Laxatives (or cathartics) = drugs used in treatment of constipation or to empty bowels for a medical reason

© assoc. prof. PharmDr. Oldřich Farsa Ph.D. 2011

Classification of laxatives in accordance with mechanism and site of action

- 1. Osmotically acting laxatives (poorly absorbable salts, oligosaccharides, sugar alcohols)
- 2. Compounds \downarrow resorption of Na⁺ in large intestine \Rightarrow accumulation of water therein (castor oil *Oleum ricini,* anthraglycosides, triarylmethane derivatives)
- 3. Softening compounds (liquid paraffin)
- 4. Swelling (slime forming) compounds –non-absorbable polysaccharides (linen seed *Semen lini,* wheat bran, methylcelullose)

General problems of laxatives

- possibility of addiction, necessity of chronic administration
- loss of electrolytes, namely K⁺ (important except others for motility of intestines)

1. Osmotic laxatives

• cause osmotic accumulation of water in large intestine

Poorly absorbable inorganic salts

MgSO₄. 7 H₂O "bitter salt"

Sennagran[®] gra (+ laxative herbs)

Na₂SO₄.10 H₂O "Glauber salt"

Fortrans[®] plv.

• also *magistraliter* preparations and mineral waters

1. Osmotic laxatives – continued Oligosaccharides

lactose

milk sugar 4-O-β-D-galactopyranosyl-D-glucose

lactulose

4-O-β-D-galactopyranosyl-D-fructose
•not absorbed, human has no enzyme for cleavage of it into monosaccharides
•chronic constipation
Duplalac[®] sir.

2. Compounds ↓ resorption of Na⁺ in large intestine TriaryImethane derivatives

•direct interaction with Auerbach's (or myenteric) plexus is presumed

phenolphthalein

Confetto falqui[®] (+ *Pruni fructus* = dried plums as the source of K⁺)

 $R = -COCH_3$ bisacodylFenolax® tbl. obd., Dulcolax ® tbl. , Stadalax ®tbl. obd. $R = -SO_3Na$ sodium picosulfate

Darmol[®] past.

faster onset of action

•both compounds are prodrugs; the compound with 2 phenolic groups is active

Synthesis of phenolphthalein

3,3-bis(4-hydroxyphenyl)benzo[c]furane-1(3H)-on

phenolphthalein

Castor oil

Ricini oleum virginale PhEur oil obtained from seeds of Ricinus communis mainly glycerol triester with ricinoleic acid (85 – 92 %)

Anthraglycosides

•aglycones based on an anthrone or or anthraquinone skeleton of plant origin (*Aloe, Rheum, Cassia, Frangula ...*)

•saccharide: mostly glucose; both C-O and C-C glycosides

•X = H_2 **1,8-dihydroxyanthrone** = 1,8-dihydroxy-4a,10-dihydro-9a*H*-anthracene-9-on •linking of two molecules in positions 10 and 10'leads to tetrahydroxydianthrones

X = O **1,8-dihydroxyanthraquinone** = 1,8-dihydroxy-4a,9a-dihydroanthraquinone

 -OH in positions 1 and 8 are necessary for the activity, they can be present also in other positions

1,8-dihydroxyanthrone derivatives

aloin C-C glycoside

from *Rhamnus purshianus* Krenn L. et al., Chem. Pharm.Bull.52, 391 (2004) from *Rheum emodi* Manitto P. et al.,, J.Chem. Soc. Perkin **14**, 1577(1993)

Tetrahydroxydianthrone and its derivatives

OH R^{1} = H, R^{2} = COOH, 10R, 10'R sennoside A O- R^{1} R^{1} = H, R^{2} = COOH, 10R, 10'S sennoside B R^{1} = H, R^{2} = CH₂OH, 10R, 10 'R

sennoside C R¹= OCCOOH, R²= COOH, 10R, 10'R sennoside E

Eucarbon ® tbl.

1,8-dihydroxyanthraquinone derivatives

•aglycones, glucose bound predominantly through a phenolic hydroxyl is the most frequent sugar component

 R^1

Н

Н

OH

R² CH₃ **chrysophanol** syn. chrysophanic acid

- CH₃ **frangula emodin** syn. emodin Cholagol[®] gtt.
- H CH₂OH aloe emodin
 - COOH **rhein** Eucarbon ® tbl.

Antidiarrhoics = drugs used for treatment of diarrhoea

- causes of diarrhoea: GIT infections, intoxications, alergic inflammation, tumor
- danger: water and electrolytes loss

Classification of antidiarrhoics:

- Adsorbents (activated charcoal, slime (mucilage) forming compounds (pectins, clays)
- Adstringents (tanin, basic salts of Bi, compounds of Al and Ag)
- •"Intestinal disinfectants" non-absorbable antibacterial chemotherapeutics acting in gastrointestinal tract
- Intestinal peristaltic moderating compounds

Adstringents

$Mg_{3}[AI(OH)_{6}]_{2}$

magnesium hexahydroxoaluminate

large surface

•also effective adsorbent and antacide

bismuth subgallate •also antibacterial activity Carbocit[®] (+ *Carbo adsorbens*) "Intestinal disinfectants" – non-absorbable antibacterial drugs

phthalylsulfathiazole

non-absorbable N⁴-acylated sulfonamide
prodrug: free sulfathiazole is released in bacteria

•mechanism of action: inhibition of dihydropteroate synthase Ftalazol® tbl.

ethacridine

•in most lactate

•mode of action: cation interacts with nucleic acids of a pathogen (intercalation)

•magistraliter preparations

"Intestinal disinfectants" - continued

5,7-dihalogenoquinolin-8-ol derivatives

bacteriostatic, fungistatic and antiprotozoal effects
mechanism of action: forming of chelates with Me²⁺ important for microorganisms

"Intestinal disinfectants" – continued

Rifaximin – poorly absorbable ansamycine antibiotic

rifaximin

•poorly absorbable ATB for treatment of infectious diarrhoea Normix[®] tbl. rifampicinATB for treatment TBC

•mode of action: inhibition of DNA-dependent RNA-polymerase by forming of a stable complex with the enzyme \Rightarrow suppression of initiation of synthesis of bacterial RNA

•structural similarity with methadone and pethidine (*Tinctura opii* was formerly used also as antidiarrhoic)
•mechanism of action: interaction with opioid receptors in the intestine (supposed σ,δ - receptors; natural agonist is enkephaline)

Intestinal peristaltic moderating compounds

Comparison of structures of diphenoxylate, methadone and pethidine

pethidine syn. meperidine diphenoxylate

methadone

Intestinal peristaltic moderating compounds Inhibitor of enkephalinase, i.e. indirect agonist of σ -, δ -receptors

racecadotril

syn. acetorphan

•clinical trials of the Phase III for acute diarrhoea in infants finished