Example: Ice Cream Sales

The local ice cream shop keeps track of how much ice cream they sell versus the temperature of that day for t Formulate a null hypothesis and verify it by Pearsons and Spearman coefficients

Temperature	Ice Cream
(°C)	Sales (\$)
14.2	215
16.4	325
11.9	185
15.2	332
18.5	406
22.1	522
19.4	412
25.1	614
23.4	544
18.1	421
22.6	445
17.2	408

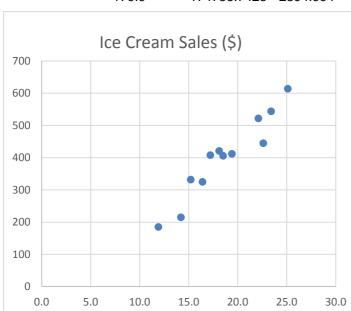
average

	402.4	18.7
838.7	-187.4	-4.5
176.1	-77.4	-2.3
-1473.0	217.4166667	-6.8
244.6	-70.4	-3.5
-0.6	3.6	-0.2
409.6	119.6	3.4
6.9	9.6	0.7
1354.1	211.6	6.4
669.0	141.6	4.7
-10.7	18.6	-0.6
167.1	42.6	3.9
13.0	5.6	2.3

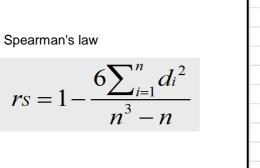
179.9 174756.7425 2394.994 Ice Cream Sales (\$)

t		rank sales d	d2	
	11	11	0	0
	9	10	-1	1
	12	12	0	0
	10	9	1	1
	6	8	-2	4
	4	3	1	1
	5	6	-1	1
	1	1	0	0
	2	2	0	0
	7	5	2	4
	3	4	-1	1
	8	7	1	1
				14

Ho: there is no correlation H1: There is correlation


rank

Pearson's law $\frac{\sum (X_i - \overline{X})(Y_i - \overline{X})}{\sum (X_i - \overline{X})^2 \sum (Y_i)}$ r =


0.427151

0.576 crit

H0= is rejected.

he last 12 days:

0.587 crit

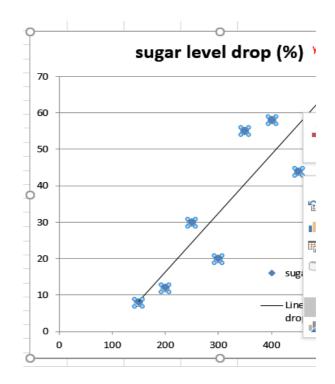
0.951049

n\ ^a	0.2	0.1	0.05
4	1.000	1.000	
5	0.800	0.900	1.000
6	0.657	0.829	0.886
7	0.571	0.714	0.786
8	0.524	0.643	0.738
9	0.483	0.600	0.700
10	0.455	0.564	0.648
11	0.427	0.536	0.618
12	0.406	0.503	0.587
13	0.385	0.484	0.560
14	0.367	0.464	0.538
15	0.354	0.446	0.521
16	0.341	0.429	0.503
17	0.328	0.414	0.488

Pearson One-Tailed Test							
r crit.	.05	.025	.01				
	Two-Tailed Test						
df	.10	.05	.02				
1	.988	.997	.9995				
2	.900	.950	.980				
3	.805	.878	.934				
4	.729	.811	.882				
5	.669	.754	.833				
6	.622	.707	.789				
7	.582	.666	.750				
8	.549	.632	.716				
9	.521	.602	.685				
10	.497	.576	.658				

0.02	0.01	n\ ^a	0.2	0.1	0.05	0.02	0.01
_	_	18	0.317	0.401	0.472	0.550	0.600
1.000	_	19	0.309	0.391	0.460	0.535	0.584
0.943	1.000	20	0.299	0.380	0.447	0.522	0.570
0.893	0.929	21	0.292	0.370	0.436	0.509	0.556
0.833	0.881	22	0.284	0.361	0.425	0.497	0.544
0.783	0.833	23	0.278	0.353	0.416	0.486	0.532
0.745	0.794	24	0.271	0.344	0.407	0.476	0.521
0.709	0.755	25	0.265	0.337	0.398	0.466	0.511
0.678	0.727	26	0.259	0.331	0.390	0.457	0.501
0.648	0.703	27	0.255	0.324	0.383	0.449	0.492
0.626	0.679	28	0.250	0.318	0.375	0.441	0.483
0.604	0.654	29	0.245	0.312	0.368	0.433	0.475
0.582	0.635	30	0.240	0.306	0.362	0.425	0.467
0.566	0.618		rho cr	itical valu	es for 2-tai	led test	

age (yrs)	price/1000 Kč	Here is a pricelist of used 10 cars Skoda Felicia Combi
3	167	
4	165	1. pressume normal distribution of the data
5	139	2. construct a simple regression model how the price depends on the
6	149	3. evaluate quality of the model
7	119	4. estimate a price of a ten-year-old Felicia Combi
7	129	
8	89	
8	115	
9	76	
9	89	

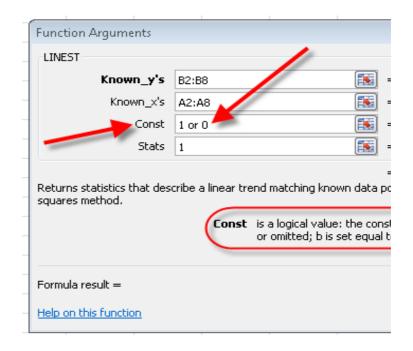

e age

A new kind of insulin was developed. Its effect was tested as a drop of sugar level in blood 2 hours after the injection application. 8 Randomly selected patients were dozed with different insulin amounts. Results are in the table:

Prove a strong correlation and plot a graph of regression residua

insuline amount (ug)	150	200	250	300	350	400
sugar level drop (%)	8	12	30	20	55	58

als!


450	500
44	65

/=	0.1614x - 15.964 R ² = 0.8048
Fil	Outline
	<u>D</u> elete
	Reset to M <u>a</u> tch Style
	Change Series Chart Type
<u>п</u>	S <u>e</u> lect Data
Ĵ.	3-D <u>R</u> otation
	Add Data La <u>b</u> els
	Add Tryndline
2	<u>F</u> ormat Data Series

Q

concentration	signal
1	0.195
2	0.425
3	0.565
4	0.851
5	1.142
6	1.198
7	1.530

HOW TO FORCE Const a=0

8
= {0.195;0.425;0.565;0.851;1.142;1 = {1;2;3;4;5;6;7}
= = TRUE =
pints, by fitting a straight line using the least
tant b is calculated normally if Const = TRUE o 0 if Const = FALSE.
OK Cancel

Data Analysis	
<u>A</u> nalysis Tools	
Fourier Analysis Histogram Moving Average Random Number Generation Rank and Percentile	
Regression Sampling t-Test: Paired Two Sample for Me t-Test: Two-Sample Assuming Eq t-Test: Two-Sample Assuming Un	ual Variances
Premier in	
Regression	
Input	
Input <u>Y</u> Range:	\$B\$1:\$B\$8
Input <u>X</u> Range:	\$A\$1:\$A\$8
🔽 Labels 🔽 🖸	onstant is <u>Z</u> ero
Confidence Level: 95	%
Output options	
Output Range:	
New Worksheet Ply:	
New Workbook	
Residuals	
Residuals Standardized Residuals	🔲 Resi <u>d</u> ual
Normal Probability	

	? ×
÷5	OK Cance <u>H</u> elp
	? ×
	OK Cancel <u>H</u> elp
Plots Plots	