Definition: A function f is one-to-one (or injective) if for all a and b in its domain, if $a \neq b$, then $f(a) \neq f(b)$.

Alternative definition: A function f is one-to-one (or injective) if for all a and b in its domain, if $f(a)=f(b)$, then $a=b$.

Definition: A function f is increasing on an interval I if for all a and b in I, if $a<b$, then $f(a) \leq f(b)$.
Definition: A function f is strictly increasing on an interval I if for all a and b in I, if $a<b$, then $f(a)<f(b)$.

Definition: A function f is decreasing on an interval I if for all a and b in I, if $a<b$, then $f(a) \geq f(b)$.
Definition: A function f is strictly decreasing on an interval I if for all a and b in I, if $a<b$, then $f(a)>f(b)$.

Definition: A function f is even if for all x in its domain, $f(-x)=f(x)$. The graph of an even function is symmetrical to the y-axis.

Definition: A function f is odd if for all x in its domain, $f(-x)=-f(x)$. The graph of an odd function is symmetrical to the origin.

Note that while an integer is either even or odd, most functions are neither even, nor odd. Even and odd functions are sort of rare but these properties are very useful for us.

Definition: A rational function is a quotient of two polynomial functions.
The concept of a continuous function is very important. Although this term will not be precisely defined, the intuitive idea of a continuous function is thatwe can draw its graph without lifting the pencil. For example, $f(x)=x^{2}$ is a continuous function but $g(x)=\frac{1}{x}$ is not; it is not continuous at $x=0$.

Basic Functions

1.) Linear functions $f(x)=m x+b$ where $m \neq 0$.

The graph is a straight line. One useful form of the equation can be obtained by factoring out the slope: $f(x)=m x+b=m\left(x+\frac{b}{m}\right)$

$m>0$

Case 1. If $m>0$
domain: \mathbb{R}
range: \mathbb{R}
y-intercept: $(0, b)$
x-intercept: $\left(-\frac{b}{m}, 0\right)$
one-to-one
no maximum or minimum
strictly increasing
continuous on \mathbb{R}

$$
m<0
$$

Case 2. If $m<0$
domain: \mathbb{R}
range: \mathbb{R}
y-intercept: $(0, b)$
x-intercept: $\left(-\frac{b}{m}, 0\right)$
one-to-one
no maximum or minimum
strictly decreasing
continuous on \mathbb{R}
2.) Quadratic functions $f(x)=a x^{2}+b x+c$ where $a \neq 0$.

The graph is a parabola. It opens upward if $a>0$ and opens downward if $a<0$.

$$
a>0
$$

Case 1. If $a>0$
Example: $f(x)=x^{2}+4 x-5$
standard form: $f(x)=(x+2)^{2}-9$
factored form: $f(x)=(x+5)(x-1)$
domain: \mathbb{R} range: $[-9, \infty)$
y-intercept: $(0,-5)$
x-intercepts: $(-5,0)$ and $(1,0)$
not one-to-one
no maximum
minimum: $\quad(-2,-9)$
strictly decreasing on $(-\infty,-2)$
strictly increasing on $(-2, \infty)$
continuous on \mathbb{R}

$$
a<0
$$

Case 2. If $a<0$
Example: $f(x)=-\frac{1}{2} x^{2}+3 x-\frac{5}{2}$
standard form: $f(x)=-\frac{1}{2}(x-3)^{2}+2$
factored form: $\quad f(x)=-\frac{1}{2}(x-1)(x-5)$
domain: \mathbb{R} range: $(-\infty, 2]$
y-intercept: $\left(0,-\frac{5}{2}\right)$
x-intercepts: $(1,0)$ and $(5,0)$
not one-to-one
no minimum
maximum: $(3,2)$
strictly increasing on $(-\infty, 3)$
strictly decreasing on $(3, \infty)$
continuous on \mathbb{R}
3.) Monomials $f(x)=x^{n}$

n is even

Case 1. If n is even
domain: \mathbb{R} range: $[0, \infty)$
y-intercept: $(0,0)$
x-intercept: $(0,0)$
not one-to-one
no maximum
minimum: $(0,0)$
strictly decreasing on $(-\infty, 0)$
strictly increasing on $(0, \infty)$ continuous on \mathbb{R}
black graph: $f(x)=x^{2}$
red graph: $f(x)=x^{4}$

n is odd

Case 2. If n is odd
domain: \mathbb{R} range: \mathbb{R}
y-intercept: $(0,0)$
x-intercept: $(0,0)$
one-to-one
no minimum or maximum strictly increasing on \mathbb{R} continuous on \mathbb{R}
black graph: $f(x)=x^{3}$ red graph: $f(x)=x^{5}$
4.) The rational functions $f(x)=\frac{1}{x}$ and $g(x)=\frac{1}{x^{2}}$

$$
f(x)=\frac{1}{x}
$$

$g(x)=\frac{1}{x^{2}}$
domain: $\mathbb{R} \backslash\{0\}$ range: $\mathbb{R} \backslash\{0\}$
no y-intercept
no x-intercept
one-to-one
no maximum or minimum
strictly decreasing on $(-\infty, 0)$ and on $(0, \infty)$
not continuous at $x=0$
vertical asymptote: the line $x=0$
horizontal asymptote: the line $y=0$
domain: $\mathbb{R} \backslash\{0\}$ range: $(0, \infty)$
no y-intercept
no x-intercept
not one-to-one
no minimum or maximum
strictly increasing on $(-\infty, 0)$ and strictly decreasing on $(0, \infty)$
not continuous at $x=0$
vertical asymptote: the line $x=0$ horizontal asymptote: the line $y=0$
5.) Radical functions $f(x)=\sqrt[n]{x}$

n is even

Case 1. If n is even
domain: $[0, \infty)$ range: $[0, \infty)$
y-intercept: $(0,0)$
x-intercept: $(0,0)$
one-to-one
no maximum
minimum: $(0,0)$
strictly increasing
continuous on $(0, \infty)$
black graph: $f(x)=\sqrt{x}$
red graph: $f(x)=\sqrt[4]{x}$

n is odd

Case 2. If n is odd
domain: \mathbb{R} range: \mathbb{R}
y-intercept: $(0,0)$
x-intercept: $(0,0)$
one-to-one
no minimum or maximum strictly increasing continuous on \mathbb{R}
black graph: $f(x)=\sqrt[3]{x}$
red graph: $f(x)=\sqrt[5]{x}$
6.) Exponential functions $f(x)=a^{x}$ where $a>0$.

Case 1. If $a>1$
domain: \mathbb{R} range: $(0, \infty)$
no x-intercepts
y-intercept: $(0,1)$
one-to-one
no maximum or minimum
strictly increasing
horizontal asymptote: $y=0$
continuous on \mathbb{R}

$0<a<1$
Case 2. If $0<a<1$
domain: \mathbb{R} range: $(0, \infty)$
no x-intercepts
y-intercept: $(0,1)$
one-to-one
no maximum or minimum strictly decreasing
horizontal asymptote: $y=0$
continuous on \mathbb{R}
7.) Logarithmic functions $f(x)=\log _{a} x$ where $a>0$ and $a \neq 1$.

$$
a>1
$$

Case 1. If $a>1$
domain: $(0, \infty)$ range: \mathbb{R}
no y-intercepts
x-intercept: $(1,0)$
one-to-one
no maximum or minimum
strictly increasing
vertical asymptote: $x=0$
continuous on $(0, \infty)$

$$
0<a<1
$$

Case 2. If $0<a<1$
domain: $(0, \infty)$ range: \mathbb{R}
no y-intercepts
x-intercept: $(1,0)$
one-to-one
no maximum or minimum
strictly decreasing
vertical asymptote: $x=0$
continuous on $(0, \infty)$
8.) Absolute value function, $f(x)=|x|$

domain: \mathbb{R} range: $[0, \infty)$
x-intercept: $(0,0), y$-intercept: $(0,0)$
not one-to-one
no maximum
minimum: $(0,0)$
strictly decreasing on $(\infty, 0)$ and strictly increasing on $(0, \infty)$
continuous on \mathbb{R}
For more documents like this, visit our page at https://teaching.martahidegkuti.com and click on Lecture Notes.
E-mail questions or comments to mhidegkuti@ccc.edu.

