Adrenergic receptor agonists

Tomáš Goněc

2020

Adrenal galds release adrenalin (epinephrin) and noradrenalin (norepinephrin) into blood stream. Adrenergic receptor agonists and antagonists affects mainly receptors for circulating A and NA

Biosynthesis of neurotransmitters Dopamine, Noradrenaline (Norepinephrine) and Adrenaline (Epinephrine)

	Adrenergi
Adrenoceptor Classification CC B B C2A B B C2B C1D C2C WEMMDY Medscape 0 medwave.com- 2002	<u>Mer</u>

3 gene families: alpha1, alpha2 and beta. All families consists of 3 subtypes (similar to each other)

together 9 different receptors with own genes on various chromozomes

Receptors consists of 7 transmembrane loops and are connected with different G proteins

Gq protein activates PLC (proteinkinase C) - leads to increase of intracelular Ca2+ Gs protein activates AC (adenylylcyclase) – leads to increased cAMP

Gi protein inhibits AC – leads to decrease of c AMP

	ADRENO	CEPTORS	POST (NO CHARTA SECONDES PERSONNELLES COMPANY SECONDES
α ₁ Vasoconstriction Increased peripheral resistance Increased blood pressure Mydriasis Increased closure of internal sphincter of the bladder	α2 Inhibition of norepinephrine release Inhibition of acetylcholine release Inhibition of insulin release	β ₁ - Tachycardia - Increased lipolysis - Increased myocardial contractility - Increased release of renin	β ₂ Vasodilation Slightly decreased peripheral resistance Bronchodilation Increased muscle and liver glycogenolys Increased release of glucagon Relaxed uterine smooth muscle

Tissue response. Most of mentioned effects are involved in clinical use of AR agonists and antagonists

Adrenoceptor	Drug Action	Therapeutic Uses	
 α,	Agonists	Shock, hypotension (to raise blood pressure)	_
		Nasal decongestants	
α,	Agonists	Antihypertensives	
		Glaucoma	
		Analgesia	
		Sedatives	
β₂	Agonists	Bronchodilators (asthma and chronic obstructive pulmonary disorder)	
		Glaucoma	

Therapeutic use of agonists

Direct agonists binds to receptor and activates it. Specifity can be focused to family or particular subtype.

Derivatives or analogues of phenylethylamine. Two carbons between phenyl and amino moiety is necessary.

The lesser degree of substitution on NH, the greatest selectivity for α lpha; increase volume of NH substituent adds the selectivity towards beta.

R1 substitution inhibits monoamino oxidase – prolonged action and facilitates indirect mechanism of action

R3, R4: OH groups necessary for activation of both alpha and beta. No hydroxyl increases central stimulation effect.

low dosis activates only D receptor (indication: cardiovascular shock prevention) medium dosis activates D + beta1 (i: cardiotonic)

high dosis activates D + beta1 + alpha1 (i: severe hypotension, acute hearth failure)

local decongescent higher dosis i.v. severe hypotension, cardiovascular shock

indication: cardiovascular shock, ventricle fibrilation; allergic shock

Non-specific α and β agonists

Adrenaline preparation: isolation from adrenal glands tissue of livestock; synthetic:

Cardial effect, CNS stimulator, weak vasoconstrictor

vasoconstriction in mucosa reduces mucus production

indication: atonic uterus (womb), uterus bleeding

Midodrine

prodrug of deglymidodrine system administration orthostatic hypotension urinary incontinence

CH₃

Naphazoline

strong vasoconstrictor local decongescent, ophthalmology

Tetryzoline local decongescent synthesis similar to naphazoline

Tetrahydrozoline local decongescent synthesis similar to naphazoline

Prolonged effect due to higher lipophilicity and tissue accumulation

Xylometazoline local decongescent prolonged effect

Tramazoline

local decongescent prolonged effect synthesis similar to naphazoline

Due to partial system effect cardiovascular diseses are contraindicated

Dexmedetomidine

central sedative & hypnotic effect surgery – "artificial sleep" ↓ blood pressure and heart rate

optimal lipophilicity to pass blood-brain barrier indication: arterial hypertension

intravenous application in the case of hypertension crisis local application in ophthalmology - reduces increased intraocular pressure

Specific α_2 and imidazoline I₁ agonists

Brimonidine

dominant α_2 effect Ophthalmology: glaucoma therapy

Specific α_2 and imidazoline I₁ agonists

Apraclonidine

dominant α_2 effect Ophthalmology: glaucoma therapy

Specific α_2 and imidazoline I₁ agonists

Tizanidine

dominant α_{2C} effect Centrally active muscle relaxant

administered by continual i.v. infusion indication: heart insufficiency after transplantation, bradycardia

indication: hert failure

indication: bronchial asthma, ChOPN (chronical obstructive pulmonary disease)

Specific β_2 agonists

Terbutaline

selective β_2 agonist oral and inhalatory way of administration bronchodilator

p.o. administration is not possible due to partial system effect via beta1 activation

Specific β_2 agonists

long term p.o. application for prevention of bronchial asthma symptoms

bronchodilation is weak

highly selective: only weak cardiovascular side effects, no bronchial side efect

- stimulation of NA release from vesicles or inhibition of NA reuptake
- psychic stimulants
- Amphetamine and analogues used as anorectics (Antiobesity drugs lecture)
- *Reuptake inhibitors and MAO inhibitors used as antidepressants (CNS agents lecture)*

Methylphenidate

- NA and dopamine reuptake inhibitor
- Activation of reticular system in brain
- Therapy of ADHD (attention-deficit hyperactivity disorder) in children
- Therapy of narcolepsia in adults
- In modern therapy is used *R*,*R*-isomer (dexmethylphenidate) which is much more potent than racemate

ADHD – retarded dosage forms once a day narcolepsia – non-retarded dosage forms 2-3x day

Dexmethylphenidate

Modafinyl

- Incresase α_1 activity via unknown mechanism
- Therapy of narcolepsy

increases motoric activity and wakefulness

Modafinyl synthesis

Atomoxetine

- NA reuptake inhibitor
- Therapy of ADHD
- Only *R*-isomer active

Duloxetine

- NA and 5HT reuptake inhibitor, weak dopamine reuptake inhibitor
- Therapy of depression, stress urinary incontinence, diabetic neuropathy
- Only S-isomer active

antidepressive agent, diabetic neuropathy 60mg 1x a day stress urinary incontinence 40mg 2x a day

