

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Antiparasitics

- = compounds used for treatment of parasitary infestations
- Antoprotozal drugs
- 2. Anthelmintics
- 3. Insecticides, ixodecides and repellents

1. Antiprotozoal drugs

= compounds killing pathogenic protozoa

1.1. Antimalarial drugs

infectious agents – protozoa of the genus *Plasmodium: P. vivax, P. falciparum, P. malariae, P. ovale*

$$HO$$
 HO
 H

quinine

•isolation from cinchona bark *Cortex chinae* (+ its stereoisomers quinidine, cinchonine, cinchonidine)

·except antimalarial effects has also antirheumatic and antipyretic ones

•"lead compound" for design of newer antimalarials with quinoline skeleton

Antimalarial drugs Quinoline derivatives

$$X$$
 HN
 CH_3
 R^1

X = CI $R^1 = H$ **chloroquine** Delagil[®] tbl.

X = F $R^1 = H$ fluoroquine X = CI $R^1 = OH$ hydroxychloroquine Plaquenil® drg.

·also treatment of rheumatoid arthritis

•mech. of action: inhibition of transformation of heme, which is toxic for the parasite, into hemozoine, which is not (= "malarial pigment" - non-toxic for *Plasmodium*)

Antimalarial drugs Quinoline derivatives

mefloquine

Lariam® tbl.

•also prophylactic before a travel to a tropic region

primaquine

Primaquine® tbl. obd.

Antimalarial drugs Quinoline derivatives

tebuquine

Antimalarial drugs Pyrimidine derivatives

$$H_3C$$
 O
 N
 NH_2
 O
 CH_3
 NH_2

pyrimethamine

Daraprim®

*also treatment of toxoplasmosis in combination with sulfadiazine

trimethoprim

Triprim ® tbl.

•now more frequently used in antibacterial combinations with sulfonamides

Antimalarial drugs Biguanide derivatives

proguanil

Malarone® por. tbl. flm.

•spectrum: P. falciparum

·mech. of action: inhibition of dihydrofolate reductase

avoids formation of tissue schizonts (hypnozoites)

Antimalarial drugs Artemisinin and its analogues

- •cyclic endoperoxides
- •mech. of action: forming of free radicals, toxic for *Plasmodium*, catalyzed by Fe of heme

artemisinin

sesquiterpene lactone isolated from wormwood Artemisia annuapoor biological availability

artesunate

·used as sodium salt for i.m. administration

Antimalarial drugs Sulfones

$$H_2N$$

dapson

1,1'-bis(4-aminophenyl)sulfone

 mode of action: inhibition of folic acid synthesis, inhibition of dihydropteroate synthase (like sulfonamides) in particular
 also drug for leprosy

1.2 Antiprotozoal drugs other than antimalarials 5-nitroimidazole derivatives

$$OH$$
 O_2N
 N
 CH_3

metronidazole

Entizol® tbl., tbl. vag.

*spectrum: *Trichomonas* vaginalis, *Entamoeba* histolytica, *Treponema*, anaerobic bacteria

·mechanism of action: interference with metabolism

$$OH$$
 CI
 O_2N
 N
 CH_3

ornidazole

Avrazor® inj.

•spectrum: *Trichomonas*vaginalis, Entamoeba

histolytica, Giardia intestinalis,

Bacteroides, anaerobic bacteria

mechanism of action: interference with metabolism

1.2 Antiprotozoal drugs other than antimalarials Sulfonamides

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_3
 CH_3

sulfadiazine

•One of the short-acting sulfonamides used in combination with pyrimethamine to treat toxoplasmosis in patients with acquired immunodeficiency syndrome and in newborns with congenital infections.

sulfadimidine

syn. sulfamethazine [USP]
sodium salt against coccidiosis
(caused namely by *Eimeria sp.*)
in poultry and rabbits
SULFADIMIDIN BIOVETA ® plv.
sol. ad us. vet.

•mode of action: inhibition of dihydropteroate synthase

2. Anthelmintics

= compounds against parasitic wormsBenzimidazole derivatives

tiabendazole

syn. thiabendazole [USAN, BAN]

Mintezol® tbl.

·also fungicidal effect

2. Anthelmintics

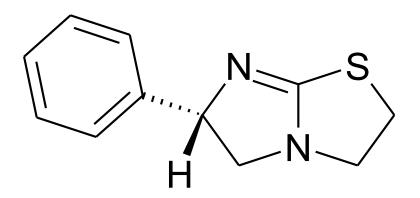
Benzimidazole derivatives

Methyl 1*H*-benzimidazole-2-carbamates

mech. of action: selective inhibition of mitosis of both worms and protozoa (binding to tubuline)

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

mebendazole


Vermox® tbl., por. sus.

albendazol

Zentel® por. sus.

•spectrum: human pinworm *Enterobius vermicularis*, whipworm *Trichuris trichiura*, human large roundworm *Ascaris lumbricoides*, hookworm *Ancylostoma duodenale*, threadworm *Strongyloides strercoralis*, tapeworms *Taenia spp.* etc., also protozoa *Girardia lamblia*, *Trichomonas vaginalis*

Anthelmintics Imidazothiazole derivatives

levamisole

S-(-)-2,3,5,6-tetrahyro-6-phenylimidazo[2,1-b]thiazole Decaris® tbl.

 ascaridosis, ancylostomosis, strongyloidosis, trichuriosis
 also immunomodulation effect – useful in rheumatoid arthritis, *lupus erythematodes*

Anthelmintics

Quinoline derivatives

$$CH_3$$
 CH_3
 CH_3

pyrvinium

Pyrvinium® susp. as embonate, i.e. salt with 4,4-methylenebis(3-hydroxynaphtalene-2-carboxylic)acid

•human pinworm *Enterobius vermicularis*

Pyrvinium embonate

·pyrvinium embonate (syn. pamoate)

Anthelmintics

Tetrahydropyrimidine derivatives

1-methyl-2-[(*E*)-2-(thiophen-2-yl)ethenyl]-1,4,5,6-tetrahydropyrimidine

pyrantel

- •mechanism of action: depolarizing neuromuscular-blocking agent, that causes persistent nicotinic activation resulting in spastic paralysis of susceptible nematodes
- •drug of second-choice after benzimidazoles for treatment of ascariasis, hookworm, and pinworm infections
- *effective after a single dose

Anthelmintics

Pyrazinoisoquinoline derivatives

2-(cyclohexylcarbonyl)-1,2,3,6,7,11b-hexahydro-4*H*-pyrazino[2,1-*a*]isoquinolin-4-one

praziquantel

•treatment of schistosomiasis (blood-flukes or bilharzia or Schistosoma infection)

Anthelmintics Halogenated salicylanilides

niclosamide

-tapeworms

oxyclozanide

•veterinary medicine: for fasciola (liver fluke) and tapeworms infestations in grazing animals (cattle)

Anthelmintics Halogenated salicylanilides

tribromsalan

3. Insecticides Chlorinated compounds

CI CI CI

DDT

•fundamental importance for eradication of stings which spreaded malaria and yellow fever
 •accumulated in organism and in the environment ⇒ not used any more

 γ -hexachlorocyclohexane

lindan

Skabicid® drm. eml.

•spectrum: Sarcoptex scabiei, Phtirius pubis, louse Pediculus capitis

·topical treatment of scabies

·contact, alimentary and inhalation neural poisons for insects

Insecticides Chlorinated compounds

dieldrine

•mechanism of action: inhibition of GABA-receptors

•obsolete: resistance, residues in environment

Insecticides Organic compounds of phosphorus Esters of (thio)phosphoric acid & (thio)phosphonic acids

$$\begin{array}{ccc}
 & Y & R^3 \\
 & O - P - O \\
 & P & O \\
 & R^2
\end{array}$$

$$\begin{array}{ccc}
 & Y & R^3 \\
R^4 & P - O \\
 & O \\
 & O
\end{array}$$

$$Y= O, S$$

R¹- R⁴ = alkyl, aryl

organophosphates, organophophothioates

organophosphonates, organophosphothionates

·irreversible cholinesterases inhibitors ⇒ strong parasympathomimetics

Organic compounds of phosphorus Esters of phosphoric acid & phosphonic acids

$$\begin{array}{c} O \\ O \\ O \\ -P \\ O \\ CH_3 \end{array} CI$$

$$O \rightarrow CI$$
 $O \rightarrow CI$
 $O \rightarrow CI$
 $O \rightarrow CI$
 $O \rightarrow CI$
 $O \rightarrow CH_3$

dichlorvos

Nuvan Top® spray a.u.v.

metriphonate syn. trichlorfon [USAN]

Arpalit® spray a.u.v.

•against fleas in furs (hair) of dogs and cats

Insecticides Organic compounds of phosphorus Esters of thiophosphoric acid & thiophosphonic acids

cythioate Cyflee® sol. a.u.v.

$$H_3C$$
 $O-P=S$
 CH_3
 CH_3
 CH_3

dimpylate

syn. diazinon Droplix® a.u.v.

 transcutaneously absorbed, kills parasites on whole body surface

Insecticides Selective inhibitors of GABA-receptors

fipronil

- •blocks GABA-receptors of insects which basically differs from mammalian ones in both structure and function
- highly selective toxicity for insects

Certifect ® "spot-on" pipettes (+ (S)-methoprene and amitraz) against ticks, fleas and chewing lice in dogs

Insecticides Insect hormone analogues

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3

methoprene

- •juvenile hormone analogue and insect growth regulator used to control insects by disrupting metamorphosis
- •absorbed into flea eggs or larvae, where it stops their development
- effective also in controlling mosquito larvae

Certifect ®

Ixodecides •kill ticks (arthropods)

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

N'-(2,4-dimethylphenyl)-N-{(E)-[(2,4-dimethylphenyl)imino]methyl}-N-methylimidoformamide 1,5-bis(2,4-dimethylphenyl)-3-methyl-1,3,5-triazapenta-1,4-diene **amitraz**

•mode of action: stimulates the nervous systems of ticks, leading to hyperactivity and death of them.

Certifect ®

Repellents

N-butylacetanilide (= N-butyl-N-phenylacetamide)

- •only repel, do not kill insects and ticks
- •used in repellent gels, creams and lotiones in concentrations 10 20 %