NAME: JAIME VIEIRA RUIZ (F19015Z)

SAMPLE: Magnesium subcarbonate

BEHAVIOUR OF COMPOUND DURING HEATING AND BURNING (describe what you should see during the heating of your sample in burner and choose one of possibility):

- No changes
- Melting to colourless liquid, which acquires the original colour after cooling down
- Change of the colour
- Releasing vapours
- Sublimation

ORGANIC/INORGANIC/ORGANIC-INORGANIC COMPOUND

ELEMENTARY ANALYSIS (write down the reactions of tests you should do and mark which of them should be positive):

Inorganic compound

SOLUBILITY (decide according to the information in Ph. Eur.):

Practically insoluble in water. It dissolves in dilute acids with effervescence

pH of solution/suspension (decide according to nature of your sample):

Basic

REACTIONS FROM THE FLOWCHARTS (write down your "flowcharts pathway"; describe results of your hypothetical analysis – reactions from the flowcharts you can find in material called "Identification of an unknown drug"):

Unknown compound → Inorganic compound → solubility in water → no → solubility in HCl → Yes → reaction with ammonium oxalate solution II → NEGATIVE → reaction with titanium yellow II → POSITIVE → Magnesium subcarbonate or magnesium peroxide

IDENTIFICATION REACTIONS (from your monography choose the tests necessary for identification of your substance and describe them):

B) Introduce into a test-tube 0.1 g of the substance to be examined and suspend in 2 mL of water R or use 2 mL of the prescribed solution. Add 3 mL of dilute acetic acid R. Close the tube immediately using a stopper fitted with a glass tube bent twice at right angles. The solution or the suspension becomes

effervescent and gives off a colourless and odourless gas. Heat gently and collect the gas in 5 mL of barium hydroxide solution R. A white precipitate is formed that dissolves on addition of an excess of hydrochloric acid R1.

- 1) CaCO₃ + 2CH₃COOH → Ca(CH₃COO)₂ + CO₂ (Effervescent + odourless + colourless) + H₂O
- 2) CO_2 + Ba(OH)₂ \rightarrow BaCO₃ + H2O (White precipitate)
- 3) $BaCO_3 + 2HCl \rightarrow BaCl_2 + H_2PO_3$ (Dissolves the precipitate)
- **C)** Dissolve about 15 mg in 2 mL of dilute nitric acid R and neutralise with dilute sodium hydroxide solution R. The solution gives the reaction of magnesium.

$$MgCO_3 + HNO_3 --> Mg(NO_3)_2 + CO_2 + H_2O$$

$$Mg(NO_3)_2 + NaOH --> Mg(OH)_2 + 2NaNO_3$$

MAGNESIUM: Dissolve about 15 mg of the substance to be examined in 2 mL of water R or use 2 mL of the prescribed solution. Add 1 mL of dilute ammonia R1. A white precipitate is formed that dissolves on addition of 1 mL of ammonium chloride solution R. Add 1 mL of disodium hydrogen phosphate solution R. A white crystalline precipitate is formed.

- 1) $Mg^{2+} + 2OH^{-} \rightarrow Mg(OH)_2$ (white precipitate) + $NH_4CI \rightarrow$ dissolves
- 2) $Mg^{2+} + NH4^+ + HPO_4^{2-} \rightarrow NH_4MgPO_4 + H^+$ (White crystalline precipitate is formed)