Spearman correlation - admission

During the admission procedure, the evaluation was performed by commissions and by a specia Based on the ranking of the ten students, decide whether both assessments are dependent.

Student	A	В	C	D	E	${f F}$	G
commission grade	4	6	1	5	10	2	7
program grade	1	3	5	7	8	4	6
difference							
difference squared							

H0....correlation between the two grading =0

H1....correlation between the two grading <>0

ıl program.

Н	I	J
3	9	8
2	10	9

$$rs = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n^3 - n}$$

n∖α	0.2	0.1	0.05	0.02	- (
4	1.000	1.000	_	_	
5	0.800	0.900	1.000	1.000	
6	0.657	0.829	0.886	0.943	1.
7	0.571	0.714	0.786	0.893	O.
8	0.524	0.643	0.738	0.833	O.
9	0.483	0.600	0.700	0.783	O.
10	0.455	0.564	0.648	0.745	O.
11	0.427	0.536	0.618	0.709	O.
12	0.406	0.503	0.587	0.678	O.
13	0.385	0.484	0.560	0.648	O.
14	0.367	0.464	0.538	0.626	O.
15	0.354	0.446	0.521	0.604	O.
16	0.341	0.429	0.503	0.582	O.
17	0.328	0.414	0.488	0.566	O.

n\ª	0.1	0.05	0.02	0.01	n\ ^a
4	1.000	1.000	_	_	18
5	0.800	0.900	1.000	1.000	19
6	0.657	0.829	0.886	0.943	20
7	0.571	0.714	0.786	0.893	21
8	0.524	0.643	0.738	0.833	22
9	0.483	0.600	0.700	0.783	23
10	0.455	0.564	0.648	0.745	24
11	0.427	0.536	0.618	0.709	25
12	0.406	0.503	0.587	0.678	26
13	0.385	0.484	0.560	0.648	27
14	0.367	0.464	0.538	0.626	28
15	0.354	0.446	0.521	0.604	29
16	0.341	0.429	0.503	0.582	30
17	0.328	0.414	0.488	0.566	

0.01	n\α	0.2	0.1	0.05	0.02	0.01
	18	0.317	0.401	0.472	0.550	0.600
_	19	0.309	0.391	0.460	0.535	0.584
.000	20	0.299	0.380	0.447	0.522	0.570
.929	21	0.292	0.370	0.436	0.509	0.556
.881	22	0.284	0.361	0.425	0.497	0.544
.833	23	0.278	0.353	0.416	0.486	0.532
.794	24	0.271	0.344	0.407	0.476	0.521
.755	25	0.265	0.337	0.398	0.466	0.511
.727	26	0.259	0.331	0.390	0.457	0.501
.703	27	0.255	0.324	0.383	0.449	0.492
.679	28	0.250	0.318	0.375	0.441	0.483
.654	29	0.245	0.312	0.368	0.433	0.475
.635	30	0.240	0.306	0.362	0.425	0.467
.618		rho cr	itical valu	es for 2-tai	led test	

0.1	0.05	0.02	0.01
0.317	0.401	0.472	0.550
0.309	0.391	0.460	0.535
0.299	0.380	0.447	0.522
0.292	0.370	0.436	0.509
0.284	0.361	0.425	0.497
0.278	0.353	0.416	0.486
0.271	0.344	0.407	0.476
0.265	0.337	0.398	0.466
0.259	0.331	0.390	0.457
0.255	0.324	0.383	0.449
0.250	0.318	0.375	0.441
0.245	0.312	0.368	0.433
0.240	0.306	0.362	0.425
rho cr	itical valu	es for 1-tai	led test

Test1	Test2
80	65
50	60
36	35
58	39
72	48
60	44
56	48
68	61

You are given test results (points) from two subjects of 8 randomly selected Determine the correlation of a linear dependence of these results by the SI

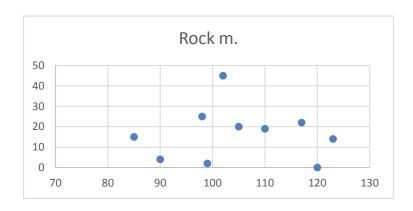
$$rs = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n^3 - n}$$

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

d students.
pearman and Pearson coefficients.

n\ ^a	0.2	0.1	0.05	0.02	0.01	n\α	0.2	0.1
4	1.000	1.000	_	_	_	18	0.317	0.401
5	0.800	0.900	1.000	1.000	_	19	0.309	0.391
6	0.657	0.829	0.886	0.943	1.000	20	0.299	0.380
7	0.571	0.714	0.786	0.893	0.929	21	0.292	0.370
8	0.524	0.643	0.738	0.833	0.881	22	0.284	0.361
9	0.483	0.600	0.700	0.783	0.833	23	0.278	0.353
10	0.455	0.564	0.648	0.745	0.794	24	0.271	0.344
11	0.427	0.536	0.618	0.709	0.755	25	0.265	0.337
12	0.406	0.503	0.587	0.678	0.727	26	0.259	0.331
13	0.385	0.484	0.560	0.648	0.703	27	0.255	0.324
14	0.367	0.464	0.538	0.626	0.679	28	0.250	0.318
15	0.354	0.446	0.521	0.604	0.654	29	0.245	0.312
16	0.341	0.429	0.503	0.582	0.635	30	0.240	0.306
17	0.328	0.414	0.488	0.566	0.618		rho cr	itical val

Pearson	Pearson One-Tailed Test						
r crit.	.05	.025	.01				
	Two-Tailed Test						
df	.10	.05	.02				
1	.988	.997	.9995				
2	.900	.950	.980				
3	.805	.878	.934				
4	.729	.811	.882				
5	.669	.754	.833				
6	.622	.707	.789				
7	.582	.666	.750				
8	.549	.632	.716				
9	.521	.602	.685				
10	.497	.576	.658				


0.05	0.02	0.01
0.472	0.550	0.600
0.460	0.535	0.584
0.447	0.522	0.570
0.436	0.509	0.556
0.425	0.497	0.544
0.416	0.486	0.532
0.407	0.476	0.521
0.398	0.466	0.511
0.390	0.457	0.501
0.383	0.449	0.492
0.375	0.441	0.483
0.368	0.433	0.475
0.362	0.425	0.467

Data displays the association between the IQ of 10 adolescent in a sample with the number of hours they lister Determine the strength of the correlation between IQ and rock music using both the Pearson's correlation coef

IQ	Rock m.
99	2
120	0
98	25
102	45
123	14
105	20
85	15
110	19
117	22
90	4

rank IQ rank rock d

$$rs = 1 - \frac{6\sum_{i=1}^{n} a_i}{n^3 - a_i}$$

n∖ ^α	0.2	0.1	0.05	0.02	0.0
4	1.000	1.000	_	_	
5	0.800	0.900	1.000	1.000	
6	0.657	0.829	0.886	0.943	1.00
7	0.571	0.714	0.786	0.893	0.92
8	0.524	0.643	0.738	0.833	0.88
9	0.483	0.600	0.700	0.783	0.83
10	0.455	0.564	0.648	0.745	0.75
11	0.427	0.536	0.618	0.709	0.75
12	0.406	0.503	0.587	0.678	0.72
13	0.385	0.484	0.560	0.648	0.70
14	0.367	0.464	0.538	0.626	0.67
15	0.354	0.446	0.521	0.604	0.65
16	0.341	0.429	0.503	0.582	0.63
17	0.328	0.414	0.488	0.566	0.61

1 to rock music per month.

ficient and Spearman's rank correlation. Compare the results.

$$\frac{d_i^2}{n}$$

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

B1	n\ ^a	0.2	0.1	0.05	0.02	0.01
-	18	0.317	0.401	0.472	0.550	0.600
_	19	0.309	0.391	0.460	0.535	0.584
BO	20	0.299	0.380	0.447	0.522	0.570
29	21	0.292	0.370	0.436	0.509	0.556
81	22	0.284	0.361	0.425	0.497	0.544
33	23	0.278	0.353	0.416	0.486	0.532
94	24	0.271	0.344	0.407	0.476	0.521
55	25	0.265	0.337	0.398	0.466	0.511
27	26	0.259	0.331	0.390	0.457	0.501
03	27	0.255	0.324	0.383	0.449	0.492
79	28	0.250	0.318	0.375	0.441	0.483
54	29	0.245	0.312	0.368	0.433	0.475
35	30	0.240	0.306	0.362	0.425	0.467
18		rho cr	itical valu	es for 2-tai	led test	

	On	e-Tailed Test					
	.05	.025	.01				
	Two-Tailed Test						
df	.10	.05	.02				
1	.988	.997	.9995				
2	.900	.950	.980				
3	.805	.878	.934				
4	.729	.811	.882				
5	.669	.754	.833				
6	.622	.707	.789				
7	.582	.666	.750				
8	.549	.632	.716				
9	.521	.602	.685				
10	.497	.576	.658				

Example: Ice Cream Sales

The local ice cream shop keeps track of how much ice cream they sell versus the temperature of that day for formulate a null hypothesis and verify it by Pearsons and Spearman coefficients

Temperature	Ice Cream
(°C)	Sales (\$)
14.2	215
16.4	325
11.9	185
15.2	332
18.5	406
22.1	522
19.4	412
25.1	614
23.4	544
18.1	421
22.6	445
17.2	408

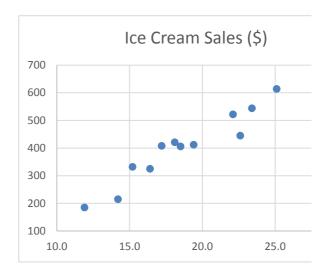
rank t		rank sales	d
	11	11	0
	9	10	-1
	12	12	0
	10	9	1
	6	8	-2
	4	3	1
	5	6	-1
	1	1	0
	2	2 5	0
	7	5	2
	3	4	-1
	8	7	1
			4.4

14 sum square 0.951049 .=rs

crit(0,05) = 0.587

The calculated value is The null hypothesis is i

average		
18.7	402.4	
differences		dx*dy
-4.5	-187.4	838.69
-2.3	-77.4	176.12
-6.8	-217.4	1473.00
-3.5	-70.4	244.70
-0.2	3.6	-0.63
3.4	119.6	409.57
0.7	9.6	6.95
6.4	211.6	1359.42
4.7	141.6	668.98
-0.6	18.6	-10.69
3.9	42.6	167.14
-1.5	5.6	-8.24
177.0	174754.9	5325.03

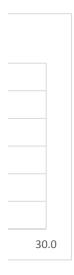

	r=	0.957507
d.o.f.=		10
alpha=		0.05
critical=		0.576

The calculated value is above the Therefore, the null hypothesis is re

the last 12 days:

H0= There is no correlation between the amount of icecream sold and the temperature outside. H0= There is a correlation.

$$r_S = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n^3 - n}$$


эd

s larger than critical value. rejected. Therefore, there is a colleration.

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

| Pe

critical one. ejected. There is a correlation.

n۱	0.01	0.02	0.05	0.1	0.2	n\ ^a
13	_	_	_	1.000	1.000	4
19	_	1.000	1.000	0.900	0.800	5
20	1.000	0.943	0.886	0.829	0.657	6
2	0.929	0.893	0.786	0.714	0.571	7
2	0.881	0.833	0.738	0.643	0.524	8
23	0.833	0.783	0.700	0.600	0.483	9
24	0.794	0.745	0.648	0.564	0.455	10
2:	0.755	0.709	0.618	0.536	0.427	11
20	0.727	0.678	0.587	0.503	0.406	12
27	0.703	0.648	0.560	0.484	0.385	13
28	0.679	0.626	0.538	0.464	0.367	14
25	0.654	0.604	0.521	0.446	0.354	15
30	0.635	0.582	0.503	0.429	0.341	16
	0.618	0.566	0.488	0.414	0.328	17

earso	earson One-Tailed Test						
crit.	.05	.025	.01				
	Two-Tailed Test						
lf	.10	.05	.02				
1	.988	.997	.9995				
2	.900	.950	.980				
3	.805	.878	.934				
4	.729	.811	.882				
2 3 4 5 6	.669	.754	.833				
6	.622	.707	.789				
7 8	.582	.666	.750				
8	.549	.632	.716				
9	.521	.602	.685				
.0	.497	.576	.658				

0.401 0.391 0.380	0.472 0.460 0.447	0.550 0.535 0.522	0.600 0.584 0.570
0.380			
	0.447	0.522	0.570
0.370	0.436	0.509	0.556
0.361	0.425	0.497	0.544
0.353	0.416	0.486	0.532
0.344	0.407	0.476	0.521
0.337	0.398	0.466	0.511
0.331	0.390	0.457	0.501
0.324	0.383	0.449	0.492
0.318	0.375	0.441	0.483
0.312	0.368	0.433	0.475
0.306	0.362	0.425	0.467
	0.361 0.353 0.344 0.337 0.331 0.324 0.318 0.312	0.361 0.425 0.353 0.416 0.344 0.407 0.337 0.398 0.331 0.390 0.324 0.383 0.318 0.375 0.312 0.368 0.306 0.362	0.361 0.425 0.497 0.353 0.416 0.486 0.344 0.407 0.476 0.337 0.398 0.466 0.331 0.390 0.457 0.324 0.383 0.449 0.318 0.375 0.441 0.312 0.368 0.433