m staying home. Messier is ¬(h → c) which could be

expressed as It is not the case that if I stay home, then it is cold, which is a

little too convoluted for our minds to grasp quickly. Translating in the other

direction, the proposition It is snowing and it is either cold or I’m staying

home would be symbolized as s ∧ (c ∨ h). 3 3 Notice the parentheses are needed in
this last proposition since (s ∧ c) ∨ h
does not capture the meaning of the
ordinary language sentence, and
s ∧ c ∨ h is ambiguous.1.8 Bit strings

There is a connection between logical connectives and certain op-

erations on bit strings. There are two binary digits (or bits): 0 and

1. A bit string of length n is any sequence of n bits. For example,

0010 is a bit sting of length four. Computers use bit strings to encode

and manipulate information. Some bit string operations are really

logical connectives and compound propositions 31

just disguised truth tables. Here is the connection: Since a bit can

be one of two values, bits can be used to represent truth values. Let

T correspond to 1, and F to 0. Then given two bits, logical connec-

tives can be used to produce a new bit. For example ¬1 = 0, and

1 ∨ 1 = 1. This can be extended to strings of bits of the same length

by combining corresponding bit in the two strings. For example,

01011∧ 11010 = (0∧ 1)(1∧ 1)(0∧ 0)(1∧ 1)(1∧ 0) = 01010.

32 math208: discrete mathematics

1.9 Exercises

Exercise 1.1. Determine which of the following sentences are propositions.

a) There are seven days in a week.

b) Get lost!

c) Pistachio is the best ice cream flavor.

d) If x > 1, then x2 + 2x + 1 > 5.

e) All unicorns have four legs.

Exercise 1.2. Construct truth tables for each of the following.

a) p⊕¬q

b) ¬(q→ p)

c) q ∧ ¬p

d) ¬q ∨ p

e) p→ (¬q ∧ r)

Exercise 1.3. Perform the indicated bit string operations. The bit strings

are given in groups of four bits each for ease of reading.

a) (1101 0111⊕ 1110 0010) ∧ 1100 1000

b) (1111 1010∧ 0111 0010) ∨ 0101 0001

c) (1001 0010∨ 0101 1101) ∧ (0110 0010∨ 0111 0101)

Exercise 1.4. Let s be the proposition It is snowing and f be the proposition

It is below freezing. Convert the following English sentences into statements

using the symbols s, f and logical connectives.

a) It is snowing and it is not below freezing.

b) It is below freezing and it is not snowing.

c) If it is not snowing, then it is not below freezing.

logical connectives and compound propositions 33

Exercise 1.5. Let j be the proposition Jordan played and w be the propo-

sition The Wizards won. Write the following propositions as English sen-

tences.

a) ¬j ∧ w

b) j→ ¬w

c) w ∨ j

d) w→ ¬j

Exercise 1.6. Let c be the proposition Sam plays chess, let b be Sam has the

black pieces, and let w be Sam wins.

a) Translate into English: (c ∧ ¬b)→ w.

b) Translate into symbols: If Sam didn’t win his chess game, then he played

black.

2

Logical Equivalence

It is clear that the propositions It is sunny and it is warm and It

is warm and it is sunny mean the same thing. More generally, for any

propositions p, q, we see that p ∧ q and q ∧ p have the same meaning.

To say it a little differently, for any choice of truth values for p and q,

the propositions p ∧ q and q ∧ p have the same truth value. One more

time: p ∧ q and q ∧ p have identical truth tables.

2.1 Logical Equvalence

Two propositions with identical truth tables are called logically

equivalent. The expression p ≡ q means p, q are logically equiva-

lent.

Some logical equivalences are not as transparent as the example

above. With a little thought it should be clear that I am not taking

math or I am not taking physics means the same as It’s not the case that I

taking math and physics. In symbols, (¬m) ∨ (¬p) means the same as To be convinced these two proposition

really have the same content, look at the

truth table for the two, and notice they

are identical.

¬(m ∧ p).

Example 2.1 (De Morgan). Prove that ¬(p ∧ q) ≡ (¬p ∨ ¬q) using a

truth table. We construct the table using additional columns for compound

parts of the two expressions.

36 math208: discrete mathematics

p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∨ ¬q

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

It is probably a little harder to believe (p → q) ≡ (¬p ∨ q), but

checking a truth table shows they are in fact equivalent. Saying If it

is Monday, then I am tired is identical to saying It isn’t Monday or I am

tired.

p q p→ q ¬p ∨ q

T T

T F

F T

F F
Table 2.1: Prove p→ q ≡ ¬p ∨ q2.2 Tautologies and Contradictions

A proposition , T, which is always true is called a tautology. A con-

tradiction is a proposition, F, which is always false. The prototype

example of a tautology is p ∨ ¬p, and for a contradiction, p ∧ ¬p. No-

tice that since p ←→ q is T exactly when p and q have the same truth

value, two propositions p and q will be logically equivalent provided

p←→ q is a tautology.

2.3 Related If . . . , then . . . propositions

There are three propositions related to the basic If . . . , then . . . im-

plication: p → q. First ¬q → ¬p is called the contrapositive of the

implication. The converse of the implication is the proposition q→ p.

Finally, the inverse of the implication is ¬p → ¬q. Using a truth ta-

ble, it is easy to check that an implication and its contrapositive are

logically equivalent, as are the converse and the inverse. A common

slip is to think the implication and its converse are logically equiva-

lent. Checking a truth table shows that isn’t so. The implication If an

integer ends with a 2, then it is even is T, but its converse, If an integer is

even, then it ends with a 2, is certainly F.

2.4 Fundamental equivalences

Table 2.2 contains the most often used equivalences. These are well

worth learning by sight and by name.

logical equivalence 37

Equivalence Name
¬(¬p) ≡ p Double Negation
p ∧T ≡ p Identity laws
p ∨F ≡ p
p ∨T ≡ T Domination laws
p ∧F ≡ F

p ∨ p ≡ p Idempotent laws
p ∧ p ≡ p

p ∨ q ≡ q ∨ p Commutative laws
p ∧ q ≡ q ∧ p

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
¬(p ∧ q) ≡ (¬p ∨ ¬q) De Morgan’s laws
¬(p ∨ q) ≡ (¬p ∧ ¬q)

p ∨ ¬p ≡ T Law of Excluded Middle
p ∧ ¬p ≡ F Law of Contradiction

p→ q ≡ ¬p ∨ q Disjunctive form
p→ q ≡ ¬q→ ¬p Implication ≡ Contrapositive
¬p→ ¬q ≡ q→ p Inverse ≡ Converse

Table 2.2: Logical Equivalences

2.5 Disjunctive normal form

Five basic connectives have been given: ¬,∧,∨,→,←→, but that is

really just for convenience. It is possible to eliminate some of them

using logical equivalences. For example, p ←→ q ≡ (p → q) ∧
(q → p) so there really is no need to explicitly use the biconditional.

Likewise, p → q ≡ ¬p ∨ q, so the use of the implication can also be

avoided. Finally, p ∧ q ≡ ¬(¬p ∨ ¬q) so that there really is no need

ever to use the connective ∧. Every proposition made up of the five

basic connectives can be rewritten using only ¬ and ∨ (probably with

a great loss of clarity however).

The most often used standardization, or normalization, of logical

propositions is the disjunctive normal form (DNF), using only ¬
(negation), ∧ (conjunction), and ∨ (disjunction). A propositional form

is considered to be in DNF if and only if it is a disjunction of one or

more conjunctions of one or more literals. For example, the following

are all in disjunctive normal form:

38 math208: discrete mathematics

• p ∧ q

• p

• (a ∧ q) ∨ r

• (p ∧ ¬q ∧ ¬r) ∨ (¬s ∧ t ∧ u)

While, these are not in DNF: 1 1 Use the fundamental equivalences to
find DNF versions of each.

• ¬(p ∨ q) this is not the disjunction of literals.

• p ∧ (q ∧ (r ∨ s)) an or is embedded in a conjuction.

2.6 Proving equivalences

It is always possible the verify a logical equivalence via a truth table.

But it also possible to verify equivalences by stringing together previ-

ously known equivalences. Here are two examples of this process.

Example 2.2. Show ¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬q. 2 2 The plan is to start with the expression
¬(p ∨ (¬p ∧ q)), work through a
sequence of equivalences ending
up with ¬p ∧ ¬q. It’s pretty much
like proving identities in algebra or
trigonometry.

Proof.

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) De Morgan’s Law

≡ ¬p ∧ (¬(¬p) ∨ ¬q) De Morgan’s Law

≡ ¬p ∧ (p ∨ ¬q) Double Negation Law

≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) Distributive Law

≡ (p ∧ ¬p) ∨ (¬p ∧ ¬q) Commutative Law

≡ F∨ (¬p ∧ ¬q) Law of Contradiction

≡ (¬p ∧ ¬q) ∨F Commutative Law

≡ ¬p ∧ ¬q Identity Law

♣

logical equivalence 39

Example 2.3. Show (p ∧ q)→ (p ∨ q) ≡ T.

Proof.

(p ∧ q)→ (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) Disjunctive form

≡ (¬p ∨ ¬q) ∨ (p ∨ q) De Morgan’s Law

≡ (p ∨ ¬p) ∨ (q ∨ ¬q) Associative and Commutative Laws

≡ T∨T Commutative Law and Excluded Middle

≡ T Domination Law

♣

40 math208: discrete mathematics

2.7 Exercises

Exercise 2.1. Use truth tables to verify each of the following equivalences:

a) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

b) p→ q ≡ ¬q→ ¬p

c) ¬p ∧ (p ∨ q) ≡ ¬(q→ p)

d) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

e) p→ q ≡ (¬p ∨ q)

f) [(p ∧ q)→ r] ≡ [p→ (q→ r)]

Exercise 2.2. Show that the statements are not logically equivalent.

a) [p→ (q→ r)] 6≡ [(p→ q)→ r]

b) (p→ q) 6≡ (q→ p)

c) (p→ q) 6≡ (¬p→ ¬q)

Exercise 2.3. Use truth tables to show that the following are tautologies.

a) [p ∧ (p→ q)]→ q

b) [(p→ q) ∧ (q→ r)]→ (p→ r)

c) (p ∧ q)→ p

d) [(p ∨ q)→ r]→ [(p→ r) ∧ (q→ r)]

Exercise 2.4. The statements below are not tautologies. In each case, find

an assignment of truth values to the literals so the statement is false.

a) [(p ∧ q)→ r]←→ [(p→ r) ∧ (q→ r)]

b) [(p ∧ q) ∨ r]→ [p ∧ (q ∨ r)]

Exercise 2.5. Give proofs of the following equivalences, following the pat-

tern of examples 2.2 and 2.3.

a) ¬p→ (p→ q) ≡ T.

b) (p ∧ ¬r)→ ¬q ≡ p→ (q→ r)

c) p ∨ (p ∧ q) ≡ p. (This is a tough one.)

3

Predicates and Quantifiers

The sentence x2 − 2 = 0 is not a proposition. It cannot be as-

signed a truth value unless some more information is supplied about

the variable x. Such a statement is called a predicate or a proposi-

tional function.

3.1 Predicates

Instead of using a single letter to denote a predicate, a symbol such

as S(x) will be used to indicate the dependence of the sentence on a

variable. Here are two more examples of predicates.

(1) A(c) : Al drives a c, and

(2) B(x, y) : x is the brother of y. The second example is an instance of a

two-place predicate.

With a given predicate, there is an associated set of objects which

can be used in place of the variables. For example, in the predicate

S(x) : x2 − 2 = 0, it is understood that the x can be replaced

by a number. Replacing x by, say, the word blue does not yield a

meaningful sentence. For the predicate A(c) above, c can be replaced

by, say, makes of cars (or maybe types of nails!). For B(x, y), the x Usually the domain of discourse is

left for the reader to guess, but if the

domain of discourse is something other

than an obvious choice, the writer will

mention the domain to be used.

can be replaced by any human male, and the y by any human. The

collection of possible replacements for a variable in a predicate is

called the domain of discourse for that variable.

42 math208: discrete mathematics

3.2 Instantiation and Quantification

A predicate is not a proposition, but it can be converted into a propo-

sition. There are three ways to modify a predicate to change it into a

proposition. Let’s use S(x) : x2 − 2 = 0 as an example.

The first way to change S(x) to make it into a proposition is to

assign a specific value from the variable’s domain of discourse to

the variable. For example, setting x = 3, gives the (false) proposi-

tion S(3) : 32 − 2 = 0. On the other hand, setting x =
√

2 gives

the (true) proposition S(
√

2) : (
√

2)2 − 2 = 0. The process of set-

ting a variable equal to a specific object in its domain of discourse is

called instantiation. Looking at the two-place predicate B(x, y) : x

is the brother of y, we can instantiate both variables to get the (true)

proposition B(Donny, Marie) : Donny is the brother of Marie. Notice

that the sentence B(Donny, y) : Donny is the brother of y has not been

converted into a proposition since it cannot be assigned a truth value

without some information about y. But it has been converted from a

two-place predicate to a one-place predicate.

A second way to convert a predicate to a proposition is to precede

the predicate with the phrase There is an x such that. For example,

There is an x such that S(x) would become There is an x such that

x2 − 2 = 0. This proposition is true if there is at least one choice

of x in its domain of discourse for which the predicate becomes a

true statement. The phrase There is an x such that is denoted in sym-

bols by ∃x, so the proposition above would be written as ∃x S(x)

or ∃x (x2 − 2 = 0). When trying to determine the truth value of

the proposition ∃x P(x), it is important to keep the domain of dis-

course for the variable in mind. For example, if the domain for x in

∃x (x2 − 2 = 0) is all integers, the proposition is false. But if its

domain is all real numbers, the proposition is true. The phrase There

is an x such that (or, in symbols, ∃x) is called existential quantifica-

tion1. 1 In English it can also be read as There
exists x or For some x.

The third and final way to convert a predicate into a proposition is

by universal quantification2 . The universal quantification of a pred- 2 The phrase For all x is also rendered in
English as For each x or For every x.

icate, P(x), is obtained by preceding the predicate with the phrase

predicates and quantifiers 43

For all x, producing the proposition For all x, P(x), or, in symbols,

∀x P(x). This proposition is true provided the predicate becomes

a true proposition for every object in the variable’s domain of dis-

course. Again, it is important to know the domain of discourse for

the variable since the domain will have an effect on the truth value of

the quantified proposition in general.

For multi-placed predicates, these three conversions can be mixed

and matched. For example, using the obvious domains for the pred-

icate B(x, y) : x is the brother of y here are some conversions into

propositions:

(1) B(Donny, Marie) has both variables instantiated. The proposition

is true.

(2) ∃y B(Donny, y) is also a true proposition. It says Donny is some-

body’s brother. The first variable was instantiated, the second was

existentially quantified.

(3) ∀y B(Donny, y) says everyone has Donny for a brother, and that is

false.

(4) ∀x ∃y B(x, y) says every male is somebody’s brother, and that is

false.

(5) ∃y ∀x B(x, y) says there is a person for whom every male is a

brother, and that is false.

(6) ∀x B(x, x) says every male is his own brother, and that is false.

3.3 Translating to symbolic form

Translation between ordinary language and symbolic language can

get a little tricky when quantified statements are involved. Here are a

few more examples.

Example 3.1. Let P(x) be the predicate x owns a Porsche, and let S(x) be

the predicate x speeds. The domain of discourse for the variable in each

predicate will be the collection of all drivers. The proposition ∃xP(x)

says Someone owns a Porsche. It could also be translated as There is

a person x such that x owns a Porsche, but that sounds too stilted for

44 math208: discrete mathematics

ordinary conversation. A smooth translation is better. The proposition

∀x(P(x)→ S(x)) says All Porsche owners speed.

Translating in the other direction, the proposition No speeder owns a

Porsche could be expressed as ∀x(S(x)→ ¬P(x)).

Example 3.2. Here’s a more complicated example: translate the proposition

Al knows only Bill into symbolic form. Let’s use K(x, y) for the predicate

x knows y. The translation would be K(Al, Bill) ∧ ∀x (K(Al, x) → (x =

Bill)).

Example 3.3. For one last example, let’s translate The sum of two even

integers is even into symbolic form. Let E(x) be the predicate x is even.

As with many statements in ordinary language, the proposition is phrased

in a shorthand code that the reader is expected to unravel. As given, the

statement doesn’t seem to have any quantifiers, but they are implied. Before

converting it to symbolic form, it might help to expand it to its more long

winded version: For every choice of two integers, if they are both even,

then their sum is even. Expressed this way, the translation to symbolic

form is duck soup: ∀x ∀y ((E(x) ∧ E(y))→ E(x + y)).

3.4 Quantification and basic laws of logic

Notice that if the domain of discourse consists of finitely many en-

tries a1, ..., an, then ∀x p(x) ≡ p(a1) ∧ p(a2) ∧ ... ∧ p(an). So the

quantifier ∀ can be expressed in terms of the logical connective

∧. The existential quantifier and ∨ are similarly linked: ∃x p(x) ≡
p(a1) ∨ p(a2) ∨ ...∨ p(an).

From the associative and commutative laws of logic we see that we

can rearrange any system of propositions which are linked only by

∧’s or linked only by ∨’s.3 Consequently any more generally quan- 3 For instance, consider examples 3.1 –
3.3 with finite domains of discourse.

tified proposition of the form ∀x∀y p(x, y) is logically equivalent to

∀y∀x p(x, y). Similarly for statements which contain only existential

quantifiers. But the distributive laws come into play when ∧’s and

∨’s are mixed. So care must be taken with predicates which contain

both existential and universal quantifiers, as the following example

shows.

predicates and quantifiers 45

Example 3.4. Let p(x, y) : x + y = 0 and let the domain of discourse be all

real numbers for both x and y. The proposition ∀y ∃x p(x, y) is true, since,

for any given y, by setting (instantiating) x = −y we convert x + y = 0 to

the true statement (−y) + y = 04. However the proposition ∃x ∀y p(x, y) 4 (∀y ∈ R)[(−y) + y = 0] is a tautology.

is false. If we set (instantiate) y = 1, then x + y = 0 implies that x = −1.

When we set y = 0, we get x = 0. Since 0 6= −1 there is no x which will

work for all y, since it would have to work for the specific values of y = 0

and y = 1.

3.5 Negating quantified statements

To form the negation of quantified statements, we apply De Mor-

gan’s laws. This can be seen in case of a finite domain of discourse as

follows:

¬(∀x p(x)) ≡ ¬(p(a1) ∧ p(a2) ∧ ...∧ p(an))

≡ ¬p(a1) ∨ ¬p(a2) ∨ · · · ∨ ¬p(an)

≡ ∃x¬p(x)

In the same way, we have ¬(∃x p(x)) ≡ (∀x¬p(x)). 5 5 Use De Morgan’s laws to find a similar
expression for ¬(∀xp(x)).

46 math208: discrete mathematics

3.6 Exercises

Exercise 3.1. Let p(x) : 2x ≥ 4. Determine the truth values of the

following propositions.

a) p(2)

b) p(−3)

c) ∀x ((x ≤ 10)→ p(x))

d) ∃x¬p(x)

Exercise 3.2. Let p(x, y) be x has read y, where the domain of discourse for

x is all students in this class, and the domain of discourse for y is all novels.

Express the following propositions in English.

a) ∀x p(x, War and Peace)

b) ∃x¬p(x, The Great Gatsby)

c) ∃x ∀y p(x, y)

d) ∀y ∃x p(x, y)

Exercise 3.3. Let F(x, y) be the statement x can fool y, where the domain of

discourse for both x and y is all people. Use quantifiers to express each of the

following statements.

a) I can fool everyone.

b) George can’t fool anybody.

c) No one can fool himself.

d) There is someone who can fool everybody.

e) There is someone everyone can fool.

f) Ralph can fool two different people.

Exercise 3.4. Negate each of the statements from exercise 3.2 in English.

Exercise 3.5. Negate each statement from exercise 3.3 in logical symbols.

Of course, the easy answer would be to simply put ¬ in front of each state-

ment. But use the principle given at the end of this chapter to move the

negation across the quantifiers.

predicates and quantifiers 47

Exercise 3.6. Express symbolically: The product of an even integer and an

odd integer is even.

Exercise 3.7. Express in words the meaning of

∃xP(x) ∧ ∀x∀y ((P(x) ∧ P(y))→ (x = y)).

4

Rules of Inference

The heart of mathematics is proof. In this chapter, we give a

careful description of what exactly constitutes a proof in the realm

of propositional logic. Throughout the course various methods of

proof will be demonstrated, including the particularly important

style of proof called induction. It’s important to keep in mind that all

proofs, no matter what the subject matter might be, are based on the

notion of a valid argument as described in this chapter, so the ideas

presented here are fundamental to all of mathematics.

Imagine trying carefully to define what a proof is, and it quickly

becomes clear just how difficult a task that is. So it shouldn’t come as

a surprise that the description takes on a somewhat technical looking

aspect. But don’t let all the symbols and abstract-looking notation

be misleading. All these rules really boil down to plain old common

sense when looked at correctly.

The usual form of a theorem in mathematics is: If a is true and b is

true and c is true, etc., then s is true. The a, b, c, · · · are called the hy-

potheses, and the statement s is called the conclusion. For example,

a mathematical theorem might be: if m is an even integer and n is an

odd integer, then mn is an even integer. Here the hypotheses are m is

an even integer and n is and odd integer, and the conclusion is mn is an

even integer.

50 math208: discrete mathematics

4.1 Valid propositional arguments

In this section we are going to be concerned with proofs from the

realm of propositional logic rather than the sort of theorem from

mathematics mentioned above. We will be interested in arguments in

which the form of the argument is the item of interest rather than the

content of the statements in the argument.

For example, consider the simple argument: (1) My car is either

red or blue and (2) My car is not red, and so (3) My car is blue. Here

the hypotheses are (1) and (2), and the conclusion is (3). It should be

clear that this is a valid argument. That means that if you agree that

(1) and (2) are true, then you must accept that (3) is true as well.

Definition 4.1. An argument is called valid provided that if you

agree that all the hypotheses are true, then you must accept the truth

of the conclusion.

Now the content of that argument (in other words, the stuff about

my and cars and colors) really have nothing to do with the validity

of the argument. It is the form of the argument that makes it valid.

The form of this argument is (1) p ∨ q and (2) ¬p, therefore (3) q. Any

argument that has this form is valid, whether it talks about cars and

colors or any other notions. For example, here is another argument of

the very same form: (1) I either read the book or just looked at the pictures

and (2) I didn’t read the book, therefore (3) I just looked at the pictures.

Some arguments involve quantifiers. For instance, consider the

classic example of a logical argument: (1) All men are mortal and (2)

Socrates is a man, and so (3) Socrates is mortal. Here the hypotheses

are the statements (1) and (2), and the conclusion is statement (3).

If we let M(x) be x is a man and D(x) be x is mortal (with domain

for x being everything!), then this argument could be symbolized as

shown.
∀x(M(x)→ D(x))

M(Socrates)

... D(Socrates)
The general form of a proof that a logical argument is valid con-

sists in assuming all the hypotheses have truth value T, and showing,

by applying valid rules of logic, that the conclusion must also have

truth value T.

rules of inference 51

Just what are the valid rules of logic that can be used in the course

of the proof? They are called the Rules of Inference, and there are

seven of them listed in the table below. Each rule of inference arises

from a tautology, and actually there is no end to the rules of infer-

ence, since each new tautology can be used to provide a new rule of

inference. But, in real life, people rely on only a few basic rules of

inference, and the list provided in the table is plenty for all normal

purposes.

Name Rule of Inference

Modus Ponens p and p→ q ... q

Modus Tollens ¬q and p→ q ... ¬p

Hypothetical Syllogism p→ q and q→ r ... p→ r

Addition p ... p ∨ q

Simplification p ∧ q ... p

Conjunction p and q ... p ∧ q

Disjunctive Syllogism p ∨ q and ¬p ... q

Table 4.1: Basic rules of inference

It is important not to merely look on these rules as marks on the

page, but rather to understand what each one says in words. For

example, Modus Ponens corresponds to the common sense rule: if

we are told p is true, and also If p is true, then so is q, then we would

leap to the reasonable conclusion that q is true. That is all Modus Po-

nens says. Similarly, for the rule of proof of Disjunctive Syllogism:

knowing Either p or q is true, and p is not true, we would immedi-

ately conclude q is true. That’s the rule we applied in the car example

above. Translate the remaining six rules of inference into such com-

mon sense statements. Some may sound a little awkward, but they

ought to all elicit an of course that’s right feeling once understood.

Without such an understanding, the rules seem like a jumble of mys-

tical symbols, and building logical arguments will be pretty difficult.

What exactly goes into a logical argument? Suppose we want to

prove (or show valid) an argument of the form If a and b and c are

true, then so is s. One way that will always do the trick is to construct

a truth table as in examples earlier in the course. We check the rows

in the table where all the hypotheses are true, and make sure the

52 math208: discrete mathematics

conclusion is also true in those rows. That would complete the proof.

In fact that is exactly the method used to justify the seven rules of

inference given in the table. But building truth tables is certainly

tedious business, and it certainly doesn’t seem too much like the way

we learned to do proofs in geometry, for example. An alternative is

the construction of a logical argument which begins by assuming the

hypotheses are all true and applies the basic rules of inferences from

the table until the desired conclusion is shown to be true.

Here is an example of such a proof. Let’s show that the argument

displayed in figure 4.1 is valid.

p

p→ q

s ∨ r

r → ¬q

... s ∨ t
Figure 4.1: A logical argument

Each step in the argument will be justified in some way, either

(1) as a hypothesis (and hence assumed to have truth value T), or

(2) as a consequence of previous steps and some rule of inference

from the table, or (3) as a statement logically equivalent to a previous

statement in the proof. Finally the last statement in the proof will

be the desired conclusion. Of course, we could prove the argument

valid by constructing a 32 row truth table instead! Well, actually we

wouldn’t need all 32 rows, but it would be pretty tedious in any case.

Such proofs can be viewed as games in which the hypotheses

serve as the starting position in a game, the goal is to reach the con-

clusion as the final position in the game, and the rules of inference

(and logical equivalences) specify the legal moves. Following this

outline, we can be sure every step in the proof is a true statement,

and, in particular, the desired conclusion is true, as we hoped to

show.

Argument: p
p→ q
s ∨ r
r → ¬q

... s ∨ t

Proof: (1) p hypothesis
(2) p→ q hypothesis
(3) q Modus Ponens (1) and (2)
(4) r → ¬q hypothesis
(5) q→ ¬r logical equivalent of (4)
(6) ¬r Modus Ponens (3) and (5)
(7) s ∨ r hypothesis
(8) r ∨ s logical equivalence of (7)
(9) s Disjunctive Syllogism (6) and (8)

(10) s ∨ t Addition

Table 4.2: Proof of an argument

rules of inference 53

One step more complicated than the last example are arguments

that are presented in words rather than symbols. In such a case, it is

necessary to first convert from a verbal argument to a symbolic argu-

ment, and then check the argument to see if it is valid. For example,

consider the argument: Tom is a cat. If Tom is a cat, then Tom likes fish.

Either Tweety is a bird or Fido is a dog. If Fido is a dog, then Tom does not

like fish. So, either Tweety is a bird or I’m a monkey’s uncle. Just reading

this argument, it is difficult to decide if it is valid or not. It’s just a

little too confusing to process. But it is valid, and in fact it is the very

same argument as given above. Let p be Tom is a cat, let q be Tom likes

fish, let s be Tweety is a bird, let r be Fido is a dog, and let t be I’m a

monkey’s uncle. Expressing the statements in the argument in terms of

p, q, r, s, t produces exactly the symbolic argument proved above.

4.2 Fallacies

Some logical arguments have a convincing ring to them but are nev-

ertheless invalid. The classic example is an argument of the form If

it is snowing, then it is winter. It is winter. So it must be snowing. A mo-

ment’s thought is all that is needed to be convinced the conclusion

does not follow from the two hypotheses. Indeed, there are many

winter days when it does not snow. The error being made is called

the fallacy of affirming the conclusion. In symbols, the argument is

claiming that [(p → q) ∧ q] → p is a tautology, but in fact, checking a

truth table shows that it is not a tautology. Fallacies arise when state-

ments that are not tautologies are treated as if they were tautologies.

4.3 Arguments with quantifiers

Logical arguments involving propositions using quantifiers require a

few more rules of inference. As before, these rules really amount to

no more than a formal way to express common sense. For instance, if

the proposition ∀ x P(x) is true, then certainly for every object c in the

universe of discourse, P(c) is true. After all, if the statement P(x) is

true for every possible choice of x, then, in particular, it is true when

x = c. The other three rules of inference for quantified statements are

54 math208: discrete mathematics

just as obvious. All four quantification rules appear in table 4.3.

Name Instantiation Rules

Universal Instantiation ∀xP(x) ... P(c) if c is in the domain of x

Existential Instantiation ∃xP(x) ... P(c) for some c in the domain of x

Name Generalization Rules

Universal Generalization P(c) for arbitrary c in the domain of x ... ∀x P(x)
Existential Generalization P(c) for some c in the domain of x ... ∃x P(x)

Table 4.3: Quantification rules

Example 4.2. Let’s analyze the following (fictitious, but obviously valid)

argument to see how these rules of inference are used. All books written by

Sartre are hard to understand. Sartre wrote a book about kites. So, there is a

book about kites that is hard to understand. Let’s use to following predicates

to symbolize the argument:

(1) S(x) : x was written by Sartre.

(2) H(x) : x is hard to understand.

(3) K(x) : x is about kites.

The domain for x in each case is all books. In symbolic form, the argument

and a proof are

Argument: ∀x(S(x)→ H(x))

∃x(S(x) ∧ K(x))

... ∃x(K(x) ∧ H(x))

Proof: 1) ∃x(S(x) ∧ K(x)) hypothesis

2) S(c) ∧ K(c) for some c Existential Instantiation (1)

3) S(c) Simplification (2)

4) ∀x(S(x)→ H(x)) hypothesis

5) S(c) −→ H(c) Universal Instantiation (4)

6) H(c) Modus Ponens (3) and (5)

7) K(c) ∧ S(c) logical equivalence (2)

8) K(c) Simplification (7)

9) K(c) ∧ H(c) Conjunction (8) and (6)

10) ∃x(K(x) ∧ H(x)) Existential Generalization (9)

rules of inference 55

4.4 Exercises

Exercise 4.1. Show p ∨ q and ¬p ∨ r, ... q ∨ r is a valid rule of inference.

It is called Resolution.

Exercise 4.2. Show that p −→ q and ¬p, ... ¬q is not a valid rule of

inference. It is called the Fallacy of denying the hypothesis.

Exercise 4.3. Prove the following symbolic argument is valid.

¬p ∧ q

r → p

¬r → s

s→ t

... t

Exercise 4.4. Prove the following argument is valid. If Ralph doesn’t do his

homework or he doesn’t feel sick, then he will go to the party and he will stay

up late. If he goes to the party, he will eat too much. He didn’t eat too much.

So Ralph did his homework.

Exercise 4.5. In exercise 4.4, show that you can logically deduce that Ralph

felt sick.

Exercise 4.6. In exercise 4.4, can you logically deduce that Ralph stayed up

late?

Exercise 4.7. Prove the following symbolic argument.

∃x(A(x) ∧ ¬B(x))

∀x(A(x) −→ C(x))

... ∃x(C(x) ∧ ¬B(x))

Exercise 4.8. Prove the following argument is valid. All Porsche owners are

speeders. No owners of sedans buy premium fuel. Car owners that do not

buy premium fuel never speed. So Porsche owners do not own sedans. Use

all car owners as the domain of discourse.

5

Sets: Basic Definitions

A set is a collection of objects. Often, but not always, sets are

denoted by capital letters such as A, B, · · · and the objects that make

up a set, called its elements, are denoted by lowercase letters. Write

x ∈ A to mean that the object x is an element of A. If the object x is

not an element of A, write x 6∈ A.

Two sets A and B are equal, written A = B provided A and B

comprise exactly the same elements. Another way to say the same

thing: A = B provided ∀x (x ∈ A←→ x ∈ B).

5.1 Specifying sets

There are a number of ways to specify a given set. We consider two

of them.

5.1.1 Roster method

One way to describe a set is to list its elements. This is called the

roster method. Braces are used to signify when the list begins and

where it ends, and commas are used to separate elements. For in-

stance, A = {1, 2, 3, 4, 5} is the set of positive whole numbers between

1 and 5 inclusive. It is important to note that the order in which el-

ements are listed is immaterial. For example, {1, 2} = {2, 1} since

x ∈ {1, 2} and x ∈ {2, 1} are both true for x = 1 and x = 2 and false

for all other choices of x. Thus x ∈ {1, 2} and x ∈ {2, 1} always have

the same truth value, and that means ∀x (x ∈ {1, 2} ←→ x ∈ {2, 1})

58 math208: discrete mathematics

is true. According to the definition of equality given above, it follows

that {1, 2} = {2, 1}. The same sort of reasoning shows that repe-

titions in the list of elements of a set can be ignored. For example

{1, 2, 3, 2, 4, 1, 2, 3, 2} = {1, 2, 3, 4}. There is no point in listing an

element of a set more than once.

The roster method has certain drawbacks. For example we prob-

ably don’t want to list all of the elements in the set of positive in-

tegers between 1 and 99 inclusive. One option is to use an ellipsis.

The idea is that we list elements until a pattern is established, and The use of an ellipsis has one pitfall.

It is hoped that whoever is reading

the list will be able guess the proper

pattern and apply it to fill in the gap.

then replace the missing elements with . . . (which is the ellipsis). So

{1, 2, 3, 4, . . . , 99} would describe our set.

5.1.2 Set-builder notation

Another method to specify a set is via the use of set-builder nota-

tion. A set can be described in set-builder notation as A = {x|p(x)}.
Here we read A is the set of all objects x for which the predicate p(x)

is true. So {1, 2, 3, 4, . . . , 99} becomes {x|x is a whole number and

1 ≤ x ≤ 99}.

5.2 Special standard sets

Certain sets occur often enough that we have special notation for

them.

N = {x|x is a non-negative whole number} = {0, 1, 2, . . . }, the natural numbers.

Z = {x|x is a whole number} = {. . . ,−2,−1, 0, 1, 2, . . . }, the integers.

Q = {x|x =
p
q

, p and q integers with q 6= 0}, the rational numbers.

R = {x|x is a real number}, the real numbers.

C = {x|x = a + ib, a, b ∈ R, i2 = −1}, the complex numbers.

5.3 Empty and universal sets

In addition to the above sets, there is a set with no elements, written

as ∅ (also written using the roster style as { }), and called the empty

set. This set can be described using set builder style in many differ-

sets: basic definitions 59

ent ways. For example, {x ∈ R|x2 = −2} = ∅. In fact, if P(x) is any

predicate which is always false, then {x | P(x)} = ∅. There are two

easy slips to make involving the empty set. First, don’t write ∅ = 0

(the idea being that both ∅ and 0 represent nothing1). That is not cor- 1 One is empty the other is something,
namely zero.

rect since ∅ is a set, and 0 is a number, and it’s not fair to compare

two different types of objects. The other error is thinking ∅ = {∅}.
This cannot be correct since the right-hand set has an element, but

the left-hand set does not.

At the other extreme from the empty set is the universal set, de-

noted U . The universal set consists of all objects under consideration

in any particular discussion. For example, if the topic du jour is basic

arithmetic then the universal set would be the set of all integers. Usu-

ally the universal set is left for the reader to guess. If the choice of the

universal set is not an obvious one, it will be pointed out explicitly.

5.4 Subset and equality relations

The set A is a subset of the set B, written as A ⊆ B, in case ∀x(x ∈
A −→ x ∈ B) is true. In plain English, A ⊆ B if every element of

A also is an element of B. For example, {1, 2, 3} ⊆ {1, 2, 3, 4, 5}. On

the other hand, {0, 1, 2, 3} 6⊆ {1, 2, 3, 4, 5} since 0 is an element of the

left-hand set but not of the right-hand set. The meaning of A 6⊆ B can

be expressed in symbols using De Morgan’s law:

A 6⊆ B←→ ¬(∀x(x ∈ A→ x ∈ B))

≡ ∃x¬(x ∈ A→ x ∈ B)

≡ ∃x¬(¬(x ∈ A) ∨ x ∈ B)

≡ ∃x(x ∈ A ∧ x 6∈ B)

and that last line says A 6⊆ B provided there is at least one element of

A that is not an element of B.

The empty set is a subset of every set. To check that, suppose A is

any set, and let’s check to make sure ∀x(x ∈ ∅ −→ x ∈ A) is true.

But it is since for any x, the hypothesis of x ∈ ∅ −→ x ∈ A is F, and

so the implication is T. So ∅ ⊆ A. Another way to same the same

60 math208: discrete mathematics

thing is to notice that to claim ∅ 6⊆ A is the same as claiming there

is at least one element of ∅ that is not an element of A, but that is

ridiculous, since ∅ has no elements at all.

To say that A = B is the same as saying every element of A is also

an element of B and every element of B is also an element of A. In

other words, A = B ←→ (A ⊆ B ∧ B ⊆ A), and this indicates the

method by which the common task of showing two sets are equal is

carried out: to show two sets are equal, show that each is a subset of

the other.

If A ⊆ B, and A 6= B, A is a proper subset of B, denoted by

A ⊂ B, or A⊂6= B. In words, A ⊂ B means every element of A is also

an element of B and there is at least one element of B that is not an

element of A. For example {1, 2} ⊂ {1, 2, 3, 4, 5}, and ∅ ⊂ {1}.

5.5 Cardinality

A set is finite if the number of distinct elements in the set is a non-

negative integer. In this case we call the number of distinct ele-

ments in the set its cardinality and denote this natural number by

|A|. For example, |{1, 3, 5}| = 3 and |∅| = 0, |{∅}| = 1, and

|{∅, {a, b, c}, {X, Y}}| = 3. A set, such as Z, which is not finite, is

infinite.

5.6 Power set

Given a set A the power set of A, denoted P(A), is the set of all sub-

sets of A. For example if A = {1, 2}, then P(A) = {∅, {1}, {2}, {1, 2}}.
For a more confusing example, the power set of {∅, {∅}}2 is 2 Try finding the power set of the empty

set: P(∅).

P ({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}}.

It is not hard to see that if |A| = n, then |P(A)| = 2n.

sets: basic definitions 61

5.7 Exercises

Exercise 5.1. List the members of the following sets.

a) {x ∈ Z|3 ≤ x3 < 100}

b) {x ∈ R|2x2 = 50}

c) {x ∈N|7 > x ≥ 4}

Exercise 5.2. Use set-builder notation to give a description of each set.

a) {−5, 0, 5, 10, 15}

b) {0, 1, 2, 3, 4}

c) The interval of real numbers: [π, 4)

Exercise 5.3. Determine the cardinality of the sets in exercises 1 and 2.

Exercise 5.4. Is the proposition Every element of the empty set has three

toes true or false? Explain your answer!

Exercise 5.5. Determine the power set of {1, ∅, {1}}.

6

Set Operations

There are several ways of combining sets to produce new sets.

6.1 Intersection

The intersection of A with B denoted A ∩ B is defined as {x|x ∈
A ∧ x ∈ B}. For example {1, 2, 3, 4, 5} ∩ {1, 3, 5, 7, 9} = {1, 3, 5}. So the

intersection of two sets consists of the objects which are in both sets

simultaneously. Two sets are disjoint if A ∩ B = ∅.

6.2 Venn diagrams

Set operations can be visualized using Venn diagrams. A circle (or

other closed curve) is drawn to represent a set. The points inside

the circle are used to stand for the elements of the set. To represent

the set operation of intersection, two such circles are drawn with

an overlap to indicate the two sets may share some elements. In the

Venn diagram below, the shaded area represents the intersection of A

and B.
A B

Figure 6.1: Venn diagram for A ∩ B

6.3 Union

The union of A with B denoted A ∪ B is {x|x ∈ A ∨ x ∈ B}. In

words, A ∪ B consists of those elements that appear in at least one of

A and B. So for example {1, 2, 3, 4, 5}∪{1, 3, 5, 7, 9} = {1, 2, 3, 4, 5, 7, 9}.
The Venn Diagram representing

64 math208: discrete mathematics

the union of A and B looks like this:

A B

Figure 6.2: Venn diagram for A ∪ B

6.4 Symmetric difference

The symmetric difference of A and B is defined to be A ⊕ B =

{x|x ∈ A⊕ x ∈ B}. So A⊕ B consists of those elements which appear

in exactly one of A and B. For example {1, 2, 3, 4, 5} ⊕ {1, 3, 5, 7, 9} =
{2, 4, 7, 9}. The Venn diagram looks like

A B

Figure 6.3: Venn diagram for A⊕ B

6.5 Complement

The complement of B relative to A, denoted A− B is {x|x ∈ A ∧
x 6∈ B}. So {1, 2, 3, 4, 5} − {1, 3, 5, 7, 9} = {2, 4}. The Venn diagram

looks like

A B

Figure 6.4: Venn diagram for A− B

When U is a universal set, we denote U − A by A and call it the

complement of A. If U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, then {0, 1, 2, 3, 4} =
{5, 6, 7, 8, 9}. The universal set matters here. If U = {x ∈ N|x ≤ 100},
then {0, 1, 2, 3, 4} = {5, 6, 7, 8, ..., 100}.

A

Figure 6.5: Venn diagram for A =

U − A

6.6 Ordered lists

The order in which elements of a set are listed does not matter. But

there are times when order is important. For example, in a horse

race, knowing the order in which the horses cross the finish line is

more interesting than simply knowing which horses were in the race.

There is a familiar way, introduced in algebra, of indicating order

is important: ordered pairs. Ordered pairs of numbers are used to

specify points in the Euclidean plane when graphing functions. For

instance, when graphing y = 2x + 1, setting x = 3 gives y = 7, and so

the ordered pair (3, 7) will indicate one of the points on the graph.

In this course, ordered pairs of any sorts of objects, not just num-

bers, will be of interest. An ordered pair is a collection of two objects

(which might both be the same) with one specified as first (the first

coordinate) and the other as second (the second coordinate). The

ordered pair with a specified as first and b as second is written (as

usual) (a, b). The most important feature of ordered pairs is that

set operations 65

(a, b) = (c, d)←→ a = c and b = d. In words, two ordered pairs are

equal provided they match in both coordinates. So (1, 2) 6= (2, 1).

More generally, an ordered n-tuple (a1, a2, ..., an) is the ordered

collection with a1 as its first coordinate, a2 as its second coordinate,

and so on. Two ordered n-tuples are equal provided they match in

every coordinate.

6.7 Cartesian product

The last operation to be considered for combining sets is the Carte-

sian product of two sets A and B. It is defined by A× B = {(a, b)|a ∈
A ∧ b ∈ B }. In other words, A × B comprises all ordered pairs

that can be formed taking the first coordinate from A and the sec-

ond coordinate from B. For example if A = {1, 2}, and B = {α, β},
then A × B = {(1, α), (2, α), (1, β), (2, β)}. Notice that in this case

A× B 6= B× A since, for example, (1, α) ∈ A× B, but (1, α) 6∈ B× A.

A special case occurs when A = B. In this case we denote the

Cartesian product of A with itself by A2. The familiar example R×
R = R2 is called the Euclidean plane or the Cartesian plane.

More generally given sets A1, ..., An the Cartesian product of these

sets is written as A1 × A2 × ...× An = {(a1, a2,, an)|ai ∈ Ai, 1 ≤ i ≤
n}. Also An denotes the Cartesian product of A with itself n times.

In order to avoid the use of an ellipsis we also denote the Carte-

sian product of A1, ..., An as
n

∏
k=1

Ak. The variable k is called the index

of the product. Most often the index is a whole number. Unless we

are told otherwise we start with k = 1 and increment k by 1 suc-

cessively until we reach n. So if we are given A1, A2, A3, A4, and A5,
5

∏
k=1

Ak = A1 × A2 × A3 × A4 × A5.

6.8 Laws of set theory

There is a close connection between many set operations and the

logical connectives of Chapter 1. The intersection operation is related

to conjunction, union is related to disjunction, and complementation

is related to negation. It is not surprising then that the various laws

66 math208: discrete mathematics

of logic, such as the associative, commutative, and distributive laws

carry over to analogous laws for the set operations. Table 6.1 exhibits

some of these properties of these set operations.

Identity Name

(A) = A Double Negation

A ∩ U = A
Identity laws

A ∪∅ = A

A ∪ U = U
Domination laws

A ∩∅ = ∅

A ∪ A = A
Idempotent laws

A ∩ A = A

A ∪ B = B ∪ A
Commutative laws

A ∩ B = B ∩ A

(A ∪ B) ∪ C = A ∪ (B ∪ C)
Associative laws

(A ∩ B) ∩ C = A ∩ (B ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
Distributive laws

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

(A ∩ B) = (A ∪ B)
De Morgan’s laws

(A ∪ B) = (A ∩ B)

A ∪ A = U Law of Excluded Middle
A ∩ A = ∅ Law of Contradiction

Table 6.1: Laws of Set Theory

These can be verified by using membership tables which are

the analogs of truth tables used to verify the logical equivalence of

propositions. For a set A either an element under consideration is

in A or it is not. These binary possibilities are kept track of using

1 if x ∈ A and 0 if x 6∈ A, and then performing related bit string

operations.

Example 6.1. Verify the De Morgan’s law given by (A ∩ B) = A ∪ B.

A B A ∩ B (A ∩ B) A B A ∪ B
1 1 1 0 0 0 0

1 0 0 1 0 1 1

0 1 0 1 1 0 1

0 0 0 1 1 1 1

The meaning of the first row of the table is that if x ∈ A and x ∈ B, then

x 6∈ A ∩ B, as indicated by the 0 in the first row, fourth column, and also

set operations 67

not in A ∪ B as indicated by the 0 in the first row, last column. Since the

columns for A ∩ B and A∪ B are identical, it follows that (A ∩ B) = A∪ B

as promised.

6.9 Proving set identities

Just as compound propositions can be analyzed using truth tables,

more complicated combinations of sets can be handled using mem-

bership tables. For example, using a membership table, it is easy to

verify that A ∪ (B ∩ C) = A ∩ (B ∪ C). But, just as with propositions,

it is usually more enlightening to verify such equalities by applying

the few basic laws of set theory listed above.

Example 6.2. Let’s prove A ∪ (B ∩ C) = A ∩ (B ∪ C)

Proof. The proof is just two applications of De Morgan’s laws:

A ∪ (B ∩ C) = A ∩ (B ∩ C) = A ∩ (B ∪ C).

♣

6.10 Bit string operations

There is a correspondence between set operations of finite sets and

bit string operations. Let U = {u1, u2, ..., un} be a finite universal set

with distinct elements listed in a specific order1 For a set A under 1 Notice the universal set is ordered.
We may write it as and n-tuple: U =
(u1, u2, ..., un).consideration, we have A ⊆ U . By the law of excluded middle, for

each uj ∈ U , either uj ∈ A or uj 6∈ A. We define a binary string

of length n, called the characteristic vector of A, denoted χ(A), by

setting the jth bit of χ(A) to be 1 if uj ∈ A and 0 if uj 6∈ A. For

example if U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and A = {1, 3, 4, 5, 8}, then

χ(A) = 101110010.

An interesting side-effect is that for example χ(A ∩ B) = χ(A) ∧
χ(B) 2, χ(A ∪ B) = χ(A) ∨ χ(B) and χ(A) = ¬χ(A). Since every 2 As a function, we say that χ maps

intersection to conjunction
proposition can be expressed using ∧,∨ and ¬, if we represent sets

by their characteristic vectors, we can get a machine to perform set

operations as logical operations on bit strings. This is the method

programmers use to manipulate sets in computer memory.

68 math208: discrete mathematics

6.11 Exercises

Exercise 6.1. Let A = {2, 3, 4, 5, 6, 7, 8} and B = {1, 2, 4, 6, 7, 8, 9}. Find

a) A ∩ B

b) A ∪ B

c) A− B

d) B− A

Exercise 6.2. Determine the sets A and B, if A− B = {1, 2, 7, 8}, B− A =

{3, 4, 10} and A ∩ B = {5, 6, 9}.

Exercise 6.3. Use membership tables to show that A ⊕ B = (A ∪ B) −
(A ∩ B).

Exercise 6.4. Do exercise 3 using Venn diagrams.

Exercise 6.5. Verify A ∪ (A ∩ B) = A.

Exercise 6.6. Let A = {1, 2, 3, 4}, B = {a, b, c}, C = {α, β}, and

D = {7, 8, 9}. Write out the following Cartesian products.

(a) A× B (b) B× A (c) C× B× D

Exercise 6.7. What can you conclude about A and B if A× B = B× A.

Exercise 6.8. If U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, determine χ({1, 2, 4, 8}).

Exercise 6.9. Let A = {1, 2, 3} × {1, 2, 3, 4}. List the elements of the set

B = {(s, t) ∈ A | s < t }.

7

Styles of Proof

Earlier, we practiced proving the validity of logical arguments,

both with and without quantifiers. The technique introduced there

is one of the main tools for constructing proofs in a more general

setting. In this chapter, various common styles of proof in mathemat-

ics are described. Recognizing these styles of proof will make both

reading and constructing proofs a little less onerous. The example proofs in this chapter will

use some familiar facts about integers,

which we will prove in a later chapter.

7.1 Direct proof

As mentioned before, the typical form of the statement of a theorem

is: if a and b and c and · · · , then d. The propositions a,b,c, · · · are called

the hypotheses, and the proposition d is called the conclusion. The

goal of the proof is to show that (a ∧ b ∧ c ∧ · · ·) → d is a true propo-

sition. In the case of propositional logic, the only thing that matters is

the form of a logical argument, not the particular propositions that are

involved. That means the proof can always be given in the form of a

truth table. In areas outside of propositional logic that is no longer

possible. Now the content of the propositions must be considered.

In other words, what the words mean, and not merely how they are

strung together, becomes important.

Suppose we want to prove an implication Theorem: If p, then

q. In other words, we want to show p → q is true. There are two

possibilities: Either p is false, in which case p → q is automatically

true, or p is true. In this second case, we need to show that q is true

70 math208: discrete mathematics

as well to conclude p → q is true. In other words, to show p → q is

true, we can begin by assuming p is true, and then give an argument

that q must be true as well. The outline of such a proof will look like:

Proof:

Step 1) Reason 1

Step 2) Reason 2

...
...

Step l) Reason l

♣

Every step in the proof must be a true proposition, and since the

goal is to conclude q is true, the proposition q will be the last step

in the proof. There are only four acceptable reasons that can be

invoked to justify a step in a proof. Each step can be: (1) a hypothesis

(and so assumed to be true), (2) an application of a definition, (3)

a known fact proved previously, and so known to be true, or (4) a

consequence of applying a rule of inference or a logical equivalence to

earlier steps in the proof. The only difference between these sorts

of formal proofs and the proofs of logical arguments we practiced

earlier is the inclusion of definitions as a justification of a step.

Before giving a few examples, there is one more point to con-

sider. Most theorems in mathematics involve variables in some way,

along with either universal or existential quantifiers. But, in the case

of universal quantifiers, tradition dictates that the mention of the

quantifier is often suppressed, and left for the reader to fill in. For

example consider: Theorem: If n is an even integer, then n2 is an even

integer. The statement is really shorthand for Theorem: For every

n ∈ Z, if n is even, then n2 is even. If we let E(n) be the predicate n

is even with universe of discourse Z, the theorem becomes Theo-

rem: ∀n(E(n) → E(n2)). The truth of such a universally quantified

statement can be accomplished with an application of the rule of uni-

versal generalization. In other words, we prove that for an arbitrary

n ∈ Z, the proposition E(n) → E(n2) is true. The result is stated and

proved in the next theorem.

styles of proof 71

Theorem 7.1. If n is an even integer, then n2 is an even integer.

Proof.
1) n is an even integer hypothesis
2) n = 2k for an integer k definition of even
3) n2 = 4k2 algebra fact
4) n2 = 2(2k2) algebra fact
5) n2 is even definition of even

♣

Usually proofs are not presented in the dry stepwise style of the

last example. Instead, a more narrative style is used. So the above

proof could go as follows:

Proof. Suppose n is an even integer. That means n = 2k for some integer k.

Squaring both sides gives n2 = (2k)2 = 4k2 = 2(2k2) which shows n2 is

even. ♣

All the ingredients of the stepwise proof are present in the narra-

tive form, but this second form is a little more reader friendly. For

example, we can include a few comments, such as squaring both sides

gives to help the reader figure out what is happening.

The method of proof given above is called direct proof. The char-

acteristic feature of a direct proof is that in the course of the proof,

the hypotheses appear as steps, and the last step in the proof is the

conclusion of the theorem.

It is traditional to put a marker (such as ♣, to indicate the theorem

has been clubbed!) at the end of a narrative form of a proof to let the

reader know the proof is complete.

Here is one more example of a direct proof.

Theorem 7.2. If n and m are odd integers, then n + m is even.

Proof. Suppose m and n are odd integers. That means m = 2j + 1 for

some integer j, and n = 2k + 1 for some integer k. Adding gives m + n =

(2j + 1) + (2k + 1) = 2j + 2k + 2 = 2(j + k + 1), and so we see m + n is

even. ♣

72 math208: discrete mathematics

7.2 Indirect proof

There are cases where a direct proof is not very convenient for one

reason or another. There are several other styles of proof, each based

on some logical equivalence.

For example, since p→ q ≡ ¬q→ ¬p, we can prove the

Theorem 7.3. p→ q

by instead giving a proof of

Theorem 7.4. ¬q→ ¬p.

In other words, we replace the requested implication with its con-

trapositive, and prove that instead. This method of proof is called

indirect proof. Here’s an example.

Theorem 7.5. If m2 is an even integer, then m is an even integer.

Proof. Suppose m is not even. Then m is odd. So m = 2k + 1 for some

integer k. Squaring both sides of that equation gives m2 = (2k + 1)2 =

4k2 + 4k + 1 = 2(2k2 + 2k) + 1, which shows m2 is not even. ♣

Notice that we gave a direct proof of the equivalent theorem: If m is

not an even integer, then m2 is not an even integer.

7.3 Proof by contradiction

Another alternative to a direct proof is proof by contradiction. In this

method the plan is to replace the requested Theorem: r (where r can

be any simple or compound proposition) with Theorem: ¬r → F,

where F is any proposition known to be false. The reason proof by

contradiction is a valid form of proof is that ¬r → F ≡ r, so that

showing ¬r → F is true is identical to showing r is true. Proofs by

contradiction can be a bit more difficult to discover than direct or

indirect proofs. The reason is that in those two types of proof, we

know exactly what the last line of our proof will be. We know where

we want to get to. But in a proof by contradiction, we only know that

we want to end up with some (any) proposition known to be false.

Typically, when writing a proof by contradiction, we experiment,

styles of proof 73

trying various logical arguments, hoping to stumble across some

false proposition, and so conclude the proof. For example, consider

the following.

Theorem 7.6.
√

2 is irrational.

The plan is to replace the requested theorem with

Theorem 7.7. If
√

2 is rational, then F (some fact known to be false).

And now, we may give a direct proof of this replacement theorem:

Proof. Suppose that
√

2 is rational. Then there exist integers m and n with

n 6= 0, so that
√

2 =
m
n

, with
m
n

in lowest terms. Squaring both sides

gives 2 =
m2

n2 . Thus m2 = 2n2 and so m2 is even. Therefore m is even.

So m = 2k for some integer k. Substituting 2k for m in m2 = 2n2 shows

(2k)2 = 4k2 = 2n2. Which means that n2 = 2k2. Therefore n2 is even,

which means n is even. Now since both m and n are even, they have 2 as a

common factor. Therefore
m
n

is in lowest terms and it is not in lowest terms.

→←. ♣

The symbol→← (two arrows crashing into each other head on)

denotes that we have reached a fallacy (F), a statement known to be

false. It usually marks the end of a proof by contradiction.

In the next example, we will prove a proposition of the form p→ q

by contradiction. The theorem is about real numbers x and y.

Theorem 7.8. If 0 < x < y, then
√

x <
√

y.

Think of the statement of the theorem in the form p → q. The plan is

to replace the requested theorem with

Theorem 7.9. ¬(p→ q)→ F.

But ¬(p → q) ≡ ¬(¬p ∨ q) ≡ p ∧ ¬q. So we will actually prove

(p ∧ ¬q)→ F. In other words, we will prove (directly)

Theorem 7.10. If 0 < x < y and
√

x ≥ √y, then (some fallacy).

Proof. Suppose 0 < x < y and
√

x ≥ √y. Since
√

x > 0,
√

x
√

x ≥
√

x
√

y, which is the same as x ≥ √xy. Also, since
√

y > 0,
√

y
√

x ≥
√

y
√

y, which is the same as
√

xy ≥ y. Putting x ≥ √xy and
√

xy ≥ y

together, we conclude x ≥ y. Thus x < y and x ≥ y. →← ♣

74 math208: discrete mathematics

7.4 Proof by cases

The only other common style of proof is proof by cases. Let’s first

look at the justification for this proof technique. Suppose we are

asked to prove

Theorem 7.11 (Theorem X). p→ q.

We dream up some propositions, r and s, and replace the requested

theorem with three theorems:

Theorem 7.12 (Theorem XS). (1) p −→ (r ∨ s), (2) r → q, and

(3) s→ q.

The propositions r, s we dream up are called the cases. There can

be any number of cases. If we dream up three cases, then we would

have four theorems to prove, and so on. The hope is that the proofs

of these replacement theorems will be much easier than a proof of

the original theorem. 1 1 This is the divide and conquer approach
to a proof.

The reason proof by cases is a valid proof technique is that

[(p −→ (r ∨ s)) ∧ (r → q) ∧ (s→ q)]→ (p→ q)

is a tautology2. Proof by cases, as for proof by contradiction, is gen- 2 Prove this!

erally a little trickier than direct and indirect proofs. In a proof by

contradiction, we are not sure exactly what we are shooting for. We

just hope some contradiction will pop up. For a proof by cases, we

have to dream up the cases to use, and it can be difficult at times to

dream up good cases.

Theorem 7.13. For any integer n, |n| ≥ n.

Proof. Suppose n is an integer. There are two cases:Either (1): n > 0, or This has the form p −→ (r ∨ s) of (1) in

Theorem 7.4.(2): n ≤ 0.

Case 1: We need to show If n > 0, then |n| ≥ n. (We will do this with a direct

proof.) Suppose n > 0. Then |n| = n. Thus |n| ≥ n is true.

Case 2: We need to show If n ≤ 0, then |n| ≥ n. (We will again use a direct

proof.) Suppose n ≤ 0. Now 0 ≤ |n|. Thus, n ≤ |n|.

So, in any case, n ≤ |n| is true, and that proves the theorem. ♣

styles of proof 75

7.5 Existence proof

A proof of a statement of the form ∃xP(x) is called an existence

proof. The proof may be constructive, meaning that the proof pro-

vides a specific example of, or at least an explicit recipe for find-

ing, an x so that P(x) is true; or the proof may be non-constructive,

meaning that it establishes the existence of x without giving a method

of actually producing an example of an x for which P(x) is true.

To give examples of each type of existence proof, let’s use a famil-

iar fact (which will be proved a little later in the course): There are

infinitely many primes. Recall that a prime is an integer greater than

1 whose only positive divisors are 1 and itself. The next two theo-

rems are contrived, but they demonstrate the ideas of constructive

and nonconstructive proofs.

Theorem 7.14. There is a prime with more than two digits.

Proof. Checking shows that 101 has no positive divisors besides 1 and itself.

Also, 101 has more than two digits. So we have produced an example of a

prime with more than two digits. ♣

That is a constructive proof of the theorem. Now, here is a non-

constructive proof of a similar theorem.

Theorem 7.15. There is a prime with more than one billion digits.

Proof. Since there are infinitely many primes, they cannot all have one

billion or fewer digits. So there must some primes with more than one billion

digits. ♣

7.6 Using a counterexample to disprove a statement

Finally, suppose we are asked to prove a theorem of the form ∀x P(x),

and for one reason or another we come to believe the proposition is

not true. The proposition can be shown to be false by exhibiting a

specific element from the domain of x for which P(x) is false. Such

an example is called a counterexample to the theorem. Let’s look at a

specific instance of the counterexample technique.

76 math208: discrete mathematics

Theorem 7.16 (not really!). For all positive integers n, n2 − n + 41 is

prime

Counterexample. To disprove the theorem, we explicitly specify a positive

integer n such that n2 − n + 41 is not prime. In fact, when n = 41, the

expression is not a prime since clearly 412 − 41 + 41 = 412 is divisible by

41. So, n = 41 is a counterexample to the proposition. ♣

An interesting fact about this example is that n = 41 is the smallest

counterexample. For n = 1, 2, · · · 40, it turns out that n2 − n + 41 is

a prime! This examples shows the danger of checking a theorem of

the form ∀x P(x) for a few (or a few billion!) values of x, finding P(x)

true for those cases, and concluding it is true for every possible value

of x.

styles of proof 77

7.7 Exercises

For the purpose of these exercises, feel free to use familiar facts and

definitions about integers. For example: Recall, an integer n is even if

n = 2k for some integer k. And, an integer n is odd if n = 2k + 1 for

some integer k.

Exercise 7.1. Give a direct proof that the sum of two even integers is even.

Exercise 7.2. Give an indirect proof that if the square of the integer n is

odd, then n is odd.

Exercise 7.3. Give a proof by contradiction that the sum of a rational

number and an irrational number is irrational.

Exercise 7.4. Give a proof by contradiction that if 5n− 1 is odd, then n is

even.

Exercise 7.5. Give a proof by cases that for integers m, n, we have |mn| =
|m||n|. Hint: Consider four cases: (1) m ≥ 0 and n ≥ 0, (2) m ≥ 0 and

n < 0, (3) m < 0 and n ≥ 0, and (4) m < 0 and n < 0.

Exercise 7.6. Give an example of a predicate P(n) about positive integers

n, such that P(n) is true for every positive integer from 1 to one billion, but

which is never-the-less not true for all positive integers. (Hint: there is a

really simple choice possible for the predicate P(n).)

Exercise 7.7. In Chapter 1, exercise e), you concluded that If x = 2, then

x2 − 2x + 1 = 0 is not a proposition. Using the convention given in this

chapter, what would you say now, and why?

Exercise 7.8. Give a counterexample to the proposition Every positive

integer that ends with a 7 is a prime.

8

Relations

Two-place predicates, such as B(x, y) : x is the brother of y, play a

central role in mathematics. Such predicates can be used to describe

many basic concepts. As examples, consider the predicates given

verbally:

(1) G(x, y) : x is greater than or equal to y which compares the magni-

tudes of two values.

(2) P(x, y) : x has the same parity as y which compares the parity of two

integers.

(3) S(x, y) : x has square equal to y which relates a value to its square.

8.1 Relations

Two-place predicates are called relations, probably because of exam-

ples such as the brother of given above. To be a little more complete

about it, if P(x, y) is a two-place predicate, and the domain of dis-

course for x is the set A, and the domain of discourse for y is the

set B, then P is called a relation from A to B. When working with

relations, some new vocabulary is used. The set A (the domain of

discourse for the first variable) is called the domain of the relation,

and the set B (the domain of discourse for the second variable) is

called the codomain of the relation.

80 math208: discrete mathematics

8.2 Specifying a relation

There are several different ways to specify a relation. One way is

to give a verbal description as in the examples above. As one more

example of a verbal description of a relation, consider

E(x, y) : The word x ends with the letter y. Here the domain will be

words in English, and the codomain will the the twenty-six letters of

the alphabet. We say the ordered pair (cat, t) satisfies the relation E,

but that (dog, w) does not.

8.2.1 By ordered pairs

When dealing with abstract relations, a verbal description is not

always convenient. An alternate method is to tell what the domain

and codomain are to be, and then simply list the ordered pairs which

will satisfy the relation. For example, if A = {1, 2, 3, 4} and B =

{a, b, c, d}, then one of many possible relations from A to B would

be {(1, b), (2, c), (4, c)}. If we name this relation R, we will write

R = {(1, b), (2, c), (4, c)}. It would be tough to think of a natural

verbal description of R.

When thinking of a relation, R, as a set of ordered pairs, it is com-

mon to write aRb in place of (a, b) ∈ R. For example, using the

relation G defined above, we can convey the fact that the pair (3, 2)

satisfies the relation by writing any one of the following: (1) G(3, 2) is

true, (2) (3, 2) ∈ G, or (3) 3G2. The third choice is the preferred one

when discussing relations abstractly.

Sometimes the ordered pair representation of a relation can

be a bit cumbersome compared to the verbal description. Think

about the ordered pair form of the relation E given above: E =

{ (cat, t), (dog, g), (antidisestablishmentarianism, m), · · · }.

8.2.2 By graph

Another way represent a relation is with a graph1. Here, a graph is a 1 Here graph does not mean the sorts
of graphs of lines, curves and such
discussed in an algebra course.diagram made up of dots, called vertices, some of which are joined

by lines, called edges. To draw a graph of a relation R from A to B,

make a column of dots, one for each element of A, and label the dots

relations 81

with the names of those elements. Then, to the right of A’s column

make a column of dots for the elements of B. Then connect the vertex

labelled a ∈ A to a vertex b ∈ B with an edge provided (a, b) ∈ R.

The diagram is called the bipartite graph representation of R.

Example 8.1. Let A = {1, 2, 3, 4 } and B = {a, b, c, d }, and let

R = {(1, a), (2, b), (3, c), (3, d), (4, d)}. Then the bipartite graph which

represents R is given in figure 8.1.

1

2

3

4

a

b

c

d

A B

Figure 8.1: Example bipartite graph

The choices made about the ordering and the placement of the

vertices for the elements of A and B may make a difference in the

appearance of the graph, but all such graphs are considered equiv-

alent. Also, edges can be curved lines. All that matters is that such

diagrams convey graphically the same information as R given as a set

of ordered pairs.

8.2.3 By digraph: domain=codomain

It is common to have the domain and the codomain of a relation be

the same set. If R is a relation from A to A, then we will say R is a

relation on A. In this case there is a shorthand way of representing

the relation by using a digraph. The word digraph is shorthand for

directed graph meaning the edges have a direction indicated by an

arrowhead. Each element of A is used to label a single point. An

arrow connects the vertex labelled s to the one labelled t provided

(s, t) ∈ R. An edge of the form (s, s) is called a loop.

Example 8.2. Let A = {1, 2, 3, 4, 5} and

R = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4)}. Then a digraph for

R is shown in figure 8.2

1

5

2

34

Figure 8.2: Example digraph

Again it is true that a different placement of the vertices may yield

a different-looking, but equivalent, digraph.

8.2.4 By 0-1 matrix

The last method for representing a relation is by using a 0-1 matrix.

This method is particularly handy for encoding a relation in com-

puter memory. An m× n matrix is a rectangular array with m rows

82 math208: discrete mathematics

and n columns. Matrices are usually denoted by capital English let-

ters. The entries of a matrix, usually denoted by lowercase English

letters, are indexed by row and column. Either ai,j or aij stands for

the entry in a matrix in the ith row and jth column. A 0-1 matrix

is one all of whose entries are 0 or 1. Given two finite sets A and B

with m and n elements respectively, we may use the elements of A (in

some fixed order) to index the rows of an m× n 0-1 matrix, and use

the elements of B to index the columns. So for a relation R from A to

B, there is a matrix of R, MR with respect to the orderings of A and

B which represents R. The entry of MR in the row labelled by a and

column labelled by b is 1 if aRb and 0 otherwise. This is exactly like

using characteristic vectors to represent subsets of A× B, except that

the vectors are cut into n chunks of size m.

Example 8.3. Let A = {1, 2, 3, 4} and B = {a, b, c, d} as before, and

consider the relation R = {(1, a), (1, b), (2, c), (4, c), (4, a)}. Then a 0-1

matrix which represents R using the natural orderings of A and B is Note: This matrix may change appear-

ance if A or B is listed in a different

order.

MR =


1 1 0 0

0 0 1 0

0 0 0 0

1 0 1 0



8.3 Set operations with relations

Since relations can be thought of as sets of ordered pairs, it makes

sense to ask if one relation is a subset of another. Also, set operations

such as union and intersection can be carried out with relations.

8.3.1 Subset relation using matrices

These notions can be expressed in terms of the matrices that repre-

sent the relations. Bit-wise operations on 0-1 matrices are defined in

the obvious way. Then MR∪S = MR ∨MS , and MR∩S = MR ∧MS . Also,

for two 0-1 matrices of the same size M ≤ N means that wherever N

has a 0 entry, the corresponding entry in M is also 0. Then R ⊆ S

means the same as MR ≤ MS .

relations 83

8.4 Special relation operations

There are two new operations possible with relations.

8.4.1 Inverse of a relation

First, if R is a relation from A to B, then by reversing all the ordered

pairs in R, we get a new relation, denoted R−1, called the inverse of

R. In other words, R−1 is the relation from B to A given by R−1 =

{(b, a)|(a, b) ∈ R}. A bipartite graph for R−1 can be obtained from

a bipartite graph for R simply by interchanging the two columns of

vertices with their attached edges (or, by rotating the diagram 180◦).

If the matrix for R is MR , then the matrix for R−1 is produced by

taking the columns of M
R−1 to be the rows of MR . A matrix obtained

by changing the rows of M into columns is called the transpose of M,

and written as MT . So, in symbols, if M is a matrix for R, then MT is

a matrix for R−1.

8.4.2 Composition of relations

The second operation with relations concerns the situation when S is

a relation from A to B and R is a relation from B to C. In such a case,

we can form the composition of S by R which is denoted R ◦ S. The

composition is defined as

R ◦S = {(a, c)|a ∈ A, c ∈ C and ∃b ∈ B, such that (a, b) ∈ S and (b, c) ∈ R}.

Example 8.4. Let A = {1, 2, 3, 4}, B = {α, β} and C = {a, b, c}. Further

let S = {(1, α), (1, β), (2, α), (3, β), (4, α)} and R = {(α, a), (α, c), (β, b)}.
Since (1, α) ∈ S and (α, a) ∈ R, it follows that (1, a) ∈ R ◦ S. Likewise,

since (2, α) ∈ S and (α, c) ∈ R, it follows that (2, c) ∈ R ◦ S. Continuing

in that fashion shows that

R ◦ S = {(1, a), (1, b), (1, c), (2, a), (2, c), (3, b), (4, a), (4, c)}.

84 math208: discrete mathematics

The composition can also be determined by looking at the bipartite

graphs. Make a column of vertices for A labelled 1, 2, 3, 4, then to the right

a column of points for B labelled α, β, then again to the right a column of

points for C labelled a, b, c. Draw in the edges as usual for R and S. Then

a pair (x, y) will be in R ◦ S provided there is a two edge path from x to y.

(See figure 8.3 at right.)

1

2

3

4

α

β

a

b

c

S R

1

2

3

4

a

b

c

R ◦ S

Figure 8.3: Composing relations: R ◦ S

From the picture it is instantly clear that, for example, (1, c) ∈ R ◦ S.

In terms of 0-1 matrices if MS is the m × k matrix of S with respect to

the given orderings of A and B, and if MR is the k × n matrix of R with

respect to the given orderings of B and C, then whenever the i, l entry of S

and l, j entry of R are both 1, then (ai, cj) ∈ R ◦ S.

8.4.3 Composition with matrices: Boolean product

This example motivates the definition of the Boolean product of

MS and MR as the corresponding matrix MR◦S of the composition.

More rigorously when M is an m× k 0-1 matrix and N is an k× n 0-1

matrix, M�N is the m× n 0-1 matrix whose i, j entry is (mi,1 ∧ n1,j)∨
(mi,2 ∧ n2,j)∨, ..., (mi,k ∧ nk,j). This looks worse than it is. It achieves

the desired result2. 2 The boolean product is computed
the same way as the ordinary matrix
product where multiplication and
addition have been replaced with and
and or, respectively.

For the relations in the example above example

MR◦S =


1 1 1

1 0 1

0 1 0

1 0 1

 =


1 1

1 0

0 1

1 0

�
1 0 1

0 1 0

 = MS �MR

relations 85

8.5 Exercises

Exercise 8.1. Let A = {a, b, c, d} and R = {(a, a), (a, c), (b, b), (b, d), (c, a), (c, c), (d, b), (d, d)}
be a relation on A. Draw a digraph which represents R. Find the matrix

which represents R with respect to the ordering d, c, a, b.

Exercise 8.2. The matrix of a relation S from {1, 2, 3, 4, 5} to {a, b, c, d}
with respect to the given orderings is displayed below. Represent S as a

bipartite graph, and as a set of ordered pairs.

MS =



1 1 0 0

0 0 1 1

1 0 0 1

1 0 1 0

0 1 1 0


Exercise 8.3. Find the composition of S by R (as given in exercises 8.1 and

8.2) as a set of ordered pairs. Use the Boolean product to find MR◦S with

respect to the natural orderings. 3 3 The natural ordering for R is not the
ordering above.

Exercise 8.4. Let B = {1, 2, 3, 4, 5, 6} and let

R1 = {(1, 2), (1, 3), (1, 5), (2, 1), (2, 2), (2, 4), (3, 3), (3, 4),

(4, 1), (4, 5), (5, 5), (6, 6)} and

R2 = {(1, 2), (1, 6), (2, 1), (2, 2), (2, 3), (2, 5), (3, 1), (3, 3), (3, 6),

(4, 2), (4, 3), (4, 4), (5, 1), (5, 5), (5, 6), (6, 2), (6, 3), (6, 6)}.

(a) Find R1 ∪ R2, R1 ∩ R2, and R1 ⊕ R2.

(b) With respect to the given ordering of B find the matrix of each relation in

part a)

9

Properties of Relations

There are several conditions that can be imposed on a relation

R on a set A that make it useful. These requirements distinguish

those relations which are interesting for some reason from the garden

variety junk, which is, let’s face it, what most relations are.

9.1 Reflexive

A relation R on A is reflexive provided ∀a ∈ A, aRa. In plain English,

a relation is reflexive if every element of its domain is related to

itself. The relation B(x, y) : x is the brother of y is not reflexive

since no person is his own brother. On the other hand, the relation

S(m, n) : m + n is even. is a reflexive relation on the set of integers

since, for any integer m, m + m = 2m is even.

It is easy to spot a reflexive relation from its digraph: there is a

loop at every vertex. Also, a reflexive relation can be spotted quickly

from its matrix. First, let’s agree that when the matrix of a relation

on a set A is written down, the same ordering of the elements of

A is used for both the row and column designators. For a reflexive

relation, the entries on the main diagonal of its matrix will all be 1’s.

The main diagonal of a square matrix runs from the upper left corner

to the lower right corner.

88 math208: discrete mathematics

9.2 Irreflexive

The flip side of the coin from reflexive is irreflexive. A relation R on

A is irreflexive in case a�Ra for all a ∈ A. In other words, no element

of A is related to itself. The brother of relation is irreflexive. The di-

graph of an irreflexive relation contains no loops, and its matrix has

all 0’s on the main diagonal.

Actually, that discussion was a little careless. To see why, consider

the relation S(x, y) : the square of x is bigger than or equal to y.

Is this relation reflexive? The answer is: we can’t tell. The answer

depends on the domain of the relation, and we haven’t been told

what that is to be. For example, if the domain is the set N of natural

numbers, then the relation is reflexive, since n2 ≥ n for all n ∈ N.

However, if the domain is the set R of all real numbers, the relation is

not reflexive. In fact, a counterexample to the claim that S is reflexive

on R is the number 1
2 since

(
1
2

)2
= 1

4 , and 1
4 < 1 , so 1

2 �S
1
2 . The lesson

to be learned from this example is that the question of whether a

relation is reflexive cannot be answered until the domain has been

specified. The same is true for the irreflexive condition and the other

conditions defined below. Always be sure you know the domain

before trying to determine which properties a relation satisfies.

9.3 Symmetric

A relation R on A is symmetric provided (a, b) ∈ R→ (b, a) ∈ R. An-

other way to say the same thing: R is symmetric provided R = R−1.

In words, R is symmetric provided that whenever a is related to b,

then b is related to a. Any digraph representing a symmetric rela-

tion R will have a return edge for every non-loop. Think of this as

saying the graph has no one-way streets. The matrix M of a sym-

metric relation satisfies M = MT . In this case M is symmetric about

its main diagonal in the usual geometric sense of symmetry. The

B(x, y) : x is the brother of y relation mentioned before is not sym-

metric if the domain is taken to be all people since, for example,

Donny B Marie, but Marie�B Donny. On the other hand, if we take the

domain to be all (human) males, then B is symmetric.

properties of relations 89

9.4 Antisymmetric

A relation R on A is antisymmetric if whenever (a, b) ∈ R and

(b, a) ∈ R, then a = b. In other words, the only objects that are each

related to the other are objects that are the same. For example, the

usual ≤ relation for the integers is antisymmetric since if m ≤ n and

n ≤ m, then n = m. A digraph representing an antisymmetric relation

will have all streets one-way except loops. If M is a matrix for R, then

whenever ai,j = 1 and i 6= j, aj,i = 0.

9.5 Transitive

A relation R on A is transitive if whenever (a, b) ∈ R and (b, c) ∈ R,

then (a, c) ∈ R. This can also be expressed by saying R ◦ R ⊆ R.

In a digraph for a transitive relation whenever we have a directed

path of length two from a to c through b, we must also have a direct

link from a to c. This means that any digraph of a transitive relation

has lots of triangles. This includes degenerate triangles where a, b

and c are not distinct. A matrix M of a transitive relation satisfies

M�M ≤ M. The relation ≤ on N is transitive, since from k ≤ m and

m ≤ n, we can conclude k ≤ n.

9.6 Examples

Example 9.1.

Define a relation, N on the set of all living people by the rule a N b if and

only if a, b live within one mile of each other. This relation is reflexive since

every person lives within a mile of himself. It is not irreflexive since I live

within a mile of myself. It is symmetric since if a lives within a mile of

b, then b lives within a mile of a. It is not antisymmetric since Mr. and

Mrs. Smith live within a mile of each other, but they are not the same per-

son. It is not transitive: to see why, think of the following situation (which

surely exists somewhere in the world!): there is a straight road of length 1.5

miles. Say Al lives at one end of the road, Cal lives at the other end, and Sal

lives half way between Al and Cal. Then Al N Sal and Sal N Cal, but not

Al N Cal.

90 math208: discrete mathematics

Example 9.2. Let A = R and define aRb iff a ≤ b, then R is a reflexive,

transitive, antisymmetric relation. Because of this example, any relation on

a set that is reflexive, antisymmetic, and transitive is called an ordering

relation. The subset relation on any collection of sets is another ordering

relation.

Example 9.3. Let A = R and define aRb iff a < b. Then R is irreflexive,

and transitive.

Example 9.4. If A = {1, 2, 3, 4, 5, 6} then

R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 3), (3, 1), (1, 5),

(5, 1), (2, 4), (4, 2), (2, 6), (6, 2), (3, 5), (5, 3), (4, 6), (6, 4)}

is reflexive, symmetric, and transitive. In artificial examples such as this

one, it can be a tedious chore checking that the relation is transitive.

Example 9.5. If A = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (2, 3), (1, 3), (3, 4), (2, 4), (4, 1)}
then R is not reflexive, not irreflexive, not symmetric, and not transitive but

it is antisymmetric.

properties of relations 91

9.7 Exercises

Exercise 9.1. Define a relation on {1, 2, 3} which is both symmetric and

antisymmetric.

Exercise 9.2. Define a relation on {1, 2, 3, 4} by

R = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}.

List every property of the five defined in this section which R satisfies.

Exercise 9.3. For each matrix of a relation R on {1, 2, 3, 4, 5, 6} with

respect to the given ordering below determine every property of the five

defined in this section enjoyed by R.

(a)



1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1


(b)



1 1 1 1 1 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1



c)



1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 0


d)



1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1


Exercise 9.4. Define the relation C(A, B) : |A| ≤ |B|, where the do-

mains for A and B are all subsets of Z. Which properties does the relation S

satisfy?

Exercise 9.5. Define the relation M(A, B) : A ∩ B 6= ∅, where the

domains for A and B are all subsets of Z. Which properties does the relation

M satisfy?

Exercise 9.6. Explain why ∅ is a relation.

92 math208: discrete mathematics

Exercise 9.7.

(a) Let A = {1}, and consider the empty relation, ∅, on A. Which proper-

ties does ∅ satisfy?

(b) Same question as (a), but now with A = ∅.

10

Equivalence Relations

Relations capture the essence of many different mathematical

concepts. In this chapter, we will show how to put the idea of are the

same kind in terms of a special type of relation.

Before considering the formal concept of same kind let’s look at

a few simple examples. Consider the question, posed about an or-

dinary deck of 52 cards: How many different kinds of cards are there?

One possible answer is: There are 52 kinds of cards, since all the cards

are different. But another possible answer in certain circumstances

is: There are four kinds of cards (namely clubs, diamonds, hearts, and

spades). Another possible answer is: There are two kinds of cards, red

and black. Still another answer is: There are 13 kinds of cards: aces, twos,

threes, · · · , jacks, queens, and kings. Another answer, for the purpose of

many card games is: There are ten kinds of cards, aces, twos, threes, up to

nines, while tens, jacks, queens, and kings are all considered to be the same

value (usually called 10). You can certainly think of many other ways to

split the deck into a number of different kinds.

Whenever the idea of same kind is used, some properties of the ob-

jects being considered are deemed important and others are ignored.

For instance, when we think of the the deck of cards made of the 13

different ranks, ace through king, we are agreeing the the suit of the

card is irrelevant. So the jack of hearts and the jack of clubs are taken

to be the same for what ever purposes we have in mind.

94 math208: discrete mathematics

10.1 Equvialence relation

The mathematical term for same kind is equivalent. There are three

basic properties always associated with the idea of equivalence.

(1) Reflexive: Every object is equivalent to itself.

(2) Symmetric: If object a is equivalent to object b, then b is also equiv-

alent to a.

(3) Transitive: If a is equivalent to b and b is equivalent to c, then a is

equivalent to c.

To put the idea of equivalence in the context of a relation, suppose

we have a set A of objects, and a rule for deciding when two objects

in A are the same kind (equivalent) for some purpose. Then we can

define a relation E on the set A by the rule that the pair (s, t) of el-

ements of A is in the relation E if and only if s and t are the same

kind. For example, consider again the deck of cards, with two cards

considered to be the same if they have the same rank. Then a few of

the pairs in the relation E would be (ace hearts, ace spades), (three

diamonds, three clubs), (three clubs, three diamonds), (three dia-

monds, three diamonds), (king diamonds, king clubs), and so on.

Using the terminology of the previous chapter, this relation E, and

in fact any relation that corresponds to notion of equivalence, will be

reflexive, symmetric, and transitive. For that reason, any reflexive,

symmetric, transitive relation on a set A is called an equivalence

relation on A.

10.2 Equivalence class of a relation

Suppose E is an equivalence relation on a set A and that x is one par-

ticular element of A. The equivalence class of x is the set of all the

things in A that are equivalent to x. The symbol used for the equiv-

alence class of x is [x], so the definition can be written in symbols as

[x] = {y ∈ A|y E x}.
For instance, think once more about the deck of cards with the

equivalence relation having the same rank. The equivalence class of the

equivalence relations 95

two of spades would be the set [2♠] = {2♣, 2♦, 2♥, 2♠}. That would

also be the equivalence class of the two of diamonds. On the other

hand, if the equivalence relation we are using for the deck is having

the same suit, then the equivalence class of the two of spades would be

[2♠] = {A♠, 2♠, 3♠, 4♠, 5♠, 6♠, 7♠, 8♠, 9♠, 10♠, J♠, Q♠, K♠}.
The most important fact about the collection of different equiva-

lence classes for an equivalence relation on a set A is that they split

the set A into separate pieces. In fancier words, they partition the

set A. For example, the equivalence relation of having the same rank

splits a deck of cards into 13 different equivalence classes. In a sense,

when using this equivalence relation, there are only 13 different ob-

jects, four of each kind.

10.3 Examples

Here are a few more examples of equivalence relations.

Example 10.1. Define R on N by aRb iff a = b. In other words, equality is

an equivalence relation. If fact, this example explains the choice of name for

such relations.

Example 10.2. Let A be the set of logical propositions and define R on A by

pRq iff p ≡ q.

Example 10.3. Let A be the set of people in the world and define R on A by

aRb iff a and b are the same age in years.

Example 10.4. Let A = {1, 2, 3, 4, 5, 6} and R be the relation on A with

the matrix from exercise 3. part a) of chapter 9.

Example 10.5. Define P on Z by a P b iff a and b are both even, or both

odd. We say a and b have the same parity.

For the equivalence relation has the same rank on a set of cards in

a 52 card deck, there are 13 different equivalence classes. One of the

classes contains all the aces, another contains all the 2’s, and so on.

96 math208: discrete mathematics

Example 10.6. For the equivalence relation from example 10.5, the equiva-

lence class of 2 is the set of all even integers.

[2] = {n | 2 P n} = {n | 2 has the same parity as n }

= {n | n is even } = {· · · ,−4,−2, 0, 2, 4, · · · }

In this example, there are two different equivalence classes, the one compris-

ing all the even integers, and the other comprising all the odd integers. As

far as parity is concerned, −1232215 and 171717 are the same.

Suppose E is an equivalence relation on A. The most important

fact about equivalence classes is that every element of A belongs to

exactly one equivalence class. Let’s prove that.

Theorem 10.7. Let E be an equivalence relation on a set A, and let a ∈ A.

Then there is exactly one equivalence class to which a belongs.

Proof. Let E be an equivalence relation on a set A, and suppose a ∈ A.

Since E is reflexive, a E a, and so a ∈ [a] is true. That proves that a is in

at least one equivalence class. To complete the proof, we need to show that if

a ∈ [b] then [b] = [a].

Now, stop and think: Here is what we know:

(1) E is an equivalence relation on A,

(2) a ∈ [b], and

(3) the definition of equivalence class.

Using those three pieces of information, we need to show the two sets [a] and

[b] are equal. Now, to show two sets are equal, we show they have the same

elements. In other words, we want to prove

(1) If c ∈ [a], then c ∈ [b], and For homework, you will complete the

proof of this theorem by doing part (1).
(2) If c ∈ [b], then c ∈ [a].

Let’s give a direct proof of (2).

Suppose c ∈ [b]. Then, according to the definition of [b], c E b. The goal

is to end up with So c ∈ [a]. Now, we know a ∈ [b], and that means a E b.

Since E is symmetric and a E b, it follows that b E a. Now we have c E b and

b E a. Since E is transitive, we can conclude c E a, which means c ∈ [a] as

we hoped to show. That proves (2). ♣

equivalence relations 97

10.4 Partitions

Definition 10.8. A partition of a set A is a collection of nonempty,

pairwise disjoint subsets of A, so that A is the union of the subsets

in the collection. So for example {{1, 2, 3} {4, 5, 6}} is a partition of

{1, 2, 3, 4, 5, 6}. The subsets forming a partition are called the parts of

the partition.

So to express the meaning of theorem 10.7 above in different

words: The different equivalence classes of an equivalence relation

on a set partition the set into nonempty disjoint pieces. More briefly:

the equivalence classes of E partition A.

10.5 Digraph of an equivalence relation

The fact that an equivalence relation partitions the underlying set

is reflected in the digraph of an equivalence relation. If we pick an

equivalence class [a] of an equivalence relation E on a finite set A

and we pick b ∈ [a], then b E c for all c ∈ [a]. This is true since

a E b implies b E a and if a E c, then transitivity fills in b E c. So in any

digraph for E every vertex of [a] is connected to every other vertex

in [a] (including itself) by a directed edge. Also no vertex in [a] is

connected to any vertex in A − [a]. So the digraph of E consists of

separate components, one for each distinct equivalence class, where

each component contains every possible directed edge.

10.6 Matrix representation of an equivalence relation

In terms of a matrix representation of an equivalence relation E on

a finite set A of size n, let the distinct equivalence classes have size

k1, k2, ...kr, where k1 + k2 + ... + kr = n. Next list the elements of A as

a1,1, ..., ak1,1, a1,2, ..., ak2,2,, a1,r, ..., akr ,r where the ith equivalence class

is {a1,i, ..., aki ,i}. Then the matrix for R with respect to this ordering is

98 math208: discrete mathematics

of the form 

Jk1 0 0 ... 0

0 Jk2 0 ... 0
...

.
...

0 ... 0 Jkr−1 0

0 ... 0 0 Jkr


where Jm is the all 1’s matrix of size km × km. Conversely if the di-

graph of a relation can be drawn to take the above form, or if it has

a matrix representation of the above form, then it is an equivalence

relation and therefore reflexive, symmetric, and transitive.

equivalence relations 99

10.7 Exercises

Exercise 10.1. Let A be the set of people alive on earth. For each relation

defined below, determine if it is an equivalence relation on A. If it is, de-

scribe the equivalence classes. If it is not, determine which properties of an

equivalence relation fail.

(a) a H b←→ a and b are the same height.

(b) a G b←→ a and b have a common grandparent.

(c) a L b←→ a and b have the same last name.

(d) a N b←→ a and b have a name (first name or last name) in common.

(e) a W b←→ a and b were born less than a day apart.

Exercise 10.2. Let E be an equivalence relation on a set A, and let a, b ∈ A.

Prove that either [a] = [b] or else [a] ∩ [b] = ∅.

Exercise 10.3. Consider the relation B(x, y) : x is the brother of y on the

set, M, of living human males. Is this an equivalence relation on M?

Exercise 10.4. Let A = {1, 2, 3, 4, 5, 6, 7, 8}. Form a partition of A using

{1, 2, 4}, {3, 5, 7}, and {6, 8}. These are the equivalence classes for an

equivalence relation, E, on A.

(a) Draw a digraph of E.

(b) Determine a 0-1 matrix of E.

100 math208: discrete mathematics

Exercise 10.5. Determine if each matrix represents an equivalence relation

on {a, b, c, d, e, f , g, h}. If the matrix represents an equivalence relation find

the equivalence classes.

(a)



1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 1



(b)



1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1


Exercise 10.6. Complete the proof of theorem 10.7 on page 96 by proving

part (1).

11

Functions and Their Properties

In algebra, functions are thought of as formulas such as f (x) =

x2 where x is any real number. This formula gives a rule that de-

scribes how to determine one number if we are handed some number

x. So, for example, if we are handed x = 2, the function f says that

determines the value 4, and if we are handed 0, f says that deter-

mines 0. There is one condition that, by mutual agreement, such

a function rule must obey to earn the title function: the rule must

always determine exactly one value for each (reasonable) value it is

handed. Of course, for the example above, x = blue isn’t a reasonable

choice for x, so f doesn’t determine a value associated with blue. The

domain of this function is all real numbers.

Instead of thinking of a function as a formula, we could think of

a function as any rule which determines exactly one value for every

element of a set A. For example, suppose W is the set of all words in

English, and consider the rule, I, which associates with each word, w,

the first letter of w. Then I(cat) = c, I(dog) = d, I(a) = a, and so on.

Notice that for each word w, I always determines exactly one value,

so it meets the requirement of a function mentioned above. Notice

that for the same set of all English words, the rule T(w) is the third

letter of the word w is not a function since, for example, T(be) has no

value.

102 math208: discrete mathematics

11.1 Definition of function

Here is the semi-formal definition of a function: A function from the

set A to the set B is any rule which describes how to determine ex-

actly one element of B for each element of A. The set A is called the

domain of f , and the set B is called the codomain of f . The notation

f : A→ B means f is a function from A to B.

There are cases where it is not convenient to describe a function

with words or formulas. In such cases, it is often possible to sim-

ply make a table listing the members of the domain along with the

associated member of the codomain.

Example 11.1. Let A = {1, 2, 3, 4, 5, 6}, B = {a, b, c, d, e} and let

f : A→ B be specified by table 11.1

x f (x)

1 a

2 a

3 c

4 b

5 d

6 e
Table 11.1: A simple function

It is hard to imagine a verbal description that would act like f , but the

table says it all. It is traditional to write such tables in a more compact form

as

f = { (1, a), (2, a), (3, c), (4, b), (5, d), (6, e) }.

The last result in example 11.1 looks like a relation, and that leads

to the modern definition of a function:

Definition 11.2. A function, f , with domain A and codomain B is a

relation from A to B (hence f ⊆ A× B) such that each element of A is

the first coordinate of exactly one ordered pair in f .

That completes the evolution of the concept of function from for-

mula, through rule, to set of ordered pairs. When dealing with func-

tions, it is traditional to write b = f (a) instead of (a, b) ∈ f .

11.2 Functions with discrete domain and codomain

In algebra and calculus, the functions of interest have a domain and a

codomain consisting of sets of real numbers, A, B ⊆ R. The graph of f

is the set of ordered pairs in the Cartesian plane of the form (x, f (x)).

Normally in this case, the output of the function f is determined by

some formula. For example, f (x) = x2.

y = x2

x

y

1 2 3

1

2

3

4

Figure 11.1: Graph of y = x2

We can spot a function in this case by the vertical line test. A

relation from a subset A of R to another subset of R is a function if

functions and their properties 103

every vertical line of the form x = a, where a ∈ A intersects the graph

of f exactly once.

In discrete mathematics, most functions of interest have a domain

and codomain some finite sets, or, perhaps a domain or codomain

consisting of integers. Such domains and codomains are said to be

discrete.

11.2.1 Representions by 0-1 matrix or bipartite graph

When f : A → B is a function and both A and B are finite, then

since f is a relation, we can represent f either as a 0− 1 matrix or a

bipartite graph. If M is a 0− 1 matrix which represents a function,

then since every element of A occurs as the first entry in exactly one

ordered pair in f , it must be that every row of M has exactly one 1

in it. So it is easy to distinguish which relations are functions, and

which are not from the matrix for the relation. This is the discrete

analog of the vertical line test, (but notice that rows are horizontal).

Example 11.3. Again, let’s consider the function defined, as in example

11.1, by f is from A = {1, 2, 3, 4, 5, 6} to B = {a, b, c, d, e} given by the

relation f = { (1, a), (2, a), (3, c), (4, b), (5, d), (6, e) }.
If we take the given orderings of A and B, then the 0-1 matrix represent-

ing the function f appears in figure 11.2.



1 0 0 0 0

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1


Figure 11.2: A function in 0-1 matrix

form

Notice that in matrix form the number of 1’s in a column coincides with

the number of occurrences of the column label as output of the function.

So the sum of all entries in a given column equals the number of times the

element labeling that column is an output of the function.

When a function from A to B is represented as a bipartite graph,

every vertex of A is connected to exactly one element of B.

11.3 Special properties

In the case of a function whose domain is a subset of R, the number

of times that the horizontal line y = b intersects the graph of f ,

is the number of inputs from A for which the function value is b.

Notice that these criteria are twisted again. In the finite case we are

now considering vertical information, and in the other case we are

104 math208: discrete mathematics

considering horizontal information. In either case, these criteria will

help us determine which of several special properties a function

either has or lacks.

11.3.1 One-to-one (injective)

We say that a function f : A → B is one-to-one provided f (s) = f (t)

implies s = t. The two dollar word for one-to-one is injective. The

definition can also be expressed in the contrapositive as: f is one-

-to-one provided s 6= t implies f (s) 6= f (t). But the definition is

even easier to understand in words: a function is one-to-one provided

different inputs always result in different outputs. As an example,

consider the function f : R→ R given by the formula f (x) = x2. This

function is not one-to-one since both inputs 2 and −2 are associated

with the same output: f (2) = 22 = 4 and f (−2) = (−2)2 = 4.

Example 11.4. Proving a function is one-to-one can be a chore. Let f :

R→→ R be given by f (x) = x3 − 2. Let’s prove f is one-to-one.

Proof. Suppose f (s) = f (t), then s3 − 2 = t3 − 2. Thus s3 = t3. So

s3 − t3 = 0. Now s3 − t3 = (s− t)(s2 + st + t2) = 0 implies s− t = 0

or s2 + st + t2 = 0. The first case leads to s = t. Using the quadratic

formula, the second case leads to s = −t±
√

t2 − 4t2

2
. Since s has to be a

real number, the expression under the radical cannot be negative. The only

other option is that it is 0, and that means t = 0. Of course if t = 0 this

leads to s = 0 = t. So, in any case, s = t. ♣

The one-to-one property is very easy to spot from either the matrix

or the bipartite graph of a function. When f : A → B is one-to-one,

and |A| = m and |B| = n for some m, n ∈ N− {0}, then when f

is represented by a 0-1 matrix M, there can be no more than one 1 in

any column. So the column sums of any 0− 1 matrix representing

a one-to-one function are all less than or equal to 1. Since every row

sum of M is 1 and there are m rows, we must have m ≤ n. The bipar-

tite graph of a one-to-one function can be recognized by the feature

that no vertex of the codomain has more than one edge leading to it.

functions and their properties 105

11.3.2 Onto (surjective)

We say that a function f : A → B is onto, or surjective, if every

element of B equals f (a) for some a ∈ A. Consequently any matrix

representing an onto function has each column sum at least one, and

thus m ≥ n. In terms of bipartite graphs, for an onto function, every

element of the codomain has at least one edge leading to it.

As an example, consider again the function L from all English

words to the set of letters of the alphabet defined by the rule L(w)

is the last letter of the word w. This function is not one-to-one since,

for example, L(cat) = L(mutt), so two different members of the

domain of L are associated with the same member (namely t) of the

codomain. However, L is onto. We could prove that by making a

list of twenty-six words, one ending with a, one ending with b, · · · ,
one ending with z. (Only the letters j and q might take more than a

moment’s thought.)

11.3.3 Bijective

A function f : A → B which is both one-to-one and onto is called

bijective. In the matrix of a bijection, every column has exactly one

1 and every row has exactly one 1. So the number of rows must

equal the number of columns. In other words, if there is a bijection

f : A → B, where A is a finite set, then A and B have the same

number of elements. In such a case we will say the sets have the

same cardinality or that they are equinumerous, and write that as

|A| = |B|. The general definition (whether A and B are finite or not)

is:

Definition 11.5. A and B are equinumerous provided there exists a

bijection from A to B.

Notice that for finite sets with the same number of elements, A, B,

any one-to-one function must be onto and vice versa. This is not true

for infinite sets. For example the function f : Z → Z by f (m) = 2m

is one-to-one, but not onto, since f (n) = 1 is impossible for any n.

On the other hand, the function g : Z → Z given by the rule g(n) is

the smallest integer that is greater than or equal to n
2 is onto, but not

106 math208: discrete mathematics

one-to-one. As examples, g(6) = 3 and g(−5) = −2. This function is

onto since clearly g(2n) = n for any integer n, so every element of the

codomain has at least one edge leading to it. But g(1) = g(2) = 1, so

g is not one-to-one.

11.4 Composition of functions

Since functions are relations, the composition of a function g : A→ B

by a function f : B → C, makes sense. As usual, this is written as

f ◦ g : A → C, but that’s a little presumptive since it seems to assume

that f ◦ g really is a function.

Theorem 11.6. If g : A→ B and f : B→ C, then f ◦ g is a function.

Proof. We need to show that for each a ∈ A there is exactly one c ∈ C

such that (a, c) ∈ f ◦ g. So suppose a ∈ A. since g : A → B, there is

some b ∈ B with (a, b) ∈ g. Since f : B → C, there is a c ∈ C such that

(b, c) ∈ f . So, by the definition of composition, (a, c) ∈ f ◦ g. That proves

there is at least one c ∈ C with (a, c) ∈ f ◦ g. To complete the proof, we

need to show that there is only one element of C that f ◦ g pairs up with a.

So, suppose that (a, c) and (a, d) are both in f ◦ g. We need to show c = d.

Since (a, c) and (a, d) are both in f ◦ g, there must be elements s, t ∈ B such

that (a, s) ∈ g and (s, c) ∈ f , and also (a, t) ∈ g and (t, d) ∈ f . Now, since

g is a function, and both (a, s) and (a, t) are in g, we can conclude s = t. So

when we write (t, d) ∈ f , we might as well write (s, d) ∈ f . So we know

(s, c) and (s, d) are both in f . As f is a function, we can conclude c = d. ♣

If g : A → B and f : B → C, and (a, b) ∈ g and (b, c) ∈ f , then

(a, c) ∈ f ◦ g. Another way to write that is g(a) = b and f (b) = c.

So c = f (b) = f (g(a)). That last expression look like the familiar

formula for the composition of functions found in algebra texts:

(f ◦ g)(x) = f (g(x)).

11.5 Invertible discrete functions

When f : A → B is a function, we can form the relation f−1 from

B to A. But f−1 might not be a function. For example, suppose f :

functions and their properties 107

{a, b} → {1, 2} is f = {(a, 1), (b, 1)}. Then f−1 = {(1, a), (1, b)},
definitely not a function.

If in fact f−1 is a function, then for all a ∈ A with b = f (a), we

have f−1(b) = a so (f−1 ◦ f)(a) = f−1(f (a)) = f−1(b) = a, ∀a ∈ A.

Similarly (f ◦ f−1)(b) = b, ∀b ∈ B. In this case we say f is invertible.

Another way to say the same thing: the inverse of a function f :

A → B is a function g : B → A which undoes the operation of f .

As a particular example, consider the function f : Z → Z given

by the formula f (n) = n + 3. In words, f is the add 3 function.

The operation which undoes the effect of f is clearly the subtract 3

function. That is, f−1(n) = n− 3.

For any set, S, define 1S : S → S by 1S(x) = x for every x ∈ S.

In other words, 1S = {(x, x) | x ∈ S}. The function 1S is called the

identity function on S. So the computations above show f−1 ◦ f =

1A and f ◦ f−1 = 1B.

Theorem 11.7. A function f : A→ B is invertible iff f is bijective.

Proof. First suppose that f : A → B is invertible. Then f−1 : B → A

exists. If f (a1) = f (a2), then since f−1 is a function, a1 = f−1(f (a1)) =

f−1(f (a2)) = a2. Thus f is one-to-one. Also if b ∈ B with f−1(b) = a,

then f (a) = f (f−1(b)) = b. So f is onto. Since f is one-to-one and onto, f

is bijective.

Now suppose that f is bijective, and let b ∈ B. Since f is onto, we have

some a ∈ A with f (a) = b. If e ∈ A with f (e) = b, then e = a since

f is one-to-one. Thus b is the first entry in exactly one ordered pair in the

inverse relation f−1. Whence, f−1 is a function. ♣

Do not make the error1of confusing inverses and reciprocals when
1

�

(Danger ahead!) They are entirely
different things.dealing with functions. The reciprocal of f : Z → Z given by the

formula f (n) = n + 3 is
1

f (n)
=

1
n + 3

which is not the inverse

function for f . For example f (0) = 3, but the reciprocal of f does

not convert 3 back into 0, instead the reciprocal associates 1
6 with 3.

In fact, there are other problems with the reciprocal: it doesn’t even

make sense when n = −3 since that would give a division by 0,

which is undefined. So, be very careful when working with functions

not to confuse the words reciprocal and inverse.

108 math208: discrete mathematics

11.6 Characteristic functions

The characteristic vector (see section 6.10) of a set may be used to

define a special 0-1 function representing the given set.

Example 11.8. Let U be a finite universal set with n elements ordered

u1, ..., un. Let Bn denote all binary strings of length n. The characteristic

function χ : P(U) → Bn, which takes a subset A to its characteristic

vector is bijective. Thus there is no danger of miscomputation. We can either

manipulate subsets of U using set operations and then represent the result

as a binary vector or we can represent the subsets as binary vectors and

manipulate the vectors with appropriate bit string operations. We’ll get

exactly the same answer either way.

The process in example 11.8 allows us therefore to translate any

set theory problem with finite sets into the world of 0’s and 1’s. This

is the essence of computer science.

functions and their properties 109

11.7 Exercises

Exercise 11.1. Let A = {1, 2, 3, 4, 5, 6}. In each case, give an example of a

function f : A → A with the indicated properties, or explain why no such

function exists.

(a) f is bijective, but not 1A.

(b) f is neither one-to-one nor onto.

(c) f is one-to-one, but not onto.

(d) f is onto, but not one-to-one.

Exercise 11.2. Repeat exercise 11.1, with the set A = N.

Exercise 11.3. Prove or give a counterexample:

If E is an equivalence relations on a set A, then E ◦ E is an equivalence

relation on A.

Exercise 11.4. Suppose g : A → B and f : B → C are both one-to-one.

Prove f ◦ g is one-to-one.

12

Special Functions

Certain functions arise frequently in discrete mathematics. Here

is a catalog of some important ones.

12.1 Floor and ceiling functions

To begin with, the floor function is a function from R to Z which

assigns to each real number x, the largest integer which is less than

or equal to x. We denote the floor function by bxc. So bxc = n means

n ∈ Z and n ≤ x < n + 1. For example, b4.2c = 4, and b7c =

7. Notice that for any integer n, bnc = n. Be a little careful with

negatives: bπc = 3, but b−πc = −4. A dual function is denoted dxe,
where dxe = n means n ∈ Z and n ≥ x > n− 1. This is the ceiling

function. For example, d4.2e = 5 and d−4.2e = −4.

x

y

−3 −2 −1 0 1 2 3

−4

−3

−2

−1

1

2

3

Figure 12.1: Floor function

The graph (in the college algebra sense!) of the floor function

appears in figure 12.1.

12.2 Fractional part

The fractional part1 of a number x ≥ 0 is denoted f rac(x) and
1 This is the Mathematica and Wol-
fram/Alpha definition. Often, the
Graham definition is used:

f rac(x) = x− bxc, for all x.

equals x − bxc. For numbers x ≥ 0, the fractional part of x is just

what would be expected: the stuff following the decimal point. For

example, f rac(5.2) = 5.2− b5.2c = 5.2− 5 = 0.2. When x is negative

112 math208: discrete mathematics

its fractional part is defined to be f rac(x) = x− dxe. Hence, we have

f rac(x) =

x− bxc, x ≥ 0,

x− dxe, x < 0.
x

y

−4 −3 −2 −1 0 1 2 3 4

−2

−1

0

1

2

Figure 12.2: Fractional part function

For example, f rac(−5.2) = −5.2− d−5.2e = −5.2− (−5) = −0.2

In plain English, to determine the fractional part of a number x, take

the stuff after the decimal point and keep the sign of the number. The

graph of the fractional part function is shown in figure 12.2.

12.3 Integral part

For any real number x its integral part is defined to be x− f rac(x).

x

y

−3 −2 −1 0 1 2 3

−3

−2

−1

1

2

3

Figure 12.3: Integral part function

The integral part can equivalently be defined by

[x] =

bxc, x ≥ 0,

dxe, x < 0.

The integral part of x is denoted by [x], or, sometimes, by int(x).

In words, the integral part of x is found by discarding everything

following the decimal (at least if we agree not to end decimals with

an infinite string of 9’s such as 2.9999 · · ·). The graph of the integral

part function is displayed in figure 12.3.

12.4 Power functions

The power functions are familiar from college algebra. They are

functions of the form f (x) = x2, f (x) = x3, f (x) = x4, and so on. By

extension, f (x) = xa, where a is any constant greater than or equal to

1 will be called a power function.

For any set X, the unit power function 1X(x) = x for all x ∈ X is

called the identity function.

12.5 Exponential functions

Exchanging the roles of the variable and the constant in the power

functions leads to a whole class of interesting functions, those of

special functions 113

the form f : R → R, where f (x) = ax, and 0 < a. Such a func-

tion f is called the base a exponential function. The function is not

very interesting when a = 1. Also if 0 < b < 1, then the function

g(x) = bx =
1

f (x)
, where f (x) = ax, and a =

1
b
> 1. So we may focus

on a > 1. In fact the most important values for a are 2, e and 10. The

number e ≈ 2.718281828459... is called the natural base, but that story

belongs to calculus. Base 2 is the usual base for computer science.

Engineers are most interested in base 10, while mathematicians often

use the natural exponential function, ex. −5 5 10

−5

5

10
y = 2x

y = log2(x)

Figure 12.4: 2x and log2(x) functions

12.6 Logarithmic functions

By graphing the function f : R → (0, ∞) defined by y = f (x) = ex

we can see that it is bijective. We denote the inverse function f−1(x)

by ln x and call it the natural log function. Since these are inverse

functions we have

eln a = a, ∀a > 0 and ln(eb) = b, ∀b ∈ R.

As a consequence ax = (eln a)x = e(ln a)·x = ex ln a is determined as

the composition of y = (ln a)x by the natural exponential function.

So every exponential function is invertible with inverse denoted as

loga x, the base a logarithmic function. Besides the natural log, ln x,

we often write lg x for the base 2 logarithmic function, and log x with

no subscript to denote the base 10 logarithmic function.

12.7 Laws of logarithms

The basic facts needed for manipulating exponential and logarithmic

functions are the laws of exponents.

Theorem 12.1 (Laws of Exponents). For a, b, c ∈ R, ab+c = ab · ac,

abc = (ab)c and acbc = (ab)c.

From the laws of exponents, we can derive the

Theorem 12.2 (Laws of Logarithms). For a, b, c > 0, loga bc = loga b +

loga c, and loga(b
c) = c loga b.

114 math208: discrete mathematics

Proof. We rely on the fact that all exponential and logarithmic functions

are one-to-one. Hence, we have that

aloga bc = bc = aloga baloga c = aloga b+loga c,

implies

loga bc = loga b + loga c.

Similarly, the second identity follows from

aloga bc
= bc = (aloga b)c = ac loga b.

♣

Notice that loga
1
b
= loga b−1 = − loga b.

Calculators typically have buttons for logs base e and base 10. If

loga b is needed for a base different from e and 10, it can be com-

puted in a roundabout way. Suppose we need to find c = loga b. In

other words, we need the number c such that ac = b. Taking the ln of

both sides of that equation we get

ac = b

ln (ac) = ln b

c ln a = ln b

c =
ln b
ln a

Hence, we have the general relation between logarithms as follows.

Corollary 12.3. So, we have loga(x) = ln x
ln a .

Example 12.4. For example, we see that log2100 = ln 100
ln 2 ≈ 6.643856.

special functions 115

12.8 Exercises

Exercise 12.1. In words, bxc is the largest integer less than or equal to

x. Complete the sentence: In words,dxe is the smallest Draw a

(college algebra) graph of f (x) = dxe.

Exercise 12.2. Draw a (college algebra) graph of f (x) = b2x− 1c.

Exercise 12.3. Draw a (college algebra) graph of f (x) = 2bx− 1c.

Exercise 12.4. Let f (x) = 18x and let g(x) =
x3

2
. Sketch the graphs of

f and g for x ≥ 1 on the same set of axes. Notice that the graph g is lower

then the graph of f when x = 1, but it is above the graph of f when x = 9.

Where does g cross the graph of f (in other words, where does g catch up

with f)?

Exercise 12.5. Let f (x) = 4x5 and let g(x) = 2x. For values of x ≥ 1 it

appears that the graph of g is lower than the graph of f . Does g ever catch

up with f , or does f always stay ahead of g?

Exercise 12.6. The xy button on your calculator is broken. Show how can

you approximate 2
√

2 with your calculator anyhow.

13

Sequences and Summation

A sequence is a list of numbers in a specific order. For example,

the positive integers 1, 2, 3, · · · is a sequence, as is the list 4, 3, 3, 5,

4, 4, 3, 5, 5, 4 of the number of letters in the English words of the ten

digits in order zero, one, · · · , nine. Actually, the first is an example

of an infinite sequence, the second is a finite sequence. The first se-

quence goes on forever; there is no last number. The second sequence

eventually comes to a stop. In fact the second sequence has only ten

items. A term of a sequence is one of the numbers that appears in

the sequence. The first term is the first number in the list, the second

term is the second number in the list, and so on.

13.1 Specifying sequences

A more general way to think of a sequence is as a function from

some subset of Z having a least member (in most cases either { 0, 1, 2, · · · }
or { 1, 2, · · · }) with codomain some arbitrary set. In most mathemat- Computer science texts use the former

and elementary math application texts

use the later. Mathematicians use any

such well-ordered domain set.

ics courses the codomain will be a set of numbers, but that isn’t nec-

essary. For example, consider the finite sequence of initial letters of

the words in the previous paragraph: a, s, i, a, l, o, n, · · · , a, s, o. If the

letter L is used to denote the function that forms this sequence, then

L(1) = a, L(2) = s, and so on.

118 math208: discrete mathematics

13.1.1 Defining a Sequence With a Formula

The examples of sequences given so far were described in words, but

there are other ways to tell what objects appear in the sequence. One

way is with a formula. For example, let s(n) = n2, for n = 1, 2, 3, · · · .
As the values 1, 2, 3 and so on are plugged into s(n) in succession,

the infinite sequence 1, 4, 9, 16, 25, 36, · · · is built up. It is traditional

to write sn (or tn, etc) instead of s(n) when describing the terms of

a sequence, so the formula above would usually be seen as sn = n2.

Read that as s sub n equals n2. When written this way, the n in the sn

is called a subscript or index. The subscript of s173 is 173.

Example 13.1. What is the 50th term of the sequence defined by the formula

sj =
j + 1
j + 2

, where j = 1, 2, 3, . . .? We see that

s50 =
51
52

.

Example 13.2. What is the 50th term of the sequence defined by the formula

tk =
k + 1
k + 2

, where k = 0, 1, 2, 3, . . .? Since the indicies start at 0, the 50th

term will be t49:

t49 =
50
51

.

13.1.2 Defining a Sequence by Suggestion

A sequence can also be specified by listing an initial portion of the

sequence, and trust the reader to successfully perform the mind

reading trick of guessing how the sequence is to continue based on

the pattern suggested by those initial terms. For example, consider

the sequence 7, 10, 13, 16, 19, 22, · · · . The symbol · · · means and so on.

In other words, you should be able to figure out the way the sequence

will continue. This method of specifying a sequence is dangerous of

course. For instance, the number of terms sufficient for one person

to spot the pattern might not be enough for another person. Also,

maybe there are several different obvious ways to continue the pattern

Example 13.3. What is the next term in the sequence 1, 3, 5, 7 · · · ? One

possible answer is 9, since it looks like we are listing the positive odd inte-

gers in increasing order. But another possible answer is 8: maybe we are

sequences and summation 119

listing each positive integer with an e in its name. You can probably think of

other ways to continue the sequence.

In fact, for any finite list of initial terms, there are always infinitely

many more or less natural ways to continue the sequence. A reason

can always be provided for absolutely any number to be the next

in the sequence. However, there will typically be only one or two

obvious simple choices for continuing a sequence after five or six

terms.

13.2 Arithmetic sequences

The simple pattern suggested by the initial terms 7, 10, 13, 16, 19, 22, · · ·
is that the sequence begins with a 7, and each term is produced by

adding 3 to the previous term. This is an important type of sequence.

The general form is s1 = a (a is just some specific number), and, from

the second term on, each new term is produced by adding d to the

previous term (where d is some fixed number). In the last example,

a = 7 and d = 3. A sequence of this form is called an arithmetic

sequence. The number d is called the common difference, which

makes sense since d is the difference of any two consecutive terms

of the sequence. It is possible to write down a formula for sn in this

case. After all, to compute sn we start with the number a, and begin

adding d’s to it. Adding one d gives s2 = a + d, adding two d’s gives

s3 = a + 2d, and so on. For sn we will add n− 1 d’s to the a, and so

we see sn = a + (n − 1)d. In the numerical example above, the 5th

term of the sequence ought to be s5 = 7 + 4 · 3 = 19, and sure enough

it is. The 407th term of the sequence is s407 = 7 + 406 · 3 = 1225.

Example 13.4. The 1st term of an arithmetic sequence is 11 and the the 8th

term is 81. What is a formula for the nth term?

We know a1 = 11 and a8 = 81. Since a8 = a1 + 7d, where d is

the common difference, we get the equation 81 = 11 + 7d. So d = 10.

We can now write down a formula for the terms of this sequence: an =

11 + (n − 1)10 = 1 + 10n. Checking, we see this formula does give the

required values for a1 and a8.

120 math208: discrete mathematics

13.3 Geometric sequences

For an arithmetic sequence we added the same quantity to get from

one term of the sequence to the next. If instead of adding we multi-

ply each term by the same thing to produce the next term the result

is called a geometric sequence.

Example 13.5. Let s1 = 2, and suppose we multiply by 3 to get from one

term to the next. The sequence we build now looks like 2, 6, 18, 54, 162, · · · ,
each term being 3 times as large as the previous term.

In general, if s1 = a, and, for n ≥ 1, each new term is r times the

preceeding term, then the formula for the nth term of the sequence

is sn = arn−1, which is reasoned out just as for the formula for the

arithmetic sequence above. The quantity r in the geometric sequence

is called the common ratio since it is the ratio of any term in the

sequence to its predecessor (assuming r 6= 0 at any rate).

13.4 Summation notation

A sequence of numbers is an ordered list of numbers. A summation

(or just sum) is a sequence of numbers added up. A sum with n

terms (that is, with n numbers added up) will be denoted by Sn

typically. Thus if we were dealing with sequence 1, 3, 5, 7, · · · , 2n −
1, · · · , then S3 = 1 + 3 + 5, and Sn = 1 + 3 + 5 + · · · + (2n − 1).

For the arithmetic sequence a, a + d, a + 2d, a + 3d, · · · , we see Sn =

a + (a + d) + (a + 2d) + · · ·+ (a + (n− 1)d).

It gets a little awkward writing out such extended sums and so

a compact way to indicate a sum, called summation notation, is

introduced. For the sum of the first 3 odd positive integers above

we would write
3

∑
j=1

(2j− 1). The Greek letter sigma (Σ) is supposed

to be reminiscent of the word summation. The j is called the index

of summation and the number on the bottom of the Σ specifies the

starting value of j while the number above the Σ gives the ending

value of j. The idea is that we replace j in turn by 1, 2 and 3, in each

case computing the value of the expression following the Σ, and then

add up the terms produced. In this example, when j = 1, 2j− 1 = 1,

sequences and summation 121

when j = 2, 2j − 1 = 3 and finally, when j = 3, 2j − 1 = 5. We’ve

reached the stopping value, so we have
3

∑
j=1

(2j− 1) = 1 + 3 + 5 = 9.

Notice that the index of summation takes only integer values. If it

starts at 6, then next it is replaced by 7, and so on. If it starts at −11,

then next it is replaced by −10, and then by −9, and so on.

The symbol used for the index of summation does not have to be

j. Other traditional choices for the index of summation are i, k, m and

n. So for example,

4

∑
j=0

(j2 + 2) = 2 + 3 + 6 + 11 + 18,

and
4

∑
i=0

(i2 + 2) = 2 + 3 + 6 + 11 + 18,

and
4

∑
m=0

(m2 + 2) = 2 + 3 + 6 + 11 + 18,

and so on. Even though a different index letter is used, the formulas

produce the same sequence of numbers to be added up in each case,

so the sums are the same.

Also, the starting and ending points can for the index can be

changed without changing the value of the sum provided care is

taken to change the formula appropriately. Notice that

3

∑
k=1

(3k− 1) =
2

∑
k=0

(3k + 2)

In fact, if the terms are written out, we see

3

∑
k=1

(3k− 1) = 2 + 5 + 8

and
2

∑
k=0

(3k + 2) = 2 + 5 + 8

Example 13.6. We see that

5

∑
m=−1

2m = 2−1 + 20 + 21 + 22 + 23 + 24 + 25 =
127
2

.

122 math208: discrete mathematics

Example 13.7. We find that

6

∑
n=3

2 = 2 + 2 + 2 + 2 = 8.

13.5 Formulas for arithmetic and geometric summations

There are two important formulas for finding sums that are worth

remembering. The first is the sum of the first n terms of an arithmetic

sequence.

Sn = a + (a + d) + (a + 2d) + · · ·+ (a + (n− 1)d).

Here is a clever trick that can be used to find a simple formula for the

quantity Sn: the list of numbers is added up twice, once from left to

right, the second time from right to left. When the terms are paired

up, it is clear the sum is 2Sn = n[a + (a + (n− 1)d)]. A diagram will

make the idea clearer:

a +(a + d) + (a + 2d) + · · ·+ (a + (n− 1)d)

+(a + (n− 1)d) +(a + (n− 2)d) + (a + (n− 3)d) + · · ·+ a

(2a + (n− 1)d) +(2a + (n− 1)d) + (2a + (n− 1)d) + · · ·+ (2a + (n− 1)d)

The bottom row contains n identical terms, each equal to 2a +

(n − 1)d, and so 2Sn = n [2a + (n− 1)d)]. Dividing by 2 gives the

important formula, for n = 1, 2, 3, . . ., An easy way to remember the formula

is to think of the quantity in the paren-

theses as the average of the first and last

terms to be added, and the coefficient,

n, as the number of terms to be added.

Sn = n
(

2a + (n− 1)d
2

)
= n

(
a + (a + (n− 1)d)

2

)
. (13.1)

Example 13.8. The first 20 terms of the arithmetic sequence 5, 9, 13, · · · is

found to be

S20 = 20
(

5 + 81
2

)
= 860.

For a geometric sequence, a little algebra produces a formula for

the sum of the first n terms of the sequence. The resulting formula

for Sn = a + ar + ar2 + · · ·+ arn−1, is

Sn =
a− arn

1− r
= a

(
1− rn

1− r

)
, if r 6= 1.

sequences and summation 123

Example 13.9. The sum of the first ten terms of the geometric sequence

2, 2
3 , 2

9 , · · · would be Notice that the numerator in this case

is the difference of the first term we

have to add in and the term immediately

following the last term we have to add

in.

S10 =
2− 2

(
1
3

)10

1−
(

1
3

)
The expression for S10 can be simplified as

S10 =
2− 2

(
1
3

)10

1−
(

1
3

) = 2

1−
(

1
3

)10

1−
(

1
3

)
 = 2

1−
(

1
3

)10

2
3

 = 3
(

1− 1
310

)
= 3− 1

39

Here is the algebra that shows the geometric sum formula is cor-

rect.

Let Sn = a + ar + ar2 + · · · + arn−1. Multiply both sides of that

equation by r to get

rSn = r(a + ar + ar2 + · · ·+ arn−1) = ar + ar2 + ar3 + · · ·+ arn−1 + arn

Now subtract, and observe that most terms will cancel:

Sn − rSn = (a + ar + ar2 + · · ·+ arn−1)− (ar + ar2 + ar3 + · · ·+ arn−1 + arn)

= a + (ar + ar2 + · · ·+ arn−1)− (ar + ar2 + ar3 + · · ·+ arn−1)− arn

= a− arn

So Sn(1− r) = a− arn. Assuming r 6= 1, we can divide both sides of

that equation by 1− r, producing the promised formula1: 1 Find a formula for Sn when r = 1.

Sn =
a− arn

1− r
= a

(
1− rn

1− r

)
, if r 6= 1. (13.2)

124 math208: discrete mathematics

13.6 Exercises

Exercise 13.1. What is the next term in the sequence 1, 2, 4, 5, 7, 8, · · · ?
What’s another possible answer?

Exercise 13.2. What is the 100th term of the arithmetic sequence with

initial term 2 and common difference 6?

Exercise 13.3. The 10th term of an arithmetic sequence is −4 and the 16th

term is 47. What is the 11th term?

Exercise 13.4. What is the 5th term of the geometric sequence with initial

term 6 and common ratio 2?

Exercise 13.5. The first two terms of a geometric sequence are g1 = 5 and

g2 = −11. What is the g5?

Exercise 13.6. When is a geometric sequence also an arithmetic sequence?

Exercise 13.7. Evaluate ∑4
j=1(j2 + 1).

Exercise 13.8. Evaluate ∑4
k=−2(2k− 3).

Exercise 13.9. What is the sum of the first 100 terms of the arithmetic

sequence with initial term 2 and common difference 6?

Exercise 13.10. What is the sum of the first five terms of the geometric

sequence with initial term 6 and common ratio 2?

Exercise 13.11. Evaluate ∑4
i=0
(
− 3

2
)i.

Exercise 13.12. Express in summation notation:
1
2
+

1
4
+

1
6
+ · · ·+ 1

2n
,

the sum of the reciprocals of the first n even positive integers.

14

Recursively Defined Sequences

Besides specifying the terms of a sequence with a formula, such

as an = n2, an alternative is to give an initial term, usually something

like b1, (or the first few terms, b1, b2,b3. . .) of a sequence, and then

give a rule for building new terms from old ones. In this case, we say

the sequence has been defined recursively.

Example 14.1. For example, suppose b1 = 1, and for n > 1, bn = 2bn−1.

Then the 1st term of the sequence will be b1 = 1 of course. To determine

b2, we apply the rule b2 = 2b2−1 = 2b1 = 2 · 1 = 2. Next, applying

the rule again, b3 = 2b3−1 = 2b2 = 2 · 2 = 4. Next b4 = 2b3 = 8.

Continuing in this fashion, we can form as many terms of the sequence as

we wish: 1, 2, 4, 8, 16, 32, · · · . In this case, it is easy to guess a formula for

the terms of the sequence: bn = 2n−1.

In general, to define a sequence recursively, (1) we first give one or

more initial terms (this information is called the initial condition(s)

for the sequence), and then (2) we give a rule for forming new terms

from previous terms (this rule is called the recursive formula).

Example 14.2. Consider the sequence defined recursively by a1 = 0, and,

for n ≥ 2, an = 2an−1 + 1. The five terms of this sequence are

0, 2 · 0 + 1 = 1, 2 · 1 + 1 = 3, 2 · 3 + 1 = 7, 2 · 7 + 1 = 15 · · ·

In words, we can describe this sequence by saying the initial term is 0

and each new term is one more than twice the previous term. Again, it is

126 math208: discrete mathematics

easy to guess a formula that produces the terms of this sequence: an =

2n−1 − 1.

Such a formula for the terms of a sequence is called a closed form

formula to distinguish it from a recursive formula.

14.1 Closed form formulas

There is one big advantage to knowing a closed form formula for

a sequence. In example 14.2 above, the closed form formula for the

sequence tells us immediately that a101 = 2100 − 1, but using the

recursive formula to calculate a101 means we have to calculate in turn

a1, a2, · · · a100, making 100 computations. The closed form formula

allows us to jump directly to the term we are interested in. The re-

cursive formula forces us to compute 99 additional terms we don’t

care about in order to get to the one we want. With such a major

drawback why even introduce recursively defined sequences at all?

The answer is that there are many naturally occurring sequences

that have simple recursive definitions but have no reasonable closed

form formula, or even no closed form formula at all in terms of fa-

miliar operations. In such cases, a recursive definition is better than

nothing.

14.1.1 Pattern recognition

There are methods for determining closed form formulas for some

special types of recursively defined sequences. Such techniques are

studied later in chapter 35. For now we are only interested in under-

standing recursive definitions, and determining some closed form

formulas by the method of pattern recognition (aka guessing).

14.1.2 The Fibonacci Sequence

The most famous recursively defined sequence is due to Fibonacci.

There are two initial conditions: f0 = 0 and f1 = 1. The recursive The index starts at zero, by tradition.

rule is, for n ≥ 2, fn = fn−1 + fn−2. In words, each new term is the

sum of the two terms that precede it. So, the Fibonacci sequence

recursively defined sequences 127

begins

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, · · ·

There is a closed form formula for the Fibonacci Sequence, but it is

not at all easy to guess:

fn =
1√
5

(
1 +
√

5
2

)n

− 1√
5

(
1−
√

5
2

)n

14.1.3 The Sequence of Factorials

For a positive integer n, the symbol n! is read n factorial and it is

defined to be the product of all the positive integers from 1 to n. For example, 5! = 1 · 2 · 3 · 4 · 5 = 120.

In order to make many formulas work out nicely, the value of 0! is

defined to be 1.

A recursive formula can be given for n!. The initial term is 0! = 1,

and the recursive rule is, for n ≥ 1, n! = n[(n− 1)!]. Hence, the first

few factorial values are:

1! = 1[0!] = 1 · 1 = 1,

2! = 2[1!] = 2 · 1 = 2,

3! = 3[2!] = 3 · 2 = 6,

4! = 4[3!] = 4 · 6 = 24,

...

We sometimes write a ”general” formula for the factorial as Why is this not a closed form formula?

n! = 1 · 2 · 3 · 4 · · · n, for n > 0.

The sequence of factorial grows very quickly. Here are the first few

terms:

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, · · ·

128 math208: discrete mathematics

14.2 Arithmetic sequences by recursion

Consider the terms of an arithmetic sequence with initial term a and

common difference d:

a, (a + d), (a + 2d), · · · , (a + (n− 1)d), · · · .

These terms may clearly be found by adding d to the current term to

get the next. That is, the arithmetic sequence may be defined recur-

sively as (1) a1 = a, and (2) for n ≥ 2, an = an−1 + d.

recursively defined sequences 129

14.3 Exercises

Exercise 14.1. List the first five terms of the sequence defined recursively by

a1 = 2, and, for n ≥ 2, an = a2
n−1 − 1.

Exercise 14.2. List the first five terms of the sequence defined recursively by

a1 = 2, and, for n ≥ 2, an = 3an−1 + 2. Guess a closed form formula for Hint: This is a lot like example 14.2.

the sequence.

Exercise 14.3. List the first five terms of the sequence with initial terms

u0 = 2 and u1 = 5, and, for n ≥ 2, un = 5un−1 − 6un−2. Guess a closed Hint: The terms are simple combina-

tions of powers of 2 and powers of

3.
form formula for the sequence.

Exercise 14.4. Let r be a fixed real number different from 0. For a positive

integer n, the symbol rn means the product of n r’s. For convenience, r0 is

defined to be 1. Give a recursive definition of rn analogous to the definition

of n! given in this chapter.

Exercise 14.5. Give a recursive definition of the geometric sequence with

initial term 3 and common ratio 2.

Exercise 14.6. Generalize exercise 5 to a generic geometric sequence with

initial term a and common ratio r.

15

Recursively Defined Sets

Two different ways of defining a set have been discussed. We can

describe a set by the roster method, listing all the elements that are to

be members of the set, or we can describe a set using set-builder no-

tation by giving a predicate that the elements of the set are to satisfy.

Here we consider defining sets in another natural way: recursion.

15.1 Recursive definitions of sets

Recursive definitions can also be used to build sets of objects. The

spirit is the same as for recursively defined sequences: give some ini-

tial conditions and a rule for building new objects from ones already

known.

Example 15.1. For instance, here is a way to recursively define the set

of positive even integers, E. First the initial condition: 2 ∈ E. Next the

recursive portion of the definition: If x ∈ E, then x + 2 ∈ E. Here is what

we can deduce using these two rules. First of course, we see 2 ∈ E since

that is the given initial condition. Next, since we know 2 ∈ E, the recursive

portion of the definition, with x being played by 2, says 2 + 2 ∈ E, so that

now we know 4 ∈ E. Since 4 ∈ E, the recursive portion of the definition,

with x now being played by 4, says 4 + 2 ∈ E, so that now we know 6 ∈ E.

Continuing in this way, it gets easy to believe that E really is the set of

positive even integers.

132 math208: discrete mathematics

Actually, there is a little more to do with example 15.1. The claim

is that E consists of exactly all the positive even integers. In other

words, we also need to make sure that no other things appear in E

besides the positive even integers. Could 312211 somehow have slith-

ered into the set E? To verify that such a thing does not happen, we

need one more fact about recursively defined sets. The only elements

that appear in a set defined recursively are those that make it on the

basis of either the initial condition or the recursive portion of the def-

inition. No elements of the set appear, as if by magic, from nowhere.

In this case, it is easy to see that no odd integers sneak into the

set. For if so, there would be a smallest odd integer in the set and the

only way it could be elected to the set is if the integer two less than it

were in the set. But that would mean a yet smaller odd integer would

be in the set, a contradiction. We won’t go into that sort of detail for

the following examples in general. We’ll just consider the topic at the

intuitive level only.

Example 15.2. Give a recursive definition of the set, S, of all nonnegative

integer powers of 2.

Initial condition: 1 ∈ S. Recursive rule: If x ∈ S, then 2x ∈ S.

Applying the initial condition and then the recursive rule repeatedly gives

the elements:

1 2 · 1 = 2 2 · 2 = 4 2 · 4 = 8 2 · 8 = 16

and so on, and that looks like the set of nonnegative powers of 2.

Example 15.3. A set, S, is defined recursively by

(1) (initial conditions) 1 ∈ S and 2 ∈ S, and

(2) (recursive rule) If x ∈ S, then x + 3 ∈ S. Describe the integers in S.

The plan is to use the initial conditions and the recursive rule to build

elements of S until we can guess a description of the integers in S. From the

initial conditions we know 1 ∈ S and 2 ∈ S. Applying the recursive rule

to each of those we get 4, 5 ∈ S, and using the recursive rule on those gives

7, 8 ∈ S, and so on.

So we get S = {1, 2, 4, 5, 7, 8, 10, 11, · · · } and it’s apparent that S

consists of of the positive integers that are not multiples of 3.

recursively defined sets 133

15.2 Sets of strings

Recursively defined sets appear in certain computer science courses

where they are used to describe sets of strings. To form a string, we

begin with an alphabet which is a set of symbols, traditionally de-

noted by Σ. For example Σ = {a, b, c} is an alphabet of three symbols,

and Σ = {!, @, #, $, %, &, X, 5} is an alphabet of eight symbols. A

string over the alphabet Σ is any finite sequence of symbols from

the alphabet. For example aaba is a string of length four over the

alphabet Σ = {a, b, c}, and !!5X$$5@@ is a length nine string over

Σ = {!, @, #, $, %, &, X, 5}. There is a special string over any alphabet

denoted by λ called the empty string. It contains no symbols, and

has length 0.

Example 15.4. A set, S, of strings over the alphabet Σ = {a, b} is given

recursively by (1) λ ∈ S, and (2) If x ∈ S, then axb ∈ S. Describe the

strings in S.

The notation axb means write down the string a followed by the string

x followed by the string b. So if x = aaba then axb = aaabab. Let’s

experiment with the recursive rule a bit, and then guess a description for the

strings in S. Starting with the initial condition we see λ ∈ S. Applying the

recursive rule to λ gives aλb = ab ∈ S. Applying the recursive rule to ab

gives aabb ∈ S, and applying the recursive rule to aabb shows aaabbb ∈ S.

It’s easy to guess the nature of the strings in S: Any finite string of a’s

followed by the same number of b’s.

Example 15.5. Give a recursive definition of the set S of strings over Σ =

{a, b, c} which do not contain adjacent a’s. For example ccabbbabba is

acceptable, but abcbaabaca is not.

For the initial conditions we will use (1) λ ∈ S, and a ∈ S. If we have a

string with no adjacent a’s, we can extend it by adding b or c to either end.

But we’ll need to be careful when adding more a’s. For the recursive rule we

will use (2) if x ∈ S, then bx, xb, cx, xc ∈ S and abx, xba, acx, xca ∈ S.

Notice how the string a had to be put into S in the initial conditions since

the recursive rule won’t allow us to form that string from λ.

Here is different answer to the same question. It’s a little harder

to dream up, but the rules are much cleaner. The idea is that if we

134 math208: discrete mathematics

take two strings with no adjacent a’s, we can put them together and

be sure to get a new string with no adjacent a’s provided we stick

either b or c between them. So, we can define the set recursively by

(1) λ ∈ S and a ∈ S, and (2) if x, y ∈ S, then xby, xcy ∈ S.

Example 15.6. Give a recursive definition of the set S of strings over Σ =

{a, b} which contain more a’s than b’s.

The idea is that we can build longer strings from smaller ones by (1)

sticking two such strings together, or (2) sticking two such strings together

along with a b before the first one, between the two strings, or after the last

one. That leads to the following recursive definition: (1) a ∈ S and (2) if

x, y ∈ S then xy, bxy, xby, xyb ∈ S. That looks a little weird since in the

recursive rule we added b, but since x and y each have more a’s than b’s, the

two together will have a least two more a’s than b’s, so it’s safe to add b in

the recursive rule.

Starting with the initial condition, and then applying the recursive rule

repeatedly, we form the following elements of S:

a, aa, baa, aba, aab, aaa, baaa, abaa, aaba, baaa, · · ·

Example 15.7. A set, S, of strings over the alphabet Σ = {a, b} is defined

recursively by the rules (1) a ∈ S, and (2) if x ∈ S, then xbx ∈ S. Describe

the strings in S.

Experimenting we find the following elements of S:

a, aba, abababa, abababababababa, · · ·

It looks like S is the set of strings beginning with a followed by a certain

number of ba’s. If we look at the number of ba’s in each string, we can see a

pattern: 0, 1, 3, 7, 15, 31, · · · , which we recognize as being the numbers that

are one less than the positive integer powers of 2 (1, 2, 4, 8, 16, 32, · · ·). So it

appears S is the set of strings which consisting of a followed by 2n − 1 pairs

ab for some integer n ≥ 0.

recursively defined sets 135

15.3 Exercises

Exercise 15.1. Give a recursive definition of the set of positive integers that

end with the digits 17.

Exercise 15.2. Give a recursive definition of the set of positive integers that

are not multiples of 4.

Exercise 15.3. A set S of ordered pairs of integers is defined recursively

by (1) (1, 1) ∈ S, and (2) if (m, n) ∈ S, then (m + 2, n) ∈ S, and

(m, n + 2) ∈ S, and (m + 1, n + 1) ∈ S. There is a simple description of the

ordered pairs in S. What is it?

Exercise 15.4. Describe the strings in the set S of strings over the alphabet

Σ = {a, b, c} defined recursively by (1) λ ∈ S and (2) if x ∈ S, then

axbc ∈ S.

Exercise 15.5. Describe the strings in the set S of strings over the alphabet

Σ = {a, b, c} defined recursively by (1) c ∈ S and (2) if x ∈ S then ax ∈ S

and bx ∈ S and xc ∈ S.

Exercise 15.6. A palindrome is a string that reads the same in both

directions. For example, aabaa is a palindrome of length five and babccbab

is a palindrome of length eight. Give a recursive definition of the set of

palindromes over the alphabet Σ = {a, b, c}.

16

Mathematical Induction

As mentioned earlier, to show that a proposition of the form

∀ x P(x) is true, it is necessary to check that P(c) is true for every

possible choice of c in the domain of discourse. If that domain is not

too big, it is feasible to check the truth of each P(c) one by one. For

instance, consider the proposition For every page in these notes, the

letter e appears at least once on the page. To express the proposition in

symbolic form we would let the domain of discourse be the set of

pages in these notes, and we would let the predicate E be has an oc-

currence of the letter e, so the proposition becomes ∀ p E(p). The truth

value of this proposition can be determined by the tedious but feasi-

ble task of checking every page of the notes for an e. If a single page

is found with no e’s, that page would constitute a counterexample to

the proposition, and the proposition would be false. Otherwise it is

true.

When the domain of discourse is a finite set, it is, in principle, al-

ways possible to check the truth of a proposition of the form ∀ x P(x)

by checking the members of the domain of discourse one by one. But

that option is no longer available if the domain of discourse is an in-

finite set since no matter how quickly the checks are made there is no

practical way to complete the checks in a finite amount of time. For

example, consider the proposition For every natural number n, n5 − n

ends with a 0.The truth of the proposition could be established by Here the domain of discourse is the set

N = { 0, 1, 2, 3, · · · }.

138 math208: discrete mathematics

checking:

05 − 0 = 0 15 − 1 = 0 25 − 2 = 30 35 − 3 = 240

45 − 4 = 1020 55 − 5 = 3120 65 − 6 = 7770 75 − 7 = 16800

85 − 8 = 32760 95 − 9 = 59040 105 − 10 = 99990 115 − 11 = 161040

...
...

...
...

(and so on forever.)

Checking these facts one by one is obviously a hopeless task, and,

of course, just checking a few of them (or even a few billion of them)

will never suffice to prove they are all true. And it is not sufficient to

check a few and say that the facts are all clear. That’s not a proof, it’s

only a suspicion. So verifying the truth of ∀ n (n5 − n) ends with a 0

for domain of discourse N seems tough.

16.1 Mathematical induction

In general, proving a universally quantified statement when the

domain of discourse is an infinite set is a tough nut to crack. But,

in the special case when the domain of discourse is the set N =

{ 0, 1, 2, 3, · · · }, there is a technique called mathematical induction

that comes to the rescue.

The method of proof by induction provides a way of checking that

all the statements in the list are true without actually verifying them

one at a time. The process is carried out in two steps. First (the basis

step) we check that the first statement in the list is correct. Next (the

inductive step), we show that if any statement in the list is known

to be correct, then the one following must also be correct. Putting

these two facts together, it ought to appear reasonable that all the

statements in the list are correct. In a way, it’s pretty amazing: we

learn infinitely many statements are true just by checking two facts.

It’s like killing infinitely many birds with two stones.

So, suppose we have a list of statements, p(0), p(1), p(2), · · · , p(k), p(k+

1) · · · . We want to show they are all true. The plan is to show two

facts:

mathematical induction 139

(1) p(0) is true, and

(2) for any n ∈N, p(n) −→ p(n + 1).

We then conclude all the statements in the list are true.

16.2 The principle of mathematical induction

The well ordering property of the positive integers provides the

justification for proof by induction. This property asserts that every

non-empty subset of the natural numbers contains a smallest number.

In fact, given any nonempty set of natural numbers, we can deter-

mine the smallest number in the set by the process of checking to see,

in turn, if 0 is in the set, and, if the answer is no, checking for 1, then

for 2, and so on. Since the set is nonempty, eventually the answer will

be yes, that number is in the set, and in that way, the smallest natural

number in the set will have been found. Now let’s look at the proof

that induction is a valid form of proof. The statement of the theorem

is a little more general than described above. Instead of beginning

with a statement p(0), we allow the list to begin with a statement

p(k) for some integer k (almost always, k = 0 or k = 1 in practice).

This does not have any effect of the concept of induction. In all cases,

we have a list of statements, and we show the first statement is true,

and then we show that if any statement is true, so is the next one.

The particular name for the starting point of the list doesn’t really

matter. It only matters that there is a starting point.

Theorem 16.1 (Principle of Mathematical Induction). Suppose we have

a list of statements p(k), p(k + 1), p(k + 2), · · · , p(n), p(n + 1) · · · .

(1) p(k) is true, and

(2) p(n) −→ p(n + 1) for every n ≥ k,

then all the statements in the list are true.

Proof. The proof will be by contradiction.

Suppose that 1 and 2 are true, but that it is not the case that p(n) is true

for all n ≥ k. Let S = {n|n ≥ k and p(n) is false}, so that S 6= ∅. Since

S is a non-empty set of integers ≥ k it has a least element, say t. So t is the

140 math208: discrete mathematics

smallest positive integer for which p(n) is false. In the ever colorful jargon

of mathematics, t is usually called the minimal criminal.

Since p(k) is true, k /∈ S. Therefore t > k. So t− 1 ≥ k. Since t is the

smallest integer ≥ k for which p is false, it must be that p(t − 1) is true.

Now, by part 2, we also know p(t− 1) → p(t) is true. So it must be that

p(t) is true, and that is a contradiction. ♣

16.3 Proofs by induction

Many people find proofs by induction a little bit black-magical at

first, but just keep the goals in mind (namely check [1] the first state-

ment in the list is true, and [2] that if any statement in the list is true,

so is the one that follows it) and the process won’t seem so confusing.

A handy way of viewing mathematical induction is to compare

proving the sequence p(k) ∧ p(k + 1) ∧ p(k + 2) ∧ ... ∧ p(m) ∧ ... to

knocking down a set of dominos set on edge and numbered consecu-

tively k, k + 1, If we want to knock all of the dominos down, which

are numbered k and greater, then we must knock the kth domino

down, and ensure that the spacing of the dominos is such that ev-

ery domino will knock down its successor. If either the spacing is off

(∃m ≥ k with p(m) not implying p(m + 1)), or if we fail to knock

down the kth domino (we do not demonstrate that p(k) is true), then

there may be dominos left standing. When checking the inductive step,

p(n) → p(n + 1), the statement p(n), is

called the inductive hypothesis.
To discover how to prove the inductive step most people start by

explicitly listing several of the first instances of the inductive hypoth-

esis p(n). Then, look for how to make, in a general way, an argument

from one, or more, instances to the next instance of the hypothesis.

Once an argument is discovered that allows us to advance from the

truth of previous one, or more, instances, that argument, in general

form, becomes the pattern for the proof on the inductive hypothesis.

Let’s examine an example.

mathematical induction 141

Example 16.2. Let’s prove that, for each positive integer n, the sum of the

first n positive integers is
n(n + 1)

2
. Here is the list of statements we want

to verify:

p(1) : 1 =
1(1 + 1)

2
, add 2 to both sides, can you make p(2) appear?

p(2) : 1 + 2 =
2(2 + 1)

2
, add 3 to both sides, can you make p(3) appear?

p(3) : 1 + 2 + 3 =
3(3 + 1)

2
, add 4 to both sides, can you make p(4) appear?

p(4) : 1 + 2 + 3 + 4 =
4(4 + 1)

2
,

...

p(n) : 1 + 2 + · · ·+ n =
n(n + 1)

2
,

p(n + 1) : 1 + 2 + · · ·+ (n + 1) =
(n + 1)((n + 1) + 1)

2
,

...

Once you figure out the general form of the argument1that takes us from one 1 For this example it will be some
calculation

instance of p(·) to the next, you have form of the inductive argument.

Proof. Basis: Let’s check the first statement in the list, p(1) : 1 =
1(1 + 1)

2
, is correct. The left-hand side is 1, and the right-hand side is

1(1 + 1)
2

=
2
2
= 1, so the two sides are equal as claimed.

Inductive Step: Suppose p(n) is true for some integer n ≥ 1. In other

words, suppose 1 + 2 + · · · + n = n(n+1)
2 . We need to show p(n + 1) is

true. In other words, we need to verify 1+ 2+ · · ·+ (n+ 1) = (n+1)((n+2)
2 .

Here are the computations: To prove an equality, the usual strategy

is to start on one side of the equation,

p(n + 1) in this case, obtain the other

side. We do this through a series of

algebraic manipulations and using the

general induction hypothesis, p(n),

along the way.

1 + 2 + · · ·+ (n + 1) = 1 + 2 + · · ·+ n + (n + 1),

=
n(n + 1)

2
+ (n + 1), using the inductive hypothesis,

=
n(n + 1)

2
+

2(n + 1)
2

,

=
n(n + 1) + 2(n + 1)

2
,

=
(n + 1)(n + 2)

2
.

as we needed to show. So we conclude all the statements in the list are true.

♣

142 math208: discrete mathematics

16.4 Examples

The next example reproves the useful formula for the sum of the

terms in a geometric sequence. Recall that to form a geometric se-

quence, fix a real number r 6= 1, and list the integer powers of r

starting with r0 = 1: 1, r, r2, r3, · · · , rn, · · · . The formula given in the

next example shows the result of adding 1 + r + r2 + · · · rn.

Example 16.3. For all n ≥ 0, we have
n

∑
k=0

rk =
rn+1 − 1

r− 1
, (if r 6= 1). In this example, p(n) is the statement:

p(n) :
n

∑
k=0

rk =
rn+1 − 1

r− 1

.

Proof (by induction on n:). (We assume r 6= 1.)

Basis: When n = 0 we have
0

∑
k=0

rk = r0 = 1. We also have

rn+1 − 1
r− 1

=
r− 1
r− 1

= 1.

Inductive Step: Now suppose that
n

∑
k=0

rk =
rn+1 − 1

r− 1
, is true for some

n ≥ 0. Then, we see that

n+1

∑
k=0

rk =

(
n

∑
k=0

rk

)
+ rn+1, by the recursive definition of a sum,

=
rn+1 − 1

r− 1
+ rn+1, by inductionhypothesis,

=
rn+1 − 1

r− 1
+

rn+2 − rn+1

r− 1
,

=

[
rn+1 − 1 + rn+2 − rn+1

r− 1

]
,

=
rn+2 − 1

r− 1
.

♣

Example 16.4. For every integer n ≥ 2, 2n > n + 1.

Proof. Basis: When n = 2, the inequality to check is 22 > 2 + 1, and that

is correct.

Inductive Step: Now suppose that 2n > n + 1 for some integer n ≥ 2.

Then 2n+1 = 2 · 2n > 2(n + 1) = 2n + 2 > n + 2, as we needed to show.

♣

mathematical induction 143

Example 16.5. Show that using only 5c/ stamps and 9c/ stamps, any

postage amount 32c/ or greater can be formed.

Proof. Basis: 32c/ can be formed by using one 5c/ stamp and three 9c/

stamps.

Inductive Step: Now suppose we can form nc/ postage for some n ≥ 32.

We need to show we can form (n + 1)c/ postage. Since n ≥ 32, when we

form nc/ postage, we must use either (1) at least seven 5c/ stamps, or (2) at

least one 9c/ stamps. For if both of those possibilities are wrong, we will have

at most 30c/ postage.

case 1: If there are seven (or more) 5c/ stamps in the nc/ postage, remove

seven 5c/, and put in four 9c/ stamps. Since we removed 35c/ and put back

36c/, we now have (n + 1)c/ postage.

case 2: If there is one (or more) 9c/ stamps in the nc/ postage, remove one

9c/, and put back two 5c/. Since we removed 9c/ and put back 10c/, we now

have (n + 1)c/ postage.

So, in any case, if we can make nc/ postage for some n ≥ 32, we can form

(n + 1)c/ postage. Thus, by induction, we can make any postage amount

32c/ or greater. ♣

Example 16.6. Let’s now look at an example of an induction proof with a

geometric flavor. Suppose we have a 4× 5 chess board:

Figure 16.1: 4× 5 chessboard

and a supply of 1× 2 dominos:

Each domino covers exactly two squares on the board. A perfect cover

of the board consists of a placement of dominos on the board so that each

domino covers two squares on the board (dominos can be either vertically or

horizontally orientated), no dominos overlap, no dominos extend beyond the

edge of the board, and all the squares on the board are covered by a domino.

It’s easy to see that the 4× 5 board above has a perfect cover. More generally,

it is not hard to prove:

Theorem 16.7. An m× n board has a perfect cover with 1× 2 dominos if

and only if at least one of m and n is even.

Example 16.8. Now consider a 2n × 2n board for n a positive integer.

Suppose somewhere on the board there is one free square which does not have

to be covered by a domino. For n = 3 the picture could appear as in figure

16.2, where the shaded square is the free square.

Figure 16.2: 23 × 23 chessboard

144 math208: discrete mathematics

This time we have a supply of L-shaped dominos: These dominos

(which can be rotated) each cover exactly three squares on the board. We will

prove by induction that every such board has a perfect cover using L-shaped

dominos.

Proof. Basis: For n = 1, the board to cover is an L-shaped domino, so it

certainly has a perfect cover.

Inductive Step: Assume now that for some integer n ≥ 1, any 2n × 2n

with one free square can be perfectly covered by L-shaped dominos. Consider

a 2n+1 × 2n+1 board with one free square. Divide the board in half horizon-

tally and vertically. Each quarter of the board will be a 2n × 2n board, and

one of those quarters will have a free square in it (see figure 16.2).

Figure 16.3: Divided 23 × 23 chessboard

We now add one L-shaped domino as shown in figure 16.4.

Figure 16.4: 23 × 23 board with domino

This leaves us with essentially four 2n × 2n boards, each with one free

square. So, by the inductive assumption, they can each be perfectly covered

by the L-shaped dominos, and so the entire board can be perfectly covered. ♣

16.5 Second principle of mathematical induction

There is a second version of mathematical induction. Anything that

can be proved with this second version can be proved with the

method described above, and vice versa, but this second version is

often easier to use. The change occurs in the induction assumption

made in the inductive step of the proof. The inductive step of the

method described above (p(n) → p(n + 1) for all n ≥ k) is replaced

with [p(k) ∧ p(k + 1) ∧ · · · ∧ p(n)] → p(n + 1) for all n > k. The

effect is that we now have a lot more hypotheses to help us derive

p(n + 1). In more detail, the second form of mathematical induction

is described in the following theorem.

Theorem 16.9 (Second Principle of Mathematical Induction).

For integers k and n, if

(1) p(k) is true, and

(2) [p(k) ∧ p(k + 1) ∧ ...∧ p(n)]→ p(n + 1) for an arbitrary n ≥ k,

then p(n) is true for all n ≥ k.

mathematical induction 145

This principle is shown to be valid in the same way the first form

of induction was justified. The utility lies in dealing with cases where

we want to use inductive reasoning, but cannot deduce the (n + 1)st

case form the nth case directly. Let’s do a few examples of proofs

using this second form of induction. One more comment before

doing the examples. In many induction proofs, it is convenient to

check several initial cases in the basis step to avoid having to include

special cases in the inductive step. The examples below illustrate this

idea.

Example 16.10. Show that using only 5c/ stamps and 9c/ stamps, any

postage amount 32c/ or greater can be formed.

Proof.

Basis: We can certainly make

32c/ = (1)5c/ + (3)9c/

33c/ = (3)5c/ + (2)9c/

34c/ = (5)5c/ + (1)9c/

35c/ = (7)5c/ + (0)9c/

36c/ = (0)5c/ + (4)9c/

Inductive Step: Suppose we can make all postage amounts from 32c/ up

to some amount kc/ where k ≥ 36. Now consider the problem of making

(k + 1)c/. We can make (k + 1 − 5)c/ = (k − 4)c/ postage since k − 4

is between 32 and k. Adding a 5c/ stamp to that gives the needed k + 1c/

postage. ♣

In that example, the basis step was a little messier than our first

solution to the problem, but to make up for that, the inductive step

required much less cleverness.

Example 16.11. Induction can be used to verify a guessed closed from

formula for a recursively defined sequence. Consider the sequence defined

recursively by the initial conditions a0 = 2, a1 = 5 and the recursive rule,

for n ≥ 2, an = 5an−1 − 6an−2. The first few terms of this sequence are

2, 5, 13, 35, 97, · · · . A little experimentation leads to the guess an = 2n + 3n.

146 math208: discrete mathematics

Let’s verify that guess using induction. For the basis of the induction we

check our guess gives the correct value of an for n = 0 and n = 1. That’s

easy. For the inductive step, let’s suppose our guess is correct up to n where

n ≥ 2. Then, we have

an+1 = 5an − 6an−1,

= 5(2n + 3n)− 6(2n−1 + 3n−1),

= (5 · 2− 6)2n−1 − (6− 5 · 3)3n−1,

= 4 · 2n−1 − (−9) · 3n−1,

= 2n+1 + 3n+1, as we needed to show.

Example 16.12. In the game of Nim, two players are presented with a pile

of matches. The players take turns removing one, two, or three matches at

a time. The player forced to take the last match is the loser. For example, if

the pile initially contains 8 matches, then first player can, with correct play,

be sure to win. Here’s how: player 1: take 3 matches leaving 5; player 2’s

options will leave 4, 3, or 2 matches, and so player 1 can reduce the pile to

1 match on her turn, thus winning the game. Notice that if player 1 takes

only 1 or 2 matches on her first turn, she is bound to lose to good play since

player 2 can then reduce the pile to 5 matches.

Let’s prove that if the number of matches in the pile is 1 more than a

multiple of 4, the second player can force a win; otherwise, the first player

can force a win.

Proof. For the basis, we note that obviously the second player wins if there

is 1 match in the pile, and for 2, 3, or 4 matches the first player wins by

taking 1, 2, or 3 matches in each case, leaving 1 match.

For the inductive step, suppose the statement we are to prove is correct

for the number of matches anywhere from 1 up to k for some k ≥ 4. Now

consider a pile of k + 1 matches.

case 1: If k + 1 is 1 more than a multiple of 4, then when player 1 takes

her matches, the pile will not contain 1 more than a multiple of 4 matches,

and so the next player can force a win by the inductive assumption. So

player 2 can force a win.

case 2: If k + 1 is not 1 more than a multiple of 4, then player 1 can

select matches to make it 1 more than a multiple of 4, and so the next player

mathematical induction 147

is bound to lose (with best play) by the inductive assumption. So player 1

can force a win. ♣

So, to win at Nim, when it is your turn, make sure you leave 1

more than a multiple of 4 matches in the pile (which is easy to do

unless your opponent knows the secret as well, in which case you can

just count the number of matches in the pile to see who will win, and

skip playing the game altogether!).

148 math208: discrete mathematics

16.6 Exercises

Exercise 16.1. Prove: For every integer n ≥ 1,

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n(n + 1) =
n(n + 1)(n + 2)

3

Exercise 16.2. Prove: For every integer n ≥ 1,

1
1 · 2 +

1
2 · 3 +

1
3 · 4 + · · ·+ 1

n(n + 1)
=

n
n + 1

.

Exercise 16.3. Prove: For every integer n ≥ 1,

1 · 21 + 2 · 22 + 3 · 23 + ... + n · 2n = (n− 1)2n+1 + 2

Exercise 16.4. Show that using only 3c/ stamps and 5c/ stamps, any postage

amount 8c/ or greater can be formed. Do this twice, using both styles of

induction.

Exercise 16.5. Prove: For every integer n > 4, we have 2n > n2.

Exercise 16.6. Prove: For every integer n ≥ 1, the number n5 − n is a

multiple of 5.

Exercise 16.7. A pizza is cut into pieces (maybe some pretty oddly shaped)

by making some integer n ≥ 0 number of straight line cuts. Prove: The

maximum number of pieces is
n2 + n + 2

2
.

Exercise 16.8. A sequence is defined recursively by a0 = 0, and, for n ≥ 1,

an = 5an−1 + 1. Use induction to prove the closed form formula for an is

an =
5n − 1

4
.

Exercise 16.9. A sequence is defined recursively by a0 = 1, a1 = 4, and for

n ≥ 2, an = 5an−1 − 6an−2. Use induction to prove that the closed form

formula for an is an = 2 · 3n − 2n, n ≥ 0.

17

Algorithms

An algorithm is a recipe to solve a problem. For example, here is

an algorithm that solves the problem of finding the distance traveled

by a car given the time it has traveled, t, and its average speed, s:

multiply t and s.

17.1 Properties of an algorithm

Over time, the requirements of what exactly constitutes an algorithm

have matured. A really precise definition would be filled with all

sorts of technical jargon, but the ideas are commonsensible enough

that an informal description will suffice for our purposes. So, sup-

pose we have in mind a certain class of problems (such as determine

the distance traveled given time traveled and average speed). The

properties of an algorithm to solve examples of that class of problems

are:

(1) Input: The algorithm is provided with data.

(2) Output: The algorithm produces a solution.

(3) Definiteness: The instructions that make up the algorithm are

precisely described. They are not open to interpretation.

(4) Finiteness: The output is produced in a finite number of steps.

(5) Generality: The algorithm produces correct output for any set of

input values.

150 math208: discrete mathematics

The algorithm for finding distance traveled given time traveled

and average speed obviously meets all five requirements of an algo-

rithm. Notice that, in this example, we have assumed the user of the

algorithm understands what it means to multiply two numbers. If we

cannot make that assumption, then we would need to add a number

of additional steps to the algorithm to solve the problem of multiply-

ing two numbers together. Of course, that would make the algorithm

significantly longer. When describing algorithms, we’ll assume the

user knows the usual algorithms for solving common problems such

as addition, subtraction, multiplication, and division of numbers, and

knows how to determine if one number is larger than another, and so

on.

17.2 Non-algorithms

Just as important as an example of what an algorithm is, is an exam-

ple of what is not an algorithm. For example, we might describe the

method by which most people look up a number in a phone book.

You open the book and look to see if the listing you’re looking for is

on that page or not. If it is you find the number using the fact that

the listings are alphabetized and you’re done. If the number you’re

looking for is not on the page, you use the fact that the listings are al-

phabetized to either flip back several pages, or forward several pages.

This page is checked to see if the listing is on it. If it is not we repeat

the process. One problem in this case is that this description is not

definite. The phrase flip back several pages is too vague, it violates the

definiteness requirement. Another problem is that someone could

flip back and forth between two pages and never find the number,

and so violate the finiteness requirement. So this method is not an

algorithm.

17.3 Linear search algorithm

Continuing the example from section 17.2 of looking up a phone

number, one algorithm for completing this is to look at the first entry

in the book. If it’s the number you’re looking for you’re done. Else

algorithms 151

move to the next entry. It’s either the number you’re looking for or

you move to the next entry. This is an example of a linear search

algorithm. It’s not too bad for finding Adam Aaronson’s number if

he is in the book, but it is terrible if you’re trying to reach Zebulon

Zyzniewski.

17.4 Binary search algorithm

Another algorithm to complete that task of finding a phone number

is the binary search algorithm. We open the phone book to the mid-

dle entry. If it’s the number we’re looking for, we’re done. Else we

know the number is listed in the first half of the book, or the last half

of the book since the entries are alphabetized. We then pick the mid-

dle entry of the appropriate half, and repeat the halving process on

that half, until eventually the name is located. There are a few details

to fix up to make this a genuine algorithm. For example, what is the

middle entry if there are an even number of items listed? Also, what

happens if the name we are looking for isn’t in the phone book? But

it is clear with a little effort we can add a few lines to the instructions

to make this process into an algorithm.

17.5 Presenting algorithms

It is traditional to present algorithms in a pseudocode form similar

to a program for a computer. For instance, the linear search name

lookup algorithm given above could be written in pseudocode form,

as shown in Algorithm 17.1 on page 152. Another version using a for

loop is displayed in Agorithm 17.2.

152 math208: discrete mathematics

Input: (name,phonelist): name to be found in a given phonelist
Output: phonelist(namespot) = phone number of name in phonelist

1: namespot← 1 . set namespot to 1, position of first name in list
2: repeat . execute the block of code between repeat and until
3: if list(namespot) is name then . if True execute code to end if
4: output phonelist(namespot)
5: stop . We’re Done!
6: end if . execute the lines between if and end if
7: namespot← namespot + 1 . increment namespot by 1
8: until length(list) < namespot . if False, jump back to repeat
9: output name not found

10: stop

Algorithm 17.1: Linear search (re-
peat/until). (A B indicates a comment
follows.)

Input: (name,phonelist)
Output: phonelist(namespot)
Output: phonelist(namespot) = phone number of name in phonelist

1: for namespot ∈ {1, 2, . . . , length(phonelist)} do
2: if list(namespot) is name then
3: output phonelist(namespot)
4: stop
5: end if
6: end for
7: output name not found
8: stop

Algorithm 17.2: Linear search (for loop)

algorithms 153

17.6 Examples

Example 17.1. Here is an algorithm for determining bm/nc for positive

integers m, n.

Input: positive integers m and n
Output: integer value of bm/nc

1: k← 0 . k will eventually hold our answer
2: while m ≥ 0 do
3: m← m− n . We’re doing division by repeated subtraction
4: k← k + 1 . k counts the number of subtractions
5: end while
6: output k− 1 . We counted one too many subtractions!(How?)

Algorithm 17.3: Calculate bm/nc

Here are the sequence of steps this algorithm would carry out with input

m = 23 and n = 7: [initial status. m = 23, n = 7, k = (undefined)]

instr 1: Set k to be 0 [status: m = 23, n = 7, k = 0]

instr 2: is m ≥ 0? Yes, (23 ≥ 0) is true. Do next instruction (i.e. instr 3).

instr 3: m reset to be m− n = 23− 7 = 16. [status: m = 16, n = 7, k = 0]

instr 4: k reset to be k + 1 = 0 + 1 = 1. [status: m = 16, n = 7, k = 1]

instr 5: jump back to the matching while (i.e. instr 2).

instr 2: is m ≥ 0? Yes, (16 ≥ 0) is true. Do next instruction.

instr 3: m reset to be m− n = 16− 7 = 9. [status: m = 9, n = 7, k = 1]

instr 4: k reset to be k + 1 = 2 + 1 = 3. [status: m = 9, n = 7, k = 2]

instr 5: jump back to the matching while.

instr 2: is m ≥ 0? Yes, (9 ≥ 0) is true. Do next instruction.

instr 3: m reset to be m− n = 9− 7 = 2. [status: m = 2, n = 7, k = 2]

instr 4: k reset to be k + 1 = 2 + 1 = 3. [status: m = 2, n = 7, k = 3]

instr 5: jump back to the matching while.

instr 2: is m ≥ 0? Yes, (2 ≥ 0) is true. Do next instruction.

instr 3: m reset to be m − n = 2− 7 = −5. [status: m = −5, n = 7,

k = 2]

instr 4: k reset to be k + 1 = 3 + 1 = 4. [status: m = −5, n = 7, k = 4]

instr 5: jump back to the matching while.

154 math208: discrete mathematics

instr 2: is m ≥ 0? No, ()− 5 ≥ 0) is false. Jump to instr after end while.

instr 6: output value of k− 1 (i.e. 3). [status: m = −5, n = 7, k = 4]

stop! (This is what happens when there are no more instructions to exe-

cute.)

Here is a second algorithm for the same problem.

Input: positive integers m and n
Output: integer value of bm/nc

1: divide m by n to one place beyond the decimal, call the result r.
2: output the digits of r preceding the decimal point.

Algorithm 17.4: Calculate bm/nc
(again)

So, again, given input m = 23 and n = 7 we go through the steps.

instr 1: r = 3.2

instr 2: Output 3

stop!

algorithms 155

Example 17.2. An algorithm to make $n change using $10, $5, and $1

bills.

Input: positive integers m and n
Output: integer value of bm/nc

1: while n ≥ 10 do
2: output $10
3: n← n− 10
4: end while
5: while n ≥ 5 do
6: output $5
7: n← n− 5
8: end while
9: while n ≥ 1 do

10: output $1
11: n← n− 1
12: end while

Algorithm 17.5: Make change

For an input of 27, the output would be $10, $10, $5, $1, $1.

156 math208: discrete mathematics

17.7 Exercises

Exercise 17.1. Consider the following algorithm: The input will be two

integers, m ≥ 0, and n ≥ 1.

Input: positive integers m ≥ 0 and n ≥ 1
Output: (to be determined)

s← 0
while m 6= 0 do

s← n + s
m← m− 1

end while
output s

Describe in words what this algorithm does. In other words, what prob-

lem does this algorithm solve?

Exercise 17.2. Consider the following algorithm: The input will be any

integer n, greater than 1.

Input: integer n > 1
Output: (to be determined)

t← 0
while n is even do

t← t + 1
n← n/2

end while
output t

(a) List the steps the algorithm follows for the input n = 12.

(b) Describe in words what this algorithm does. In other words, what prob-

lem does this algorithm solve?
Such an algorithm is needed quite often

in computer science.Exercise 17.3. Design an algorithm that takes any positive integer n and

returns half of n if it is even and half of n + 1 if n is odd.

algorithms 157

Exercise 17.4. Consider the following algorithm. The input will be a func-

tion f together with its finite domain, D = {d1, d2, · · · , dn}.

Input: function f with domain D = {d1, d2, · · · , dn}
Output: (to be determined)

1: i← 1
2: while i < n do
3: j← i + 1
4: while j < n do
5: if f (dj) = f (di) then
6: output NO

7: stop
8: end if
9: j← j + 1

10: end while
11: i← i + 1
12: end while
13: output YES

(a) List the steps the algorithm follows for the input f : {a, b, c, d, e} −→
{+, ∗, &, $, #, @} given by f (a) = ∗, f (b) = $, f (c) = +, f (d) = $,

and f (e) = @.

(b) Describe in words what this algorithm does. In other words, what prob-

lem does this algorithm solve?

Exercise 17.5. Design an algorithm that will convert the ordered triple

(a, b, c) to the ordered triple (b, c, a). For example, if the input is (7, X, ∗),
the ouput will be (X, ∗, 7).

Exercise 17.6. Design an algorithm whose input is a finite list of positive

integers and whose output is the sum of the even integers in the list. If there

are no even integers in the list, the output should be 0.

Exercise 17.7. A palindrome is a string of letters that reads the same in

each direction. For example, refer and redder are palindromes of length five

and six respectively. Design an algorithm that will take a string as input

and output yes if the string is a palindrome, and no if it is not.

18

Algorithm Efficiency

There are many different algorithms for solving any partic-

ular class of problems. In the last chapter, we considered two algo-

rithms for solving the problem of looking up a phone number given

a person’s name.

Algorithm L: Look at the first entry in the book. If it’s the number

you’re looking for you’re done. Else move to the next entry. It’s either

the number you’re looking for or you move to the next entry, and so

on. (The linear search algorithm)

Algorithm B: The second algorithm took advantage of the arrange-

ment of a phone book in alphabetical order. We open the phone book

to the middle entry. If it’s the number we’re looking for, we’re done.

Otherwise we know the number is listed in the first half of the book,

or the last half of the book. We then pick the middle entry of the ap-

propriate half, and repeat the process. After a number of repetitions,

we will either be at the name we want, or learn the name isn’t in the

book. (The binary search algorithm)

The question arises, which algorithm is better? The question is

pretty vague. Let’s assume that better means uses fewer steps. Now if

there are only one or two names in the phone book, it doesn’t matter

which algorithm we use, the look-up always takes one or two steps.

But what if the phone book contains 10000 names? In this case, it is

hard to say which algorithm is better: looking up Adam Aaronson

will likely only take one step by the linear search algorithm, but

binary search will take 14 steps or so. But for Zebulon Zyzniewski,

160 math208: discrete mathematics

the linear search will take 10000 steps, while the binary search will

again take about 14 steps.

18.1 Comparing algorithms

There are two lessons to be learned from those last examples:

(1) Small cases of the problem can be misleading when judging the

quality of an algorithm, and

(2) It’s unlikely that one algorithm will always be more efficient than

another.

The common approach to compare the efficiency of two algorithms

takes those two lessons into account by agreeing to the following

protocol:

(1) only compare the algorithms when the size, n, of the problem it is

applied to is huge. In the phone book example, don’t worry about

phone books of 100 names or even 10000 names. Worry instead

about phone books with n names where n gets arbitrarily large.

(2) to compare two algorithms, first, for each algorithm, find the max-

imum number of steps ever needed when applied to a problem of

size n. For a phone book of size n the linear search algorithm will

require n steps in the worst possible case of the name not being

in the book. On the other hand, the halving process of the binary

search algorithm means that it will never take more than about

log2 n steps to locate a name (or discover the name is missing)

in the phone book. This information is expressed compactly by

saying the linear search algorithm has worst case scenario effi-

ciency wL(n) = n while the binary search algorithm has worst case

scenario efficiency wB(n) = log2 n.

(3) we declare that algorithm #1 is more efficient than algorithm

#2 provided, for all problems of huge sizes n, w1(n) < w2(n),

where w1 and w2 are the worst case scenario efficiencies for each

algorithm.

algorithm efficiency 161

Notice that for huge n, wB(n) < wL(n). In fact, there is no real

contest. For example, when n = 1048576 = 220, we get wB(n) = 20

while wL(n) = 1048576, and things only get better for wB as n gets

larger.

In summary, to compare two algorithms designed to solve the

same class of problems we:

(1) Determine a number n that indicates the size of the a problem. For

example, if the algorithm manipulates a list of numbers, n could

be the length of the list. If the algorithm is designed to raise a

number to a power, the size could be the power n.

(2) Decide what will be called a step when applying the algorithms.

In the phone book example, we took a step to mean a comparison.

When raising a number to a power, a step might consist of per-

forming a multiplication. A step is usually taken to be the most

time consuming action in the algorithm, and other actions are ig-

nored. Also, when determining the function, w don’t get hung up

worrying about miniscule details. Don’t spend time trying to de-

termine if w(n) = 2n + 7 or w(n) = 2n + 67. For huge values of n,

the +7 and +67 become unimportant. In such a case, w(n) = 2n

has all the interesting information. Don’t sweat the small stuff.

(3) Determine the worst case scenario functions for the two algo-

rithms, and compare them. The smaller of the two (assuming they

are not essentially the same) is declared the more efficient algo-

rithm.

Example 18.1. Let’s do a worst case scenario computation for the following

algorithm designed to determine the largest number in a list of n numbers.

It would be natural to use the number of items in the list, n, to represent

the size of a problem. And let’s use the comparisons as steps. We are going

to make two comparisons each for each of the items in the list in every case

(every case is a worst case for this algorithm!). So we give this algorithm an

efficiency w(n) = 2n. Notice that we actually only need comparisons for the

last n− 1 items in the list, and the exact number of times the comparisons

in instructions (3) and (4) are carried out might take a few minutes to figure

out. But it’s clear that both are carried out about n times, and since we are

162 math208: discrete mathematics

Input: a list of n numbers a1, a2, · · · , an

Output: maximum(a1, a2, . . . , an)

1: max ← a1

2: k← 2
3: while k ≤ n do
4: if max < ak then
5: max ← ak

6: end if
7: end while
8: output max

Algorithm 18.1: Maximum list value

only interested in huge n’s, being off by a few (or a few billion) isn’t really

going to matter at all.

algorithm efficiency 163

18.2 Exercises

Exercise 18.1. For the algorithm presented in exercise 17.2 from the last

chapter:

(a) Select a value to represent the size of an instance of the problem the algo-

rithm is designed to solve.

(b) Decide what will constitute a step in the algorithm.

(c) Determine the worst case scenario function w(n).

Exercise 18.2. Repeat exercise 18.1 for the following algorithm:

Input: Sets of reals: {x1, x2, . . . , xn} and {y1, y2, . . . , yn} of size n
Output: (to be determined)

1: S← 0
2: i← 1
3: while i ≤ n do
4: S← S + xi · yi

5: i← i + 1
6: end while
7: output S

19

The Growth of Functions

Now that we have an idea of how to determine the efficiency of

an algorithm by computing its worst case scenario function, w(n),

we need to be able to decide when one algorithm is better than an-

other. For example, suppose we have two algorithms to solve a cer-

tain problem, the first with w1(n) = 10000n2, and the second with

w2(n) = 2n. Which algorithm would be the better choice to imple-

ment based on these functions? To find out, let’s assume that our

computer can carry out one billion steps per second, and estimate

how long each algorithm will take to solve a worst case problem for

various values of n.

w(n) n = 10 n = 20 n = 50 n = 100

10000n2 .001 sec .004 sec .025 sec .1 sec

2n .000001 sec .001 sec 4.2 months 4× 1011 centuries

Table 19.1: Problem size vs. CPU time
used

So, it looks like the selection of the algorithm depends on the size

of the problems we expect to run into. Up to size 20 or so, it doesn’t

look like the choice makes a lot of difference, but for larger values of

n, the 10000n2 algorithm is the only practical choice.

It is worth noting that the values of the efficiency functions for

small values of n can be deceiving. It is also worth noting that, from

a practical point of view, simply designing an algorithm to solve a

problem without analyzing its efficiency can be a pointless exercise.

166 math208: discrete mathematics

19.1 Common efficiency functions

There are a few types of efficiency functions that crop up often in the

analysis of algorithms. In order of decreasing efficiency for large n

they are: log2 n,
√

n, n, n2, n3, 2n, n!.

Assuming one billion steps per second, here is how these effi-

ciency functions compare for various choices of n.

w(n) n = 10 n = 20 n = 50 n = 100

log2 n .000000003 sec .000000004 sec .000000005 sec .000000006 sec√
n .000000003 sec .000000004 sec .000000006 sec .000000008 sec

n .00000001 sec .00000002 sec .00000004 sec .00000006 sec
n2 .0000001 sec .0000004 sec .0000016 sec .0000036 sec
n3 .000001 sec .000008 sec .000064 sec .00022 sec
2n .000001 sec .001 sec 18.3 minutes 36.5 years
n! .0036 sec 77 years 2.6× 1029 centuries 2.6× 1063 centuries

Table 19.2: Common efficiency func-
tions for small values of n

Even though the values in the first five rows of the table look

reasonably close together, that is a false impression fostered by the

small values of n. For example, when n = 1000000, those five entries

would be as in table 19.3.

w(n) n = 1000000

log2 n .00000002 sec√
n .000001 sec

n .001 sec

n2 17 minutes

n3 31.7 years

Table 19.3: Efficiency functions where

n = 1000000

And, for even larger values of n, the
√

n algorithm will require

billions more years than the log2 n algorithm.

19.2 Big-oh notation

There is a traditional method of estimating the efficiency of an al-

gorithm. As in the examples above, one part of the plan is to ignore

tiny contributions to the efficiency function. In other words, we won’t

write expressions such as w(n) = n2 + 3, since the term 3 is insignifi-

cant for the large values of n we are interested in. As far as behavior

for large values of n is concerned, the functions n2 and n2 + 3 are

indistinguishable. A second part of the plan is to not distinguish

between functions if one is always say 10 times the other. In other

words, as far as analyzing efficiency, the functions n2 and 10n2 are

indistinguishable. And there is nothing special about 10 in those re-

marks. These ideas lead us to the idea of the order of growth with

respect to n, O(g(n)), in the next definition.

the growth of functions 167

Definition 19.1. The function w(n) is O(g(n))provided there is a The symbol O(g(n)) is read in english

as big-oh of g(n).number k > 0 such that w(n) ≤ kg(n) for all n (or at least for all large

values of n).

As an example, n3 + 2n2 + 10n + 4 ≤ (1 + 2 + 10 + 4)n3 = 17n3

is O(n3). So if we have an algorithm with efficiency function w(n) =

n3 + 2n2 + 10n + 4, we can suppress all the unimportant details,

and simply say the efficiency is O(n3). In this example, it is also true

that w(n) is O(n4), but that is less precise information. On the other

hand, saying w(n) is O(n2) is certainly false. To indicate that we have

the best possible big-oh estimate allowed by our analysis, we would

say w(n) is at best O(n3). O(g(n)) actually represents the set

of functions dominated by g(n). So,

it would be proper to write w(n) =

n3 + 2n2 + 10n + 4 ∈ O(n3). Moreover,

we could write O(n2) ⊂ O(n3) since

the functions dominated by n2 are

among those dominated by n3.

Loosely speaking, finding the O estimate for a function selects the

most influential, or dominant, term (for large values of the variable)

in the function, and suppresses any constant factor for that term.

19.3 Examples

In each example, we find a big-oh estimate for the given expression.

Example 19.2. We have that n4 − 3n3 + 2n2 − 6n + 14 is O(n4), since for

large n the first term dominates the others.

Example 19.3. For large n, we have the inequalities:

(n3 log2 n + n2 − 3)(n2 + 2n + 8),

≤ (1 + 1 + 3)n3(log2 n)(1 + 2 + 8)n2,

≤ 55n5 log2 n.

Hence, (n3 log2 n + n2 − 3)(n2 + 2n + 8) is O(n5 log2 n). Alternatively,

we have that n3 log2 n and n2 dominate their respective factors. Thus,

again, the product is O(n5 log2 n). Dominant factors may be multiplied.

Example 19.4. We see that n5 + 3(2)n − 14n22 + 13 ≤ (1 + 3 + 14 +

13)2n = 31(2n). Hence, the expression is O(2n). Or, since 3 · 2n dominates

all the other terms for large n, we see that the expression is O(3 · 2n). That

is, it is of order O(2n) since the constant factor is really irrelevant.

168 math208: discrete mathematics

19.4 Exercises

Exercise 19.1. You have been hired for a certain job that can be completed

in less than two months, and offered two modes of payment. Method 1: You

get $1,000,000,000 a day for as long as the job takes. Method 2: You get

$1 the first day, $2 the second day, $4 the third day, $8 the fourth day, and

so on, your payment doubling each day, for as long as the job lasts. Which

method of payment do you choose?

Exercise 19.2. Suppose an algorithm has efficiency function w(n) =

n log2 n. Compute the worst case time required for the algorithm to solve

problems of sizes n = 10, 20, 40, 60 assuming the operations are carried out

at the rate of one billion per second. Where does this function fit in the table

on the second page of this chapter?

Exercise 19.3. Repeat exercise 2 for w(n) = nn.

Exercise 19.4. Explain why 3n3 + 400n2 + 2
√

n is at least O(n2).

Exercise 19.5. Explain why 10n2 + 4n + 2
√

n in not O(1000n).

Exercise 19.6. Find the best possible big-oh estimate for
√

5n + log2 10n +

1.

Exercise 19.7. Find the best possible big-oh estimate of 2n2 +
3
n

.

Exercise 19.8. Find the best possible big-oh estimate of
2n2 + 2n + 1

2n + 1
.

Hint: Begin by doing a long division.

20

The Integers

Number theory is concerned with the integers and their prop-

erties. In this chapter the rules of the arithmetic of integers are re-

viewed. The surprising fact is that all the dozens of rules and tricks

you know for working with integers (and for doing algebra, which

is just arithmetic with symbols) are consequences of just a few basic

facts. The list of facts given in sections 20.1 and 20.2 is actually longer

than necessary; several of these rules can be derived from the others.

20.1 Integer operations

The set of integers, {· · · ,−2,−1, 0, 1, 2, · · · }, is denoted by the sym-

bol Z. The two familiar arithmetic operations for the integers, ad-

dition and multiplication, obey several basic rules. First, notice that

addition and multiplication are binary operations. In other words,

these two operations combine a pair of integers to produce a value. It

is not possible to add (or multiply) three numbers at a time. We can

figure out the sum of three numbers, but it takes two steps: we select

two of the numbers, and add them up, and then add the third to the

preliminary total. Never are more than two numbers added together

at any time. A list of the seven fundamental facts about addition and

multiplication of integers follows.

170 math208: discrete mathematics

(1) The integers are closed with respect to addition and multiplica-

tion.

That means that when two integers are added or multiplied, the

result is another integer. In symbols, we have

∀a, b ∈ Z, ab ∈ Z and a + b ∈ Z.

(2) Addition and multiplication of integers are commutative opera-

tions.

That means that the order in which the two numbers are combined

has no effect on the final total. Symbolically, we have

∀a, b ∈ Z, a + b = b + a and ab = ba.

(3) Addition and multiplication of integers are associative operations.

In other words, when we compute the sum (or product) of three

integers, it does not matter whether we combine the first two and

then add the third to the total, or add the first to the total of the

last two. The final total will be the same in either case. Expressed

in symbols, we have

∀a, b, c ∈ Z, a(bc) = (ab)c and a + (b + c) = (a + b) + c.

(4) There is an additive identity denoted by 0. It has the property that

when it is added to any number the result is that number right

back again. In symbols, we see that

0 + a = a = a + 0 for all a ∈ Z.

(5) Every integer has an additive inverse: ∀n ∈ Z, ∃m ∈ Z so that

n + m = 0 = m + n. As usual, m is denoted by −n. So, we write

n + (−n) = (−n) + n = 0.

(6) 1 is a multiplicative identity. That is, we have 1a = a = a1 for all

a ∈ Z.

And finally, there is a rule which establishes a connection between

the operations of addition and multiplication.

the integers 171

(7) Multiplication distributes over addition. Again, we symbolically

write

∀a, b, c ∈ Z, a(b + c) = ab + ac.

The seven facts in section 20.1, together with a few concerning or-

dering stated in section 20.2, tell all there is to know about arithmetic.

Every other fact can be proved from these. For example, here is a

proof of the cancellation law for addition using the facts listed above.

Theorem 20.1 (Integer cancellation law). For integers a, b, c, if a + c =

b + c then a = b.

Proof. Suppose a + c = b + c. Add −c to both sides of that equation

(applying fact 5 above) to get (a + c) + (−c) = (b + c) + (−c). Using

the associative rule, that equation can be rewritten as a + (c + (−c)) =

b + (c + (−c)), and that becomes a + 0 = b + 0. By property 4 above, that

means a = b. ♣

Theorem 20.2. For any integer a, a0 = 0.

Proof. Here are the steps in the proof. You supply the justifications for the

steps.

a0 = a(0 + 0)

a0 = a0 + a0

a0 + (−(a0)) = (a0 + a0) + (−(a0))

a0 + (−(a0)) = a0 + (a0 + (−(a0)))

0 = a0 + 0

0 = a0

♣

Your justification for each step should be stated as using one, or

more, of the fundamental facts as applied to the specific circumstance

in each line.

172 math208: discrete mathematics

20.2 Order properties

The integers also have an order relation, a is less than or equal to b:

a ≤ b. This relation satisfies three fundamental order properties: ≤ is

a reflexive, antisymmetric, and transitive relation on Z.

The notation b ≥ a means the same as a ≤ b. Also a < b (and

b > a) are shorthand ways to say a ≤ b and a 6= b.

The trichotomy law holds: for a ∈ Z exactly one of a > 0, a = 0, or

a < 0 is true.

The ordering of the integers is related to the arithmetic by several

rules:

(1) If a < b, then a + c < b + c for all c ∈ Z.

(2) If a < b and c > 0, then ac < bc.

(3) If a < b and c < 0, then bc < ac.

And, finally, the rule that justifies proofs by induction:

The Well Ordering Principle for Z: The set of positive integers is

well-ordered: every nonempty subset of positive integers has a least

element.

the integers 173

20.3 Exercises

Exercise 20.1. Prove that if a > 0 and b > 0, then ab > 0.

Exercise 20.2. Prove that is ab = 0, then a = 0 or b = 0. Hint: Try an

indirect proof with four cases. Case 1: Show that if a > 0 and b > 0, then

ab 6= 0. Case 2: Show that if a > 0 and b < 0, then ab 6= 0. There are two

more similar cases.

Exercise 20.3. Prove the cancellation law for multiplication: For integers

a, b, c, with c 6= 0, if ac = bc, then a = b. (Hint: Use exercise 20.2

21

The divides Relation and Primes

Given integers a and b we say that a divides b and write a|b
provided1 there is an integer c with b = ac. In that case we also say 1 That is, a divides into b evenly.

that a is a factor of b, or that a is a divisor of b, or that b is a multiple

of a. For example 3|12 since 12 = 3 · 4. Keep in mind that divides

is a relation. When you see a|b you should think is that true or false.

Don’t write things like 3|12 = 4! If a does not divide b, write a/|b. For

example, it is true2 that 3/|13. 2 Fact: 3 does not divide into 13 evenly.

21.1 Properties of divides

Here is a list of a few simple facts about the divisibility relation.

Theorem 21.1. For a, b, c ∈ Z we have

(1) a|0

(2) ±1|a

(3) If a|b, then −a|b

(4) If a|b and b|c, then a|c. So a|b is a transitive relation on Z

(5) a| − a

(6) If a|b and b 6= 0, then 0 < |a| ≤ |b|

(7) If a|1, then a = ±1

(8) If a|b and b|a, then a = ±b

176 math208: discrete mathematics

(9) a|b and a|c, then a|(mb + nc) for all m, n ∈ Z

(10) If a|b, then a|bc for all c ∈ Z

Here are the proofs of a few of these facts.

(1) Proof. For any integer a, a0 = 0, so a|0. ♣

(4) Proof. Suppose a|b and b|c. That means there are integers s, t so that

as = b and bt = c. Substituting as for b in the second equation gives

(as)t = c, which is the same as a(st) = c. That shows a|c. ♣

(9) Proof. Suppose a|b and a|c. That means there are integers s, t such

that as = b and at = c. Multiply the first equation by m and the

second by n to get a(sm) = mb and a(tn) = nc. Now add those two

equations: a(sm) + a(tn) = mb + nc. Factoring out the a on the left

shows a(sm + tn) = mb + nc, and so we see a|(mb + nc). ♣

21.2 Prime numbers

The prime integers play a central role in number theory. A positive

integer larger than 1 is said to be prime if its only positive divisors

are 1 and itself. The first few primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.

A positive integer larger than 1 which is not prime is composite.

So a composite number n has a positive divisor a which is neither 1

nor n. By part (6) of the theorem above, 1 < a < n.

So, to check if an integer n is a prime, we can trial divide it in turn

by 2, 3, 4, 5, · · · n − 1, and if we find one of these that divides n, we

can stop, concluding that n is not a prime. On the other hand, if we

find that none of those divide n, then we can conclude n is a prime.

This algorithm for checking a number for primeness can be made

more efficient. For example, there is really no need to test to see if

4 divides n if we have already determined that 2 does not divide n.

And the same reasoning shows that to test n for primeness we need

only check in to see if n is divisible by any of 2, 3, 5, 7, 11, 13 and so

on up to the largest prime less than n. For example, to test 15 for

primeness, we would trial divide by the six values 2, 3, 5, 7, 11, 13.

But even this improved algorithm can be made more efficient by the

following theorem.

the DIVIDES relation and primes 177

Theorem 21.2. Every composite number n has a divisor a, with

2 ≤ a ≤
√

n.

Proof. Suppose n is a composite integer. That means n = ab where 1 <

a, b < n. Not both a and b are greater than
√

n, for if so n = ab >
√

n
√

n = (
√

n)2 = n, and that is a contradiction. ♣

So, if we haven’t found a divisor of n by the time we reach
√

n,

then n must be a prime.

We can be a little more informative, as the next theorem shows.

Theorem 21.3. Every integer n > 1 is divisible by a prime.

Proof. Let n > 1 be given. The set, D, of all integers greater than 1 that

divide n is nonempty since n itself is certainly in that set. Let m be the

smallest integer in that set. Then m must be a prime since if k is an integer

with 1 < k < m and k|m, then k|n, and so k ∈ D. That is a contradiction

since m is the smallest element of D. Thus m is a prime divisor of n. ♣

Among the more important theorems in number theory is the

following.

Theorem 21.4. The set of prime integers is infinite.

Proof. Suppose that there were only finitely many primes. List them all:

2, 3, 5, 7, · · · , p. Form the number N = 1 + 2 · 3 · 5 · 7 · · · p. According

to the last theorem, there must be a prime that divides N, say q. Certainly q

also divides 2 · 3 · 5 · 7 · · · p since that is the product of all the primes, so q

is one of its factors. Hence q divides N − 2 · 3 · 5 · 7 · · · p. But that’s crazy

since N − 2 · 3 · 5 · 7 · · · p = 1. We have reached a contradiction, and so we

can conclude there are infinitely many primes. ♣

21.3 The division algorithm for integers

Theorem 21.5 (The Division Algorithm for Integers). If a, d ∈ Z, with

d > 0, there exist unique integers q and r, with a = qd + r, and 0 ≤ r < d. The quantities q and r are called the

quotient and remainder when a is

divided by d.Proof. Let S = {a− nd|n ∈ Z, and a− nd ≥ 0}. Then S 6= ∅, since

a − (−|a|)d ∈ S for sure. Thus, by the Well Ordering Principle, S has a

178 math208: discrete mathematics

least element, call it r. Say r = a − qd. Then we have a = qd + r, and

0 ≤ r. If r ≥ d, then a = (q + 1)d + (r− d), with 0 ≤ r− d contradicting

the minimality of r.

To prove uniqueness, suppose that a = q1d + r1 = q2d + r2, with

0 ≤ r1, r2 < d. Then d(q1 − q2) = r2 − r1 which implies that r2 − r1 is a

multiple of d. Since 0 ≤ r1, r2 < d, we have −d < r2 − r1 < d. Thus the

only multiple of d which r2 − r1 can possibly be is 0d = 0. So r2 − r1 = 0

which is the same thing as r1 = r2. Thus d(q1 − q2) = 0 = d0. Since d 6= 0

we can cancel d to get q1 − q2 = 0, whence q1 = q2. ♣

the DIVIDES relation and primes 179

21.4 Exercises

Exercise 21.1. Determine all the integers that 0 divides.

Exercise 21.2. Prove: For integers a, b, if a|b, then −a|b.

Exercise 21.3. Prove: For integers a, b, c, if a|b, then a|bc.

Exercise 21.4. Determine if 1297 is a prime.

Exercise 21.5. Prove or give a counterexample: If p is a prime, then 2p + 1

is a prime.

Exercise 21.6. Determine the quotient and remainder when 107653 is

divided by 22869.

22

GCD’s and the Euclidean Algorithm

The greatest common divisor of a and b, not both 0, is the

largest integer which divides both a and b. For example, the greatest

common divisor of 21 and 35 is 7. We write gcd(a, b), as shorthand

for the greatest common divisor of a and b. So gcd(35, 21) = 7.

There are several ways to find the gcd of two integers, a and b

(not both 0).

First, we could simply list all the positive divisors of a and b and

pick the largest number that appears in both lists. Notice that 1 will

appear in both lists. For the example above the positive divisors of

35 are 1, 5, 7, and 35. For 21 the positive divisors are 1, 3, 7, and 21.

The largest number appearing in both lists is 7, so gcd(35, 21) = 7.

Another way to say the same thing: If we let Da denote the set

of positive divisors of a, then gcd(a, b) = the largest number in

Da ∩ Db .

The reason gcd(0, 0) is not defined is that every positive inte-

ger divides 0, and so there is no largest integer that divides 0. From

now on, when we use the symbol gcd(a, b), we will tacitly assume

a and b are not both 0. The integers a and b can be negative. For

example if a = −34 and b = 14, then the set of positive divi-

sors of −34 is {1, 2, 17, 34} and the set of positive divisors of 14

is {1, 2, 7, 14}. The set of positive common divisors of 14 and −34 is

the set {1, 2, 17, 34} ∩ {1, 2, 7, 14} = {1, 2}. The largest number in

this set is 2 = gcd(−34, 14).

Obviously then gcd(a, b) = gcd(−a, b) since a and −a have the

182 math208: discrete mathematics

same set of positive divisors. So when computing the gcd(a, b) we

may as well replace a and b by their absolute values if one or both

happen to be negative.

Here are a few easy facts about gcd’s:

(1) If a 6= 0, then gcd(a, a) = a.

(2) gcd(a, 1) = 1.

(3) gcd(a, b) = gcd(b, a).

(4) If a 6= 0 and a|b, then gcd(a, b) = |a|.

(5) If a 6= 0, gcd(a, 0) = |a|.

If gcd(a, b) = 1, we say that a and b are relatively prime. When a

and b are relatively prime, they have no common prime divisor. For

example 12 and 35 are relatively prime.

22.1 Euclidean algorithm

It’s pretty clear that computing gcd(a, b) by listing all the positive

visors of a and all the positive divisors of b, and selecting the largest

integers that appears in both lists is not very efficient. There is a

better way of computing gcd(a, b).

Theorem 22.1. If a and b are integers (not both 0) and a = sb + t for

integers s and t, then gcd(a, b) = gcd(b, t).

Proof. To prove the theorem, we will show that the list of positive integers

that divide both a and b is identical to the list of positive integers that divide

both b and t = a − sb. So, suppose d|a and d|b. Then d|(a − sb) so

d|t. Hence d divides both b and t. On the other hand, suppose d|b and d|t.
Then d|(sb + t), so that d|a. Hence d divides both a and b. It follows that

gcd(a, b) = gcd(b, t). ♣

Euclid is given the credit for discovering this fact, and its use for

computing gcd’s is called the Euclidean algorithm in his honor.

The idea is to use the theorem repeatedly until a pair of numbers

is reached for which the gcd is obvious. Here is an example of the

Euclidean algorithm in action.

gcd’s and the euclidean algorithm 183

Example 22.2. Since 14 = 1 · 10 + 4, gcd(14, 10) = gcd(10, 4).

In turn 10 = 2 · 4 + 2 so gcd(10, 4) = gcd(4, 2). Since 4 = 2 · 2,

gcd(4, 2) = gcd(2, 0) = 2. So gcd(10, 14) = 2.

The same example, presented a little more compactly, and without explic-

itly writing out the divisions, looks like

gcd(14, 10) = gcd(10, 4) = gcd(4, 2) = gcd(2, 0) = 2

At each step, the second number is replaced by the remainder when the first

number is divided by the second, and the second moves into the first spot.

The process is repeated until the second number is a 0 (which must happen

eventually since the second number never will be negative, and it goes down

by at least 1 with each repetition of the process). The gcd is then the number

in the first spot when the second spot is 0 in the last step of the algorithm.

Now, a more exciting example.

Example 22.3. Find the greatest common divisor of 540 and 252. We may

present the computations compactly, without writing1 out the divisions. We 1 Do the divisions yourself to verify the
results.

have

gcd(540, 252) = gcd(252, 36) = gcd(36, 0) = 36.

22.2 Efficiency of the Euclidean algorithm

Using the Euclidean algorithm to find gcd’s is extremely efficient.

Using a calculator with a ten digit display, you can find the gcd of

two ten digit integers in a matter of a few minutes at most using the

Euclidean algorithm. On the other hand, doing the same problem by

first finding the positive divisors of the two ten digit integers would

be a tedious project lasting several days. Some modern cryptographic

systems rely on the computation of the gcd’s of integers of hundreds

of digits. Finding the positive divisors of such large integers, even

with a computer, is, at present, a hopeless task. But a computer im-

plementation of the Euclidean algorithm will produce the gcd of

integers of hundreds of digits in the blink of an eye.

184 math208: discrete mathematics

22.3 The Euclidean algorithm in quotient/remainder form

The Euclidean algorithm can also be written out as a sequence of

divisions:

a = q1 · b + r1, 0 < r1 < b

b = q2 · r1 + r2, 0 < r2 < r1

r1 = q3 · r2 + r3, 0 < r3 < r2

... =
...

rk = qk+2 · rk+1 + rk+2, 0 < rk+2 < rk+1

... =
...

rn−2 = qn · rn−1 + rn, 0 < rn < rn−1

rn−1 = qn+1 · rn + 0

The sequence of integer remainders b > r1 > ... > rk > ... ≥ 0

must eventually reach 0. Let’s say rn 6= 0, but rn+1 = 0, so that

rn−1 = qn+1 · rn. That is, in the sequence of remainders, rn is the last

non-zero term. Then, just as in the examples above we see that the

gcd of a and b is the last nonzero remainder:

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn−1, rn)

= gcd(rn, rn+1) = gcd(rn, 0) = rn.

Let’s find gcd(317, 118) using this version of the Euclidean algorithm.

Here are the steps:

317 = 2 · 118 + 81,

118 = 1 · 81 + 37,

81 = 2 · 37 + 7,

37 = 5 · 7 + 2,

7 = 3 · 2 + 1,

2 = 2 · 1 + 0.

gcd’s and the euclidean algorithm 185

Since the last non-zero remainder is 1, we conclude that gcd(317, 118) =

1. So, in the terminology introduced above, we would say that 317

and 118 are relatively prime.

186 math208: discrete mathematics

22.4 Exercises

Exercise 22.1. Use the Euclidean algorithm to compute gcd(a, b) in each

case.

a) a = 233, b = 89 b) a = 1001, b = 13 c) a = 2457, b = 1458

d) a = 567, b = 349

Exercise 22.2. Compute gcd(987654321, 123456789).

Exercise 22.3. Write a step-by-step algorithm that implements the Eu-

clidean algorithm for finding gcd’s.

Exercise 22.4. If p is a prime, and n is any integer, what are the possible

values of gcd(p, n)?

23

GCD’s Reprised

The gcd of a and b is defined to be the largest integer that di-

vides them both. But there is another way to describe that gcd. First,

a little vocabulary: by a linear combination of a and b we mean any

expression of the form as + bt where s, t are integers. For example,

4 · 5 + 10 · 2 = 40 is a linear combination of 4 and 10. Here are some

more linear combinations of 4 and 10:

4 · 1 + 10 · 1 = 14, 4 · 0 + 10 · 0 = 0, and, 4 · (−11) + 10 · 1 = −34.

23.1 The gcd(a, b) as a linear combination of a and b

If we make a list of all possible linear combinations of 4 and 10, an

unexpected pattern appears: · · · ,−6,−4,−2, 0, 2, 4, 6, · · · . Since 4 and

10 are both even, we are sure to see only even integers in the list of

linear combinations, but the surprise is that every even number is in

the list. Now here’s the connection with gcd’s: The gcd of 4 and 10 is

2, and the list of all linear combinations is exactly all multiples of 2.

Let’s prove that was no accident.

Theorem 23.1. Let a, b be two integers (not both zero). Then the smallest

positive number in the list of the linear combinations of a and b is gcd(a, b).

In other words, the gcd(a, b) is the smallest positive integer that can be

written as a linear combination of a and b.

Proof. Let L = { as + bt | s, t are integers and as + bt > 0 }. Since a, b are

not both 0, we see this set is nonempty. As a nonempty set of positive inte-

188 math208: discrete mathematics

gers, it must have a least element, say m. Since m ∈ L, m is a linear combi-

nation of a and b. Say m = as0 + bt0. We need to show m = gcd(a, b) = d.

As noted above, since d|a and d|b, it must be that d|(as0 + bt0), so d|m.

That implies d ≤ m. We complete the proof by showing m is a common

divisor of a and b. The plan is to divide a by m and show the remainder

must be 0. So write a = qm + r with 0 ≤ r < m. Solving for r we get

0 ≤ r = a − qm = a − q(as0 + bt0) = a(1− qs0) + b(−qt0) < m.

That shows r is a linear combination of a and b that is less than m. Since m

is the smallest positive linear combination of a and b, the only option for r is

r = 0. Thus a = qm, and so m|a. In the same way, m|b. Since m is a com-

mon divisor or a and b, it follows that m ≤ d. Since the reverse inequality is

also true, we conclude m = d. ♣

And now we are ready for the punch-line.

Theorem 23.2. Let a, b be two integers (not both zero). Then the list of all

the linear combinations of a and b consists of all the multiples of gcd(a, b).

Proof. Since gcd(a, b) = d certainly divides any linear combination of

a and b, only multiples of d stand a chance to be in the list. Now we need

to show that if n is a multiple of the d then n will appear in the list for

sure. According to the last theorem, we can find integers s0, t0 so that d =

as0 + bt0. Now since n is a multiple of d, we can write n = de. Multiplying

both sides of d = as0 + bt0 by e gives a(s0e) + b(t0e) = de = n, and that

shows n does appear in the list of linear combinations of a and b. ♣

So, without doing any computations, we can be sure that the set of

all linear combinations of 15 and 6 will be all multiples of 3.

23.2 Back-solving to express gcd(a, b) as a linear combination

In practice, finding integers s and t so that as + bt = d = gcd(a, b) is

carried out by using the Euclidean algorithm applied to a and b and

then back-solving.

gcd’s reprised 189

Example 23.3. Let a = 35 and b = 55. Then the Euclidean algorithm gives

55 = 35 · 1 + 20

35 = 20 · 1 + 15

20 = 15 · 1 + 5

15 = 5 · 3 + 0

The penultimate equation allows us to write 5 = 1 · 20 + (−1) · 15 as

a linear combination of 20 and 15. We then use the equation 35 = 20 ·
1 + 15, to write 15 = 1 · 35 + (−1) · 20. We can substitute this into

the previous expression for 5 as a linear combination of 20 and 15 to get

5 = 1 · 20 + (−1) · 15 = 1 · 20 + (−1) · (1 · 35 + (−1) · 20). Which can

be simplified by collecting 35’s and 20’s to write 5 = 2 · 20 + (−1) · 35.

Now we can use the top equation to write 20 = 1 · 55 + (−1) · 35 and

substitute this into the expression giving 5 as a linear combination of 35 and

20. We get 5 = 2 · (1 · 55 + (−1) · 35) + (−1) · 35. This simplifies to

5 = 2 · 55 + (−3) · 35.

23.3 Extended Euclidean Algorithm

The sort of computation in section 23.2 gets a little tedious, keeping

track of equations and coefficients. Moreover, the back-substitution

method isn’t very pleasant from a programming perspective since

all the equations in the Euclidean algorithm need to be saved before

solving for the coefficients in a linear combination for the gcd(a, b).

The Extended Euclidean Algorithm is a forward-substition method

that allows us to compute linear combinations as we calculate re-

mainders on the way to finding gcd(a, b).

There are two new ideas that we need to add to our Euclidean

Algorithm for computing gcd(a, b): every remainder can be written

as a linear combination of a and b, and we can use the quotient–

remainder computation to generate new linear combinations. An

example is the best way to see how this works.

Example 23.4. Let a = 6567 and b = 987. We would like to find

gcd(a, b) = gcd(6567, 987) and coefficients s and t in a linear combi-

190 math208: discrete mathematics

nation: a(s) + b(t) = gcd(a, b). Suppose that we had found the remainders

r3 = 303 and r4 = 39, and had found corresponding linear combinations:

eqn 3: 6567(2) + 987(−13) = 303, and

eqn 4: 6567(−3) + 987(20) = 39.

To find the next remainder, r5, the Euclidean Algorithm has us calculate

the quotient, q4 = 7, and then the remainder as r5 = r3 − r4 × q4 = 30. Check this computation!

The Extended Euclidean Algorithm finds the next equation, (eqn 5), by

performing the same operation on (eqn 3) and (eqn 4):

(6567(2) + 987(−13))− (6567(−3) + 987(20))× (7) = (303)− (39)× (7),

6567(23) + 987(−153) = 30.

eqn -1: 6567(1) + 987(0), = 6567,

eqn 0: 6567(0) + 987(1), = 987,

eqn 1: 6567(1) + 987(−6), = 645, (q0 = 6),

eqn 2: 6567(-1) + 987(7), = 342, (q1 = 1),

eqn 3: 6567(2) + 987(−13), = 303, (q2 = 1),

eqn 4: 6567(-3) + 987(20), = 39, (q3 = 1),

eqn 5: 6567(23) + 987(−153), = 30, (q4 = 7),

eqn 6: 6567(-26) + 987(173), = 9, (q5 = 1),

eqn 7: 6567(101) + 987(−672), = 3, (q6 = 3),

eqn 8: 6567(-329) + 987(2189), = 0, (q7 = 3).

In order to get the process started we need two initial equations based on

the values of a and b. That is, we will pretend that they are “remainders”,

say r−1 = 6567 and r0 = 987, that come before the first true remainder, r1.

The complete Extended Euclidean Algorithm process is shown in the table.

The last equation with a non-zero remainder is a linear combination of 6567

and 987 equal to the gcd(6567, 987) = 3. That is, we have

6567(101) + 987(−672) = 3.

Notice that every equation in Example 23.4 has the same form:

6567(si) + 987(ti) = ri. (23.1)

The only values that change are the linear combination coefficients, The si and ti are called Bézout Coeffi-

cients.si and ti, the remainders, ri, and the quotient values qi−1. If we re-

member the equation form 23.1, we could just write the changing

values in a tabular form (see Table 23.1).
i si ti ri qi−1

−1 1 0 6567

0 0 1 987

1 1 −6 645 6

2 −1 7 342 1

3 2 −13 303 1

4 −3 20 39 1

5 23 −153 30 7

6 −26 173 9 1

7 101 −672 3 3

8 −329 2189 0 3

Table 23.1: i: 6567(si) + 987(ti) =

ri , qi−1

To generate a new, ith row in a table consider the two consecutive

previous rows as equations:

a(si−2) + b(ti−2) = ri−2, and a(si−1) + b(ti−1) = ri−1.

After finding the quotient qi−1 so that ri−2 = qi−1ṙi−1 + ri, we sub-

tract qi−1 times the i− 1 equation from the i− 2 equation.

gcd’s reprised 191

Simplifying the resulting expression, we obtain

a (si−2 − qi−1 · si−1) + b (ti−2 − qi−1 · ti−1) = ri−2 − qi−1 · ri−1. (23.2)

This is our new, ith equation:

a (si) + b (ti) = ri. (23.3)

Comparing equations 23.2 with equation 23.3, we see that the si and

ti are calculated in exactly the same way from the previous two val-

ues as the remainder ri is.

Since the equation number i plays no role in the computations, we

need not include that column in the tableaux.

Example 23.5. Find d = gcd(55, 35) and a linear combination 55(s) +

35(t) = d.

si ti ri qi−1

1 0 55

0 1 35

1 −1 20 1

−1 15 1

1

3

Complete the tableaux in the table using the Extended Euclidean Algo-

rithm. Compare these calculations to those of Example 23.3, where we used

the back-substitution method.

Often, when performing the Algorithm by hand it is more conve-

nient to write the tableaux horizontally, as in the following example.

Example 23.6. Find gcd(107653, 22869), and write it as a linear combi-

nation of those two numbers. The complete Extended Euclidean Algorithm

table is displayed in table 23.2, where the rows correspond to qi−1, ri, ti, si,

respectively.

4 1 2 2 2 1 1 9 2 1 2

107653 22869 16177 6692 2793 1106 581 525 56 21 14 7 0

0 1 -4 5 -14 33 -80 113 -193 1850 -3893 5743 -15379

1 0 1 -1 3 -7 17 -24 41 -393 827 -1220 3267

Table 23.2: gcd(107653, 22869)

Thus, we may conclude that

gcd(107653, 22869) = 7 = (107653)(−1220) + (22869)(5743).

192 math208: discrete mathematics

23.4 General Linear Combinations for gcd(a, b)

In section 23.3 we saw how the Extended Euclidean Algorithm may

be used to find a linear combination of the form a(s) + b(t) =

gcd(a, b). It is often necessary to find all such linear combinations,

(see section 25.3). In particular, such general linear combinations are

found in the study of cryptography. The Algorithm stops when we

reach a remainder of zero. It turns out that the corresponding values

of si and ti, which we haven’t used yet, allow us to find the form for

all linear combinations that equal gcd(a, b).

Example 23.7. Consider example 23.4 wherein we wanted to express

gcd(6567, 987) as a linear combination. We found at the end of the pro-

cess that gcd(6567, 987) = 3 and

6567(101) + 987(−672) = 3, and,

6567(−329) + 987(2189) = 0.

Now, for any integer, say n, we may multiply the last equation by n and

retain zero on the right. Finally, if we add that new equation to the previous

one, we obtain

6567(101− 329n) + 987(−672 + 2189n) = 3, and,

6567(−329n) + 987(2189n) = 0.

The new penultimate equation gives the form for all the linear combinations

equal to the gcd(6567, 987):

6567(101− 329n) + 987(−672 + 2189n) = gcd(6567, 987) = 3.

Each pair of Bézout Coefficients can be shown to be relatively

prime1. In particular, the last equation in the Extended Euclidean 1 See page 182 for the definition of
relatively prime.

Algorithm,

a(sk+1) + b(tk+1) = 0,

has minimal coefficients sk+1 and tk+1 in that every other such pair is

a common multiple of these two2. This means that, given any integer 2 See section 25.3.

n, nsk+1 and ntk+1 also satisfy the equation. In fact, it is easy to see

gcd’s reprised 193

that

a(nsk+1) + b(ntk+1) = 0.

Finally, to obtain the general solution, as we did in example 23.7, we

add this to the Bézout equation for the gcd(a, b), obtaining One of sk+1 and tk+1 will always be

negative!

a(sk + nsk+1) + b(tk + ntk+1) = gcd(a, b).

194 math208: discrete mathematics

23.5 Exercises

Exercise 23.1. Determine gcd(13447, 7667) and write it as a linear combi-

nation of 13447 and 7667. Try both the method of back-substitution and the

Extended Euclidean Algorithm to determine a suitable linear combination.

Exercise 23.2. What can you conclude about gcd(a, b) if there are integers

s, t with as + bt = 1?

Exercise 23.3. What can you conclude about gcd(a, b) if there are integers

s, t with as + bt = 19?

Exercise 23.4. What can you conclude about gcd(a, b) if there are integers

s, t with as + bt = 18?

24

The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic states the fa-

miliar fact that every positive integer greater than 1 can be written

in exactly one way as a product of primes. For example, the prime

factorization of 60 is 22 · 3 · 5, and the prime factorization of 625 is

54. The factorization of 60 can be written is several different ways:

60 = 2 · 2 · 3 · 5 = 5 · 2 · 3 · 2, and so on. The order in which the factors

are written does not matter. The factorization of 60 into primes will

always have two 2’s, one 3, and one 5. One more example: The fac-

torization if 17 consists of the single factor 17. In the standard form of

the factorization of an integer greater than 1, the primes are written

in order of size, and exponents are used for primes that are repeated

in the factorization. So, for example, the standard factorization of 60

is 60 = 22 · 3 · 5.

24.1 Prime divisors

Before proving the Fundamental Theorem of Arithmetic, we will

need to assemble a few facts.

Theorem 24.1. If n|ab and n and a are relatively prime, then n|b.

Proof. Suppose n|ab and that gcd(n, a) = 1. We can find integers s, t

such that ns + at = 1. Multiply both sides of that equation by b to get

nsb + abt = b. Since n divides both terms on the left side of that equation, it

divides their sum, which is b. ♣

196 math208: discrete mathematics

One consequence of this theorem is that if a prime divides a prod-

uct of some integers, then it must divide one of the factors. That is so

since if a prime does not divide an integer, then it is relatively prime

to that integer. That is useful enough to state as a theorem.

Theorem 24.2. If p is a prime, and p|a1a2 · · · an, then p|aj for some j =

1, 2, · · · , n.

24.2 Proving the Fundamental Theorem

Theorem 24.3 (Fundamental Theorem of Arithmetic). If n > 1 is an

integer, then there exist prime numbers p1 ≤ p2 ≤ ... ≤ pr such that

n = p1 p2 · · · pr and there is only one such prime factorization of n.

Proof. There are two things to prove: (1) every n > 1 can be written in

at least one way as a product of primes (in increasing order) and (2) there

cannot be two different such expressions equal to n.

We will prove these by induction. For the basis, we see that 2 can be

written as a product of primes (namely 2 = 2) and, since 2 is the smallest

prime, this is the only way to write 2 as a product of primes.

For the inductive step, suppose every integer from 2 to k can be writ-

ten uniquely as a product of primes. Now consider the number k + 1. We

consider two cases:

(1) If k + 1 is a prime then k + 1 is already an expression for k + 1 as a

product of primes. There cannot be another expression for k + 1 as a

product of primes, for if k + 1 = pm with p a prime, then p|k + 1 and p

and k + 1 both primes tells us p = k + 1, and so m = 1.

(2) If k + 1 is not a prime, then we can write k + 1 = ab with 2 ≤ a, b ≤ k.

By the inductive hypothesis, each of a and b can be written as prod-

ucts of primes, say a = p1 p2 · · · ps and b = q1q2 · · · qt. That means

k + 1 = p1 p2 · · · psq1q2 · · · qt, and we can rearrange the primes in

increasing order. To complete the proof, we need to show k + 1 can-

not be written in more than one way as a product of an increasing

list of primes. So suppose k + 1 has two different such expressions:

k + 1 = u1u2 · · · ul = v1v2 · · · vm. Since u1|v1v2 · · · vm, u1 must

divide some one of the vi’s and since u1 and that vi are both primes,

the fundamental theorem of arithmetic 197

they must be equal. As the v’s are listed in increasing order, we can con-

clude u1 ≥ v1. The same reasoning shows v1 ≥ u1. Thus u1 = v1.

Now cancel u1, v1 from each side of u1u2 · · · ul = v1v2 · · · vm to get

u2 · · · ul = v2 · · · vm. Since k + 1 was not a prime, both sides of this

equation are greater than 1. Both sides are also less than k + 1. Since

we started with two different factorizations, and canceled the same thing

from both sides, we now have two different factorizations of a number be-

tween 2 and k. That contradicts the inductive assumption. We conclude

the the prime factorization of k + 1 is unique.

Thus, our induction proof is complete. ♣

24.3 Number of positive divisors of n

We can apply the Fundamental Theorem of Arithmetic to the prob-

lem of counting the number of positive divisors of an integer greater

than 1. For example, consider the integer 12 = 223. It follows from

the Fundamental Theorem that the positive divisors of 12 must look

like 2a3b where a = 0, 1, 2, b = 0, 1. So there are six positive divisors

of 12:

2030 = 1 2130 = 2 2230 = 4 2031 = 3 2131 = 6 2231 = 12

198 math208: discrete mathematics

24.4 Exercises

Exercise 24.1. Determine the prime factorization of 345678.

Exercise 24.2. Determine the prime factorization of 1016.

Exercise 24.3. List all the positive divisors of 1016.

Exercise 24.4. How many positive divisors does 345678 have?

25

Linear Diophantine Equations

Consider the following problem:

Al buys some books at $25 each, and some magazines at $3 each.

If he spent a total of $88, how many books and how many magazines

did Al buy? At first glance, it does not seem we are given enough

information to solve this problem. Letting x be the number of books

Al bought, and y the number of magazines, then the equation we

need to solve is 25x + 3y = 88. Thinking back to college algebra

days, we recognize 25x + 3y = 88 as the equation of a straight line

in the plane, and any point along the line will give a solution to the

equation. For example, x = 0 and y = 88
3 is one solution. But, in

the context of this problem, that solution makes no sense because Al

cannot buy a fraction of a magazine. We need a solution in which x

and y are both integers. In fact, we need even a little more care than

that. The solution x = −2 and y = 46 is also unacceptable since Al

cannot buy a negative number of books. So we really need solutions

in which x and y are both nonnegative integers. The problem can be

solved by brute force: If x = 0, y is not an integer. If x = 1, then

y = 21, so that is one possibility. If x = 2, y is not an integer. If

x = 3, y is not an integer. And, if x is 4 or more, then y would have

to be negative. So, it turns out there is only one possible solution: Al

bought one book, and 21 magazines.

200 math208: discrete mathematics

25.1 Diophantine equations

The above question is an example of a Diophantine problem. Pro-

nounce Diophantine as dee-uh-FAWN-teen or dee-uh-FAWN-tine, or,

the more common variations, die-eh-FAN-teen or die-eh-FAN-tine. . In For a modern pronunciation of Dio-

phantus’s name (∆ιoφαντoζ) see http:

//www.pronouncenames.com/Diophantus
general, problems in which we are interested in finding solutions in

which the variables are to be integers are called Diophantine prob-

lems.

In this chapter we will learn how to easily find the solutions to

all linear Diophantine equations: ax + by = c where a, b, c are given

integers. To show some of the subtleties of such problems, here are

two more examples:

(1) Al buys some books at $24 each, and some magazines at $3 each.

If he spent a total of $875, how many books and how many maga-

zines did Al buy? For this question we need to solve the Diophan-

tine equation 24x + 3y = 875. In this case there are no possible

solutions. For any integers x and y, the left-hand side will be a

multiple of 3 and so cannot be equal to 875 which is not a multiple

of 3.

(2) Al buys some books at $26 each, and some magazines at $3 each.

If he spent a total of $157, how many books and how many mag-

azines did Al buy? Setting up the equation as before, we need to

solve the Diophantine equation 26x + 3y = 175. A little trial and

error, testing x = 0, 1, 2, 3, and so on shows there are two possible

answers this time: (x, y) ∈ {(2, 35), (5, 9)}.

25.2 Solutions and gcd(a, b)

Determining all the solutions to ax + by = c is closely connected

with the idea of gcd’s. One connection is theorem 23.1. Here is how

solutions of ax + by = c are related.

Theorem 25.1. ax + by = c has a solution in the integers if and only if

gcd(a, b) divides c.

So, for example, 9x + 6y = 211 has no solutions (in the integers)

while 9x + 6y = 213 does have solutions. To find a solution to the last

http://www.pronouncenames.com/Diophantus
http://www.pronouncenames.com/Diophantus

linear diophantine equations 201

equation, apply the Extended Euclidean Algorithm method to write

the gcd(9, 6) as a linear combination of 9 and 6 (actually, this one is

easy to do by sight): 9 · 1 + 6 · (−1) = 3, then multiply both sides by

213/gcd(9, 6) = 213/3 = 71 to get (71)9 + (−71)6 = 213. That shows

x = 71, y = −71 is a solution to 9x + 6y = 213.

But that is only one possible solution. When a linear Diophantine

equation has one solution it will have infinitely many. In the example

above, another solution will be x = 49 and y = −38. Checking shows

that (49)9 + (−38)6 = 213.

25.3 Finding all solutions

There is a simple recipe for all solutions, once one particular solution

has been found.

Theorem 25.2. Let d = gcd(a, b). Suppose x = s and y = t is one

solution to ax + by = c. Then all solutions are given by

x = s + k
b
d

and y = t− k
a
d

where, k = any integer.

Proof. It is easy to check that all the displayed x, y pairs are solutions

simply by plugging in:

a
(

s + k
b
d

)
+ b

(
t− k

a
d

)
= as +

abk
d

+ bt− abk
d

= as + bt = c.

Checking that the displayed formulas for x and y give all possible solu-

tions is trickier. Let’s assume a 6= 0. Now suppose x = u and y = v

is a solution. That means au + bv = c = as + bt. It follows that

a(u− s) = b(t− v). Divide both sides of that equation by d to get

a
d
(u− s) =

b
d
(t− v).

That equation shows
a
d

∣∣∣∣ b
d
(t− v). Since

a
d

and
b
d

are relatively prime, we

conclude that
a
d

∣∣∣∣ (t− v). Let’s say k
a
d
= t− v. Rearrange that equation to

get

v = t− k
a
d

.

202 math208: discrete mathematics

Next, replacing t− v in the equation
a
d
(u− s) =

b
d
(t− v) with k

a
d

gives

a
d
(u− s) =

b
d
(t− v) =

b
d

(
k

a
d

)
.

Since
a
d
6= 0, we can cancel that factor. So, we have

u− s = k
b
d

so that u = s + k
b
d

.

That proves the solution x = u, y = v is given by the displayed formulas.

♣

25.4 Examples

Example 25.3. Determine all the solutions to 221x + 91y = 39.

Using the Extended Euclidean Algorithm method, we learn that gcd(221, 91) =

13 and since 13|39, the equation will have infinitely many solutions. The

Extended Euclidean Algorithm table provides a linear combination of 221

and 91 equal to 13: 221(−2) + 91(5) = 13. Multiply both sides by

3 and we get 221(−6) + 91(15) = 39. So one particular solution to

221x + 91y = 39 is x = −6, y = 15. According the the theorem above, all

solutions are given by

x = −6 + k
91
13

= −6 + 7k and y = 15− k
221
13

= 15− 17k,

where k is any integer.

Example 25.4. Armand buys some books for $25 each and some cd’s for $12

each. If he spent a total of $331, how many books and how many cd’s did he

buy?

Let x = the number of books, and y = the number of cd’s. We need to

solve 25x + 12y = 331. The gcd of 25 and 12 is 1, and there is an obvious

linear combination of 25 and 12 which equals 1: 25(1) + 12(−2) = 1.

Multiplying both sides by 331 gives 25(331) + 12(−662) = 331. So one

particular solution to 25x + 12y = 331 is x = 331 and y = −662. Of

course, that won’t do for an answer to the given problem since we want

x, y ≥ 0. To find the suitable choices for x and y, let’s look at all the possible

linear diophantine equations 203

solutions to 25x + 12y = 331. We have that

x = 331 + 12k and y = −662− 25k.

We want x and y to be at least 0, and so we need

331 + 12k ≥ 0 and − 662− 25k ≥ 0.

Which means that

k ≥ −331
12

and k ≤ −662
25

,

or

−331
12
≤k ≤ −662

25
.

The only option for k is k = −27, and so we see Armand bought x =

331 + 12(−27) = 7 books and y = −662− 25(−27) = 13 cd’s.

204 math208: discrete mathematics

25.5 Exercises

Exercise 25.1. Find all integer solutions to 21x + 48y = 8.

Exercise 25.2. Find all integer solutions to 21x + 48y = 9.

Exercise 25.3. Sal sold some ceramic vases for $59 each, and a number of

ash trays for $37 each. If he took in a total of $4270, how many of each item

did he sell?

26

Modular Arithmetic

Karl Friedrich Gauss made the important discovery of modular

arithmetic. Modular arithmetic is also called clock arithmetic, and we

are actually used to doing modular arithmetic all the time (pun in-

tended). For example, consider the question If it is 7 o’clock now, what

time will it be in 8 hours?. Of course the answer is 3 o’clock, and we

found the answer by adding 7 + 8 = 15, and then subtracting 12 to

get 15− 12 = 3. Actually, we are so accustomed to that sort of cal-

culation, we probably just immediately blurt out the answer without

stopping to think how we figured it out. But trying a less familiar

version of the same sort of problem makes it plain exactly what we

needed to do to answer such questions: If it is 7 o’clock now, what time

will it be in 811 hours? To find out, we add 7 + 811 = 818, then divide

that by 12, getting 818 = (68)(12) + 2, and so we conclude it will be

2 o’clock. The general rule is: to find the time h hours after t o’clock,

add h + t, divide by 12 and take the remainder.

There is nothing special about the number 12 in the above dis-

cussion. We can imagine a clock with any integer number of hours

(greater than 1) on the clock. For example, consider a clock with 5

hours. What time will it be 61 hours after 2 o’clock. Since 61 + 2 =

63 = (12)(5) + 3, the answer is 3 o’clock.

In the general case, if we have a clock with m hours, then the time

h hours after t o’clock will be the remainder when t + h is divided by

m.

206 math208: discrete mathematics

26.1 The modulo m equivalence relation

This can all be expressed in more mathematical sounding language.

The key is obviously the notion of remainder. That leads to the fol-

lowing definition:

So, the reason it is 2 o’clock 811 hours

after 7 o’clock is that

811 + 7 ≡ 2 (mod 12)

Definition 26.1. Given an integer m > 1, we say that two integers a

and b are congruent modulo m, and write a ≡ b (mod m), in case a

and b leave the same remainder when divided by m.

Theorem 26.2. Congruence modulo m defines an equivalence relation on

Z.

Proof. The relation is clearly reflexive since every number leaves the same

remainder as itself when divided by m. Next, if a and b leave the same

remainder when divided by m, so do b and a, so the relation is symmetric.

Finally, if a and b leave the same remainder, and b and c leave the same

remainder, then a and c leave the same remainder, and so the relation is

transitive. ♣

There is an alternative way to think of congruence modulo m.

Theorem 26.3. a ≡ b (mod m) if and only if m|(a− b).

Proof. Suppose a ≡ b (mod m). That means a and b leave the same

remainder, say r when divided by m. So we can write a = jm + r and

b = km + r. Subtracting the second equation from the first gives a− b =

(jm + r)− (km + r) = jm− km = (j− k)m, and that shows m|(a− b).

For the converse, suppose m|(a − b). Divide a, b by m to get quotients

and remainders: a = jm + r and b = km + s, where 0 ≤ r, s < m.

We need to show that r = s. Subtracting the second equation from the

first gives a − b = m(j − k) + (r − s). Since m divides a − b and m

divides m(j− k), we can conclude m divides (a− b)− m(j− k) = r − s.

Now since 0 ≤ r, s < m, the quantity r − s must be one of the numbers

m− 1, m− 2, · · · , 2, 1, 0,−1,−2, · · · − (m− 1). The only number in that

list that m divides is 0, and so r − s = 0. That is, r = s, as we wanted to

show. ♣

modular arithmetic 207

26.2 Equivalence classes modulo m

The equivalence class of an integer a with respect to congruence

modulo m will be denoted by [a], or [a]m in case we are employing

more than one number m as a modulus. In other words, [a] is the set

of all integers that leave the same remainder as a when divided by

m. Or, another way to say the same thing, [a] comprises all integers

b such that b − a is a multiple of m. That means b − a = km, or

b = a + km.

That last version is often the easiest way to think about the inte- For example, the equivalence class of 7

modulo 11 would be

[7] = {· · · ,−15,−4, 7, 18, 29, 40, · · · }.
gers that appear in [a]: start with a and add and subtract any number

of m’s.

We know that the distinct equivalence classes partition Z. Since di-

viding an integer by m leaves one of 0, 1, 2, · · · , m− 1 as a remainder,

we can conclude that there are exactly m equivalence classes modulo

m. In particular, [0], [1], [2], [3], ...[m − 1] is a list of all the different

equivalence classes modulo m. It is traditional when working with �

modular arithmetic to drop the [] symbols denoting the equivalence

classes, and simply write the representatives. So we would say, mod-

ulo m, there are m numbers: 0, 1, 2, 3, · · · , m − 1. But keep in mind

that each of those numbers really represents a set, and we can replace

any number in that list with another equivalent to it modulo m. For

example, we can replace the 0 by m. The list 1, 2, 3 · · · , m− 1, m still

consists of all the distinct values modulo m.

26.3 Modular arithmetic

One reason the relation of congruence modulo m useful is that addi-

tion and multiplication of numbers modulo m acts in many ways just

like arithmetic with ordinary integers.

Theorem 26.4. If a ≡ c (mod m), and b ≡ d (mod m), then a + b ≡
c + d (mod m) and ab ≡ cd (mod m).

Proof. Suppose a ≡ c (mod m) and b ≡ d (mod m). Then there exist

integers k and l with a = c + km and b = d + lm. So a + b = c + km +

d + lm = (c + d) + (k + l)m. This can be rewritten as (a + b)− (c + d) =

208 math208: discrete mathematics

(k + l)m, where k + l ∈ Z. So a + b ≡ c + d (mod m). The other part is

done similarly. ♣

Example 26.5. What is the remainder when 1103 + 112 is divided by 11?

We can answer this problem in two different ways. We could add 1103 and

112, and then divide by 11. Or, we could determine the remainders when

each of 1103 and 112 is divided by 11, then add those remainders before

dividing by 11. The last theorem promises us the two answers will be the

same. In fact 1103 + 112 = 1215 = (110)(11) + 5 so that 1103 +

112 ≡ 5 (mod 11). On the other hand 1103 = (100)(11) + 3 and

112 = (10)(11) + 2, so that 1103 + 112 ≡ 3 + 2 ≡ 5 (mod 11).

Example 26.6. A little more impressive is the same sort of problem with

operation of multiplication: what is the remainder when (1103)(112) is

divided by 11? The calculation looks like (1103)(112) ≡ (3)(2) ≡ 6

(mod 11).

Example 26.7. For a really awe inspiring example, let’s find the re-

mainder when 1103112 is divided by 11. In other words, we want to find

x = 0, 1, 2, · · · 10 so that 1103112 ≡ x (mod 11).

Now 1103112 is a pretty big number (in fact, since log 1103112 =

112 log 1103 = 340.7 · · · , the number has 341 digits). In order to solve

this problem, let’s start by thinking small: Let’s compute 1103n, for n =

1, 2, 3, · · · .

11031 ≡ 1103 ≡ 3 (mod 11)

11032 ≡ 32 ≡ 9 (mod 11)

11033 ≡ 1103(11032) ≡ 3(9) ≡ 27 ≡ 5 (mod 11)

11034 ≡ (1103)(11033) ≡ 3(5) ≡ 15 ≡ 4 (mod 11)

11035 ≡ (1103)(11034) ≡ 3(4) ≡ 12 ≡ 1 (mod 11)

Now that last equation is very interesting. It says that whenever we see

11035 we may just as well write 1 if we are working modulo 11. And now

we see there is an easy way to determine 1103112 modulo 11:

1103112 ≡ 11035(22)+2 ≡ (11035)22(11032) ≡ 122(9) ≡ 9 (mod 11)

modular arithmetic 209

The sort of computation in example 26.7 appears to be just a cu-

riosity, but in fact the last sort of example forms the basis of one

version of public key cryptography. Computations of exactly that

type (but with much larger integers) are made whenever you log into

a secure Internet site. It’s reasonable to say that e-commerce owes its

existence to the last theorem.

While modular arithmetic in many ways behaves like ordinary

arithmetic, there are some differences to watch for. One important

difference is the familiar rule of cancellation: in ordinary arithmetic, if �

ab = ac and a 6= 0, then b = c. This rule fails in modular arithmetic.

For example, 3 6≡ 0 (mod 6) and (3)(5) ≡ (3)(7) (mod 6), but 5 6≡ 7

(mod 6).

26.4 Solving congruence equations

Solving congruence equations is a popular sport. Just as with regular

arithmetic with integers, if we want to solve a + x ≡ b (mod m),

we can simply set x ≡ b − a (mod m). So, for example, solving

55 + x ≡ 11 (mod 6) we would get x ≡ 11− 55 ≡ −44 ≡ 4 (mod 6).

Equations involving multiplication, such as ax ≡ b (mod m), are

much more interesting. If the modulus m is small, equations of this

sort can be solved by trial-and-error: simply try all possible choices

for x. For example, testing x = 0, 1, 2, 3, 4, 5, 6 in the equation 4x ≡ 5

(mod 7), we see x ≡ 3 (mod 7) is the only solution. The equation

4x ≡ 5 (mod 8) has no solutions at all. And the equation 2x ≡ 4

(mod 6) has x ≡ 2, 5 (mod 6) for solutions.

Trial-and-error is not a suitable approach for large values of m.

There is a method that will produce all solutions to ax ≡ b (mod m).

It turns out that such equations are really just linear Diophantine

equations in disguise, and that is the key to the proof of the following

theorem.
This is why 4x ≡ 5 (mod 7) has a

solution: gcd(4, 7) = 1 and 1|5. And,

why 4x ≡ 5 (mod 8) has no solutions:

gcd(4, 8) = 4, but 4/|5.

Theorem 26.8. The congruence ax ≡ b (mod m) can be solved for x if

and only if d = gcd(a, m) divides b.

Proof. Solving ax ≡ b (mod m) is the same as finding x so that

m|(ax − b) and that’s the same as finding x and y so that ax − b = my.

210 math208: discrete mathematics

Rewriting that last equation in the form ax + (−m)y = b, we can see

solving ax ≡ b (mod m) is the same as solving the linear Diophantine

equation ax + (−m)y = b. We know that equation has a solution if and

only if gcd(a, m)|b, so that proves the theorem. ♣

The theorem also shows that 2x ≡ 4 (mod 6) has a solution

since gcd(2, 6) = 2 and 2|4. But why does this last equation have

two solutions? The answer to that is also provided by the results

concerning linear Diophantine equations.

Let gcd(a, m) = d. The solutions to ax ≡ b (mod m) are the

same as the solutions for x to ax + (−m)y = b. Supposing that last

equation has a solution with x = s, then we know all possible choices

of x are given by x = s + k m
d . So if x = s is one solution to ax ≡ b

(mod m), then all solutions are given by x = s + k m
d , where k is any

integer. In other words, all solutions are given by x ≡ s (mod)
m d,

and so there are d solutions modulo m,

Example 26.9. Let’s find all the solutions to 2x ≡ 4 (mod 6). Since x = 2

is obviously one solution, we see all solutions are given by x = 2 + k 6
2 =

2 + 3k, where k is any integer. When k = 0, 1 we get x = 2, 5, and other

values of k repeat these two modulo 6. Looking at the solutions written as

x = 2 + k 6
2 = 2 + 3k, we can see another way to express the solutions

would be as x ≡ 2 (mod 3).

Example 26.10. Find all solutions to 42x ≡ 35 (mod 91).

Using the continued fraction method (or just staring at the numbers

42 and 91 long enough) we see gcd(91, 42) = 7 and, since 7|35, the

equation will have a solution. In fact, since gcd(42, 91) = 7, there are

going to be seven solutions modulo 91. All we need is to find one partic-

ular solution, then the others will all be easy to determine. Again using

the continued fraction method (or just playing with 42 and 91 a little bit)

we discover (42)(−2) + (91)(1) = 7 = gcd(42, 91). Multiplying by 5

gives (42)(−10) + (91)(5) = 35. The only thing we care about is that

x = −10 is one solution to 42x ≡ 35 (mod 91). As above, it follows that

all solutions are given by x ≡ −10
(

(mod) 91
gcd(42,91)

)
. That’s the same

as x ≡ −10 (mod 13), or, even more neatly, x ≡ 3 (mod 13). In other

words, the solutions are 3, 16, 29, 42, 55, 68, 81 modulo 91.

modular arithmetic 211

26.5 Exercises

Exercise 26.1.

(a) On a military (24-hour) clock, what time is it 3122 hours after 16 hun-

dred hours?

(b) What day of the week is it 3122 days after a Monday?

(c) What month is it 3122 months after November?

Exercise 26.2. List the integers in [7]11.

Exercise 26.3. In a listing of the five equivalence classes modulo 5, four of

the values are 1211, 218, −100, and −3333. What are the possible choices

for the fifth value?

Exercise 26.4. Determine n between 0 and 24 such that

2311 + 3912 ≡ n (mod 25).

Exercise 26.5. Determine n between 0 and 24 such that

(2311)(3912) ≡ n (mod 25).

Exercise 26.6. Determine n between 0 and 8 such that 11112222 ≡ n

(mod 9).

Exercise 26.7. Solve: 4x ≡ 3 (mod 7).

Exercise 26.8. Solve 11x ≡ 8 (mod 57).

Exercise 26.9. Solve: 14x ≡ 3 (mod 231).

Exercise 26.10. Solve 8x ≡ 16 (mod 28)

Exercise 26.11. Solve: 91x ≡ 189 (mod 231)

Exercise 26.12. Let d = gcd(a, m), and let s be a solution to ax ≡ b

(mod m).

(a) Show that if ax ≡ b (mod m), then there is an integer r with 0 ≤ r < d

and x = s + r
(m

d
)
.

(b) If 0 ≤ r1 < r2 < d, then the numbers x1 = s + r1
(m

d
)

and x2 =

s + r2
(m

d
)

are not congruent modulo m.

27

Integers in Other Bases

The usual way of writing integers is in terms of groups of ones

(units), and groups of tens, and groups of tens of tens (hundreds),

and so on. Thus 237 stands for 7 units plus 3 tens and 2 hundreds, or

2(102) + 3(10) + 7. This is the familiar decimal notation for numbers

(deci = ten). But there is really nothing special about the number ten

here, and it could be replaced by any integer bigger than one. That is,

we could use say 7 the way 10 was used above to describe a number.

Thus we would specify how many units, how many 7’s and 72’s and

73’s, and so on are needed to make up the number. When a num-

ber is expressed in this fashion with b in place of the 10, the result is

called the base-b expansion (or radix-b expansion) of the integer.

For example, the decimal integer 132, is made up of two 72’s,

four 7’s and finally six units. Thus we express the base ten number

132 as 246 in base 7, or as 2467, the little 7 indicating the base. For

small numbers, with a couple of minutes practice, conversion from

base 10 (decimal) to other bases, and back again can be carried out

mentally. For larger numbers, mental arithmetic will prove a little

awkward. Luckily there is a handy algorithm to do the conversion

automatically.

27.1 Converting to and from base-10

For base 10 integers, we use the decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

In general, for base b, the digits will be 0, 1, 2, 3 · · · , b − 1. So, for

example, a base 7 numbers use digits 0, 1, 2, 3, 4, 5, 6.

214 math208: discrete mathematics

Conversion from the base b expansion of a number to its decimal

version is a snap: For example, the meaning of 23025 is

23025 = 2 · 53 + 3 · 52 + 0 · 5 + 2 = 2(125) + 3(25) + 0(5) + 2 = 327

That sort of computation is so easy because we have been prac-

ticing base 10 arithmetic for so many years. If we were as good at

arithmetic in some base b, then conversion from base 10 to base b

would be just as simple. But, lacking that comfort with base b arith-

metic, we need to describe the conversion algorithm from decimal to

base b a little more formally. Here’s the idea.

Suppose we have a decimal number n that we want to convert to

some base b. Let’s say the base b expansion is dkdk−1 · · · d2d1d0, with

the base b digits between 0 and b− 1. That means

n = dk · bk + dk−1 · bk−1 + · · ·+ d2 · b2 + d1 · b + d0

Now, if we divide n by b, we can see the equation above tells us

n = (dk · bk−1 + dk−1 · bk−2 + · · ·+ d2 · b + d1)b + d0

So the quotient is q = dk · bk−1 + dk−1 · bk−2 + · · ·+ d2 · b + d1, and

and the remainder is the base b digit d0 of n. So we have found the

units digit in the base b expansion of n. If we repeat that process on

the quotient q, the result is

q = (dk · bk−2 + dk−1 · bk−3 + · · ·+ d2)b + d1

so the next base b digit, d1 appears as the remainder. Continuing in

this fashion, the base b expansion is produced one digit at a time.

Briefly, to convert a positive decimal integer n to its base b repre-

sentation, divide n by b, to find the quotient and the remainder. That

remainder will be needed units digit. Then divide the quotient by b

again, to get a new quotient and a new remainder. That remainder

gives the next base b digit. Then divide the new quotient by b again,

and so on. In this way producing the base b digits one after the other.

integers in other bases 215

Example 27.1. To convert 14567 from decimal to base 5, the steps are:

14567 = 2913 · 5 + 2,

2913 = 582 · 5 + 3,

582 = 116 · 5 + 2,

116 = 23 · 5 + 1,

23 = 4 · 5 + 3,

4 = 0 · 5 + 4.

So, we see that 14567 = 4312325.

27.2 Converting between non-decimal bases

Example 27.2. Convert n = 33557 to base 5.

The least confusing way to do such a problem would be to convert n

from base 7 to base 10, and then convert the base 10 expression for n to

base 5. This method allows us to do all our work in base 10 where we are

comfortable. The computations start with:

n = 3 · 73 + 3 · 72 + 5 · 7 + 5 = 1216.

Then, we calculate:

1216 = 243 · 5 + 1,

243 = 48 · 5 + 3,

48 = 9 · 5 + 3,

9 = 1 · 5 + 4,

1 = 0 · 5 + 1.

So, we have 33557 = 143315.

An alternative method, not for the faint of heart, is convert di-

rectly from base 7 to base 5 skipping the middle man, base 10. In

this method, we simply divide n by 5, take the remainder, getting the

units digit, then divide the quotient by 5 to get the next digit, and so

on, just as described above. The rub is that the arithmetic must all be

216 math208: discrete mathematics

done in base 7, and we don’t know the base 7 times table very well.

For example, in base 7, 3 · 5 = 21 is correct since three 5’s add up to

two 7’s plus one more.

The computation would now look like (all the 7’s indicating base 7

are suppressed for readability):

3355 = 465 · 5 + 1 (yes, that’s really correct!),

465 = 66 · 5 + 3,

66 = 12 · 5 + 3,

12 = 1 · 5 + 4,

1 = 0 · 5 + 1.

Hence, once again, we have 33557 = 143315.

27.3 Computer science bases: 2, 8, and 16

Particularly important in computer science applications of discrete

mathematics are the bases 2 (called binary), 8 (called octal) and 16

(called hexadecimal, or simply hex). Thus the decimal number 75

would be 10010112 (binary), 1138 (octal) and 4B16 in hex. Note that

for hex numbers, symbols will be needed to represent hex digits for

10, 11, 12, 13, 14 and 15. The letters A, B, C, D, E and F are tradition-

ally used for these digits.

integers in other bases 217

27.4 Exercises

Exercise 27.1. Convert to decimal: 213, 3214, 43215, and FED16.

Exercise 27.2. Convert the decimal integer 11714 to bases 2, 6, and 16.

Remember to use A, B, · · · , F to represent base 16 digits from 10 to 15, if

needed.

Exercise 27.3. Complete the following base 7 multiplication table.

× 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4

3 2

4 2

5

6

Exercise 27.4. Make base 6 addition and multiplication tables similar to

the base 7 multiplication table of exercise 27.3.

Exercise 27.5. (For those with a sweet tooth for punishment!) Use the

Euclidean algorithm to compute gcd(51227, 13127) without converting the

numbers to base 10.

28

The Two Fundamental Counting Principles

The next few chapters will deal with the topic of combina-

torics: the art of counting. By counting we mean determining the

number of different ways of arranging objects in certain patterns or

the number of ways of carrying out a sequence of tasks. For example,

suppose we want to count the number of ways of making a bit string

of length two. Such a problem is small enough that the possible ar-

rangements can be counted by brute force. In other words, we can

simply make a list of all the possibilities: 00, 01, 10, 11. So the answer

is four. If the problem were to determine the number of bit strings of

length fifty, the brute force method loses a lot of its appeal. For prob-

lems where brute force counting is not a reasonable alternative, there

are a few principles we can apply to aid in the counting. In fact, there

are just two basic principles on which all counting ultimately rests.

Throughout this chapter, all sets mentioned will be finite sets, and

if A is a set, |A| will denote the number of elements in A.

28.1 The sum rule

The sum rule says that if the sets A and B are disjoint, then

|A ∪ B| = |A|+ |B|.

220 math208: discrete mathematics

Example 28.1. For example, if A = {a, b, c} and B = {j, k, l, m, n}, then

|A| = 3, |B| = 5, and, sure enough,

|A ∪ B| = |{a, b, c, j, k, l, m, n}| = 8 = 3 + 5.

Care must be used when applying the sum principle that the sets �

are disjoint. If A = {a, b, c} and B = {b, c, d}, then |A ∪ B| = 4, and

not 6.

Example 28.2. As another example of the sum principle, if we have a

collection of 3 dogs and 5 cats, then we can select one of the animals in 8

ways.

28.1.1 Counting two independent tasks

The sum principle is often expressed in different language: If we can

do task 1 in m ways and task 2 in n ways, and the tasks are indepen-

dent (meaning that both tasks cannot be done at the same time), then

there are m + n ways to do one of the two tasks. The independence of

the tasks is the analog of the disjointness of the sets in the set version

of the sum rule.

A serious type of error is trying to use the sum rule for tasks that �

are not independent. For instance, suppose we want to know in how

many different ways we can select either a deuce or a six from an ordinary

deck of 52 cards. We could let the first task be the process of selecting a

deuce from the deck. That task can be done in 4 ways since there are

4 deuces in the deck. For the second task, we will take the operation

of selecting a six from the deck. Again, there are 4 ways to accom-

plish that task. Now these tasks are independent since we cannot

simultaneously pick a deuce and a six from the deck. So, according

to the sum rule, there are 4 + 4 = 8 ways of selecting one card from a

deck, and having that card be either a deuce or a six.

Now consider the similar sounding question: In how many ways can

we select either a deuce or a diamond from a deck of 52 cards? We could

let the first task again be the operation of selecting a deuce from

the deck, with 4 ways to carry out that task. And we could let the

second task be the operation of selecting a diamond from the deck,

the two fundamental counting principles 221

with 13 ways to accomplish that. But in this case, the answer to the

question is not 4 + 13 = 17, since these tasks are not independent. It

is possible to select a card that is both a deuce and a diamond. So the

sum rule cannot be used. What is the correct answer? Well, there are

13 diamonds, and there are 3 deuces besides the two of diamonds,

and so there are actually 16 cards in the deck that are either a deuce

or a diamond. That means there are 16 ways to select a card from a

deck and have it turn out to be either a deuce or a diamond.

28.1.2 Extended sum rule

The sum rule can be extended to the case of more than two sets (or

more than two tasks): If A1, A2, A3, · · · , An is a collection of pairwise

disjoint sets, then |A1 ∪ A2 ∪ A3 ∪ · · · ∪ An| = |A1|+ |A2|+ |A3|+
· · ·+ |An|. Or, in terms of tasks: If task 1 can be done in k1 ways, and

task 2 in k2, and task 3 in k3 ways, and so on, until task n can be done

in kn ways, and if the tasks are all independent1, then we can do one 1 They must be pairwise independent!

task in k1 + k2 + k3 + · · ·+ kn ways.

Example 28.3. For example, if we own three cars, two bikes, a motorcycle,

four pairs of roller skates, and two scooters, then we can select one of these

modes of transportation in 3 + 2 + 1 + 4 + 2 = 12 ways.

28.1.3 Sum rule and the logical or

The sum rule is related to the logical connective or. That is reasonable

since the sum rule counts the number of elements in the set A ∪ B =

{ x | x ∈ A or x ∈ B }. In terms of tasks, the sum rule counts the

number of ways to do either task 1 or task 2. Generally speaking,

when the word or occurs in a counting problem, the sum rule is the

tool to use. But, verify independence!

28.2 The product rule

The logical connective and is related to the second fundamental

counting principle: the product rule. The product rule says:

|A× B| = |A| · |B|.

222 math208: discrete mathematics

An explanation of this is that A× B consists of all ordered pairs (a, b)

where a ∈ A and b ∈ B. There are |A| choices for a and then |B|
choices for b.

28.2.1 Counting two sequential tasks: logical and

In terms of tasks, the product rule says that if task 1 can be done in

m ways and task 2 can be done in n ways after task 1 has been done,

then there are mn ways to do both tasks, the first then the second.

Here the relation with the logical connective and is also obvious. We

need to do task 1 and task 2. Generally speaking, the appearance of

and in a counting problem suggests the product rule will come into

play.

28.2.2 Extended product rule

As with the sum rule, the product rule can be used for situations

with more than two sets or more than two tasks. In terms of sets,

the product rule reads |A1 × A2 × · · · An| = |A1| · |A2| · · · |An|. In

terms of tasks, it reads, if task 1 can be done in k1 ways, and for each

of those ways, task 2 can be done in k2 ways, and for each of those

ways, task 3 can be done in k3 ways, and so on, until for each of those

ways, task n can be done in kn ways, then we can do task 1 followed

by task 2 followed by task 3, etc, followed by task n in k1k2k3 · · · kn

ways. That sounds worse than it really is.

Example 28.4. How many bit strings are there of length five?

Solution. We can think of task 1 as filling in the first (right hand) position,

task 2 as filling in the second position, and so on. We can argue that we

have two ways to do task 1, and then two ways to do task 2, and then two

ways to do task 3, and then two ways to do task 4, and then two ways to do

task 5. So, by the product rule, there are 2 · 2 · 2 · 2 · 2 = 25 = 32 ways to The same reasoning shows that, in

general, there are 2n bit strings of

length n.
do all five tasks, and so there are 32 bit strings of length five.

Example 28.5. Suppose we are buying a car with five choices for the ex-

terior color and three choices for the interior color. Then there is a total of

3 · 5 = 15 possible color combinations that we can choose from. The first task

is to select an exterior color, and there are 5 ways to do that. The second task

the two fundamental counting principles 223

is to select an interior color, and there are 3 ways to do that. So the product

rule says there are 15 ways total to do both tasks. Notice that there is no

requirement of independence of tasks when using the product rule. However,

also notice that the number of ways of doing the second task must be the

same no matter what choice is made for doing the first task.

Example 28.6. For another, slightly more complicated, example of the

product rule in action, suppose we wanted to make a two-digit number

using the digits 1, 2, 3, 4, 5, 6, 7, 8, and 9. How many different such two-

digit numbers could we form? Let’s make the first task filling in the left

digit, and the second task filling in the right digit. There are 9 ways to do

the first task. And, no matter how we do the first task, there are 9 ways to do

the second task as well. So, by the product rule, there are 9 · 9 = 81 possible

such two-digit numbers.

Example 28.7. Now, let’s change the problem in example 28.6 a little bit.

Suppose we wanted two-digit numbers made up of those same nine digits,

but we do not want to use a digit more than once in any of the numbers.

In other words, 37 and 91 are OK, but we do not want to count 44 as a

possibility. We can still make the first task filling in the left digit, and the

second task filling in the right digit. And, as before, there are 9 ways to do

the first task. But now, once the first task has been done, there are only 8

ways to do the second task, since the digit used in the first task is no longer No matter in what way the first task

was done, there are always 8 ways to

to the second task in sequence. What if

you chose to pick the second digit first?

available for doing the second task. For instance, if the digit 3 was selected

in the first task, then for the second task, we will have to choose from the

eight digits 1, 2, 4, 5, 6, 7, 8, and 9. So, according to the product rule, there

are 9 · 8 = 72 ways of building such a number.

Example 28.8. Just for fun, here is another way to see the answer in ex-

ample 28.7 is 72. We saw above that there are 81 ways to make a two-digit

number when we allow repeated digits. But there are 9 two digit numbers

that do have repeated digits (namely 11, 22, · · · , 99). That means there must

be 81− 9 = 72 two-digit numbers without repeated digits.

28.2.3 Counting by subtraction: Good = Total − Bad

The trick we used in example 28.8 looks like a new counting princi-

ple, but it is really the sum rule being applied in a tricky way. Here’s

224 math208: discrete mathematics

the idea. Call the set of all the two-digit numbers (not using 0) T, call

the set with no repeated digits N, and call the set with repeated dig-

its R. By the sum rule, |T| = |N|+ |R|, so |N| = |T| − |R|. This is a

very common trick.

Generally, suppose we are interested in counting some arrange-

ments, let’s call them the Good arrangements. But it is not easy for

some reason to count the Good arrangements directly. So, instead, we

count the Total number of arrangements, and subtract the number of

Bad arrangements:

Good = Total − Bad.

Let’s have another example of this trick.

Example 28.9. By a word of length five, we will mean any string of five

letters from the 26 letter alphabet. How many words contain at least one

vowel. The vowels are: a,e,i,o,u.

By the product rule, there is a total of 265 possible words of length five.

The bad words are made up of only the 21 non-vowels. So, by the sum rule,

the number of good words is 265 − 215.

28.3 Using both the sum and product rules

As in example 28.9, most interesting counting problems involve a

combination of both the sum and product rules.

Example 28.10. Suppose we wanted to count the number of different

possible bit strings of length five that start with either three 0’s or with two

1’s. Recall that a bit string is a list of 0’s and 1’s, and the length of the bit

string is the total number of 0’s and 1’s in the list. So, here are some bit

strings that satisfy the stated conditions: 00001, 11111, 11011, and 00010.

On the other hand, the bit strings 00110 and 10101 do not meet the required

condition.

To do this problem, let’s first count the number of good bit strings that

start with three 0’s. In this case, we can think of the construction of such a

bit string as doing five tasks, one after the other, filling in the leftmost bit,

then the next one, then the third, the next, and finally the last bit. There

is only one way to do the first three tasks, since we need to fill in 0’s in the

first three positions. But there are two ways to do the last two tasks, and

the two fundamental counting principles 225

so, according to the product rule there are 1 · 1 · 1 · 2 · 2 = 4 bit strings

of length five starting with three 0’s. Using the same reasoning, there are

1 · 1 · 2 · 2 · 2 = 8 bit strings of length five starting with two 1’s. Now, a

bit string cannot both start with three 0’s and also with two 1’s, (in other

words, starting with three 0’s and starting with two 1’s are independent).

And so, according to the sum rule, there will be a total of 4 + 8 = 12 bit

strings of length five starting with either three 0’s or two 1’s.

Example 28.11. How many words of six letters (repeats OK) contain

exactly one vowel?

Solution. Let’s break the construction of a good word down into a number

of tasks.

Task 1: Select a spot for the vowel: 6 choices.

Task 2: Select a vowel for that spot: 5 choices.

Task 3: Fill first empty spot with a non-vowel: 21 choices

Task 4: Fill next empty spot with a non-vowel: 21 choices

Task 5: Fill next empty spot with a non-vowel: 21 choices

Task 6: Fill next empty spot with a non-vowel: 21 choices

Task 7: Fill last empty spot with a non-vowel: 21 choices

By the product rule, the number of good words is 6 · 5 · 215.

Example 28.12. Count the number of strings on license plates which either

consist of three capital English letters, followed by three digits, or consist of

two digits followed by four capital English letters.

Solution. Let A be the set of strings which consist of three capital English

letters followed by three digits, and B be the set of strings which consist

of two digits followed by four capital English letters. By the product rule

|A| = 263 · 103 since there are 26 capital English letters and 10 digits. Also

by the product rule |B| = 102 · 264. Since A ∩ B = ∅, by the sum rule the

answer is 263 · 103 + 102 · 264.

226 math208: discrete mathematics

28.4 Answer form←→ solution method

In the previous examples we might continue on with the arithmetic.

For instance, in the last, example 28.12, using the distributive law

on our answer to factor out common terms we see |A ∪ B| = 102 ·
263(10 + 26) is an equivalent answer. This, in turn, simplifies to

|A ∪ B| = 102 · 263 · 36, and that gives

|A ∪ B| = 100 · 17576 · 36 = 63, 273, 600.

Of all of these answers the most valuable is probably 263 · 103 +

102 · 264, since the form of the answer is indicative of the manner

of solution. We can readily observe that the sum rule was applied to

two disjoint subcases. For each subcase the product rule was applied

to compute the intermediate answer. As a general rule, answers to

counting problems should be left in this uncomputed form.

The next most useful solution is the last one. When we have an

answer of this form we can use it to consider whether or not our

answer makes sense intuitively. For example if we knew that A and

B both were subsets of a set of cardinality 450 and we computed that

|A ∪ B| > 450, this would indicate that we made an error, either in

the logic of our counting, or in arithmetic, or both.

the two fundamental counting principles 227

28.5 Exercises

Exercise 28.1. To meet the science requirement a student must take one of

the following courses: a choice of 5 biology courses, 4 physics courses, or 6

chemistry courses. In how many ways can the one course be selected?

Exercise 28.2. Using the data of problem 1, a student has decided to take

one biology, one physics, and one chemistry course. How many different

such selections are possible?

Exercise 28.3. A code word is either a sequence of three letters followed

by two digits or two letters followed by three digits. (Unless otherwise

indicated, letters will means letters chosen from the usual 26-letter alphabet

and digits are selected from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.) How many different

code words are possible?

Exercise 28.4. How many words of length six are there if letters may be

repeated? (Examples: BBBXBB, ABATBC are OK).

Exercise 28.5. How many words of length six are there if letters may not be

repeated? (Examples: BBBBXB, ABATJC are bad but ABXHYR is OK).

Exercise 28.6. A multiple choice test contains 10 questions. There are four

possible answers for each question.

(a) How many ways can a student complete the test if every question must

be answered?

(b) How many ways can a student complete the test if questions can be left

unanswered?

Exercise 28.7. How many binary strings of length less than or equal to

nine are there?

Exercise 28.8. How many eight-letter words contain at least one A?

Exercise 28.9. How many seven-letter words contain at most one A?

Exercise 28.10. How many nine-letter words contain at least two A’s?

29

Permutations and Combinations

By a permutation of a set of objects we mean a listing of the

objects of the set in a specific order. For example, there are six possi-

ble permutations of the set A = {a, b, c}. They are

abc, acb, bac, bca, cab, cba.

The product rule explains why there are six permutation of A:

there are 3 choices for the first letter, once that choice has been made

there are 2 choices for the second letter, and finally that leaves 1

choice for the last letter. So the total number of permutations is 3 · 2 ·
1 = 6.

29.1 Permutations

A set with n elements is called an n-set. We have just shown that a

3-set has 6 permutations. The same reasoning shows that an n-set has

n · (n− 1) · (n− 2) · · · 2 · 1 = n! permutations. So the total number

of different ways to arrange a deck of cards is 52!, a number with 68

digits: 80658175170943878571660636856403766975289505440883277824000000000000.

Instead of forming a permutation of all the elements of an n-set,

we might consider the problem of first selecting some of the ele-

ments of the set, say r of them, and then forming a permutation

of just those r elements. In that case we say we have formed an r-

permutation of the n-set. All the possible 2-permutations of the 4-set

230 math208: discrete mathematics

A = {a, b, c, d} are

ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc

Hence, there are twelve 2-permutations of a 4-set.

Notation. In general, P(n, r) denotes the number of different r-permutations The number of 2-permutations of a

4-set is P(4, 2)=12.of an n-set.

The product rule provides a simple formula for P(n, r). There are

n choices for the first element, and once that choice has been made,

there are n − 1 choices for the second element, then n − 2 for the

third, and so on, until finally, there are n − (r − 1) = n − r + 1

choices for the rth element. So P(n, r) = n(n− 1) · ... · (n− r + 1).

That expression can be written more neatly as follows: And, that is the way to remember the

formula:

P(n, r) =
n!

(n− r)!
.P(n, r) = n(n− 1) · ... · (n− r + 1)

=
n(n− 1) · ... · (n− r + 1)(n− r)(n− r− 1) · · · 2 · 1

(n− r)(n− r− 1) · · · 2 · 1 =
n!

(n− r)!

Example 29.1. As an example, the number of ways of selecting a president,

vice-president, secretary, and treasurer from a group of 20 people is P(20, 4)

(assuming no person can hold more than one office). If you want the actual

numerical value, it is
20!

(20− 4)!
= 20 · 19 · 18 · 17 = 116280, but the best

way to write the answer in most cases would be just P(20, 4) =
20!
16!

, and

skip the numerical computations.

Example 29.2. How many one-to-one functions are there from a 5-set to a

7-set?

While this question doesn’t sound on the surface like a problem of per-

mutations, it really is. Suppose the 5-set is A = {1, 2, 3, 4, 5} and the 7-set

is B = {a, b, c, d, e, f , g}. One example of a one-to-one function from A to

B would be f (1) = a, f (2) = c, f (3) = g, f (4) = b, f (5) = d. But, if

we agree to think of the elements of A listed in their natural order, we could

specify that function more briefly as acgbd. In other words, each one-to-one

function specifies a 5-permutation of B, and, conversely, each 5-permutation

of B specifies a one-to-one function. So the number of one-to-one functions The same reasoning shows there are

P(n, r) one-to-one functions from an

r-set to an n-set.
from a 5-set to a 7-set is equal to the number of 5-permutations of a 7-set,

and that is P(7, 5) = 2520.

permutations and combinations 231

Example 29.3. Here are a few easily seen values of P(n, r):

(1) P(n, n) = n!

(2) P(n, 1) = n

(3) P(n, 0) = 1 There is only one 0-permutation, the

one with no symbols!

(4) P(n, r) = 0 if r > n There are no permutations with length

greater than n of n objects.

29.2 Combinations

When forming permutations, the order in which the elements are

listed is important. But there are many cases when we are interested

only in which elements are selected and we do not care about the

order. For example, when playing poker, a hand consists of five cards

dealt from a standard 52-card deck. The order in which the cards

arrive in a hand does not matter, only the final selection of the five

cards is important. When order is not important, the selection is

called a combination rather than a permutation. More carefully, an r-

combination from an n-set is an r-subset of the n-set. In other words

an r-combination of an n-set is an unordered selection of r distinct

elements from the n-set.

Example 29.4. The 2-combinations of the 5-set {a, b, c, d, e} are

{a, b}, {a, c}, {a, d}, {a, e}, {b, c},

{b, d}, {b, e}, {c, d}, {c, e}, {d, e}.

Notation. The number of r-combinations from an n-set is denoted by Example 29.4 shows that

C(5, 2) =
(

5
2

)
= 10.C(n, r) or, sometimes,

(
n
r

)
.

Example 29.5. Here are a few easily seen values of C(n, r):

(1) C(n, n) = 1

(2) C(n, 1) = n

(3) C(n, 0) = 1 There is only one 0-subset, the empty

set.

(4) C(n, r) = 0 if r > n There are no subsets of an n-set with

size greater than n.

232 math208: discrete mathematics

There is a compact formula for C(n, r) which can be derived using

the product rule in a sort of back-handed way. An r-permutation

of an n-set can be built using a sequence of two tasks. First, select r

elements of the n-set. There are C(n, r) ways to do that task. Next,

arrange those r elements in some specific order. There are r! ways

to do that task. So, according to the product rule, the number of r-

permutations of an n-set will be C(n, r)r!. However, we know that

the number of r-permutations of an n-set are P(n, r). So we may

conclude that P(n, r) = C(n, r)r!, or, rearranging that, we see

C(n, r) =
(

n
r

)
=

P(n, r)
r!

=
n!

r!(n− r)!

Example 29.6. Suppose we have a club with 20 members. If we want to

select a committee of 4 members, then there are

C(20, 4) =
20!

4!(20− 4)!
=

20 · 19 · 18 · 17
4 · 3 · 2 · 1 = 4845

ways to do this since the order of people on the committee doesn’t matter.

Compare this answer with example 29.1 where we counted the

number of possible selections1 for president, vice-president, secretary, 1 P(5, 4) = 20!/16! = 116280 ways

and treasurer from the group of 20. The difference between the two

cases is that the earlier example is a question about permutations (or-

der matters), whereas this example is a question about combinations

(order does not matter).

permutations and combinations 233

29.3 Exercises

Exercise 29.1. In how many ways can the 26 volumes (labeled A through

Z) of the Encyclopedia of PseudoScience be placed on a shelf?

Exercise 29.2. In how many ways can those same 26 volumes be placed

on a shelf if superstitions demand the volumes labeled with vowels must be

adjacent? In how many ways can they be placed on the shelf obeying the

conflicting superstition that volumes labeled with vowels cannot touch each

other?

Exercise 29.3. For those same 26 volumes, how many ways can they be

placed in a two shelf bookcase if volumes A-M go on the top shelf and N-Z

go on the bottom shelf?

Exercise 29.4. In how many ways can seven men and four women sit in a

row if the men must sit together?

Exercise 29.5. 20 players are to be divided into two 10-man teams. In how

many ways can that be done?

Exercise 29.6. A lottery ticket consists of five different integers selected

from 1 to 99. How many different lottery tickets are possible? How many

tickets would you need to buy to have a one-in-a-million chance of winning

by matching all five randomly

Exercise 29.7. A committee of size six is selected from a group of nine

clowns and thirteen lion tamers.

(a) How many different committees are possible?

(b) How many committees are possible if there must be exactly two clowns

on the committee?

(c) How many committees are possible if lion tamers must outnumber

clowns on the committee?

30

The Binomial Theorem and Pascal’s Triangle

The quantity C(n, k) is also written as
(

n
k

)
, and called a

binomial coefficient . It gives the number of k-subsets of an n-set, or,

equivalently, it gives the number of ways of selecting k items from n

items.

30.1 Combinatorial proof

Facts involving the binomial coefficients can be proved algebraically,

using the formula
(

n
k

)
=

n!
k!(n − k)!

. But often the same facts can

be proved much more neatly by recognizing
(

n
k

)
gives the number

of k-subsets of an n-set. This second sort of proof is called a combina-

torial proof. Here is an example of each type of proof.

Theorem 30.1 (Pascal’s Identity). Let n and k be non-negative integers,

then (
n + 1

k

)
=

(
n

k − 1

)
+

(
n
k

)
.

236 math208: discrete mathematics

Proof. (an algebraic proof)(
n

k − 1

)
+

(
n
k

)
=

n!
(k − 1)!(n − (k − 1))!

+
n!

k!(n − k)!

=
n!

(k − 1)!(n − k + 1)!
+

n!
k!(n − k)!

=
n!

(k − 1)!(n − k)!

(
1

n − k + 1
+

1
k

)
=

n!
(k − 1)!(n − k)!

(
k

k(n − k + 1)
+

n − k + 1
k(n − k + 1)

)
=

n!
(k − 1)!(n − k)!

k + (n − k + 1)
k(n − k + 1)

=
n!

(k − 1)!(n − k)!
n + 1

k(n − k + 1)

=
n!(n + 1)

(k − 1)!k(n − k)!(n − k + 1)

=
(n + 1)!

k!(n + 1 − k)!

=

(
n + 1

k

)
♣

Proof. (a combinatorial proof) Let S be a set with n + 1 elements. Select

one particular element a ∈ S. There are two ways to produce a subset

of S of size k. We can include a in the subset, and toss in k − 1 of the

remaining n elements of S. There are
(

n
k − 1

)
to do that. Or, we can

avoid a, and choose all k elements from the other n elements of S. There

are
(

n
k

)
ways to do that. So, according to the sum rule, there is a total of(

n
k − 1

)
+

(
n
k

)
subsets of size k of S. But we know there are

(
n + 1

k

)
subsets of size k of S. So it must be that

(
n + 1

k

)
=

(
n

k − 1

)
+

(
n
k

)
. ♣

30.1.1 Constructing combinatorial proofs

The idea of a combinatorial proof is to ask a counting problem that

can be answered in two different ways, and then conclude the two

answers must be equal. In the proof above, we asked how many k-

subsets there are of an (n + 1)-set. We provided an argument to

show two answers were correct:
(

n + 1
k

)
and

(
n

k − 1

)
+

(
n
k

)
, and

the binomial theorem and pascal’s triangle 237

so we could conclude the two answers must be equal:(
n + 1

k

)
=

(
n

k − 1

)
+

(
n
k

)
.

As in the combinatorial proof of Pascal’s Identity 30.1, such ar-

guments can be much less work, far less tedious, and much more

illuminating, than algebraic proofs. Unfortunately, they can also be

much more difficult to discover since it is necessary to dream up a

good counting problem that will have as answers the two expressions

we are trying to show are equal, and there is no algorithm for coming

up with such a suitable counting problem.

Example 30.2. Give a combinatorial1 proof of
(

n
k

)
=

(
n

n− k

)
. 1 An algebraic proof of this identity is

absolutely trivial:(
n
k

)
=

n!
k!(n− k)!

and(
n

n− k

)
=

n!
(n− k)!(n− (n− k))!

=
n!

k!(n− k)
.

Thus, we see that the two expressions
are indeed equal.

Solution. To provide a combinatorial proof, we ask how many ways are

there to grab k elements of an n-set?. One answer of course is
(

n
k

)
. But

here is a second way to view the problem. We can select k elements of an

n-set by deciding on n − k elements not to pick. Since there are
(

n
n− k

)
ways to select the n− k not to pick, there must be

(
n

n− k

)
ways to select k

elements of an n-set. Since the two answers must be equal we conclude that(
n
k

)
=

(
n

n− k

)
. ♣

Example 30.3. Give a combinatorial proof of Vandermonde’s Identity:(
n + m

k

)
=

(
n
0

)(
m
k

)
+

(
n
1

)(
m

k− 1

)
+

(
n
2

)(
m

k− 2

)
+ · · ·+

(
n
k

)(
m
0

)
.

Solution. Consider the set {a1, a2, · · · , an, b1, b2, · · · bm} of n + m ele-

ments. We ask, how may k-subsets does the set have?.

One answer of course is
(

n + m
k

)
.

But here’s another way to answer the question:

we can select 0 of the a’s and k of the b’s. There are (n
0)(

m
k) ways to do

that.

Or we select 1 of the a’s and k− 1 of the b’s. There are (n
1)(

m
k−1) ways to

do that.

Or we select 2 of the a’s and k− 2 of the b’s. There are (n
2)(

m
k−2) ways to

do that.

238 math208: discrete mathematics

And so on, until we reach the option of selecting k of the a’s and 0 of the

b’s. There are (n
k)(

m
0) ways to do that.

By the sum rule, it follows that another way to count the number of

k-subsets is(
n
0

)(
m
k

)
+

(
n
1

)(
m

k− 1

)
+

(
n
2

)(
m

k− 2

)
+ · · ·+

(
n
k

)(
m
0

)
and that proves Vandermonde’s Identity. ♣

30.2 Pascal’s Triangle

The binomial coefficients are so named because they appear when a

binomial x + y is raised to an integer power ≥ 0. To appreciate the

connection, let’s look at a table of the binomial coefficients
(

n
k

)
. The

table is arranged in rows starting with row n = 0, and within each

row, the entries are arranged from left to right for k = 0, 1, 2, · · · , n.

The result, called Pascal’s Triangle, is shown in figure 30.1.

Row 0: (0
0)

Row 1: (1
0) (1

1)

Row 2: (2
0) (2

1) (2
2)

Row 3: (3
0) (3

1) (3
2) (3

3)

Row 4: (4
0) (4

1) (4
2) (4

3) (4
4)

Row 5: (5
0) (5

1) (5
2) (5

3) (5
4) (5

5)

.
. . .

Figure 30.1: Pascal’s Triangle

Filling in the numerical values for the binomial coefficients gives

the table shown in figure 30.2.

Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1

Row 4: 1 4 6 4 1

Row 5: 1 5 10 10 5 1

.
. . .

Figure 30.2: Pascal’s Triangle (numeric)

Note that we number the rows starting with 0. We already know

quite a bit about the entries in Pascal’s Triangle. Since
(

n
0

)
=

(
n
n

)
=

1 for all n, each row begins and ends with a 1. From the symmetry

formula
(

n
k

)
=

(
n

n− k

)
, the rows read the same in both directions.

By Pascal’s Identity, each entry in a row is the sum of the two entries

diagonally above it. That last fact makes it easy to add new rows to

Pascal’s Triangle.

The numbers in the first, second, and third rows of Pascal’s trian-

gle probably seem familiar. In fact, we see that The coefficients in these binomial

expansions are exactly the entries in

the corresponding rows of Pascal’s

Triangle. This even works for the 0th

row: (x + y)0 = 1.

(x + y)0 =1

(x + y)1 = x + y = 1 · x + 1 · y

(x + y)2 = x2 + 2xy + y2 = 1 · x2+2 · xy + 1 · y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3 = 1 · x3 + 3 · x2y + 3 · xy2 + 1 · y3

the binomial theorem and pascal’s triangle 239

30.3 The Binomial Theorem

The fact that the coefficients in the expansion of the binomial (x + y)n

(where n ≥ 0 is an integer) can be read off from the nth row of

Pascal’s Triangle is called the Binomial Theorem. We will give two

proofs of this theorem, one by induction, and the other a combinato-

rial proof.

Theorem 30.4 (The Binomial Theorem). When n is a non-negative

integer and x, y ∈ R

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k.

Proof. (by induction on n) When n = 0 the result is clear. So suppose that

for some n ≥ 0 we have (x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k, for any x, y ∈ R.

Then, we have

(x + y)n+1 = (x + y)n(x + y),

=
[n

∑
k=0

(
n
k

)
xkyn−k

]
(x + y), by inductive hypothesis,

=
[n

∑
k=0

(
n
k

)
xk+1yn−k

]
+
[n

∑
k=0

(
n
k

)
xkyn+1−k

]
,

=

(
n
n

)
xn+1 +

[n−1

∑
k=0

(
n
k

)
xk+1yn−k

]
+
[n

∑
k=1

(
n
k

)
xkyn+1−k

]
+

(
n
0

)
yn+1,

=

(
n
n

)
xn+1 +

[n

∑
l=1

(
n

l − 1

)
xlyn−(l−1)

]
+
[n

∑
k=1

(
n
k

)
xkyn+1−k

]
+

(
n
0

)
yn+1

=

(
n
n

)
xn+1 +

[n

∑
l=1

(
n

l − 1

)
xlyn+1−l

]
+
[n

∑
k=1

(
n
k

)
xkyn+1−k

]
+

(
n
0

)
yn+1

=

(
n
n

)
xn+1 +

[n

∑
k=1

[(n
k− 1

)
+

(
n
k

)]
xkyn+1−k

]
+

(
n
0

)
yn+1

=

(
n + 1
n + 1

)
xn+1 +

[n

∑
k=1

(
n + 1

k

)
xkyn+1−k

]
+

(
n + 1

0

)
yn+1, by Pascal’s identity,

=
n+1

∑
k=0

(
n + 1

k

)
xkyn+1−k.

♣

240 math208: discrete mathematics

Now, let’s look at a combinatorial proof of the Binomial Theorem.

Proof. When the binomial (x + y)n = (x + y)(x + y)(x + y) · · · (x + y)

is expanded, the terms are produced by selecting either the x or the y from

each of the n factors x + y appearing on the right side of the equation. The

number of ways of selecting exactly k x’s from the n available is
(

n
k

)
, and

so that will be the coefficient of the term xkyn−k in the expansion. ♣ Isn’t this amazing!

Example 30.5. The coefficient of x7y3 in the expansion of (x + y)10 is(
10
7

)
=

10!
7!3!

=
10 · 9 · 8
1 · 2 · 3 = 120.

Example 30.6. The coefficient of x7y3 in the expansion of (2x− 3y)10 is(
10
7

)
27(−3)3 =

10!
7!3!

27(−3)3 = −10 · 9 · 8
1 · 2 · 3 2733 = −120 · 128 · 27 = −414720.

From the binomial theorem we can derive facts such as

Theorem 30.7. A finite set with n elements has 2n subsets.

Proof. By the sum rule the number of subsets of an n-set is

n

∑
k=0

(
n
k

)
=

n

∑
k=0

(
n
k

)
1k1n−k.

By the Binomial Theorem
n

∑
k=0

(
n
k

)
1k1n−k = (1 + 1)n = 2n. ♣

Theorem 30.8. If n ≥ 1, then(
n
0

)
−
(

n
1

)
+

(
n
2

)
− · · ·+ (−1)n

(
n
n

)
= 0.

Proof. By the Binomial Theorem,(
n
0

)
−
(

n
1

)
+

(
n
2

)
− · · ·+ (−1)n

(
n
n

)
= (1− 1)n = 0.

♣

the binomial theorem and pascal’s triangle 241

30.4 Exercises

Exercise 30.1. Determine the sixth row of Pascal’s Triangle.

Exercise 30.2. Determine the coefficient of x3y7 in the expansion of (3x−
2y)10.

Exercise 30.3. Give an algebraic proof that
(

2n
2

)
= 2

(
n
2

)
+ n2.

Exercise 30.4. Give a combinatorial proof that
(

2n
2

)
= 2

(
n
2

)
+ n2. Hint:

How many ways are there to select a 2-subset of {a1, a2, · · · , an, b1, b2, · · · bn}?

Exercise 30.5. Give a combinatorial proof that
(

3m
3

)
=

(
m
3

)
+ 2m

(
m
2

)
+ m

(
2m
2

)
+

(
2m
3

)
.

Exercise 30.6. Using the same reasoning as in the combinatorial proof of

the Binomial Theorem, determine the coefficient of x4y5z6 in the expansion

of (x + y + z)15.

Exercise 30.7. Show that if p is a prime and 0 < k < p, then p divides(
p
k

)
. Hint: When

(
p
k

)
is written out, how many times does p occur as a

factor of the numerator and how many times as a factor of the denominator?

31

Inclusion-Exclusion Counting

The sum rule says that if A and B are disjoint sets, then |A ∪ B| =
|A| + |B|. If the sets are not disjoint, then this formula over counts

the number of elements in the union of A and B. For example, if

A = {a, b, c} and B = {c, d, e}, then

|A ∪ B| = |{a, b, c} ∪ {c, d, e}| = |{a, b, c, d, e}| = 5.

So, we see that |A ∪ B| 6= 3 + 3 = |A|+ |B|.

31.1 Inclusion-Exclusion principle

The correct way to count the number of elements in |A ∪ B| when A

and B might not be disjoint is via the inclusion-exclusion formula.

To derive this formula, notice that A ∪ B = (A − B) ∪ B, and that

the sets A − B and B are disjoint. So we can apply the sum rule to

conclude
A B

Figure 31.1: A ∪ B = (A− B) ∪ B

|A ∪ B| = |(A− B) ∪ B| = |A− B|+ |B|.

Next, notice that A = (A− B)∪ (A∩ B), and the two sets on the right

are disjoint. So, using the sum rule, we get

|A| = |(A− B) ∪ (A ∩ B)| = |A− B|+ |A ∩ B|,

244 math208: discrete mathematics

which we can rearrange as

|A− B| = |A| − |A ∩ B|.

So, replacing |A − B| by |A| − |A ∩ B| in the formula |A ∪ B| =
|(A− B)∪ B| = |A− B|+ |B|, we end up with the inclusion-exclusion

formula:

|A ∪ B| = |A|+ |B| − |A ∩ B|.

In words, to count the number of items in the union of two sets,

include one for everything in the first set, and include one for ev-

erything in the second set, then exclude one for each element in the

overlap of the two sets (since those elements will have been counted

twice).

Example 31.1. How many students are there in a discrete math class if 15

students are computer science majors, 7 are math majors, and 3 are double

majors in math and computer science?

Solution. Let C denote the subset of computer science majors in the class,

and M denote the math majors. Then |C| = 15, |M| = 7 and |C ∩M| = 3.

So by the principle of inclusion-exclusion there are |C|+ |M| − |C ∩M| =
15 + 7− 3 = 19 students in the class. ♣

Example 31.2. How many integers between 1 and 1000 are divisible by

either 7 or 11?

Solution. Let S denote the set of integers between 1 and 1000 divisible by

7, and E denote the set of integers between 1 and 1000 divisible by 11. We

need to count the number of integers in S ∪ E. By the principle of inclusion-

exclusion, we have

|S ∪ E| = |S|+ |E| − |S ∩ E| =
⌊

1000
7

⌋
+

⌊
1000

11

⌋
−
⌊

1000
77

⌋
= 142 + 90− 12 = 120.

♣

inclusion-exclusion counting 245

31.2 Extended inclusion-exclustion principle

The inclusion-exclusion principle can be extended to the problem of

counting the number of elements in the union of three sets. The trick

is the think of the union of three sets as the union of two sets. It goes

as follows:

|A ∪ B ∪ C| = |(A ∪ B) ∪ C|,

= |A ∪ B|+|C|−|(A ∪ B) ∩ C|,

= |A|+|B|+|C|−|A ∩ B|−|(A ∪ B) ∩ C|,

= |A|+|B|+|C|−|A ∩ B|−|(A ∩ C) ∪ (B ∩ C)|,

= |A|+|B|+|C|−|A ∩ B|−|(A ∩ C) ∪ (B ∩ C)|,

= |A|+|B|+|C|−|A ∩ B|− (|A ∩ C|+|B ∩ C|−|(A ∩ C) ∩ (B ∩ C)|) ,

= |A|+|B|+|C|−|A ∩ B|−|A ∩ C|−|B ∩ C|+|A ∩ B ∩ C|.

This might more appropriately be named the inclusion-exclusion-

inclusion formula, but nobody calls it that. In words, the formula

says that to count the number of elements in the union of three sets,

first, include everything in each set, then exclude everything in the

overlap of each pair of sets, and finally, re-include everything in the

overlap of all three sets.

Example 31.3. How many integers between 1 and 1000 are divisible by at

least one of 7, 9, and 11?

Solution. Let S denote the set of integers between 1 and 1000 divisible by

7, let N denote the set of integers between 1 and 1000 divisible by 9, and E

denote the set of integers between 1 and 1000 divisible by 11. We need to

count the number of integers in S ∪ N ∪ E. By the principle of inclusion-

exclusion,

|S ∪ N ∪ E| = |S|+ |N|+ |E| − |S ∩ N| − |S ∩ E| − |N ∩ E|+ |S ∩ N ∩ E|

=

⌊
1000

7

⌋
+

⌊
1000

9

⌋
+

⌊
1000
11

⌋
−
⌊

1000
63

⌋
−
⌊

1000
77

⌋
−
⌊

1000
99

⌋
+

⌊
1000
693

⌋
= 142 + 111 + 90− 15− 12− 10 + 1 = 307.

246 math208: discrete mathematics

There are similar inclusion-exclusion formulas for the union of

four, five, six, · · · sets. The formulas can be proved by induction with

the inductive step using the trick we used above to go from two sets

to three. However, there is a much neater way to prove the formula

based on the Binomial Theorem.

Theorem 31.4. Given finite sets A1, A2, ..., An∣∣∣∣∣ n⋃
k=1

Ak

∣∣∣∣∣ = n

∑
k=1
|Ak| − ∑

1≤j<k≤n
|Aj ∩ Ak|+ · · ·+ (−1)n−1

∣∣∣∣∣ n⋂
k=1

Ak

∣∣∣∣∣ .

Proof. Suppose x ∈ ⋃n
k=1 Ak. We need to show that x is counted exactly

once by the right-hand side of the promised formula. Say x ∈ Ai for exactly

p of the sets Ai, where 1 ≤ p ≤ n.

The key to the proof is being able to count the number of intersections in

each summation on the right-hand side of the offered formula that contain

x since we will account for x once for each such term. The number of such

terms in the first sum is n =

(
p
1

)
, the number in the second term is

(
p
2

)
,

and, in general, the number of terms in the jth sum will be
(

p
j

)
provided

j ≤ p. If j > p then x will not be any of the intersections of j of the sets, and

so will not contribute any more to the right side of the formula.

So the total number of times x is accounted for on the right hand side is(
p
1

)
−
(

p
2

)
− ... + (−1)p−1

(
p
p

)
,

= 1−
((

p
0

)
−
(

p
1

)
+

(
p
2

)
− ... + (−1)p

(
p
p

))
,

= 1− (1− 1)p = 1.

Just as we hoped. ♣

Example 31.5. How many students are in a calculus class if 14 are math

majors, 22 are computer science majors, 15 are engineering majors, and 13

are chemistry majors, if 5 students are double majoring in math and com-

puter science, 3 students are double majoring in chemistry and engineering,

10 are double majoring in computer science and engineering, 4 are double

majoring in chemistry and computer science, none are double majoring in

math and engineering and none are double majoring in math and chemistry,

and no student has more than two majors?

inclusion-exclusion counting 247

Solution. Let A1 denote the math majors, A2 denote the computer science

majors, A3 denote the engineering majors, and A4 the chemistry majors.

Then the information given is

|A1| = 14, |A2| = 22, |A3| = 15, |A4| = 13,

|A1 ∩ A2| = 5, |A1 ∩ A3| = 0, |A1 ∩ A4| = 0,

|A2 ∩ A3| = 10, |A2 ∩ A4| = 4, |A3 ∩ A4| = 3,

|A1 ∩ A2 ∩ A3| = 0, |A1 ∩ A2 ∩ A4| = 0,

|A1 ∩ A3 ∩ A4| = 0, |A2 ∩ A3 ∩ A4| = 0,

and

|A1 ∩ A2 ∩ A3 ∩ A4| = 0.

So, by inclusion-exclusion, the number of students in the class is

14 + 22 + 15 + 13− 5− 10− 4− 3 = 42.

Example 31.6. How many ternary strings (using 0’s, 1’s and 2’s) of length

8 either start with a 1, end with two 0’s or have 4th and 5th positions 12,

respectively?

Solution. Let A1 denote the set of ternary strings of length 8 which start

with a 1, A2 denote the set of ternary strings of length 8 which end with two

0’s, and A3 denote the set of ternary strings of length 8 which have 4th and

5th positions 12. By inclusion-exclusion, the answer is 37 + 36 + 36 − 35 −
35 − 34 + 33.

31.3 Inclusion-exclusion with the Good=Total-Bad trick

The inclusion-exclusion formula is often used along with the Good=Total-

Bad trick.

Example 31.7. How many integers between 1 and 1000 are divisible by

none of 7, 9, and 11?

Solution. There are 1000 numbers between 1 and 1000 (assuming 1 and

1000 are included). As counted before, there are 307 of those that are divisi-

248 math208: discrete mathematics

ble by at least one of 7, 9, and 11. That means there are 1000− 307 = 693

that are divisible by none of 7, 9, or 11.

inclusion-exclusion counting 249

31.4 Exercises

Exercise 31.1. At a certain college no student is allowed more than two

majors. How many students are in the college if there are 70 math majors,

160 chemistry majors, 230 biology majors, 56 geology majors, 24 physics

majors, 35 anthropology majors, 12 double math-physics majors, 10 double

math-chemistry majors, 4 double biology-math majors, 53 double biology-

chemistry majors, 5 double biology-anthropology majors, and no other dou-

ble majors?

Exercise 31.2. How many bit strings of length 15 start with the string

1111, end with the string 1000 or have 4th through 7th bits 1010?

Exercise 31.3. How many positive integers between 1000 and 9999 inclu-

sive are not divisible by any of 4, 10 or 25 (careful!)?

Exercise 31.4. How many permutations of the digits 1, 2, 3, 4, 5, have at

least one digit in its own spot? In other words, a 1 in the first spot, or a 2 in

the second, etc. For example, 35241 is OK since it has a 4 in the fourth spot,

and 14235 is OK, since it has a 1 in the first spot (and also a 5 in the fifth

spot). But 31452 is no good. Hint: Let A1 be the set of permutations that

have 1 in the first spot, let A2 be the set of permutations that 2 in the second

spot, and so on.

Exercise 31.5. How many permutations of the digits 1, 2, 3, 4, 5 have no

digit in its own spot?

32

The Pigeonhole Principle

The pigeonhole principle, like the sum and product rules, is an-

other one of those absolutely obvious counting facts. The statement

is simple: If n + 1 objects are divided into n piles (some piles can be

empty), then at least one pile must have two or more objects in it. Or,

more colorfully, if n + 1 pigeons land in n pigeonholes, then at least

one pigeonhole has two or more pigeons. What could be more obvi-

ous? The pigeonhole principle is used to show that no matter how a

certain task is carried out, some specific result must always happen.

As a simple example, suppose we have a drawer containing ten

identical black socks and ten identical white socks. How many socks

do we need to select to be sure we have a matching pair? The answer

is three. Think of the pigeonholes as the colors black and white, and

as each sock is selected put it in the pigeonhole of its color. After we

have placed the third sock, one of the two pigeonholes must have at

least two socks in it, and we will have a matching pair. Of course, we

may have been lucky and had a pair after picking the second sock,

but the pigeonhole principle guarantees that with the third sock we

will have a pair.

As another example, suppose license plates are made consisting of

four digits followed by two letters. Are there enough license plates

for a state with seven million cars? No, since there are only 104 ·
262 = 6760000 possible license plates, and so, by the pigeonhole

principle, at least two of the seven million plates assigned would

have to be the same.

252 math208: discrete mathematics

32.1 General pigeonhole principle

A slightly fancier version of the pigeonhole principle says that if N

objects are distributed in k piles, then there must be a least one pile

with
⌈

N
k

⌉
objects in it.

That formula looks impressive, but actually is easy to understand.

For example, if there are 52 people in a room, we can be absolutely

certain that there are at least eight born on the same day of the week.

Think of it this way: with 49 people, it would be possible to have

seven born on each of the seven days of the week. But when the Avoidance principle: how long can we

go before our hand is forced?50th one is reached, it must boost one day up to an eighth person.

That is really about all there is to it. The general proof of the fancy

pigeonhole principle uses this same sort of reasoning. It is a proof by

contradiction, and goes as follows:

Theorem 32.1 (Pigeonhole Principle). If N objects are distributed in k

piles, then there must be a least one pile with
⌈

N
k

⌉
objects in it.

Proof. Suppose we have N objects distributed in k piles, and suppose

that every pile has fewer than
⌈

N
k

⌉
objects in it. That means that the piles

each contain
⌈

N
k

⌉
− 1 or fewer objects. We will use the fact that

⌈
N
k

⌉
<

N
k + 1 to complete the proof. The total number of object will be at most

k
(⌈

N
k

⌉
− 1
)
< k

((
N
k + 1

)
− 1
)
= N. That is a contradiction since we

know there is a total of N objects in the k piles. ♣

32.2 Examples

Even though the pigeonhole principle sounds very simple, clever

applications of it can produce totally unexpected results.

Example 32.2. Five misanthropes move to a perfectly square deserted island

that measures two kilometers on a side. Of course, being misanthropes, they

want to live as far from each other as possible. Show that, no matter where

they build on the island, some two will be no more than
√

2 kilometers of

each other.

Solution. Divide the island into four one kilometer by one kilometer squares

by drawing lines joining the midpoints of opposite sides. Since there are five

the pigeonhole principle 253

people and four squares, the pigeonhole principle guarantees there will be

two people living in one of those four squares. But people in one of those

squares cannot be further apart than the length of the diagonal of the square

which is, according to Pythagoras,
√

2. ♣

Example 32.3. For any positive integer n, there is a positive multiple of

n made up of a number of 1’s followed by a number of 0’s. For example, for

n = 1084, we see 1084 · 1025 = 1111100.

Solution. Consider the n + 1 integers 1, 11, 111, · · · , 11 · · · 1, where the

last one consists of 1 repeated n + 1 times. Some two of these must be the

same modulo n, and so n will divide the difference of some two of them. But

the difference of two of those numbers is of the required type. ♣

Example 32.4. Bill has 20 days to prepare his tiddledywinks title defense.

He has decided to practice at least one hour every day. But, to avoid burn-

out, he will not practice more than a total of 30 hours. Show there is a se-

quence of consecutive days during which he practices exactly 9 hours.

Solution. For j = 1, 2, · · · 20, let tj = the total number of hours Bill

practices up to and including day j. Since he practices at least one hour

every day, and the total number of hours is no more than 30, we see

0 < t1 < t2 < · · · < t20 ≤ 30.

Adding 9 to each term we get

9 < t1 + 9 < t2 + 9 < · · · < t20 + 9 ≤ 39.

So we have 40 integers t1, t2, · · · , t20, t1 + 9, · · · t20 + 9, all between

1 and 39. By the pigeonhole principle, some two must be equal, and the

only way that can happen is for ti = tj + 9 for some i and j. It follows

that ti − tj = 9, and since the difference ti − tj is the the total number of

hours Bill practiced from day j + 1 to day i, that shows there is a sequence of

consecutive days during which he practiced exactly 9 hours. ♣

254 math208: discrete mathematics

32.3 Exercises

Exercise 32.1. Show that in any group of eight people, at least two were

born on the same day of the week.

Exercise 32.2. Show that in any group of 100 people, at least 15 were born

on the same day of the week.

Exercise 32.3. How many cards must be selected from a deck to be sure that

at least six of the selected cards have the same suit?

Exercise 32.4. Show that in any set of n positive integers, where n ≥ 2,

there must be a pair with a difference that is a multiple of n− 1.

Exercise 32.5. Al has 75 days to master discrete mathematics. He decides

to study at least one hour every day, but no more than a total of 125 hours.

Show there must be a sequence of consecutive days during which he studies

exactly 24 hours.

33

Tougher Counting Problems

All of the counting exercises you’ve been asked to complete so

far have not been realistic. In general it won’t be true that a counting

problem fits neatly into a section. So we need to work on the bigger

picture.

When we start any counting exercise it is true that there is an

underlying exercise at the basic level that we want to consider first.

So instead of answering the question immediately we might first

want to decide on what type of exercise we have. So far we have

seen three types which are distinguishable by the answers to two

questions.

(1) In forming the objects we want to count, is repetition allowed?

(2) In forming the objects we want to count, does the order of selec-

tion matter?

The three scenarios we have seen so far are described in table 33.1.

Order Repetition Type Form

Y Y r-strings nr

Y N r-permutations P(n, r)

N N r-combinations (n
r)

Table 33.1: Basic counting problems

There are two problems to address. First of all, table 33.1 is incom-

plete. What about, for example, counting objects where repetition is

allowed, but order doesn’t matter. Second of all, there are connec-

tions among the types which make some solutions appear mislead-

ing. But as a general rule of thumb, if we correctly identify the type

of problem we are working on, then all we have to do is use the prin-

ciples of addition, multiplication, inclusion/exclusion, or exclusion to

decompose our problem into subproblems. The solutions to the sub-

problems often have the same form as the underlying problem. The

256 math208: discrete mathematics

principles we employed direct us on how the sub-solutions should be

recombined to give the final answer.

Example 33.1. As an example of the second problem, if we ask how many

binary strings of length 10 contain exactly three 1’s, then the underlying

problem is an r-string problem. But in this case the answer is
(

10
3

)
. Of

course this is really
(

10
3

)
1317 from the binomial theorem. In this case

the part of the answer which looks like nr is suppressed since it’s trivial.

To see the difference we might ask how many ternary strings of length 10

contain exactly three 1’s. Now the answer is
(

10
3

)
1327, since we choose the

three positions for the 1’s to go in, and then fill in each of the 7 remaining

positions with a 0 or a 2.

33.1 The Basic Donut Shop Problem

To begin to address the first problem we introduce If you get to the

donut shop before the cops get there, you will find that they have a

nice variety of donuts. You might want to order several dozen. They

will put your order in a box. You don’t particularly care what order

the donuts are put into the box. You do usually want more than one

of several types. The number of ways for you to complete your order

is therefore a counting problem where order doesn’t matter, and

repetition is allowed.

In order to answer the question of how many ways you can com-

plete your order, we first recast the problem mathematically. From

among n types of objects we want to select r objects. If xi denotes the

number of objects of the ith type selected, we have 0 ≤ xi, (since we

cannot choose a negative number of chocolate donouts), also xi ∈ Z,

(since we cannot select fractional parts of donuts). So, the different

ways to order are in one-to-one correspondence with the solutions to

x1 + x2 + ... + xn = r, with xi ≥ 0, xi ∈ Z, for i− 1, 2, . . . , n.

Next, in order to compute the number of solutions in non-negative

integers to x1 + x2 + ... + xn = r, we model each solution as a string

(possibly empty) of x1 1’s followed by a +, then a string of x2 1’s

tougher counting problems 257

followed by a +, ... then a string of xn−1 1’s followed by a +, then a

string of xn 1’s. So for example, if x1 = 2, x2 = 0, x3 = 1, x4 = 3 is a

solution to x1 + x2 + x3 + x4 = 6 the string we get is 11 ++1 + 111.

Finally, we see that the total number of solutions in non-negative

integers to x1 + ... + xn = r, is the number of binary strings of length

r + n− 1 with exactly r 1’s and (n− 1) +’s. From the remark above,

the number of ways to select r donuts from n different types is(
n + r− 1

r

)
.

33.2 The More Realistic Donut Shop Problem

The basic donut shop problem is not very realistic in two ways. First

it is common that some of your order will be determined by other

people. You might for example canvas the people in your office be-

fore you go to see if there is anything you can pick up for them. So

whereas you want to order r donuts, you might have been asked to

pick up a certain number of various types.

Now suppose that we know that we want to select r donuts from

among n types so that at least ai(ai ≥ 0) donuts of type i are selected.

In terms of our equation, we have x1 + x2 + ...+ xn = r, where ai ≤ xi,

and xi ∈ Z. If we set yi = xi − ai for i = 1, ..., n, and a =
n

∑
i=1

ai, then

0 ≤ yi, yi ∈ Z and

n

∑
i=1

yi =
n

∑
i=1

(xi − ai) =

[
n

∑
i=1

xi

]
−
[

n

∑
i=1

ai

]
= r− a.

So, the number of ways to complete our order is
(

n + (r− a)− 1
(r− a)

)
. First ask for the donuts your colleagues

wanted (total of a), then randomly get

the rest (r− a).
Still, we qualified the donut shop problem by supposing that we

arrived before the cops did.

33.3 The Real Donut Shop Problem

If we arrive at the donut shop after canvassing our friends, we want

to select r donuts from among n types. The problem is that there

are probably only a few left of each type. This may place an upper

258 math208: discrete mathematics

limit on how often we can select a particular type. So now we wish to

count solutions to

x1 + x2 + ... + xn = r, with ai ≤ xi ≤ bi, xi ∈ Z.

We proceed by replacing r by s = r − a, where a is the sum of

lower bounds. We also replace bi by ci = bi − ai for i = 1, ..., n. So

we want to find the number of solutions to 0 ≤ yi ≤ ci, yi ∈ Z, and

y1 + y2 + ... + yn = s. There are several ways to proceed. We choose

inclusion/exclusion. Let us set U to be all solutions in non-negative

integers to y1 + ...+ yn = s. Next let Ai denote those solutions in non-

negative integers to y1 + ... + yn = r, where ci < yi. Then we want

to compute |A1 ∩ A2 ∩ A3 ∩ ... ∩ An|, which we can do by general

inclusion/exclusion, and the ideas from the more realistic donut shop

problem.

Example 33.2. Let us count the number of solutions to

x1 + x2 + x3 + x4 = 34,

where 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 8 and 0 ≤ x4 ≤ 40.

As discussed above, we have c1 = 4, c2 = 5, c3 = 8, and c4 = 40. Hence,

we see that

|U | =
(

34 + 4− 1
34

)
.

Now, Ai will denote the solutions in non-negative integers to

x1 + x2 + x3 + x4 = 34, with xi > ci, for i = 1, 2, 3, 4.

Next, realize that A4 = ∅, so we have

A4 = U and A1 ∩ A2 ∩ A3 ∩ A4 = A1 ∩ A2 ∩ A3.

Now, to compute A1, we must first rephrase x1 > 4 as a non-strict inequal-

ity, i.e. 5 ≤ x1. So, it follows that

|A1| =
(

29 + 4− 1
29

)
.

tougher counting problems 259

Similarly, we have

|A2‖ =
(

28 + 4− 1
28

)
, and |A3| =

(
25 + 4− 1

25

)
.

Next, we observe that A1 ∩ A2 represents the set of all solutions in non-

negative integers to

x1 + x2 + x3 + x4 = 34 with 5 ≤ x1 and 6 ≤ x2.

So, we have

|A1 ∩ A2| =
(

23 + 4− 1
23

)
.

Also, we find that

|A1 ∩ A3| =
(

20 + 4− 1
20

)
and |A2 ∩ A3| =

(
19 + 4− 1

19

)
.

Finally, we see that

|A1 ∩ A2 ∩ A3| =
(

14 + 4− 1
14

)
.

Hence, the final answer is1 1 We leave the answer in this form for
clarity. The numerical value is not
illuminating.(

34 + 4− 1
34

)
−
(

29 + 4− 1
29

)
−
(

28 + 4− 1
28

)
−
(

25 + 4− 1
25

)
+

(
23 + 4− 1

23

)
+

(
20 + 4− 1

20

)
+

(
19 + 4− 1

19

)
−
(

14 + 4− 1
14

)
.

We can now solve general counting exercises where order is unim-

portant and repetition is restricted somewhere between no repetition,

and full repetition.

33.4 Problems with order and some repetition

To complete the picture we should be able to also solve counting

exercises where order is important and repetition is partial. This is

somewhat easier. It suffices to consider the subcases in example 33.3.

Example 33.3. Let us take as initial problem the number of quaternary

strings of length 15. There are 415 of these.

Now, if we ask how many contain exactly two 0’s, the answer is
(

15
2

)
313.

260 math208: discrete mathematics

If we ask how many contain exactly two 0’s and four 1’s, the answer is(
15
2

)(
13
4

)
29.

And, if we ask how many contain exactly two 0’s, four 1’s and five 2’s,

the answer is (
15
2

)(
13
4

)(
9
5

)(
4
4

)
=

15!
2! · 4! · 5! · 4!

.

So, in fact many types of counting are related by what we call the

multinomial theorem.

Theorem 33.4. When r is a non-negative integer and x1, x2, ..., xn ∈ R, we

have

(x1 + x2 + ... + xn)
r = ∑

e1+e2+...+en=r
0≤ei

(
r

e1, e2, ..., en

)
xe1

1 xe2
2 ...xen

n ,

where
(

r
e1, e2, ...en

)
=

r!
e1!e2!...en!

.

33.5 The six fundamental counting problems

To recap, when we have a counting exercise, we should first ask

whether order is important and then ask whether repetition is al-

lowed. This will get us into the right ballpark as far as the form of

the solution. We must use basic counting principles to decompose

the exercise into sub-problems. Solve the sub-problems, and put

the pieces back together. Solutions to sub-problems usually take the

same form as the underlying problem, though they may be related to

it via the multinomial theorem. Table 33.2 synopsizes our six funda-

mental cases.

Order Repetition Form

Y Y nr

Y N P(n, r)

N Y
(

r + n− 1
r

)
N N

(
n
r

)
Y some

(
r

k1, k2, ..., kn

)
N some

(
r + n− 1

r

)
w/ I-E

Table 33.2: Six counting problems

tougher counting problems 261

33.6 Exercises

Exercise 33.1. How many quaternary strings of length n are there (a

quaternary string uses 0’s, 1’s, 2’s, and 3’s)?

Exercise 33.2. How many quaternary strings of length less than or equal to

7 are there?

Exercise 33.3. How many solutions in integers are there to x1 + x2 +

x3 + x4 + x5 + x6 + x7 = 54, where 3 ≤ x1, 4 ≤ x2, 5 ≤ x3, and

6 < x4, x5, x6, x7?

Exercise 33.4. How many ternary strings of length n start 0101 and end 212?

Exercise 33.5. A doughnut shop has 8 kinds of doughnuts: chocolate,

glazed, sugar, cherry, strawberry, vanilla, caramel, and jalapeno. How many

ways are there to order three dozen doughnuts, if at most 4 are jalapeno, at

most 6 are cherry, and at most 8 are strawberry, but there are no restrictions

on the other varieties?

Exercise 33.6. How many strings of twelve lowercase English letters are there

(a) which start with the letter x, if letters may be repeated?

(b) which contain the letter x at least once, if letters can be repeated?

(c) which contain each of the letters x and y at least once, if letters can be

repeated?

(d) which contain at least one vowel, where letters may not be repeated?

Exercise 33.7. How many bit strings of length 19 either begin “0101", or

have 4th, 5th and 6th digits “101", or end “1010"?

Exercise 33.8. How many pentary strings of length 15 consist of three 0’s,

four 1’s, three 2’s, four 3’s and one 4?

Exercise 33.9. How many ternary strings of length 9 have

(a) exactly four 1’s?

(b) at least three 0’s?

(c) at most three 1’s?

262 math208: discrete mathematics

Exercise 33.10. Seven lecturers and fourteen professors are on the faculty of

a math department.

(a) How many ways are there to form a committee with seven members

which contains more lecturers than professors?

(b) How many ways are there to form a committee with seven members

where the professors outnumber the lecturers on the committee by at least

a two-to-one margin?

(c) How many ways are there to form a committee consisting of at least five

lecturers?

Exercise 33.11. How many ways are there to seat six people at a circular

table where two seatings are considered equivalent if one can be obtained

from the other by rotating the table?

Exercise 33.12. Prove that a set with n ≥ 1 elements has the same number

of subsets with an even number of elements, as subsets with an odd number

of elements.

34

Counting Using Recurrence Relations

It is not always convenient to use the methods of earlier chap-

ters to solve counting problems. Another technique for finding the

solution to a counting problem is recursive counting. The method

will be illustrated with several examples.

34.1 Recursive counting method

Example 34.1. Recall that a bit string is a list of 0’s and 1’s, and the length

of a bit string is the total number of 0’s and 1’s in the string. For example,

10111 is a bit string of length five, and 000100 is a bit string of length six.

The problem of counting the number of bit strings of length n is duck soup.

There are two choices for each bit, and so, applying the product rule, there

are 2n such strings. However, consider the problem of counting the number

of bit strings of length n with no adjacent 0’s.

Let’s use an to denote the number of bit strings of length n with no adja-

cent 0’s. Here are a few sample cases for small values of n.

n=0: Just one good bit string of length zero, and that is λ, the empty bit string.

So a0 = 1.

n=1: There are two good bit strings of length one. Namely 0 and 1. So a1 = 2.

n=2: There are three good bit strings of length two. Namely, 01, 10 and 11.

(Of course, 00 is a bad bit string.) That means a2 = 3.

n=3: Things start to get confusing now. But here is the list of good bit strings

of length three: 010, 011, 101, 110, and 111. So a3 = 5.

264 math208: discrete mathematics

n=4: A little scratch work produces the good bit strings 0101, 0111, 1011,

1101, 1111, 0110, 1010, and 1110, for a total of eight. That means a4 =

8.

We can do a few more, but it is hard to see a formula for an like the 2n

formula that gives the total number of all bit strings of length n. Even

though a formula for an is difficult to spot, there is a pattern to the list of

values for an which looks like the Fibonacci sequence pattern. In fact, the

list so far looks like 1, 2, 3, 5, 8, and if a few more are worked out by brute

force, it turns out the list continues 13, 21, 34. So, it certainly seems that

the solution to the counting problem can be expressed recursively as a0 = 1,

a1 = 2, and for n ≥ 2, an = an−1 + an−2. If this guess is really correct,

then we can quickly compute the number of good bit strings of length n. We

just calculate a0, a1, a2, etc., until we reach the an we are interested in.

Such a recursive solution to counting problems is certainly less

satisfactory than a simple formula, but some counting problems

are so messy that a simple formula might not be possible, and the

recursive solution is better than nothing in such a case.

There is one problem with the recursive solution offered in ex-

ample 34.1. We said that it seems that the solution to the counting

problem can be expressed recursively as a0 = 1, a1 = 2, and for

n ≥ 2, an = an−1 + an−2. That it seems that is not an acceptable justifi-

cation of the formula. After all, we are basing that guess on just eight

or ten values of the infinite sequence an, and it is certainly possible

that those values happen to follow the pattern we’ve guessed simply

by accident. Maybe the true pattern is much more complicated, and

we have been tricked by the small number of cases we have consid-

ered. It is necessary to show that the guessed pattern is correct by

supplying a logical argument.

Our argument would begin by checking the initial conditions we

offered. In other words, we would verify by hand that a0 = 1 and

a1 = 2. This serves as a basis for the verification of the recursive

formula. Now what we want to do is assume that we have already

calculated all the values a0, a1, · · · , ak for some k ≥ 1, and show

that ak+1 must equal ak + ak−1. It is very important to understand

that we do not want to compute the value of ak+1. We only want to prove

counting using recurrence relations 265

that ak+1 = ak + ak−1. The major error made doing these types of

problems is attempting to compute the specific value of ak+1. Don’t

fall for that trap! After all, if it were possible to actually compute the

specific value of ak+1, then we could find a formula for an in general,

and we wouldn’t have to be seeking a recursive relation at all.

Here is how the argument would go in the bit string example.

Suppose we have lists of the good bit strings of lengths 0, 1, · · · , k.

Here is how to make a list of all the good bit strings of length k + 1.

First, take any good bit string of length k and add a 1 on the right

hand end. The result must be a good bit string of length k + 1 (since

we added a 1 to the end, and the original bit string didn’t have two

consecutive 0’s, the new bit string cannot have two consecutive 0’s

either). In that way we form some good bit strings of length k +

1. In fact, we have built exactly ak good bit strings of length k +

1. But wait, there’s more! (as they say in those simple-minded TV

ads). Another way to build a good bit string of length k + 1 is to

take a good bit string of length k − 1 and add 10 to the right end.

Clearly these will also be good bit strings of length k + 1. And these

all end with a 0, so they are all new ones, and not ones we built in

the previous step. How many are there of this type? One for each

of the good bit strings of length k − 1, or a total of ak−1. Thus, so

far we have built ak + ak−1 good bit strings of length k + 1. Now we

will show that in fact we have a complete list of all good bit string of

length k + 1, and that will complete the proof that ak+1 = ak + ak−1.

But before driving that last nail into the coffin, let’s look at the steps

outlined above for the case k + 1 = 4.

The previous paragraph essentially provides an algorithm for

building good bit strings of length k + 1 from good bits strings of

lengths k and k − 1. The algorithm instructs us to add 1 to the right

end of all the good bit strings of length k and 10 to the right of all the

good bit strings of length k− 1. Applying the algorithm for the case

k + 1 = 4, gives the following list, where the added bits are put in

parentheses to make them stand out. 010(1), 011(1), 101(1), 110(1),

111(1), 01(10), 10(10), and 11(10).

There remains one detail to iron out. It is clear that the algorithm

266 math208: discrete mathematics

will produce good bit strings of length k + 1. But, does it produce

every good bit string of length k + 1? If it does not, then the recursive

relation we are offering for the solution to the counting problem will

eventually begin to produce answers that are too small, and we will

undercount the number of good bit strings. To see that we do count

all good bit strings of length k + 1, consider any particular good bit

string of length k + 1, call it s for short, and look at the right most

bit of s. There are two possibilities for that bit. It could be a 1. If that

is so, then when the 1 is removed the remaining bit string is a good

of length k (it can’t have two adjacent 0’s since s doesn’t have two

adjacent 0’s). That means the bit string s is produced by adding a 1

to the right end of a good bit string of length k, and so s is produced

by the first step in the algorithm. The other option for s is that the

right most bit is a 0. But then the second bit in from the right must be

a 1, since s is a good bit string, so it doesn’t have adjacent 0’s. So the

last two bits on the right of s are 10. If those two bits are removed,

there remains a good bit string of length k− 1. Thus s is produced by

adding 10 to the right end of a good bit string of length k− 1, and so

s is produced by the second case in the algorithm.

In a nutshell, we have shown our algorithm produces ak + ak−1

good bit strings of length k + 1, and that the algorithm does not

miss any good bit strings of length k + 1. Thus we have proved that

ak+1 = ak + ak−1 for all k ≥ 2.

Example 34.1 was explained in excruciating detail. Normally, the

verifications will be much more briefly presented. It takes a while to

get used to recursive counting, but once the light goes on, the beauty

and simplicity of the method will become apparent.

34.2 Examples

Example 34.2. This example is a little silly since it is very easy to write

down a formula to solve the counting problem. But the point of the example

is not find the solution to the problem but rather to exhibit recursive count-

ing in action. The problem is to compute the total number of individual

squares on an n× n checkerboard. If we let the total number of squares be

counting using recurrence relations 267

denoted by sn, then obviously sn = n2. For example, an ordinary checker-

board is an 8 × 8 board, and it has a total of s8 = 82 = 64 individual

squares. But let’s count the number of squares recursively. Clearly s0 = 0.

Now suppose we have computed the values of s0, s1, · · · , sk, for some k ≥ 0.

We will show how to compute sk+1 from those known values. To determine

sk+1, draw a (k + 1) × (k + 1) checkerboard. (You should make a little

sketch of such a board for say k + 1 = 5 so you can follow the process de-

scribed next.) From that (k + 1) × (k + 1) board, slice off the right hand

column of squares, and the bottom row of squares. What is left over will be a

k× k checkerboard, so it will have sk individual squares. That means that

sk+1 = sk + the number of squares sliced off

Now ignore the lower right hand corner square for a moment. There are k

other squares in the right hand column that was sliced off. Likewise, ignor-

ing the corner square, there are k other squares in the bottom row that was

sliced off. Hence the total number of squares sliced off was k + k + 1, the 1

accounting for the corner square. Thus

sk+1 = sk + k + k + 1 = sk + 2k + 1

So a recursive solution to the problem of counting sn = number of indi-

vidual squares on an n× n checkerboard is

s0 = 0, and

sk+1 = sk + 2k + 1, for k ≥ 0.

Using the recursive relation, we get s0 = 0, s1 = s0 + 2(0) + 1 =

0 + 0 + 1 = 1, s2 = s1 + 2(1) + 1 = 1 + 2 + 1 = 4, s3 = s2 + 2(2) + 1 =

4 + 4 + 1 = 9, and so on, giving what we recognize as the correct answers.

Example 34.3. Suppose we have available an unlimited number of pennies

and nickels to deposit in a vending machine (a really old vending machine

it seems, since it even accepts pennies). Let dn be the number of different

ways of depositing a total of n cents in the machine. Just to make sure we

understand the problem, let’s compute dn for a few small values of n. Clearly

d0 = 1 since there is only one way to deposit no money in the machine

268 math208: discrete mathematics

(namely don’t put any money in the machine!). d1 = 1 (put in one penny),

d2 = 1 (put in two pennies), d3 = 1 (put in three pennies), d4 = 1 (put in

four pennies). Now things start to get exciting! d5 = 2 (put in five pennies

or put in one nickel). And even more thrilling is d6 = 3 (the three options

are (1) six pennies, (2) one penny followed by a nickel, and (3) one nickel

followed by a penny). That last count indicates a fact that may not have been

clear: the order on which pennies and nickels are deposited is considered

important. With a little more trial and error with pencil and paper, further

values are found to be d7 = 4, d8 = 5, d9 = 6, d10 = 8, d11 = 11, and

d12 = 15. It is hard to see a formula for these values. But it is duck soup to

write down a recursive relation that produces this sequence of values. Think

of it this way, suppose we wanted to put n cents in the machine, where

n ≥ 5. We can make the first coin either a penny or a nickel. If we make

the first coin a penny, then we will need to add n− 1 more cents, which can

be done in dn−1 ways. On the other hand, if we make the first coin a nickel,

we will need to deposit n − 5 more cents, and that can be done in dn−5

ways. By the sum rule of counting, we conclude that the number of ways of

depositing n cents is dn−1 + dn−5. In other words, dn = dn−1 + dn−5 for

n ≥ 5.

Since our recursive relation for dn does not kick in until n reaches 5, we

will need to include d0, d1, d2, d3, and d4 as initial terms. So the recursive

solution to this counting problem is

d0 = 1 d1 = 1 d2 = 1 d3 = 1 d4 = 1

for n ≥ 5, dn = dn−1 + dn−5

Example 34.4 (The Tower of Hanoi). The classic example of recursive

counting concerns the story of the Tower of Hanoi. A group of monks wished

a magical tower to be constructed from 1000 stone rings. The rings were to

be of 1000 different sizes. The size and composition of the rings was to be

designed so that any ring could support the entire weight of all of the rings

smaller than itself, but each ring would be crushed beneath the weight of any

larger ring.

The monks hired the lowest bidder to construct the tower in a clearing

in the dense jungle nearby. Upon completion of construction the engineers

brought the monks to see their work. The monks admired the exquisite work-

counting using recurrence relations 269

manship, but informed the engineers that the tower was not in the proper

clearing.

In the jungle there were only three permanent clearings. The monks had

labelled them A, B and C. The engineers had labelled them in reverse order.

The monks instructed the engineers to move the tower from clearing A to

clearing C!

Because of the massive size of the rings, the engineers could only move

one per day. No ring could be left anywhere in the jungle except one of A,

B, or C. Finally each clearing was only large enough so that rings could be

stored there by stacking them one on top of another.

The monks then asked the engineers how long it would take for them to

fix the problem.

Before they all flipped a gasket, the most mathematically talented engineer

came upon the following solution.

Let Hn denote the minimum number of days required to move an n ring

tower from A to C under the constraints given. Then H1 = 1, and in

general an n ring tower can be moved from A to C by first moving the top

(n − 1) rings from A to B leaving the bottom ring at A, then moving the

bottom ring from A to C, and then moving the top (n − 1) rings from

clearing B to clearing C. That shows Hn ≤ 2 · Hn−1 + 1, for n ≥ 2, and

a little more thought shows the algorithm just described cannot be improved

upon. Thus Hn = 2 · Hn−1 + 1.

Using the initial condition H1 = 1 together with the recursive relation

Hn = 2 · Hn−1 + 1, we can generate terms of the sequence:

1, 3, 7, 15, 31, 63, 127, 255, 511, · · · ,

and it looks like Hn = 2n − 1 for n ≥ 1, which can be verified by an easy

induction.

So, the problem would be fixed in 21000 − 1 days, or approximately

2.93564× 10296 centuries. Now, that is job security!

34.3 General rules for finding recursive solutions

Here are a few general rules for solving counting problems recur-

sively:

270 math208: discrete mathematics

(1) do a few small cases by brute force,

(2) think recursively: how can a larger case be solved if the solutions

to smaller cases are known, and

(3) check the numbers produced by the recursive solution to make

sure they agree with the values obtained by brute force.

counting using recurrence relations 271

34.4 Exercises

Exercise 34.1. Suppose on December 31, 2000, a deposit of $100 is made in

a savings account that pays 10% annual interest (Ah, those were the days!).

So one year after the initial deposit, on December 31, 2001, the account will

be credited with $10, and have a value of $110. On December 31, 2002 that

account will be credited with an additional $11, and have value $121. Find a

recursive relation that gives the value of the account n years after the initial

deposit.

Exercise 34.2. A (cheap) vending machine accepts pennies, nickels, and

dimes. Let dn be the number of ways of depositing n cents in the machine,

where the order in which the coins are deposited matters. Determine a recur-

rence relation for dn. Give the initial conditions.

Exercise 34.3. Al climbs stairs by taking either one or two steps at a time.

For example, he can climb a flight of three steps in three different ways: (1)

one step, one step, one step or (2) two step, one step, or (3) one step, two

step. Determine a recursive formula for the number of different ways Al can

climb a flight of n steps.

Exercise 34.4. Sal climbs stairs by taking either one, two, or three steps at

a time. Determine a recursive formula for the number of different ways Sal

can climb a flight of n steps.

Exercise 34.5. Passwords for a certain computer system are strings of

uppercase letters. A valid password must contain an even number of X’s.

Determine a recurrence relation for the number of valid passwords of length

n.

Exercise 34.6. Find a recurrence relation for the number of bitstrings of

length n that contain two consecutive 0’s.

Exercise 34.7. Find a recurrence relation for the number of bit strings of

length n that contain the string 01.

Exercise 34.8. Find a recurrence relation for the number of binary strings

of length n which do not contain the substring 010.

Exercise 34.9. Find a recurrence relation for the number of ternary strings

of length n that contain two consecutive 0’s.

272 math208: discrete mathematics

Exercise 34.10. Find a recurrence relation for the number of ternary strings

of length n that contain three consecutive zeroes.

Exercise 34.11. Find a recurrence relation for the number of quaternary

strings which contain two consecutive 1’s.

Exercise 34.12. Suppose the Tower of Hanoi rules are changed so that

stones may only be transfered to an adjacent clearing in one move. Let In be

the minimum number of moves required to transfer tower from clearing A to

clearing C?

(a) By brute force, determine I1, I2, and I3.

(b) Find a recursive relation for In.

(c) Guess a formula for In.

Exercise 34.13. Suppose in the original Tower of Hanoi problem there are

four clearings A, B, C, D. Find a recursive relation for Jn, the minimum

number of moves needed to transfer the tower from clearing A to clearing D.

35

Solutions to Recurrence Relations

In chapter 34, it was pointed out that recursively defined se-

quences suffer from one major drawback: In order to compute a

particular term in the sequence, it is necessary to first compute all the

terms of the sequence leading up to the one that is wanted. Imagine

the chore to calculate the 250th Fibonacci number, f250! For problems

of computation, there is nothing like having a formula like an = n2,

into which it is merely necessary to plug the number of interest.

35.1 Solving a recursion by conjecture

It may be possible to find a formula for a sequence that is defined

recursively. When that can be done, you have the best of both the

formula and recursive worlds. If we find a formula for the terms of a

recursively defined sequence, we say we have solved the recursion.

Example 35.1. Here is an example: The sequence {an} is defined re-

cursively by the initial condition a0 = 2, and the recursive formula

an = 2an−1 − 1 for n ≥ 1. If the first few terms of this sequence are

written out, the results are

2, 3, 5, 9, 17, 33, 65, 129, · · · ,

and it shouldn’t be too long before the pattern becomes clear. In fact, it looks You have to recognize the slightly hid-

den powers of 2: 1, 2, 4, 8, 16, 32, 64,like an = 2n + 1 is the formula for an.

To prove that guess is correct, induction would be the best way to go.

274 math208: discrete mathematics

Here are the details. Just to make everything clear, here is what we are going

to show: If a0 = 2, and an = 2an−1 − 1 for n ≥ 1, then an = 2n + 1 for

all n ≥ 0. The basis for the inductive proof is the case n = 0. The correct

value for a0 is 2, and the guessed formula has value 2 when n = 0, so that

checks out. Now for the inductive step: suppose that the formula for ak is

correct for a particular k ≥ 0. That is, assume ak = 2k + 1 for some k ≥ 0.

Let’s show that the formula must also be correct for ak+1. That is, we want

to show ak+1 = 2k+1 + 1. Well, we know that ak+1 = 2ak − 1, and hence

ak+1 = 2(2k + 1)− 1 = 2k+1 + 2− 1 = 2k+1 + 1, just as was to be proved.

It can now be concluded that the formula we guessed is correct for all n ≥ 0.

In example 35.1, it was possible to guess the correct formula for

an after looking at a few terms. In most cases the formula will be so

complicated that that sort of guessing will be out of the question.

35.2 Solving a recursion by unfolding

There is a method that will nearly automatically solve any recurrence

of the form a0 = a and for, n ≥ 1, an = ban−1 + c (where a, b, c are

constants). The method is called unfolding.

Example 35.2. As an example, let’s solve a0 = 2 and, for n ≥ 1, an =

5 + 2an−1. The plan is to write down the recurrence relation, and then

substitute for an−1, then for an−2, and so on, until we reach a0. It looks like

this

an = 5 + 2an−1,

= 5 + 2(5 + 2an−2) = 5 + 5(2) + 22an−2,

= 5 + 5(2) + 22(5 + 2an−3) = 5 + 5(2) + 5(22) + 23an−3.

If this substitution is continued, eventually we reach an expression we

can compute in closed form: In the next to last step we use the

formula for adding the terms of a

geometric sequence.

solutions to recurrence relations 275

an = 5 + 5(2) + 5(22) + 5(23) + · · ·+ 5(2n−1) + 2na0,

= 5(1 + 2 + 22 + · · ·+ 2n−1) + 2n(2),

= 5
2n − 1
2− 1

+ 2(2n),

= 5(2n − 1) + 2(2n),

= 7(2n)− 5.

276 math208: discrete mathematics

35.3 Exercises

Exercise 35.1. Guess the solution to a0 = 2, and a1 = 4, and, for n ≥ 2,

an = 4an−1 − 3an−2 and prove your guess is correct by induction.

Exercise 35.2. Solve by unfolding: a0 = 2, and, for n ≥ 1, an = 5an−1.

Exercise 35.3. Solve by unfolding: a0 = 2, and, for n ≥ 1, an = 5an−1 + 3.

36

The Method of Characteristic Roots

There is no method that will solve all recurrence relations. How-

ever, for one particular type, there is a standard technique. The type

is called a linear recurrence relation with constant coefficients. In

such a recurrence relation, the recurrence formula has the form

an = c1an−1 + c2an−2 + ... + ckan−k + f (n)

where c1, · · · , ck are constants with ck 6= 0, and f (n) is any function

of n.

The degree of the recurrence is k, the number of terms we need to

go back in the sequence to compute each new term. If f (n) = 0, then

the recurrence relation is called homogeneous. Otherwise it is called

nonhomogeneous.

In chapter 35, we noted that some simple non-homogeneous lin-

ear recurrence relations with constant coefficients can be solved by

unfolding. This method is not powerful enough for more general

problems. In this chapter we introduce a basic method that, in princi-

ple at least, can be used to solve any homogeneous linear recurrence

relation with constant coefficients.

36.1 Homogeneous, constant coefficient recursions

We begin by considering the degree 2 case. That is, we have a re-

currence relation of the form an = c1an−1 + c2an−2, for n ≥ 2,

where c1 and c2 are real constants. We must also have two initial con-

278 math208: discrete mathematics

ditions a0 and a1. That is, we are given a0 and a1 and the formula

an = c1an−1 + c2an−2, for n ≥ 2. Notice that c2 6= 0 or else we have

a linear recurrence relation with constant coefficients and degree 1.

What we seek is a closed form formula for an, which is a function of

n alone, and which is therefore independent of the previous terms of

the sequence.

36.1.1 Basic example of the method

Here’s the technique in a specific example:

The problem we will solve is to find a formula for the terms of the

sequence

a0 = 4 and a1 = 8, with

an = 4an−1 + 12an−2, for n ≥ 2.

The first thing to do is to ignore the initial conditions, and concen-

trate on the recurrence relation. And the way to solve the recurrence

relation is to guess the solution. Well, actually, it is to guess the form

of the solution1. For such a recurrence you should guess that the so- 1 An educated guess!

lution looks like an = rn, for some constant r. In other words, guess

the solution is simply the powers of some fixed number. The good

news is that this guess will always be correct! You will always find

some solutions of this form. When this guess is plugged into the

recurrence relation and the equation is simplified, the result is an

equation that can be solved for r. That equation is called the charac-

teristic equation for the recurrence. In our example, when an = rn

for each n, the result is rn = 4rn−1 + 12rn−2, and canceling rn−2 from

each term, and rearranging the equation, we get r2 − 4r − 12 = 0.

That’s the characteristic equation. The left side can be factored, and

the equation then looks like (r − 6)(r + 2) = 0, and we see the solu-

tions for r are r = 6 and r = −2. And, sure enough, if you check it

out, you will see that an = 6n and an = (−2)n both satisfy the given

the method of characteristic roots 279

recurrence relation. In other words, we find that

6n = 4 · 6n−1 + 12 · 6n−2, for all n ≥ 2, and

(−2)n = 4 · (−2)n−1 + 12 · (−2)n−2, for all n ≥ 2.

Using the characteristic equation, we have a method of finding

some solutions to a recurrence relation. This method will not find all

possible solutions however. BUT... if we find all the solutions to the

characteristic equation, then they can be combined in a certain way to

produce all possible solutions to the recurrence relation. The fact to

remember is that if r = a, b are the two solutions to the characteristic

equation (for a recurrence of order two), then every possible solution

to the linear homogenous recurrence relation must look like 2 2 Actually, that is not quite true. There
is a slight catch to be mentioned later
(see section 36.2).

αan + βbn,

for some constants α, β. In the example we have been working on,

every possible solution looks like3 3 This expression is called the general
solution of the recurrence relation.

an = α(6)n + β(−2)n.

Once we have figured out the general solution to the recurrence

relation, it is time to think about the initial conditions. In our case,

the initial conditions are a0 = 4 and a1 = 8. The idea is to select

the constants α and β of the general solution an = α6n + β(−2)n so

it will produce the correct two initial values. For n = 0 we see we

need 4 = a0 = α60 + β(−2)0 = α + β, and for n = 1, we need

8 = a1 = α61 + β(−2)1 = 6α− 2β. Now, we solve the following pair

of equations for α and β:

α + β = 4,

6α− 2β = 8.

Performing a bit of algebra, we learn that α = 2 and β = 2. Thus the

solution to the recurrence is

an = 2 · 6n + 2 · (−2)n.

280 math208: discrete mathematics

36.1.2 Initial steps: the characteristic equation and its roots

The steps in solving a recurrence problem are:

(1) Determine the characteristic equation.

(2) Find the solutions to the characteristic equation.

(3) Write down the general solution to the recurrence relation.

(4) Select the constants in the general solution to produce the correct

initial conditions.

36.2 Repeated characteristic roots.

And now, about the little lie mentioned above: One catch with the

method of characteristic equation occurs when the equation has

repeated roots. Suppose, for example, that when the characteristic

equation is factored the result is (r − 2)(r − 2)(r − 3)(r + 5) = 0.

The characteristic roots are 2, 2, 3 and −5. Here 2 is a repeated root. If

we follow the instructions given above, then the general solution we

would write down is

an = α2n + β2n + γ3n + δ(−5)n. (36.1)

However, this expression will not include all possible solutions to the

recurrence relation. Happily, the problem is not too hard to repair:

each time a root of the characteristic equation is repeated, multiply it

by an additional factor of n in the general solution, and then proceed

with step 4 as described earlier.

For our example, we modify one of the 2n terms in equation 36.1.

The correct general solution looks like Notice the extra factor of n in the

second term.

an = α2n + βn · 2n + γ3n + δ(−5)n.

If (r− 2) had been a four fold factor of the characteristic equation4, 4 in other words, if 2 had been a charac-
teristic root four times

then the part of the general solution involving the 2’s would look like

Each new occurrence of a 2 is multi-

plied by one more factor of n.α2n + βn · 2n + γn2 · 2n + δn3 · 2n.

the method of characteristic roots 281

36.3 The method of characteristic roots more formally

Let’s describe the method of characteristic equation a little more

formally. First, the characteristic equation is denoted by χ(x) = 0
5. Notice that the degree of χ(x) coincides with the degree of the 5 For the general degree 2 case above we

have χ(x) = x2 − c1x− c2.
recurrence relation. Notice also that the non-leading coefficients of

χ(x) are simply the negatives of the coefficients of the recurrence

relation. In general, the characteristic equation of an = c1an−1 + ... +

ckan−k is

χ(x) = xk − c1xk−1 − ...− ck−1x− ck = 0.

A number r (possibly complex) is a characteristic root if χ(r) = 0.

From basic algebra we know that r is a root of a polynomial if and

only if (x− r) is a factor of the polynomial. When χ(x) is a degree 2

polynomial, by the quadratic formula, either χ(x) = (x− r1)(x− r2),

where r1 6= r2, or χ(x) = (x− r)2, for some r.

Theorem 36.1. Let c1 and c2 be real numbers. Suppose that the polynomial

χ(x) = x2 − c1x − c2 has two distinct roots r1 and r2. Then a sequence

a : N → R is a solution of the recurrence relation an = c1an−1 + c2an−2,

for n ≥ 2 if and only if am = αrm
1 + βrm

2 , for all m ∈ N, and for some

constants α and β. The constants are determined by the

initial conditions (see equation 36.2).

Proof. If am = αrm
1 + βrm

2 for all m ∈ N, where α and β are some

constants, then since r2
i − c1ri − c2 = 0, we have r2

i = c1ri + c2, for i = 1

and n = 2. Hence, for n ≥ 2, we have

c1an−1 + c2an−2 = c1(αrn−1
1 + βrn−1

2) + c2(αrn−2
1 + βrn−2

2),

= αrn−2
1 (c1r1 + c2) + βrn−2

2 (c1r2 + c2), distributing and combining,

= αrn−2
1 · r2

1 + βrn−2
2 · r2

2, by the remark above,

= αrn
1 + βrn

2 = an.

Conversely, if a is a solution of the recurrence relation and has initial terms

a0 and a1, then one checks that the sequence am = αrm
1 + βrm

2 with

α =
a1 − a0 · r2

r1 − r2
, and β =

a0r1 − a1

r1 − r2
(36.2)

also satisfies the relation and has the same initial conditions. The equations

282 math208: discrete mathematics

for α and β come from solving the system of linear equations

a0 = α(r1)
0 + β(r2)

0 = α + β,

a1 = α(r1)
1 + β(r2)

1 = αr1 + βr2.

This system is solved using techniques from a prerequisite course. ♣

Example 36.2. Solve the recurrence relation a0 = 2, a1 = 3 and an = an−2,

for n ≥ 2.

Solution. The recurrence relation is a linear homogeneous recurrence

relation of degree 2 with constant coefficients c1 = 0 and c2 = 1. The

characteristic polynomial is

χ(x) = x2 − 0 · x− 1 = x2 − 1.

The characteristic polynomial has two distinct roots since

x2 − 1 = (x− 1)(x + 1).

Let’s say r1 = 1 and r2 = −1. Then, we find the system of equations:

2 = a0 = α10 + β(−1)0 = α + β,

3 = a1 = α11 + β(−1)1 = α + β(−1) = α− β.

Adding the two equations eliminates β and gives 5 = 2α, so α = 5/2.

Substituting this into the first equation, 2 = 5/2 + β, we see that β =

−1/2. Thus, our solution is

an =
5
2
· 1n +

−1
2

(−1)n =
5
2
− 1

2
· (−1)n.

Example 36.3. Solve the recurrence relation a1 = 3, a2 = 5, and,

an = 5an−1 − 6an−2, for n ≥ 3.

Solution. Here the characteristic polynomial is

χ(x) = x2 − 5x + 6 = (x− 2)(x− 3),

the method of characteristic roots 283

with roots r1 = 2 and r2 = 3. Now, we suppose that

am = α2m + β3m, for all m ≥ 1.

The initial conditions give rise to the system of equations

3 = a1 = α21 + β31 = 2α + 3β,

5 = a2 = α22 + β32 = 4α + 9β.

If we multiply the top equation through by 2, we obtain

6 = 4α + 6β,

5 = 4α + 9β.

Subtracting the second equation from the first eliminates α and yields

1 = −3β. So, we have found that β = −1/3. Substitution into the

first equation yields 3 = 2α + 3 · (−1/3), so α = 2. Thus

am = 2 · 2m − 1
3
· 3m = 2m+1 − 3m−1, for all m ≥ 1.

36.4 The method for repeated roots

The other case we mentioned had a characteristic polynomial of

degree two with one repeated root. Since the proof is similar we

simply state the theorem.

Theorem 36.4. Let c1 and c2 be real numbers with c2 6= 0 and suppose

that the polynomial x2 − c1x − c2 has a root r with multiplicity 2, so that

x2 − c1x− c2 = (x− r)2. Then, a sequence a : N → R is a solution of the

recurrence relation an = c1an−1 + c2an−2, for n ≥ 2 if and only if

am = (α + βm)rm,

for all m ∈N, and for some constants α and β.

Example 36.5. Solve the recurrence relation a0 = −1, a1 = 4 and an =

4an−1 − 4an−2, for n ≥ 2.

Solution. In this case we have χ(x) = x2 − 4x + 4 = (x − 2)2. So, we

284 math208: discrete mathematics

may suppose that

am = (α + βm)2m, for all m ∈N.

The initial conditions give rise to the system of equations

−1 = a0 = (α + β · 0)20 = (α) · 1 = α,

4 = a1 = (α + β · 1)21 = 2(α + β) · 2.

Substituting α = −1 into the second equation gives 4 = 2(β − 1), so

2 = β− 1 and β = 3. Therefore am = (3m− 1)2m, for all m ∈N.

36.5 The general case

Finally, we state6 the general method of characteristic roots. 6 without proof

Theorem 36.6. Let c1, c2, ..., ck ∈ R with ck 6= 0. Suppose that the

characteristic polynomial factors as

χ(x) = xk − c1xk−1 − c2xk−2 − ...− ck−1x− ck,

= (x− r1)
j1(x− r2)

j2 · · · (x− rs)
js ,

where r1, r2, . . ., rs are distinct roots of χ(x), and j1, j2, . . ., js are positive

integers such that

j1 + j2 + j3 + ... + js = k.

Then a sequence a : N→ R is a solution of the recurrence relation

an = c1an−1 + c2an−2 + ... + ckan−k, for n ≥ k

if and only if

am = p1(m)rm
1 + p2(m)rm

2 + ... + ps(m)rm
s , for all m ∈N,

where

pi(m) = α0,i + α1,im + α2,im2 + ... + αji−1,imji−1, 1 ≤ i ≤ s

and the αl,i’s are constants.

the method of characteristic roots 285

There is a problem with the general case. It is true that given the

recurrence relation we can simply write down the characteristic poly-

nomial. However it can be quite a challenge to factor it as required

by the theorem. Even if we succeed in factoring it we are faced with

the tedious task of setting up and solving a system of k linear equa-

tions in k unknowns (the αl,i’s). While in theory such a system can be

solved using the methods of elimination or substitution covered in a

college algebra course, in practice, the amount of labor involved can

become overwhelming. For this reason, computer algebra systems are

often used in practice to help solve systems of equations, or even the

original recurrence relation.

286 math208: discrete mathematics

36.6 Exercises

Exercise 36.1. For each of the following sequences find a recurrence relation

satisfied by the sequence. Include a sufficient number of initial conditions to

completely specify the sequence.

(a) an = 2n + 3, n ≥ 0

(b) an = 3 · 2n, n ≥ 1

(c) an = n2, n ≥ 1

(d) an = n + (−1)n, n ≥ 0

Solve each of the following recurrence relations:

Exercise 36.2. a0 = 3, a1 = 6, and an = an−1 + 6an−2, for n ≥ 2.

Exercise 36.3. a0 = 4, a1 = 7, and an = 5an−1 − 6an−2, for n ≥ 2.

Exercise 36.4. a2 = 5, a3 = 13, and an = 7an−1 − 10an−2, for n ≥ 4.

Exercise 36.5. a1 = 3, a2 = 5, and an = 4an−1 − 4an−2, for n ≥ 3.

Exercise 36.6. a0 = 1, a1 = 6, and an = 6an−1 − 9an−2, for n ≥ 2.

Exercise 36.7. a1 = 2, a2 = 8, and an = an−2, for n ≥ 3.

Exercise 36.8. a0 = 2, a1 = 5, a2 = 15, and an = 6an−1 − 11an−2 +

6an−3, for n ≥ 3.

Exercise 36.9. Find a closed form formula for the terms of the Fibonacci

sequence: f0 = 0, f1 = 1, and for n ≥ 2, fn = fn−1 + fn−2.

37

Solving Nonhomogeneous Recurrences

When a linear recurrence relation with constant coefficients

for a sequence {sn} looks like

sn = c1sn−1 + c2sn−2 + · · ·+ cksn−k + f (n),

where f (n) is some (nonzero) function of n, then the recurrence rela-

tion is said to be nonhomogeneous. For example, sn = 2sn−1 + n2 + 1

is a nonhomogeneous recurrence. Here f (n) = n2 + 1. The methods

used in the last chapter are not adequate to deal with nonhomoge-

neous problems. But it wasn’t all a waste since those methods do

provide one step in the solution of nonhomogeneous problems.

37.1 Steps to solve nonhomogeneous recurrence relations

Step (1): Replace the f (n) by 0 to create a homogeneous recurrence relation,

sn = c1sn−1 + c2sn−2 + · · ·+ cksn−k.

Now solve this and write down the general solution1. For exam- 1 We learned to do this in chapter 36.

ple, in the case of no repeated roots, the general solution will look

something like:

sn = a1rn
1 + a2rn

2 + · · ·+ akrn
k ,

where the constants a1, a2, · · · , ak are to be determined.

288 math208: discrete mathematics

Step (2): Next, find one particular solution to the original nonhomoge-

neous recursion. In other words, one specific sequence that obeys

the recursive formula (ignoring the initial conditions). A method

for finding a particular solution that works in many cases is to

guess! Actually, it is to make an educated guess. Reasonable

guesses depend on the form of f (n). There is an algorithm that

will produce the correct guess, but it is so complicated it isn’t

worth learning for the few simple examples we will be doing.

Instead, rely on the following guidelines to guess the form of a

particular solution.

Roughly, the plan is the guess a particular solution that is the most

general function of the same type as f (n). Specifically, table 37.1

shows reasonable guesses.

f (n) Particular Solution Guess

c (a constant) A (constant)

n An + B

n2 An2 + Bn + C

n3 An3 + Bn2 + Cn + D

2n A2n

rn (r constant) Arn

Table 37.1: Particular solution patterns

These guesses can be mixed-and-matched. For example, if

f (n) = 3n2 + 5n,

then a reasonable candidate particular solution would be

An2 + Bn + C + D5n.

Once a guess has been made for the form of a particular solution,

that guess is plugged into the recurrence relation, and the coef-

ficients A, B, · · · are determined. In this way a specific particular

solution will be found.

It will sometimes happen that when the equations are set up to de-

termine the coefficients of the particular solution, an inconsistent

system will appear. In such a case, as with repeated characteris-

tic roots, the trick is (more-or-less) to multiply the guess for the

particular solution by n, and try again.

Step (3): Once a particular solution has been found, add the particular

solution of step (2) to the general solution of the homogeneous

recurrence found in step (1). If we denote a particular solution by

h(n), then the total general solution looks like

sn = a1rn
1 + a2rn

2 + · · ·+ akrn
k + h(n).

solving nonhomogeneous recurrences 289

Step (4): Invoke the initial conditions to determine the values of the coeffi-

cients a1, a2, · · · , ak just as we did for the homogeneous problems

in chapter 36.

The major oversight made solving a nonhomogeneous recurrence

relation is trying to determine the coefficients a1, a2, · · · , ak before the

particular solution is added to the general solution. This mistake will

usually lead to inconsistent information about the coefficients, and no

solution to the recurrence will be found.

37.2 Examples

Example 37.1. Let’s solve the Tower of Hanoi recurrence using this method.

The recurrence is H0 = 0, and, for n ≥ 1, Hn = 2Hn−1 + 1. We know

the closed form formula for Hn is 2n − 1 already, but let’s work it out using

the method outlined above.

Step (1): Find the general solution of related homogeneous recursion (indicated by

the superscript (h)): H(h)
n = 2H(h)

n−1. That will be H(h)
n = A2n.

Step (2): Guess the particular solution (indicated by superscript (p)): H(p)
n = B, a

constant. Plugging that guess into the recurrence gives B = 2B + 1, and

so we see B = −1.

Step (3): Hence, the general solution to the Tower of Hanoi recurrence is

Hn = H(h)
n + H(p)

n = A2n − 1.

Step (4): Now, use the initial condition to determine A: When n = 0, we want

0 = A20 − 1 which means A = 1. Thus, we find the expected result:

Hn = 2n − 1, for n ≥ 0.

290 math208: discrete mathematics

Example 37.2. Here is a more complicated example worked out in detail to

exhibit the method. Let’s solve the recurrence

s1 = 2, s2 = 5 and,

sn = sn−1 + 6sn−2 + 3n− 1, for n ≥ 3.

Step (1): Find the general solution of sn = sn−1 + 6sn−2. After finding the

characteristic equation, and the characteristic roots, the general solution

turns out to be sn = a13n + a2(−2)n.

Step (2): To find a particular solution let’s guess that there is a solution h(n) that

looks like h(n) = an + b, where a and b are to be determined. To find

values of a and b that work, we substitute this guess for a solution into

the original recurrence relation. In this case, the result of plugging in the

guess (sn = h(n) = an + b) gives us:

an + b = a(n− 1) + b + 6(a(n− 2) + b) + 3n− 1.

which can be rearranged to

(6a + 3)n + (−13a + 6b− 1) = 0.

If this equation is to be correct for all n, then, in particular, it must be

correct when n = 0 and when n = 1, and that tells us that

−13a + 6b− 1 = 0 and,

6a + 3− 13a + 6b− 1 = 0.

Solving this pair of equations we find a = − 1
2 and b = − 11

12 . And, sure

enough, if you plug this alleged solution into the original recurrence, you

will see it checks.

Step (3): Write down the general solution to the original nonhomogeneous problem

by adding the particular solution of step (2) to the general solution from

step (1) getting:

sn = a13n + a2(−2)n +

(
−1

2

)
n +

(
−11

12

)
.

solving nonhomogeneous recurrences 291

Step (4): Now a1, a2 can be calculated: For n = 1, the first initial condition gives

2 = a131 + a2(−2)1 +

(
−1

2

)
1 +

(
−11

12

)
,

and for n = 2, we get

5 = a132 + a2(−2)2 +

(
−1

2

)
2 +

(
−11

12

)
.

Solving these two equations for a1 and a2, we find that a1 = 11
12 and

a2 = − 1
3 .

So the solution to the recurrence is

sn =
11
12

3n − 1
3
(−2)n +

(
−1

2

)
n +

(
−11

12

)
.

292 math208: discrete mathematics

37.3 Exercises

Use the general solutions for the related homogeneous problems of chapter 36

to help solve the following nonhomogeneous recurrence relations with initial

conditions.

Exercise 37.1. a0 = 3, a1 = 6 and an = an−1 + 6an−2 + 1, for n ≥ 2.

Exercise 37.2. a2 = 5, a3 = 13 and an = 7an−1 − 10an−2 + n, for n ≥ 4.

Exercise 37.3. a0 = 0, a1 = 1 and an = 4an−1 − 4an−2 + 2n, for n ≥ 2.

Exercise 37.4. a0 = 1, a1 = 6 and an = 6an−1 − 9an−2 + n, for n ≥ 2.

Exercise 37.5. a0 = 2, a1 = 5, a2 = 15, and an = 6an−1 − 11an−2 +

6an−3 + 2n + 1, for n ≥ 3.

38

Graphs

In an earlier chapter we represented relations with a

graph. In this chapter we discuss a more general notion

of a graph.

38.1 Some Graph Terminology

There is a lot of new vocabulary to absorb concerning graphs! For

this chapter, a graph will consist of a number of points (called ver-

tices) (singular: vertex) together with lines (called edges) joining

some (possibly none, possibly all) pairs of vertices. Unlike the graphs

of earlier chapters, we will not allow an edge from a vertex back to

itself (so no loops allowed), we will not allow multiple edges between

vertices, and the edges will not be directed (there will be no edges

with arrowheads on one or both ends). All of our graphs will have a

finite vertex sets, and consequently a finite number of edges. Graphs

are typically denoted by an uppercase letter such as G or H.

If you would like a formal definition: a graph, G consists of a set

of vertices V and a set E of edges, where an edge t ∈ E is written as

an unordered pair of vertices {u, v}, (in other words, a set consisting

of two different vertices). We say that the edge t = {u, v} has end-

points u and v, and that the edge t is incident to both u and v. The

vertices u and v are adjacent when there is an edge with endpoints

u and v; otherwise they are not adjacent. Such a formal definition is

necessary, but a more helpful way to think of a graph is as a diagram.

294 math208: discrete mathematics

Here is an example of a graph G with vertex set {a, b, c, d, e} illus-

trating these concepts.

a

b c

d

eG

The placement of the vertices in a diagram representing a graph is

(within reason!) not important. Here is another diagram of that same

graph G.

a b c

d

e

G

In this diagram, we again have vertex set a, b, c, d, e, and edges

{a, b}, {b, c}, {c, d}, {a, d}, {a, e}, {b, e}, {c, e}, and that is all that

matters. It is a good idea to draw a diagram that is easy to under-

stand! In particular, while any curve can be used to represent an

edge between two vertices, whenever it is reasonable, edges are nor-

mally drawn as straight lines. The vertices b and e are adjacent and

the vertices b and d are not adjacent. The vertices a and c are not ad-

jacent since there is no edge {a, c}. If we use s to denote the edge

joining b to c, then s has endpoints b and c, and s is incident to b and

c.

Applying the a-picture-is-worth-a-thousand-words principle, for the

small graphs we will be working with, a graph diagram is generally

the easiest way to represent a graph.

38.1.1 Representing a graph in a computer

There are two standard ways to represent a graph in computer mem-

ory, both involving matrices (in other words, tables of numbers).

graphs 295

The matrices are of a special type called 0, 1-matrices since the table

entries will all be either 0 or 1.

Adjacency matrix: If there are n vertices in the graph G, the ad-

jacency matrix is an n by n square table of numbers. The rows and

columns of the table are labeled with the symbols used to name the

vertices. The names are used in the same order for the rows and

columns, so there are n! possible labelings. Often there will be some

natural choice of the order of the labels, such as alphabetic or numeric

order. The entries in the table are determined as follows: the matrix

entry with row label x and column label y is 1 if x and y are adjacent,

and 0 otherwise.

Incidence matrix: Suppose the graph G has n vertices and m

edges. The table will have n rows, labeled with the names of the

vertices, and m columns labeled with the edges. Which of the n!m!

possible orderings of these labelings has to be specified in some way.

The entry in the row labeled with vertex u and column labeled with

edge e is 1 if e is incident with u, and 0 otherwise. Since every edge is

incident to exactly two vertices, every column of the incidence matrix

will have exactly two 1’s.

Example 38.1. Let G have vertex set {u1, u2, u3, u4, u5} and edges

{u1, u2}, {u2, u3}, {u3, u4}, {u4, u5}, {u5, u1}, {u5, u3}. A graphical

representation of G is

u5

u1

u2

u3u4

G

Here are the adjacency matrix AG, and the incidence matrix MG of G

using the vertices and edges in the orders given above.

296 math208: discrete mathematics

AG =



0 1 0 0 1

1 0 1 0 0

0 1 0 1 1

0 0 1 0 1

1 0 1 1 0


MG =



1 0 0 0 1 0

1 1 0 0 0 0

0 1 1 0 0 1

0 0 1 1 0 0

0 0 0 1 1 1



38.2 An Historical Interlude: The origin of graph theory

Unlike most areas of mathematics, it is possible to point the a specific

person as the creator of graph theory and a specific problem that led

to its creation. On the following pages the Seven Bridges of Königsberg

problem and the graph theoretic approach to a solution provided by

Leonard Euler in 1736 is described.

The notion of a graph discussed in the article is a little more gen-

eral that the graphs we will be working with in the chapter. To model

the bridge problem as a graph, Euler allowed multiple edges between

vertices. In modern terminology, graphs with multiple edges are

called multigraphs.

While we are on the topic of extensions of the definition of a

graph, let’s also mention the case of graphs with loops. Here we al-

low an edge to connect a vertex to itself, forming a loop. Multigraphs

with loops allowed are called pseudographs. Another generaliza-

tion of the basic concept of a graph is hypergraph: in a hypergraph,

a single edge is allowed to connect not just two, but any number of

vertices.

Finally, for all these various types of graphs, we can consider the

directed versions in which the edges are given arrowheads on one

or both ends to indicate the permitted direction of travel along that

edge.

In the following article, multigraphs are employed. But after the

article we will again refer only to graphs with no multiple edges and and no

loops.

Seven Bridges of Königsberg

This article is about an abstract problem. For the histori-
cal group of bridges in the city once known as Königsberg,
and those of them that still exist, see § Present state of the
bridges.
The Seven Bridges of Königsberg is a historically no-

Map of Königsberg in Euler’s time showing the actual layout of
the seven bridges, highlighting the river Pregel and the bridges

table problem in mathematics. Its negative resolution by
Leonhard Euler in 1736 laid the foundations of graph the-
ory and prefigured the idea of topology.[1]

The city of Königsberg in Prussia (now Kaliningrad,
Russia) was set on both sides of the Pregel River, and
included two large islands which were connected to each
other, or to the twomainland portions of the city, by seven
bridges. The problem was to devise a walk through the
city that would cross each of those bridges once and only
once.
By way of specifying the logical task unambiguously, so-
lutions involving either

1. reaching an island or mainland bank other than via
one of the bridges, or

2. accessing any bridge without crossing to its other
end

are explicitly unacceptable.
Euler proved that the problem has no solution. The dif-
ficulty he faced was the development of a suitable tech-
nique of analysis, and of subsequent tests that established
this assertion with mathematical rigor.

1 Euler’s analysis

First, Euler pointed out that the choice of route inside
each land mass is irrelevant. The only important feature
of a route is the sequence of bridges crossed. This al-
lowed him to reformulate the problem in abstract terms
(laying the foundations of graph theory), eliminating all
features except the list of land masses and the bridges
connecting them. In modern terms, one replaces each
land mass with an abstract "vertex" or node, and each
bridge with an abstract connection, an "edge", which only
serves to record which pair of vertices (land masses) is
connected by that bridge. The resulting mathematical
structure is called a graph.

→

→

Since only the connection information is relevant, the
shape of pictorial representations of a graph may be dis-
torted in any way, without changing the graph itself. Only
the existence (or absence) of an edge between each pair
of nodes is significant. For example, it does not mat-
ter whether the edges drawn are straight or curved, or
whether one node is to the left or right of another.

1

2 3 VARIATIONS

Next, Euler observed that (except at the endpoints of the
walk), whenever one enters a vertex by a bridge, one
leaves the vertex by a bridge. In other words, during any
walk in the graph, the number of times one enters a non-
terminal vertex equals the number of times one leaves it.
Now, if every bridge has been traversed exactly once, it
follows that, for each land mass (except for the ones cho-
sen for the start and finish), the number of bridges touch-
ing that land mass must be even (half of them, in the par-
ticular traversal, will be traversed “toward” the landmass;
the other half, “away” from it). However, all four of the
land masses in the original problem are touched by an
odd number of bridges (one is touched by 5 bridges, and
each of the other three is touched by 3). Since, at most,
two land masses can serve as the endpoints of a walk, the
proposition of a walk traversing each bridge once leads to
a contradiction.
In modern language, Euler shows that the possibility of a
walk through a graph, traversing each edge exactly once,
depends on the degrees of the nodes. The degree of a
node is the number of edges touching it. Euler’s argu-
ment shows that a necessary condition for the walk of the
desired form is that the graph be connected and have ex-
actly zero or two nodes of odd degree. This condition
turns out also to be sufficient—a result stated by Euler
and later proven by Carl Hierholzer. Such a walk is now
called an Eulerian path or Euler walk in his honor. Fur-
ther, if there are nodes of odd degree, then any Eulerian
path will start at one of them and end at the other. Since
the graph corresponding to historical Königsberg has four
nodes of odd degree, it cannot have an Eulerian path.
An alternative form of the problem asks for a path that
traverses all bridges and also has the same starting and
ending point. Such a walk is called an Eulerian circuit or
an Euler tour. Such a circuit exists if, and only if, the
graph is connected, and there are no nodes of odd degree
at all. All Eulerian circuits are also Eulerian paths, but
not all Eulerian paths are Eulerian circuits.
Euler’s work was presented to the St. Petersburg
Academy on 26 August 1735, and published as Solu-
tio problematis ad geometriam situs pertinentis (The so-
lution of a problem relating to the geometry of posi-
tion) in the journal Commentarii academiae scientiarum
Petropolitanae in 1741.[2] It is available in English in The
World of Mathematics.

2 Significance in the history of
mathematics

In the history of mathematics, Euler’s solution of the
Königsberg bridge problem is considered to be the first
theorem of graph theory and the first true proof in the
theory of networks,[3] a subject now generally regarded
as a branch of combinatorics. Combinatorial problems
of other types had been considered since antiquity.

In addition, Euler’s recognition that the key information
was the number of bridges and the list of their endpoints
(rather than their exact positions) presaged the develop-
ment of topology. The difference between the actual lay-
out and the graph schematic is a good example of the idea
that topology is not concerned with the rigid shape of ob-
jects.

3 Variations

The classic statement of the problem, given above, uses
unidentified nodes—that is, they are all alike except for
the way in which they are connected. There is a variation
in which the nodes are identified—each node is given a
unique name or color.

A variant with red and blue castles, a church and an inn.

The northern bank of the river is occupied by the Schloß,
or castle, of the Blue Prince; the southern by that of
the Red Prince. The east bank is home to the Bishop’s
Kirche, or church; and on the small island in the center is
a Gasthaus, or inn.
It is understood that the problems to follow should be
taken in order, and begin with a statement of the origi-
nal problem:
It being customary among the townsmen, after some
hours in the Gasthaus, to attempt to walk the bridges,
many have returned for more refreshment claiming suc-
cess. However, none have been able to repeat the feat by
the light of day.
Bridge 8: The Blue Prince, having analyzed the town’s
bridge system by means of graph theory, concludes that
the bridges cannot be walked. He contrives a stealthy
plan to build an eighth bridge so that he can begin in the
evening at his Schloß, walk the bridges, and end at the
Gasthaus to brag of his victory. Of course, he wants the
Red Prince to be unable to duplicate the feat from the
Red Castle. Where does the Blue Prince build the eighth
bridge?

Bridge 9: The Red Prince, infuriated by his brother’s

3.1 Solutions 3

Gordian solution to the problem, wants to build a ninth
bridge, enabling him to begin at his Schloß, walk the
bridges, and end at theGasthaus to rub dirt in his brother’s
face. As an extra bit of revenge, his brother should then
no longer be able to walk the bridges starting at his Schloß
and ending at theGasthaus as before. Where does the Red
Prince build the ninth bridge?

Bridge 10: The Bishop has watched this furious
bridge-building with dismay. It upsets the town’s
Weltanschauung and, worse, contributes to excessive
drunkenness. He wants to build a tenth bridge that allows
all the inhabitants to walk the bridges and return to their
own beds. Where does the Bishop build the tenth bridge?

3.1 Solutions

The colored graph

Reduce the city, as before, to a graph. Color each node.
As in the classic problem, no Euler walk is possible; col-
oring does not affect this. All four nodes have an odd
number of edges.
Bridge 8: Euler walks are possible if exactly zero or two
nodes have an odd number of edges. If we have 2 nodes
with an odd number of edges, the walk must begin at one
such node and end at the other. Since there are only 4
nodes in the puzzle, the solution is simple. The walk de-
sired must begin at the blue node and end at the orange
node. Thus, a new edge is drawn between the other two
nodes. Since they each formerly had an odd number of
edges, they must now have an even number of edges, ful-
filling all conditions. This is a change in parity from an
odd to even degree.
Bridge 9: The 9th bridge is easy once the 8th is solved.

The 8th edge

The 9th edge

The desire is to enable the red castle and forbid the blue
castle as a starting point; the orange node remains the end
of the walk and the white node is unaffected. To change
the parity of both red and blue nodes, draw a new edge
between them.
Bridge 10: The 10th bridge takes us in a slightly different
direction. The Bishop wishes every citizen to return to his
starting point. This is an Euler circuit and requires that
all nodes be of even degree. After the solution of the 9th
bridge, the red and the orange nodes have odd degree,

4 6 REFERENCES

The 10th edge

so their parity must be changed by adding a new edge
between them.

8th, 9th, and 10th bridges

4 Present state of the bridges

Two of the seven original bridges did not survive the
bombing of Königsberg inWorldWar II. Two others were
later demolished and replaced by a modern highway. The
three other bridges remain, although only two of them are
from Euler’s time (one was rebuilt in 1935).[4] Thus, as
of 2000, there are five bridges in Kaliningrad that were a
part of the Euler’s problem.
In terms of graph theory, two of the nodes now have de-
gree 2, and the other two have degree 3. Therefore, an
Eulerian path is now possible, but it must begin on one
island and end on the other.[5]

Modern map of Kaliningrad. Locations of the remaining bridges
are highlighted in green, while those destroyed are highlighted in
red.

Canterbury University in Christchurch, NewZealand, has
incorporated a model of the bridges into a grass area
between the old Physical Sciences Library and the Er-
skine Building, housing the Departments of Mathemat-
ics, Statistics and Computer Science.[6] The rivers are
replaced with short bushes and the central island sports
a stone tōrō. Rochester Institute of Technology has in-
corporated the puzzle into the pavement in front of the
Gene Polisseni Center, an ice hockey arena that opened
in 2014.[7]

5 See also

• Eulerian path

• Five room puzzle

• Glossary of graph theory

• Hamiltonian path

• Icosian game

• Water, gas, and electricity

6 References

[1] See Shields, Rob (December 2012). 'Cultural Topology:
The Seven Bridges of Königsburg 1736' in Theory Cul-
ture and Society 29. pp.43-57 and in versions online for
a discussion of the social significance of Euler’s engage-
ment with this popular problem and its significance as an
example of (proto-)topological understanding applied to
everyday life.

5

5 3

3

3

5 5

54 4

9
Comparison of the graphs of the Seven bridges of Konigsberg
(top) and Five-room puzzles (bottom). The numbers denote the
number of edges connected to each node. Nodes with an odd
number of edges are shaded orange.

[2] The Euler Archive, commentary on publication, and orig-
inal text, in Latin.

[3] Newman, M. E. J. The structure and function of com-
plex networks (PDF). Department of Physics, University
of Michigan.

[4] Taylor, Peter (December 2000). “What Ever Hap-
pened to Those Bridges?". Australian Mathematics Trust.
Archived from the original on 19 March 2012. Retrieved
11 November 2006.

[5] Stallmann, Matthias (July 2006). “The 7/5 Bridges
of Koenigsberg/Kaliningrad”. Retrieved 11 November
2006.

[6] “About – Mathematics and Statistics – University of Can-
terbury”. math.canterbury.ac.nz. Retrieved 4 November
2010.

[7] https://twitter.com/ritwhky/status/
501529429185945600

7 External links

• Kaliningrad and the Konigsberg Bridge Problem at
Convergence

• Euler’s original publication (in Latin)

• The Bridges of Königsberg

• How the bridges of Königsberg help to understand
the brain

• Euler’s Königsberg’s Bridges Problem at Math Dept.
Contra Costa College

• Pregel – A Google graphing tool named after this
problem

Coordinates: 54°42′12″N 20°30′56″E / 54.70333°N
20.51556°E

6 8 TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES

8 Text and image sources, contributors, and licenses

8.1 Text
• Seven Bridges of Königsberg Source: https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg?oldid=759230125 Contrib-

utors: Zundark, Eclecticology, Deb, D, Michael Hardy, Chris-martin, Gabbe, Seav, Den fjättrade ankan~enwiki, Mark Foskey, Bogdan-
giusca, Berteun, Ed Cormany, Reddi, Dysprosia, Wik, Shizhao, AnonMoos, Jerzy, Robbot, Murray Langton, Fredrik, Donreed, Altenmann,
Kneiphof, Bkell, Matt Gies, Giftlite, JamesMLane, Harp, MSGJ, Dratman, Finn-Zoltan, Macrakis, Matthead, Gadfium, Antandrus, DRE,
Icairns, Ukexpat, Clubjuggle, Deadlock, Wikiacc, Ascánder, Bender235, Shanes, C S, Blotwell, La goutte de pluie, AllTom, Arthena,
Keenan Pepper, Cdc, Americanadian, Oghmoir, Gene Nygaard, Alai, Ghirlandajo, Hq3473, Jftsang, Apokrif, Tabletop, Cbdorsett, Au-
diovideo, Xiong, Marudubshinki, StefanFuhrmann~enwiki, Graham87, BD2412, Qwertyus, Salix alba, Mkehrt, FlaBot, Gurch, Bgwhite,
YurikBot, Wavelength, Hairy Dude, Snillet, Michael Slone, Sikon, Stallions2010, CptnMisc, Arthur Rubin, Cmglee, DVD R W, Smack-
Bot, McGeddon, Stegano~enwiki, Wzhao553, Betacommand, Anachronist, Bird of paradox, Thumperward, DHN-bot~enwiki, Scray, John
Reid, LtPowers, John, JLeander, NongBot~enwiki, DaBjork, TheFarix, BranStark, Dilip rajeev, Eyefragment, Courcelles, Stuart Wim-
bush, CmdrObot, Ivan Pozdeev, Phauly, Nalpdii~enwiki, Nczempin, WLior, Iempleh, Thijs!bot, Headbomb, Lethargy, Gswitz, Seaphoto,
Smith2006, Hurmari, JAnDbot, MER-C, CheMechanical, The Anomebot2, David Eppstein, WPaulB, DerHexer, Gwern, LapisQuem,
R'n'B, CommonsDelinker, Nev1, Maproom, Smitty, Independentdependent, TXiKiBoT, David Condrey, LFStokols, Falcon8765, Dusti,
YonaBot, Hertz1888, Triwbe, Smsarmad, Foljiny, Ctxppc, Ken123BOT, Nic bor, Mikeharris111, Pnijssen, ClueBot, Kl4m, CounterVan-
dalismBot, Piledhigheranddeeper, Excirial, Steveheric, Manu-ve Pro Ski, Jth1994, Addbot, Andunie, Godwin100, Fottry55i6, LinkFA-
Bot, Numbo3-bot, Komischn, PV=nRT, Teles, Zorrobot, Luckas-bot, Yobot, AnakngAraw, Ciphers, Materialscientist, Smmlit, ArthurBot,
Obersachsebot, Xqbot, Zevyefa, RibotBOT, Tmgreen, Zmorell, Chenopodiaceous, AstaBOTh15, Winterst, MarcelB612, Bmclaughlin9,
Serols, Christopher1968, MFrawn, Nascar1996, Deadlyops, WikitanvirBot, TuHan-Bot, Thecheesykid, Cobaltcigs, Donaldm314, Don-
ner60, Scientific29, Orange Suede Sofa, Haythamdouaihy, ClueBot NG, Lord Chamberlain, the Renowned, Vacation9, Santacloud, Ianr790,
Athos, MusikAnimal, Cyberbot II, Dexbot, Hmainsbot1, Christallkeks, RockvilleRideOn, Ynaamad, MasterTriangle12, Monkbot, Acekqj,
Blois2014, Imdifferentyo123456789, Poppy sheppard and Anonymous: 170

8.2 Images
• File:7_bridges.svg Source: https://upload.wikimedia.org/wikipedia/commons/9/91/7_bridges.svg License: CC-BY-SA-3.0 Contributors:

? Original artist: ?
• File:7_bridgesID.png Source: https://upload.wikimedia.org/wikipedia/commons/b/b3/7_bridgesID.png License: CC-BY-SA-3.0 Con-

tributors: Transferred from en.wikipedia to Commons. Original artist: The original uploader was Xiong at English Wikipedia
• File:7b-graph09.png Source: https://upload.wikimedia.org/wikipedia/commons/6/69/7b-graph09.png License: CC-BY-SA-3.0 Contrib-

utors: Transferred from en.wikipedia to Commons. Original artist: Xiong at English Wikipedia
• File:Commons-logo.svg Source: https://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg License: PD Contributors: ? Origi-

nal artist: ?
• File:Comparison_7_bridges_of_Konigsberg_5_room_puzzle_graphs.svg Source: https://upload.wikimedia.org/wikipedia/

commons/f/fb/Comparison_7_bridges_of_Konigsberg_5_room_puzzle_graphs.svg License: CC BY-SA 3.0 Contributors: Own work
Original artist: Cmglee

• File:Koenigsberg_Bridges_Variations_Graph10.png Source: https://upload.wikimedia.org/wikipedia/commons/b/b7/Koenigsberg_
Bridges_Variations_Graph10.png License: CC-BY-SA-3.0 Contributors: ? Original artist: ?

• File:Koenigsberg_Bridges_Variations_Graph7.png Source: https://upload.wikimedia.org/wikipedia/commons/a/af/Koenigsberg_
Bridges_Variations_Graph7.png License: CC-BY-SA-3.0 Contributors: ? Original artist: ?

• File:Koenigsberg_Bridges_Variations_Graph8.png Source: https://upload.wikimedia.org/wikipedia/commons/9/90/Koenigsberg_
Bridges_Variations_Graph8.png License: CC-BY-SA-3.0 Contributors: ? Original artist: ?

• File:Koenigsberg_Bridges_Variations_Problem.png Source: https://upload.wikimedia.org/wikipedia/commons/6/66/Koenigsberg_
Bridges_Variations_Problem.png License: CC-BY-SA-3.0 Contributors: Transferred from en.wikipedia to Commons by Legoktm using
CommonsHelper. Original artist: Xiong at English Wikipedia

• File:Konigsberg_bridges.png Source: https://upload.wikimedia.org/wikipedia/commons/5/5d/Konigsberg_bridges.png License: CC-
BY-SA-3.0 Contributors: Public domain (PD), based on the image

• <img
alt='Image-Koenigsberg, Map by Merian-Erben 1652.jpg' src='https://upload.wikimedia.org/wikipedia/commons/thumb/1/15/
Image-Koenigsberg%2C_Map_by_Merian-Erben_1652.jpg/120px-Image-Koenigsberg%2C_Map_by_Merian-Erben_1652.jpg'
width='120' height='84' srcset='https://upload.wikimedia.org/wikipedia/commons/thumb/1/15/Image-Koenigsberg%
2C_Map_by_Merian-Erben_1652.jpg/180px-Image-Koenigsberg%2C_Map_by_Merian-Erben_1652.jpg 1.5x, https:
//upload.wikimedia.org/wikipedia/commons/thumb/1/15/Image-Koenigsberg%2C_Map_by_Merian-Erben_1652.jpg/
240px-Image-Koenigsberg%2C_Map_by_Merian-Erben_1652.jpg 2x' data-file-width='628' data-file-height='437' />

Original artist: Bogdan Giuşcă
• File:Königsberg_graph.svg Source: https://upload.wikimedia.org/wikipedia/commons/9/96/K%C3%B6nigsberg_graph.svg License:

CC-BY-SA-3.0 Contributors: ? Original artist: ?
• File:Present_state_of_the_Seven_Bridges_of_Königsberg.png Source: https://upload.wikimedia.org/wikipedia/commons/e/e8/

Present_state_of_the_Seven_Bridges_of_K%C3%B6nigsberg.png License: CC BY-SA 2.5 Contributors: http://openstreetmap.ru/#map=
15/54.7044/20.5175&layer=S Original artist: Map data by OpenStreetMap contributors; rendering by GIScience Research Group @
Heidelberg University; produced work by Santacloud

8.3 Content license 7

• File:Question_book-new.svg Source: https://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg License: Cc-by-sa-3.0
Contributors:
Created from scratch in Adobe Illustrator. Based on Image:Question book.png created by User:Equazcion Original artist:
Tkgd2007

8.3 Content license
• Creative Commons Attribution-Share Alike 3.0

304 math208: discrete mathematics

38.3 The First Theorem of Graph Theory

For a vertex v in a graph we denote the number of edges incident

to v as the degree of v, written as deg(v). For example, consider the

graph

u5

u1

u2

u3u4

G

Vertices u1, u2, u4 each have degree 2, while deg(u3) and deg(u5)

are each 3. The list of the degrees of the vertices of a graph is called

the degree sequence of the graph. The degrees are traditionally listed

in increasing order. So the degree sequence of the graph G above is

2, 2, 2, 3, 3.

The following theorem is usually referred to as the First Theorem of

Graph Theory

Theorem 38.2. The sum of the degrees of the vertices of a graph equals

twice the number of edges. In particular, the sum of the degrees is even.

Proof. Notice that when adding the degrees for the vertices, each edge is

counted exactly twice, once for each endpoint. So the sum of the degrees is

twice the number of edges. ♣

For example, in the graph G above, there are 6 edges, and the sum

of the degrees of the vertices is 2 + 2 + 2 + 3 + 3 = 12 = 2(6).

Corollary 38.3. A graph must have an even number of vertices of odd

degree.

Proof. Split the vertices into two groups: the vertices with even degree and

the vertices with odd degree. The sum of all the degrees is even, and the sum

of all the even degrees is also even. That implies that the sum of all the odd

degrees must also be even. Since an odd number of odd integers adds up to

an odd integer, it must be that there is an even number of odd degrees. ♣

graphs 305

38.4 A Brief Catalog of Special Graphs

It is convenient to have names for some particular types of graphs

that occur frequently.

For n ≥ 1, Kn denotes the graph with n vertices where every pair

of vertices is adjacent. Kn is the complete graph on n vertices. So Kn

is the largest possible graph with n vertices in the sense that it has

the maximum possible number of edges.

K6
For n ≥ 3, Cn denotes the graph with n vertices, v1, ..., vn, where

each vertex in that list is adjacent to the vertex that follows it and vn

is adjacent to v1. The graph Cn is called the n-cycle. The graph C3 is

called a triangle.

C6

For n ≥ 2, Ln denotes the n-link. An n-link is a row of n vertices

with each vertex adjacent to the following vertex. Alternatively, for

n ≥ 3, an n-link is produced by erasing one edge from an n-cycle.
L6

For n ≥ 3, Wn denotes the n-wheel. To form Wn add one vertex

to Cn and make it adjacent to every other vertex. Notice that the n-

wheel has n + 1 verices.

W6

For n ≥ 1, the n-cube, Qn, is the graph whose vertices are labeled

with the 2n bit strings of length n. The unusual choice of names for

the vertices is made so it will be easy to describe the edges in the

graph: two vertices are adjacent only if their labels differ in exactly

one bit. Except for n = 1, 2, 3 it is not easy to draw a convincing

diagram of Qn. The graph Q3 can be drawn so it looks like what you

would probably draw if you wanted a picture of a 3-dimensional

cube. In the graph below, there is a vertex placed at each of the eight

corners of the 3-cube labeled with the name of the vertex.

000 010

110
100

001

101 111

011

306 math208: discrete mathematics

A graph is bipartite if it is possible to split the vertices into two

subsets, let’s call them T and B for top and bottom, so that all the

edges go from a vertex in one of the subsets to a vertex in the other

subset.

For example, the graph below is a bipartite graph with T =

{a, b, c} and B = {d, e, f , g}.

a b c

d e f g

If T has m vertices and B has n vertices, and every vertex in T

is adjacent to every vertex in B, the graph is called the complete

bipartite graph, and it is denoted by Km,n. Here is the graph K3,4:

a b c

d e f g
K3,4

It is not always obvious if a graph is bipartite or not when looking

at a diagram. For example the square

a b

cd

is bipartite since the graph can be redrawn as

graphs 307

d b

ca

so we can see the graph is actually K2,2 in disguise.

38.5 Graph isomorphisms

The graphs G and H are obviously really the same except for the

labels used for the vertices.

a

cb

G x

zy

H

This idea of sameness (the official phrase is the graphs G and H

are isomorphic) for graphs is defined as follows: Two graphs G and

H are isomorphic provided we can relabel the vertices of one of the

graphs using the labels of the other graph in such a way that the two

graphs will have exactly the same edges. As you can probably guess,

the notion of isomorphic graphs is an equivalence relation on the

collection of all graphs.

In the example above, if the vertices of H are relabeled as a → x

(meaning replace x with a), and b → y, c → z, then the graph H will

have edges {a, b} and {a, c} just like the graph G. So we have proved

G and H are isomorphic graphs. The set of replacement rules, a → x,

b→ y, c→ z, is called an isomorphism.

The graph G is also isomorphic to the 3-link L3:

sr t

L3

In this case, an isomorphism is a→ s, b→ r, c→ t.

On the other hand, G is certainly not isomorphic to the 4-cycle,

C4 since that graph does not even have the same number of vertices

308 math208: discrete mathematics

as G. Also G is not isomorphic to the 3-cycles, C3. In this case, the

two graphs do have the same number of vertices, but not the same

number of edges. For two graphs have a chance of being isomorphic,

the two graphs must have the same number of vertices and the same

number of edges. But warning: even if two graphs have the same

number of vertices and the same number of edges, they need not be

isomorphic. For example L4 and K1,3 are both graphs with 4 vertices

and 3 edges, but they are not isomorphic. This is so since L4 does not

have a vertex of degree 3, but K1,3 does.

Extending that idea: to have a chance of being isomorphic, two

graphs will have to have the same degree sequences since they will

end up with the same edges after relabeling. But even having the

same degree sequences is not enough to conclude two graphs are

isomorphic as the margin example shows. We can see those two

graphs are not isomorphic since G has three vertices that form a

triangle, but there are no triangles in H.
G H

Figure 38.1: Nonisomorphic grades

with the same degree sequences.
For graphs with a few vertices and a few edges, a little trial and

error is typically enough to determine if the graphs are isomorphic.

For more complicated graphs, it can be very difficult to determine

if they are isomorphic or not. One of the big goals in theoretical

computer science is the design of efficient algorithms to determine if

two graphs are isomorphic.

e

a

b

cd

G

z

v

w

xy

H

Figure 38.2: Isomorphic graphs

Example 38.4. Let G be a 5-cycle on a, b, c, d, e drawn as a regular pen-

tagon with vertices arranged clockwise, in order, at the corners. Let H have

vertex set v, w, x, y, z and graphical presentation as a pentagram (five-

pointed star), where the vertices of the graph are the ends of the points of the

star, and are arranged clockwise, (see figure 38.2).

An isomorphism is a→ v, b→ x, c→ z, d→ w, e→ y.

graphs 309

Example 38.5. The two graphs in figure 38.3 are isomorphic as shown by

using the relabeling

u1 → v1, u2 → v2, u3 → v3, u4 → v4, u5 → v9,

u6 → v10, u7 → v5, u8 → v7, u9 → v8, u10 → v6.

u2

u3

u4u5

u1

u9

u8

u7u6

u10

G v2

v3

v4

v5

v6

v1

v7

v8

v9

v10

H Figure 38.3: More Isomorphic graphs

The graph G is the traditional presentation of the Petersen Graph.

It could be described as the graph whose vertex set is labeled with

all the two element subsets of a five element set, with an edge joining

two vertices if their labels have exactly one element in common.

38.6 Walks

The origins of graph theory had to do with bridges, and possible

routes crossing the bridges. In this section we will consider that sort

of question in graphs in general. We will think of walking along

edges and visiting vertices. Remember that we do not allow multiple

edges or loops in our graphs.

We begin with a collection of definitions. Warning: Theses terms

are used differently in different texts. If you look at another graph

theory text, be sure to see how the terms are used there.

A walk of length n in a graph is a sequence of n + 1 vertices

v0, v1, v2, ..., vn, where each vertex in the list is adjacent to the fol-

310 math208: discrete mathematics

lowing vertex. Repeated vertices and repeated edges in a walk are

allowed. The vertices v0 and vn are the endpoints of the walk. Think

of starting at v0, walking along the edges, and ending up at vn. The

length n of the walk is the number of edges transversed in the walk.

A path is a walk that does not visit any vertex more than once and

uses no edges more than once. A walk in which the endpoints are the

same is called closed. A circuit is a closed walk with no repeated

edges. In plain English, a circuit in a graph is a route through a

graph from a vertex back to itself through adjacent vertices with-

out transversing any edge more than once. Finally, a cycle is a circuit

in which no vertex besides the start vertex is repeated. Just to cover a

trivial case, a single vertex, v, is a length 0 walk.

Here is an example illustrating these definitions.

Example 38.6. In the graph shown in figure 38.4, a, b, e, c, f , c is a walk

of length 5. That is an example of an a, c-walk, meaning it starts at vertex

a and ends at vertex c. That walk is also not a path since the vertex c is

repeated. The b, e-walk b, c, f , e, d, a, e is not a path since the vertex e is

repeated. The walk a, b, c, f , e is an a, e-path. Here are two circuits in that

graph: a, b, e, d, a and a, b, c, , e, d, a.

a b c

d e f

Figure 38.4: Walks, trails, and paths

A graph is connected if there is a walk between any two vertices.

In plain English, a connected graph consists of a single piece. The

individual connected pieces of a graph are called its connected com-

ponents. The length of the shortest walk between two vertices in

a connect component of a graph is called the distance between the

vertices. In figure 38.4, the distance between a and f is 2.

Theorem 38.7. In a connected graph there is a path between any two

vertices. In other words, if there is a way to get from any vertex to any other

vertex, then there is a way to get between any two vertices without repeating

any vertex.

Proof. Exercise 38.4. The idea is simple: in a walk with a repeated vertex,

just eliminate the side trip made between the two occurrences of that vertex

from the walk. Do that until all the repeated vertices are eliminated. For

example, in the graph shown in figure 38.4, The a, c-walk a, e, b, e, c can be

reduced to the path a, e, c, eliminating the side trip to b. ♣

graphs 311

A vertex in a graph is a cutvertex, if removal of the vertex and

edges incident to it results in a graph with more connected com-

ponents. Similarly a bridge is an edge whose removal (keeping the

vertices it is incident to) yields a graph with more connected compo-

nents.

We close this section with a discussion of two special types of

walks.

38.6.1 Eulerian trails and circuits

An eulerian trail in a graph is a walk which uses every edge of the

graph exactly once. An eulerian circuit is a circuit in a graph that

uses every edge of the graph. A graph is called eulerian if it has an

eulerian circuit. An interesting property of an eulerian graph is that

it can be drawn completely without lifting pencil from paper and

without retracing any edges.

Example 38.8. The graph C5 is an eulerian graph. In fact, the graph itself

is an eulerian circuit.

Example 38.9. The graph K5 is an eulerian graph.

Example 38.10. The graph Ln is itself an eulerian trail, but does not have

an Eulerian circuit.

Example 38.11. The graph K4 is not an eulerian graph. 1. 1 Try it!

38.6.2 Hamiltonian cycles

A hamiltonian cycle in a graph is a cycle that visits every vertex

in the graph. In other words, it is a walk through the graph from

an initial vertex, visiting every vertex once, and then having a final

step back to the initial vertex. A graph is hamiltonian if it has a

hamiltonian cycle.

Example 38.12. Kn is hamiltonian for n ≥ 3.

Example 38.13. Wn has a hamiltonian cycle for n ≥ 3.

Example 38.14. Ln has no hamiltonian cycle for n ≥ 2

312 math208: discrete mathematics

38.6.3 Some facts about eulerian and hamiltonian graphs

A few easy observation: if G is a graph with either an eulerian circuit

or hamiltonian cycle, then

(1) G is connected.

(2) every vertex has degree at least 2.

(3) G has no bridges.

If G has a hamiltonian cycle, then G has no cutvertices.

Leonhard Euler gave a simple way to determine exactly when a

graph is eulerian. On the other hand, despite considerable effort, no

one has been able to devise a test to distinguish between hamiltonian

and nonhamiltonian graphs that is much better than a brute force

trial-and-error search for a hamiltonian cycle.

Theorem 38.15. A connected graph is eulerian if and only if every vertex

has even degree.

Proof. Let G be an eulerian graph, and suppose that v is a vertex in G with

odd degree, say 2m + 1. Let i denote the number of times an eulerian circuit

passes through v. Since every edge is used exactly once in the circuit, and

each time v is visited two different edges are used, we have 2i = 2m + 1,

which is impossible. →←. So G cannot have any vertices of odd degree.

Conversely, let G be a connected graph where every vertex has even

degree. Select a vertex u and build a trail starting at u as long as possible:

each time we visit a vertex we select an unused edge leaving that vertex to

extend the trail. For any vertex v 6= u we visit, its even degree guarantees

there will be an unused edge out, since each time v is visited used two edges

incident to v and one more edge to arrive at v, for a total of an odd number

of edges incident to v, and the vertex has even degree, so there must be

at least one unused edge leading out of v. Since the process of extending

the trail must eventually come to an end, that shows the end must be at u

when the trail cannot be extended, and so we have constructed an eulerian

circuit.e must reach a vertex where the trail cannot be extended. This vertex

must be u by the preceding remark.

If this trail contains every edge we are done. Otherwise when these edges

are removed from G we obtain a set of connected components H1, ..., Hm

graphs 313

which are subgraphs of G and which each satisfy that all vertices have even

degree. Since their sizes are smaller, we may inductively construct an eu-

lerian circuit for each Hi. Since each G is connected, each Hi contains a

vertex of the initial circuit, say vj. If we call the eulerian circuit of Hi, Ci,

then v0, ...vj, Ci, vj, ..., vn, v0 is a circuit in G. Since the Hi are disjoint, we

may insert each eulerian partial circuit thus obtaining an eulerian circuit for

G. ♣

As a corollary we have

Theorem 38.16. A connected graph has an eulerian trail using every edge,

if and only if it has exactly two vertices of odd degree.

The following theorem is an example of a sufficient (but not neces-

sary) condition for a graph to have a hamiltonian cycle.

Theorem 38.17. Let G be a connected graph with n ≥ 3 vertices. If

deg(v) ≥ n/2 for every vertex v, then G is hamiltonian.

Proof. Suppose that the theorem is false. Let G be a connected graph with

deg(v) ≥ n/2 for every vertex v. Moreover suppose that of all counterex-

amples on n vertices, G is a graph with the largest possible number of edges.

G is not complete, since Kn has a hamiltonian cycle, for n ≥ 3. There-

fore G has two nonadjacent vertices v1 and vn. By maximality the graph

G1 formed by adding the edge {v1, vn} to G has a hamiltonian cycle. More-

over this cycle uses the edge {v1, vn}, since otherwise G has a hamiltonian

cycle. So we may suppose that the hamiltonian cycle in G1 is of the form

v1, v2, ..., vn, v1. Thus v1, ..., vn is a path in G.

Let k = deg(v1). If vi+1 is adjacent to v1, then vi cannot be adjacent to

vn, since otherwise v1, ..., vi, vn, vn−1, ..., vi+1, v1 is a hamiltonian cycle in

G. Therefore, we have the contradiction

deg(vn) ≤ (n− 1)− k ≤ n− 1− n/2 = n/2− 1.→←

♣

WARNING: Do not read too much into this theorem. The condi-

tion is not a necessary condition. The 5-cycle, C5, is obviously hamil-

tonian, but the vertices all have degree 2 which is less than 5
2 .

314 math208: discrete mathematics

38.7 Trees

Trees form an important class of graphs. A tree is a connected graph

with no cycles. Trees are traditionally drawn upside down, with the

tree growing down rather than up, starting at a root vertex.

root

left

lleft rleft

right

lright midright rright

Theorem 38.18. A graph G is a tree if and only if there is a unique path

between any two vertices.

Proof. Suppose that G is a tree, and let u and v be two vertices of G. Since

G is connected, there is a path of the form u = v0, v1, ..., vn = v. If there is

a different path from u to v, say u = w0, w1, ..., wn = v let i be the smallest

subscript so that wi = vi, but vi+1 6= wi+1. Also let j be the next smallest

subscript where vj = wj. By construction vi, vi+1, ..., vj, wj−1, wj−2, ..., wi

is a cycle in G→←.

Conversely, if G is a graph where there is a unique path between any pair

of vertices, then by definition G is connected. If G contained a cycle, C, then

any two vertices of C would be joined by two distinct paths.→← Therefore

G contains no cycles, and is a tree. ♣

A consequence of theorem 38.18 is that given any vertex r in a tree,

we can draw the tree with r at the top, as the root vertex, and the

other vertices in levels below. 2 The neighbors of r that appear at the 2 Redraw the tree diagram above with
vertex midright as the root vertex.

first level below r are called r’s children. The children of r’s children

are put in the second level below r, and are r’s grandchildren. In

general the ith level consists of those vertices in the tree which are at

distance i from r. The result is called a rooted tree. The height of a

rooted tree is the maximum level number.

Naturally, besides child and parent, many genealogical terms ap-

ply to rooted trees, and are suggestive of the structure. For example

if a rooted tree has root r, and v 6 =r, the ancestors of v are all vertices

graphs 315

on the path from r to v, including r, but excluding v. The descen-

dants of a vertex, w consist of all vertices which have w as one of

their ancestors. The subtree rooted at w is the rooted tree consist-

ing of w, its descendants, and all the required edges. A vertex with

no children is a leaf, and a vertex with at least one child is called an

internal vertex.

To distinguish rooted trees by breadth, we use the term m-ary to

mean that any internal vertex has at most m children. An m-ary tree

is full if every internal vertex has exactly m children. When m = 2,

we use the term binary.

Theorem 38.19. A tree on n vertices has n− 1 edges.

Proof. (by induction on n.)

Basis: Let n = 1, this is the trivial tree with 0 edges. So true the theorem

is true for n = 1.

Inductive Step: Suppose that for some n ≥ 1 every tree with n vertices

has n− 1 edges. Now suppose T is a tree with n + 1 vertices. Let v be a leaf

of T. If we erase v and the edge leading to it, we are left with a tree with n

vertices. By the inductive hypothesis, this new tree will have n − 1 edges.

Since it has one less edge than the original tree, we conclude T has n edges.

♣

316 math208: discrete mathematics

38.8 Exercises

Exercise 38.1. Determine whether each graph is bipartite. If it is, redraw it

as a bipartite graph.

(a)

a

b c

d

e

(b)

u1

u2

u3

u5u4 u6

(c)
v1

v6

v5

v4

v3

v2

(d)
b

c

d
e

f

a

Exercise 38.2. For which values of n is Cn bipartite? Qn?

Exercise 38.3. For each pair of graphs either prove that G1 and G2 are

not isomorphic, or else show they are isomorphic by exhibiting a graph

isomorphism.

(a)

u1

u2
u3

u4

u5

u6
u7

G1

v1

v2
v3

v4

v5

v6
v7

G2

(b)

u1

u2
u3

u4

u5

u6
u7

u8

G1

v1

v2
v3

v4

v5

v6
v7

v8

G2

(c)

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

G1

v1

v2

v3

v4

v5

v7

v8

v6

v10v9

G2

(d)
u1

u2

u3

u4

u5

u6

G1

v1 v2

v3v4

v5

v6

G2

graphs 317

Exercise 38.4. Prove theorem 38.7 from section 38.6 on walks: If G is

a connected graph, then there is a path between any two different

vertices.

Exercise 38.5. For each graph below (i) find an eulerian circuit, or prove

that none exists, and (ii) find a hamiltonian cycle or prove that none exists.

(a) The 3-cube Q3.

(b)

a b c d

i h g f e

(c)
a b c

d e f

g h i

(d) The Petersen Graph. (See figure 38.3.)

Exercise 38.6. Answer the following questions about the rooted tree shown

in figure 38.5 on page 318.

(a) Which vertex is the root?

(b) Which vertices are internal?

(c) Which vertices are leaves?

(d) Which vertices are children of b?

(e) Which vertices are grandchildren of b?

(f) Which vertex is the parent of m?

(g) Which vertices are siblings of q?

(h) Which vertices are ancestors of p?

(i) Which vertices are descendants of d?

(j) What level is i at?

318 math208: discrete mathematics

a

b

d

i

n o

e

j

f

k

p q

c

g

l

h

m

r s

Figure 38.5: Tree for exercise 38.6

A

Answers

1.1.

yesa) no,b) no,c)

yes,d) yes (may be arguable)e)

1.3.

a) (1101 0111⊕ 1110 0010) ∧ 1100 1000 = (0011 0101) ∧ 1100 1000 = 0000 0000

b) (1111 1010∧ 0111 0010) ∨ (0101 0001) = (0111 0010) ∨ (0101 0001) = 0111 0011

c) (1001 0010∨ 0101 1101) ∧ (0110 0010∨ 0111 0101) = (1101 1111) ∧ (0111 0111) = 0101 0111

1.5.

a) Jordan did not play and the Wizards won.

b) If Jordan played, then the Wizards lost.

c) The Wizards won or Jordan played.

d) Jordan didn’t play when the Wizards won. OR If the Wizards

won, then Jordan did not play.

B

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation,

Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or

other functional and useful document “free” in the sense of freedom:

to assure everyone the effective freedom to copy and redistribute it,

with or without modifying it, either commercially or noncommer-

cially. Secondarily, this License preserves for the author and pub-

lisher a way to get credit for their work, while not being considered

responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative

works of the document must themselves be free in the same sense.

It complements the GNU General Public License, which is a copyleft

license designed for free software.

We have designed this License in order to use it for manuals for

free software, because free software needs free documentation: a free

program should come with manuals providing the same freedoms

that the software does. But this License is not limited to software

http://fsf.org/

322 math208: discrete mathematics

manuals; it can be used for any textual work, regardless of subject

matter or whether it is published as a printed book. We recommend

this License principally for works whose purpose is instruction or

reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,

that contains a notice placed by the copyright holder saying it can

be distributed under the terms of this License. Such a notice grants

a world-wide, royalty-free license, unlimited in duration, to use that

work under the conditions stated herein. The “Document”, below,

refers to any such manual or work. Any member of the public is a

licensee, and is addressed as “you”. You accept the license if you

copy, modify or distribute the work in a way requiring permission

under copyright law.

A “Modified Version” of the Document means any work contain-

ing the Document or a portion of it, either copied verbatim, or with

modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter

section of the Document that deals exclusively with the relationship

of the publishers or authors of the Document to the Document’s over-

all subject (or to related matters) and contains nothing that could

fall directly within that overall subject. (Thus, if the Document is in

part a textbook of mathematics, a Secondary Section may not explain

any mathematics.) The relationship could be a matter of historical

connection with the subject or with related matters, or of legal, com-

mercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose

titles are designated, as being those of Invariant Sections, in the no-

tice that says that the Document is released under this License. If a

section does not fit the above definition of Secondary then it is not al-

lowed to be designated as Invariant. The Document may contain zero

Invariant Sections. If the Document does not identify any Invariant

Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed,

gnu free documentation license 323

as Front-Cover Texts or Back-Cover Texts, in the notice that says that

the Document is released under this License. A Front-Cover Text may

be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable

copy, represented in a format whose specification is available to the

general public, that is suitable for revising the document straightfor-

wardly with generic text editors or (for images composed of pixels)

generic paint programs or (for drawings) some widely available

drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input to

text formatters. A copy made in an otherwise Transparent file format

whose markup, or absence of markup, has been arranged to thwart

or discourage subsequent modification by readers is not Transpar-

ent. An image format is not Transparent if used for any substantial

amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include

plain ASCII without markup, Texinfo input format, LaTeX input

format, SGML or XML using a publicly available DTD, and standard-

conforming simple HTML, PostScript or PDF designed for human

modification. Examples of transparent image formats include PNG,

XCF and JPG. Opaque formats include proprietary formats that can

be read and edited only by proprietary word processors, SGML or

XML for which the DTD and/or processing tools are not generally

available, and the machine-generated HTML, PostScript or PDF pro-

duced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself,

plus such following pages as are needed to hold, legibly, the material

this License requires to appear in the title page. For works in formats

which do not have any title page as such, “Title Page” means the text

near the most prominent appearance of the work’s title, preceding

the beginning of the body of the text.

The “publisher” means any person or entity that distributes

copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Docu-

ment whose title either is precisely XYZ or contains XYZ in parenthe-

324 math208: discrete mathematics

ses following text that translates XYZ in another language. (Here

XYZ stands for a specific section name mentioned below, such

as “Acknowledgements”, “Dedications”, “Endorsements”, or

“History”.) To “Preserve the Title” of such a section when you mod-

ify the Document means that it remains a section “Entitled XYZ”

according to this definition.

The Document may include Warranty Disclaimers next to the

notice which states that this License applies to the Document. These

Warranty Disclaimers are considered to be included by reference in

this License, but only as regards disclaiming warranties: any other

implication that these Warranty Disclaimers may have is void and has

no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either

commercially or noncommercially, provided that this License, the

copyright notices, and the license notice saying this License applies

to the Document are reproduced in all copies, and that you add no

other conditions whatsoever to those of this License. You may not

use technical measures to obstruct or control the reading or further

copying of the copies you make or distribute. However, you may

accept compensation in exchange for copies. If you distribute a large

enough number of copies you must also follow the conditions in

section 3.

You may also lend copies, under the same conditions stated above,

and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly

have printed covers) of the Document, numbering more than 100, and

the Document’s license notice requires Cover Texts, you must enclose

the copies in covers that carry, clearly and legibly, all these Cover

Texts: Front-Cover Texts on the front cover, and Back-Cover Texts

on the back cover. Both covers must also clearly and legibly identify

you as the publisher of these copies. The front cover must present

gnu free documentation license 325

the full title with all words of the title equally prominent and visible.

You may add other material on the covers in addition. Copying with

changes limited to the covers, as long as they preserve the title of the

Document and satisfy these conditions, can be treated as verbatim

copying in other respects.

If the required texts for either cover are too voluminous to fit legi-

bly, you should put the first ones listed (as many as fit reasonably) on

the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document num-

bering more than 100, you must either include a machine-readable

Transparent copy along with each Opaque copy, or state in or with

each Opaque copy a computer-network location from which the

general network-using public has access to download using public-

standard network protocols a complete Transparent copy of the

Document, free of added material. If you use the latter option, you

must take reasonably prudent steps, when you begin distribution of

Opaque copies in quantity, to ensure that this Transparent copy will

remain thus accessible at the stated location until at least one year

after the last time you distribute an Opaque copy (directly or through

your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of

the Document well before redistributing any large number of copies,

to give them a chance to provide you with an updated version of the

Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document

under the conditions of sections 2 and 3 above, provided that you

release the Modified Version under precisely this License, with the

Modified Version filling the role of the Document, thus licensing

distribution and modification of the Modified Version to whoever

possesses a copy of it. In addition, you must do these things in the

Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from

that of the Document, and from those of previous versions (which

326 math208: discrete mathematics

should, if there were any, be listed in the History section of the

Document). You may use the same title as a previous version if the

original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities

responsible for authorship of the modifications in the Modified

Version, together with at least five of the principal authors of the

Document (all of its principal authors, if it has fewer than five),

unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified

Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-

cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under

the terms of this License, in the form shown in the Addendum

below.

G. Preserve in that license notice the full lists of Invariant Sections

and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and

add to it an item stating at least the title, year, new authors, and

publisher of the Modified Version as given on the Title Page. If

there is no section Entitled “History” in the Document, create one

stating the title, year, authors, and publisher of the Document as

given on its Title Page, then add an item describing the Modified

Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for

public access to a Transparent copy of the Document, and likewise

the network locations given in the Document for previous versions

it was based on. These may be placed in the “History” section.

gnu free documentation license 327

You may omit a network location for a work that was published

at least four years before the Document itself, or if the original

publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,

Preserve the Title of the section, and preserve in the section all the

substance and tone of each of the contributor acknowledgements

and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in

their text and in their titles. Section numbers or the equivalent are

not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may

not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”

or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or ap-

pendices that qualify as Secondary Sections and contain no material

copied from the Document, you may at your option designate some

or all of these sections as invariant. To do this, add their titles to the

list of Invariant Sections in the Modified Version’s license notice.

These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it con-

tains nothing but endorsements of your Modified Version by various

parties—for example, statements of peer review or that the text has

been approved by an organization as the authoritative definition of a

standard.

You may add a passage of up to five words as a Front-Cover Text,

and a passage of up to 25 words as a Back-Cover Text, to the end of

the list of Cover Texts in the Modified Version. Only one passage of

Front-Cover Text and one of Back-Cover Text may be added by (or

through arrangements made by) any one entity. If the Document

already includes a cover text for the same cover, previously added

by you or by arrangement made by the same entity you are acting on

328 math208: discrete mathematics

behalf of, you may not add another; but you may replace the old one,

on explicit permission from the previous publisher that added the

old one.

The author(s) and publisher(s) of the Document do not by this

License give permission to use their names for publicity for or to

assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released

under this License, under the terms defined in section 4 above for

modified versions, provided that you include in the combination all

of the Invariant Sections of all of the original documents, unmodified,

and list them all as Invariant Sections of your combined work in its

license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License,

and multiple identical Invariant Sections may be replaced with a sin-

gle copy. If there are multiple Invariant Sections with the same name

but different contents, make the title of each such section unique by

adding at the end of it, in parentheses, the name of the original au-

thor or publisher of that section if known, or else a unique number.

Make the same adjustment to the section titles in the list of Invariant

Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “His-

tory” in the various original documents, forming one section Entitled

“History”; likewise combine any sections Entitled “Acknowledge-

ments”, and any sections Entitled “Dedications”. You must delete all

sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other

documents released under this License, and replace the individual

copies of this License in the various documents with a single copy

that is included in the collection, provided that you follow the rules

of this License for verbatim copying of each of the documents in all

other respects.

gnu free documentation license 329

You may extract a single document from such a collection, and dis-

tribute it individually under this License, provided you insert a copy

of this License into the extracted document, and follow this License

in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other sep-

arate and independent documents or works, in or on a volume of a

storage or distribution medium, is called an “aggregate” if the copy-

right resulting from the compilation is not used to limit the legal

rights of the compilation’s users beyond what the individual works

permit. When the Document is included in an aggregate, this License

does not apply to the other works in the aggregate which are not

themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these

copies of the Document, then if the Document is less than one half

of the entire aggregate, the Document’s Cover Texts may be placed

on covers that bracket the Document within the aggregate, or the

electronic equivalent of covers if the Document is in electronic form.

Otherwise they must appear on printed covers that bracket the whole

aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may dis-

tribute translations of the Document under the terms of section 4.

Replacing Invariant Sections with translations requires special per-

mission from their copyright holders, but you may include trans-

lations of some or all Invariant Sections in addition to the original

versions of these Invariant Sections. You may include a translation

of this License, and all the license notices in the Document, and any

Warranty Disclaimers, provided that you also include the original En-

glish version of this License and the original versions of those notices

and disclaimers. In case of a disagreement between the translation

and the original version of this License or a notice or disclaimer, the

original version will prevail.

330 math208: discrete mathematics

If a section in the Document is Entitled “Acknowledgements”,

“Dedications”, or “History”, the requirement (section 4) to Preserve

its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document

except as expressly provided under this License. Any attempt oth-

erwise to copy, modify, sublicense, or distribute it is void, and will

automatically terminate your rights under this License.

However, if you cease all violation of this License, then your li-

cense from a particular copyright holder is reinstated (a) provision-

ally, unless and until the copyright holder explicitly and finally termi-

nates your license, and (b) permanently, if the copyright holder fails

to notify you of the violation by some reasonable means prior to 60

days after the cessation.

Moreover, your license from a particular copyright holder is re-

instated permanently if the copyright holder notifies you of the

violation by some reasonable means, this is the first time you have

received notice of violation of this License (for any work) from that

copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

Termination of your rights under this section does not terminate

the licenses of parties who have received copies or rights from you

under this License. If your rights have been terminated and not per-

manently reinstated, receipt of a copy of some or all of the same

material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions

of the GNU Free Documentation License from time to time. Such

new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version num-

ber. If the Document specifies that a particular numbered version of

this License “or any later version” applies to it, you have the option

http://www.gnu.org/copyleft/

gnu free documentation license 331

of following the terms and conditions either of that specified ver-

sion or of any later version that has been published (not as a draft)

by the Free Software Foundation. If the Document does not specify

a version number of this License, you may choose any version ever

published (not as a draft) by the Free Software Foundation. If the

Document specifies that a proxy can decide which future versions of

this License can be used, that proxy’s public statement of acceptance

of a version permanently authorizes you to choose that version for

the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means

any World Wide Web server that publishes copyrightable works and

also provides prominent facilities for anybody to edit those works.

A public wiki that anybody can edit is an example of such a server.

A “Massive Multiauthor Collaboration” (or “MMC”) contained in

the site means any set of copyrightable works thus published on the

MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike

3.0 license published by Creative Commons Corporation, a not-for-

profit corporation with a principal place of business in San Francisco,

California, as well as future copyleft versions of that license pub-

lished by that same organization.

“Incorporate” means to publish or republish a Document, in

whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this

License, and if all works that were first published under this License

somewhere other than this MMC, and subsequently incorporated in

whole or in part into the MMC, (1) had no cover texts or invariant

sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in

the site under CC-BY-SA on the same site at any time before August

1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your

documents

332 math208: discrete mathematics

To use this License in a document you have written, include a copy

of the License in the document and put the following copyright and

license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy,

distribute and/or modify this document under the terms of the GNU

Free Documentation License, Version 1.3 or any later version published

by the Free Software Foundation; with no Invariant Sections, no Front-

Cover Texts, and no Back-Cover Texts. A copy of the license is included

in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover

Texts, replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-

Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other

combination of the three, merge those two alternatives to suit the

situation.

If your document contains nontrivial examples of program code,

we recommend releasing these examples in parallel under your

choice of free software license, such as the GNU General Public Li-

cense, to permit their use in free software.

	Logical Connectives and Compound Propositions
	Propositions
	Negation: not
	Conjunction: and
	Disjunction: or
	Logical Implication and Biconditional
	Truth table construction
	Translating to propositional forms
	Bit strings
	Exercises

	Logical Equivalence
	Logical Equvalence
	Tautologies and Contradictions
	Related If …, then … propositions
	Fundamental equivalences
	Disjunctive normal form
	Proving equivalences
	Exercises

	Predicates and Quantifiers
	Predicates
	Instantiation and Quantification
	Translating to symbolic form
	Quantification and basic laws of logic
	Negating quantified statements
	Exercises

	Rules of Inference
	Valid propositional arguments
	Fallacies
	Arguments with quantifiers
	Exercises

	Sets: Basic Definitions
	Specifying sets
	Special standard sets
	Empty and universal sets
	Subset and equality relations
	Cardinality
	Power set
	Exercises

	Set Operations
	Intersection
	Venn diagrams
	Union
	Symmetric difference
	Complement
	Ordered lists
	Cartesian product
	Laws of set theory
	Proving set identities
	Bit string operations
	Exercises

	Styles of Proof
	Direct proof
	Indirect proof
	Proof by contradiction
	Proof by cases
	Existence proof
	Using a counterexample to disprove a statement
	Exercises

	Relations
	Relations
	Specifying a relation
	Set operations with relations
	Special relation operations
	Exercises

	Properties of Relations
	Reflexive
	Irreflexive
	Symmetric
	Antisymmetric
	Transitive
	Examples
	Exercises

	Equivalence Relations
	Equvialence relation
	Equivalence class of a relation
	Examples
	Partitions
	Digraph of an equivalence relation
	Matrix representation of an equivalence relation
	Exercises

	Functions and Their Properties
	Definition of function
	Functions with discrete domain and codomain
	Special properties
	Composition of functions
	Invertible discrete functions
	Characteristic functions
	Exercises

	Special Functions
	Floor and ceiling functions
	Fractional part
	Integral part
	Power functions
	Exponential functions
	Logarithmic functions
	Laws of logarithms
	Exercises

	Sequences and Summation
	Specifying sequences
	Arithmetic sequences
	Geometric sequences
	Summation notation
	Formulas for arithmetic and geometric summations
	Exercises

	Recursively Defined Sequences
	Closed form formulas
	Arithmetic sequences by recursion
	Exercises

	Recursively Defined Sets
	Recursive definitions of sets
	Sets of strings
	Exercises

	Mathematical Induction
	Mathematical induction
	The principle of mathematical induction
	Proofs by induction
	Examples
	Second principle of mathematical induction
	Exercises

	Algorithms
	Properties of an algorithm
	Non-algorithms
	Linear search algorithm
	Binary search algorithm
	Presenting algorithms
	Examples
	Exercises

	Algorithm Efficiency
	Comparing algorithms
	Exercises

	The Growth of Functions
	Common efficiency functions
	Big-oh notation
	Examples
	Exercises

	The Integers
	Integer operations
	Order properties
	Exercises

	The divides Relation and Primes
	Properties of divides
	Prime numbers
	The division algorithm for integers
	Exercises

	GCD's and the Euclidean Algorithm
	Euclidean algorithm
	Efficiency of the Euclidean algorithm
	The Euclidean algorithm in quotient/remainder form
	Exercises

	GCD's Reprised
	The gcd(a,b) as a linear combination of a and b
	Back-solving to express gcd(a,b) as a linear combination
	Extended Euclidean Algorithm
	General Linear Combinations for gcd(a,b)
	Exercises

	The Fundamental Theorem of Arithmetic
	Prime divisors
	Proving the Fundamental Theorem
	Number of positive divisors of n
	Exercises

	Linear Diophantine Equations
	Diophantine equations
	Solutions and gcd(a,b)
	Finding all solutions
	Examples
	Exercises

	Modular Arithmetic
	The modulo m equivalence relation
	Equivalence classes modulo m
	Modular arithmetic
	Solving congruence equations
	Exercises

	Integers in Other Bases
	Converting to and from base-10
	Converting between non-decimal bases
	Computer science bases: 2, 8, and 16
	Exercises

	The Two Fundamental Counting Principles
	The sum rule
	The product rule
	Using both the sum and product rules
	Answer form -3.45mu solution method
	Exercises

	Permutations and Combinations
	Permutations
	Combinations
	Exercises

	The Binomial Theorem and Pascal's Triangle
	Combinatorial proof
	Pascal's Triangle
	The Binomial Theorem
	Exercises

	Inclusion-Exclusion Counting
	Inclusion-Exclusion principle
	Extended inclusion-exclustion principle
	Inclusion-exclusion with the Good=Total-Bad trick
	Exercises

	The Pigeonhole Principle
	General pigeonhole principle
	Examples
	Exercises

	Tougher Counting Problems
	The Basic Donut Shop Problem
	The More Realistic Donut Shop Problem
	The Real Donut Shop Problem
	Problems with order and some repetition
	The six fundamental counting problems
	Exercises

	Counting Using Recurrence Relations
	Recursive counting method
	Examples
	General rules for finding recursive solutions
	Exercises

	Solutions to Recurrence Relations
	Solving a recursion by conjecture
	Solving a recursion by unfolding
	Exercises

	The Method of Characteristic Roots
	Homogeneous, constant coefficient recursions
	Repeated characteristic roots.
	The method of characteristic roots more formally
	The method for repeated roots
	The general case
	Exercises

	Solving Nonhomogeneous Recurrences
	Steps to solve nonhomogeneous recurrence relations
	Examples
	Exercises

	Graphs
	Some Graph Terminology
	An Historical Interlude: The origin of graph theory
	The First Theorem of Graph Theory
	A Brief Catalog of Special Graphs
	Graph isomorphisms
	Walks
	Trees
	Exercises

	Answers
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING
	ADDENDUM: How to use this License for your documents

