Laxatives (or cathartics) = drugs used in treatment of constipation or to empty bowels for a medical reason

Classification of laxatives in accordance with mechanism and site of action

- Osmotically acting laxatives (poorly absorbable salts, oligosaccharides, sugar alcohols)
- 2. Compounds ↓ resorption of Na⁺ in large intestine ⇒ accumulation of water therein (castor oil *Oleum ricini*, anthraglycosides, triarylmethane derivatives)
- 3. Softening compounds (liquid paraffin)
- 4. Swelling (slime forming) compounds –non-absorbable polysaccharides (linen seed *Semen lini*, wheat bran, methylcelullose)

General problems of laxatives

- possibility of addiction, necessity of chronic administration
- loss of electrolytes, namely K⁺ (important except others for motility of intestines)

1. Osmotic laxatives

cause osmotic accumulation of water in large intestine

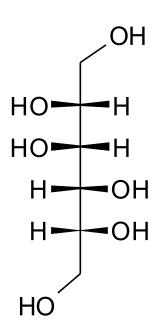
Poorly absorbable inorganic salts

MgSO₄. 7 H₂O "bitter salt"

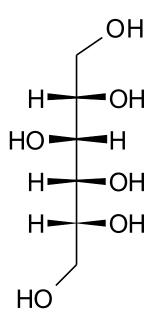
Sennagran® gra (+ laxative herbs)

Na₂SO₄.10 H₂O "Glauber salt"

Fortrans® plv.


• also *magistraliter* preparations and mineral waters

1. Osmotic laxatives - continued


Sugar alcohols

aplication p.o. or p.r.

glycerol glycerine suppositories *Suppositoria glycerini*

D-mannitol

D-sorbitol syn. **D-glucitol** Yal[®] rct. sol.

1. Osmotic laxatives – continued Oligosaccharides

lactose

milk sugar

4-O-β-D-galactopyranosyl-D-glucose

lactulose

4-O-β-D-galactopyranosyl-D-fructose •not absorbed, human has no enzyme for cleavage of it into monosaccharides chronic constipation

Duplalac® sir.

2. Compounds ↓ resorption of Na⁺ in large intestine Triarylmethane derivatives

direct interaction with Auerbach's (or myenteric) plexus is presumed

$$R_0$$
 H
 Q
 R
 R
 R
 R
 R
 R
 R
 R
 R

phenolphthalein

Confetto falqui® (+ Pruni fructus = dried plums as the source of K⁺)

 $R = -COCH_3$ bisacodyl

Fenolax® tbl. obd., Dulcolax ® tbl., Stadalax ® tbl. obd.

 $R = -SO_3Na$ sodium picosulfate

Darmol® past.

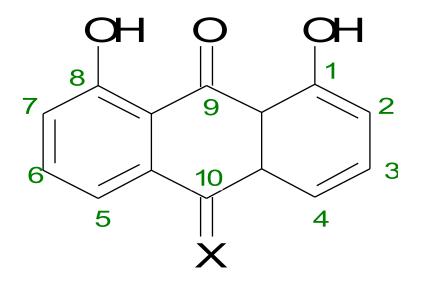
- faster onset of action
- •both compounds are prodrugs; the compound with 2 phenolic groups is active

Synthesis of phenolphthalein

$$H_2SO_4$$
OH
OH

3,3-bis(4-hydroxyphenyl)benzo[c]furane-1(3H)-on

phenolphthalein


Castor oil

- •Ricini oleum virginale PhEur
- •oil obtained from seeds of Ricinus communis
- •mainly glycerol triester with ricinoleic acid (85 92 %)

Anthraglycosides

•aglycones based on an anthrone or or anthraquinone skeleton of plant origin (Aloe, Rheum, Cassia, Frangula ...)

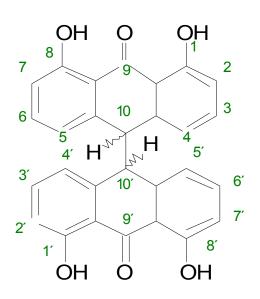
•saccharide: mostly glucose; both C-O and C-C glycosides

• $X = H_2$ **1,8-dihydroxyanthrone** = 1,8-dihydroxy-4a,10-dihydro-9aH-anthracene-9-on

•linking of two molecules in positions 10 and 10 leads to tetrahydroxydianthrones

X = O **1,8-dihydroxyanthraquinone** = 1,8-dihydroxy-4a,9a-dihydroanthraquinone

• -OH in positions 1 and 8 are necessary for the activity, they can be present also in other positions


1,8-dihydroxyanthrone derivatives

aloin C-C glycoside

cascaroside D

from Rhamnus purshianus Krenn L. et al., Chem. Pharm.Bull.52, 391 (2004) from Rheum emodi Manitto P. et al.,, J.Chem. Soc. Perkin 14, 1577(1993)

Tetrahydroxydianthrone and its derivatives

R¹= H, R²= COOH, 10R, 10'R sennoside **A**

R¹= H, R²= COOH, 10R, 10'S sennoside B R¹= H, R²= CH_2OH , 10R, 10'R

sennoside C R¹= OCCOOH, R²= COOH, 10R, 10'R sennoside E

Eucarbon ® tbl.

1,8-dihydroxyanthraquinone derivatives

•aglycones, glucose bound predominantly through a phenolic hydroxyl is the most frequent sugar component

R^1	R^2			
Н	CH ₃	chrysophanol syn. chrysophanic acid		
ОН	CH ₃	frangula emodin syn. emodin	Cholagol® gtt.	
Н	CH ₂ OH	aloe emodin		
Н	COOH	rhein Eucarbon ® tbl.		

Antidiarrhoics = drugs used for treatment of diarrhoea

- causes of diarrhoea: GIT infections, intoxications, alergic inflammation, tumor
- danger: water and electrolytes loss

Classification of antidiarrhoics:

- Adsorbents (activated charcoal, slime (mucilage) forming compounds (pectins, clays)
- Adstringents (tanin, basic salts of Bi, compounds of Al and Ag)
- •"Intestinal disinfectants" non-absorbable antibacterial chemotherapeutics acting in gastrointestinal tract
- Intestinal peristaltic moderating compounds

Adstringents

Mg₃[Al(OH)₆]₂ magnesium hexahydroxoaluminate

- •large surface
- also effective adsorbent and antacide

bismuth subgallate

•also antibacterial activity Carbocit® (+ Carbo adsorbens)

"Intestinal disinfectants" – non-absorbable antibacterial drugs

$$\begin{array}{c} HO \\ O \\ N \\ O \\ N \\ O \\ N \\ \end{array}$$

phthalylsulfathiazole

- •non-absorbable N⁴-acylated sulfonamide
- •prodrug: free sulfathiazole is released in bacteria
- •mechanism of action: inhibition of dihydropteroate synthase Ftalazol® tbl.

ethacridine

- •in most lactate
- mode of action: cation interacts with nucleic acids of a pathogen (intercalation)
- magistraliter preparations

"Intestinal disinfectants" – continued

5,7-dihalogenoquinolin-8-ol derivatives

$$X^2$$
 N
 R^1

- •bacteriostatic, fungistatic and antiprotozoal effects
- •mechanism of action: forming of chelates with Me²⁺ important for microorganisms

myelooptic neuropathies

"Intestinal disinfectants" – continued Rifaximin – poorly absorbable ansamycine antibiotic

rifaximin

•poorly absorbable ATB for treatment of infectious diarrhoea Normix® tbl.

rifampicin

ATB for treatment TBC

•mode of action: inhibition of DNA-dependent RNA-polymerase by forming of a stable complex with the enzyme ⇒ suppression of initiation of synthesis of bacterial RNA

Intestinal peristaltic moderating compounds (also "antipropulsives")

X	Υ	Z		
-CN	-COOEt	Н	diphenoxylate	Reasec® tbl. (+ atropin)
-CN	-COOH	Н	diphenoxine	
$-CON(CH_3)_2$	-OH	CI	loperamid	Imodium®
				cps.

- •structural similarity with methadone and pethidine (*Tinctura opii* was formerly used also as antidiarrhoic)
- •mechanism of action: interaction with opioid receptors in the intestine (supposed σ,δ receptors; natural agonist is enkephaline)

Intestinal peristaltic moderating compounds Comparison of structures of diphenoxylate, methadone and pethidine

$$H_3C$$
 O
 CH_3

$$H_3C$$
 H_3C
 $N-CH_3$
 CH_3

pethidine syn. meperidine

diphenoxylate

methadone

Intestinal peristaltic moderating compounds Inhibitor of enkephalinase, i.e. indirect agonist of σ -, δ -receptors

racecadotril syn. acetorphan

clinical trials of the Phase III for acute diarrhoea in infants finished