Spearman correlation - admission

During the admission procedure, the evaluation was performed by commissions and by a specia Based on the ranking of the ten students, decide whether both assessments are dependent.

Student	A	В	C	D	E	${f F}$	G
commission grade	4	6	1	5	10	2	7
program grade	1	3	5	7	8	4	6
difference							
difference squared							

H0....correlation between the two grading =0

H1....correlation between the two grading <>0

ıl program.

Н	I	J
3	9	8
2	10	9

$$rs = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n^3 - n}$$

n∖α	0.2	0.1	0.05	0.02	- (
4	1.000	1.000	_	_	
5	0.800	0.900	1.000	1.000	
6	0.657	0.829	0.886	0.943	1.
7	0.571	0.714	0.786	0.893	O.
8	0.524	0.643	0.738	0.833	O.
9	0.483	0.600	0.700	0.783	O.
10	0.455	0.564	0.648	0.745	O.
11	0.427	0.536	0.618	0.709	O.
12	0.406	0.503	0.587	0.678	O.
13	0.385	0.484	0.560	0.648	O.
14	0.367	0.464	0.538	0.626	O.
15	0.354	0.446	0.521	0.604	O.
16	0.341	0.429	0.503	0.582	O.
17	0.328	0.414	0.488	0.566	O.

n\ª	0.1	0.05	0.02	0.01	n\ ^a
4	1.000	1.000	_	_	18
5	0.800	0.900	1.000	1.000	19
6	0.657	0.829	0.886	0.943	20
7	0.571	0.714	0.786	0.893	21
8	0.524	0.643	0.738	0.833	22
9	0.483	0.600	0.700	0.783	23
10	0.455	0.564	0.648	0.745	24
11	0.427	0.536	0.618	0.709	25
12	0.406	0.503	0.587	0.678	26
13	0.385	0.484	0.560	0.648	27
14	0.367	0.464	0.538	0.626	28
15	0.354	0.446	0.521	0.604	29
16	0.341	0.429	0.503	0.582	30
17	0.328	0.414	0.488	0.566	

0.01	n\α	0.2	0.1	0.05	0.02	0.01
	18	0.317	0.401	0.472	0.550	0.600
_	19	0.309	0.391	0.460	0.535	0.584
.000	20	0.299	0.380	0.447	0.522	0.570
.929	21	0.292	0.370	0.436	0.509	0.556
.881	22	0.284	0.361	0.425	0.497	0.544
.833	23	0.278	0.353	0.416	0.486	0.532
.794	24	0.271	0.344	0.407	0.476	0.521
.755	25	0.265	0.337	0.398	0.466	0.511
.727	26	0.259	0.331	0.390	0.457	0.501
.703	27	0.255	0.324	0.383	0.449	0.492
.679	28	0.250	0.318	0.375	0.441	0.483
.654	29	0.245	0.312	0.368	0.433	0.475
.635	30	0.240	0.306	0.362	0.425	0.467
.618		rho cr	itical valu	es for 2-tai	led test	

0.1	0.05	0.02	0.01
0.317	0.401	0.472	0.550
0.309	0.391	0.460	0.535
0.299	0.380	0.447	0.522
0.292	0.370	0.436	0.509
0.284	0.361	0.425	0.497
0.278	0.353	0.416	0.486
0.271	0.344	0.407	0.476
0.265	0.337	0.398	0.466
0.259	0.331	0.390	0.457
0.255	0.324	0.383	0.449
0.250	0.318	0.375	0.441
0.245	0.312	0.368	0.433
0.240	0.306	0.362	0.425
rho cr	itical valu	es for 1-tai	led test

Test1	Test2
80	65
50	60
36	35
58	39
72	48
60	44
56	48
68	61

You are given test results (points) from two subjects of 8 randomly selected Determine the correlation of a linear dependence of these results by the SI

$$rs = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n^3 - n}$$

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

d students.
pearman and Pearson coefficients.

n\ ^a	0.2	0.1	0.05	0.02	0.01	n\α	0.2	0.1
4	1.000	1.000	_	_	_	18	0.317	0.401
5	0.800	0.900	1.000	1.000	_	19	0.309	0.391
6	0.657	0.829	0.886	0.943	1.000	20	0.299	0.380
7	0.571	0.714	0.786	0.893	0.929	21	0.292	0.370
8	0.524	0.643	0.738	0.833	0.881	22	0.284	0.361
9	0.483	0.600	0.700	0.783	0.833	23	0.278	0.353
10	0.455	0.564	0.648	0.745	0.794	24	0.271	0.344
11	0.427	0.536	0.618	0.709	0.755	25	0.265	0.337
12	0.406	0.503	0.587	0.678	0.727	26	0.259	0.331
13	0.385	0.484	0.560	0.648	0.703	27	0.255	0.324
14	0.367	0.464	0.538	0.626	0.679	28	0.250	0.318
15	0.354	0.446	0.521	0.604	0.654	29	0.245	0.312
16	0.341	0.429	0.503	0.582	0.635	30	0.240	0.306
17	0.328	0.414	0.488	0.566	0.618		rho cr	itical val

Pearson	Pearson One-Tailed Test					
r crit.	.05	.025	.01			
Two-Tailed Test						
df	.10	.05	.02			
1	.988	.997	.9995			
2	.900	.950	.980			
3	.805	.878	.934			
4	.729	.811	.882			
5	.669	.754	.833			
6	.622	.707	.789			
7	.582	.666	.750			
8	.549	.632	.716			
9	.521	.602	.685			
10	.497	.576	.658			

0.05	0.02	0.01
0.472	0.550	0.600
0.460	0.535	0.584
0.447	0.522	0.570
0.436	0.509	0.556
0.425	0.497	0.544
0.416	0.486	0.532
0.407	0.476	0.521
0.398	0.466	0.511
0.390	0.457	0.501
0.383	0.449	0.492
0.375	0.441	0.483
0.368	0.433	0.475
0.362	0.425	0.467

Data displays the association between the IQ of 10 adolescent in a sample with the number of hours they lister Determine the strength of the correlation between IQ and rock music using both the Pearson's correlation coef

IQ	Rock m.
99	2
120	0
98	25
102	45
123	14
105	20
85	15
110	19
117	22
90	4

rank IQ rank rock d

$$rs = 1 - \frac{6\sum_{i=1}^{n} a_{i}}{n^3 - i}$$

n\ ^α	0.2	0.1	0.05	0.02	0.0
4	1.000	1.000	_	_	
5	0.800	0.900	1.000	1.000	
6	0.657	0.829	0.886	0.943	1.00
7	0.571	0.714	0.786	0.893	0.92
8	0.524	0.643	0.738	0.833	0.88
9	0.483	0.600	0.700	0.783	0.83
10	0.455	0.564	0.648	0.745	0.75
11	0.427	0.536	0.618	0.709	0.75
12	0.406	0.503	0.587	0.678	0.72
13	0.385	0.484	0.560	0.648	0.70
14	0.367	0.464	0.538	0.626	0.67
15	0.354	0.446	0.521	0.604	0.65
16	0.341	0.429	0.503	0.582	0.63
17	0.328	0.414	0.488	0.566	0.61

n to rock music per month.

ficient and Spearman's rank correlation. Compare the results.

$$\frac{d_i^2}{d}$$

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

B1	n\ ^a	0.2	0.1	0.05	0.02	0.01
-	18	0.317	0.401	0.472	0.550	0.600
_	19	0.309	0.391	0.460	0.535	0.584
BO	20	0.299	0.380	0.447	0.522	0.570
29	21	0.292	0.370	0.436	0.509	0.556
81	22	0.284	0.361	0.425	0.497	0.544
33	23	0.278	0.353	0.416	0.486	0.532
94	24	0.271	0.344	0.407	0.476	0.521
55	25	0.265	0.337	0.398	0.466	0.511
27	26	0.259	0.331	0.390	0.457	0.501
03	27	0.255	0.324	0.383	0.449	0.492
79	28	0.250	0.318	0.375	0.441	0.483
54	29	0.245	0.312	0.368	0.433	0.475
35	30	0.240	0.306	0.362	0.425	0.467
18		rho cr	itical valu	es for 2-tai	led test	

	Oı	ne-Tailed Test	_				
	.05	.025	.01				
Two-Tailed Test							
df	.10	.05	.02				
1	.988	.997	.9995				
2	.900	.950	.980				
3	.805	.878	.934				
4	.729	.811	.882				
5	.669	.754	.833				
6	.622	.707	.789				
7	.582	.666	.750				
8	.549	.632	.716				
9	.521	.602	.685				
10	.497	.576	.658				

Example: Ice Cream Sales

525.7

0.576

0.965090023

d.f

The local ice cream shop keeps track of how much ice cream they sell versus the temperature of that day for t Formulate a null hypothesis and verify it by Pearsons and Spearman coefficients

H0 there is no correlati

			Spearman	we accept	H1 there is a	correlatio
	Temperature	Ice Cream				
	(°C)	Sales (\$)	Rank T°	Rank ice c	differnce	
	14.2	215	11	11	0	
	16.4	325	9	10		
	11.9	185	12			
	15.2	332	10			
	18.5	406	6	8		
	22.1	522	4	3		
	19.4	412	5	6		
	25.1	614	1	1	0	
	23.4	544	2			
	18.1	421	7			
	22.6	445	3			
	17.2	408	8	7		
					14	
	N	12		rs	0.951049	
	N^3	1728		Critical value	. 0.587	
	Pearsons					
averarge	18.7	402.4166667				
			dx*dy			
	-4.5	-187.4166667				
	-2.3	-77.41666667	176.1229			
	-6.8	-217.4166667	1472.998			r =
	-3.5	-70.41666667				
	-0.2	3.583333333				
	3.4	119.5833333				
	0.7	9.583333333				
	6.4	211.5833333				
	4.7	141.5833333				
	-0.6	18.58333333				
	3.9	42.58333333				
	-1.5	5.583333333				
	-18.7	-402.4166667	7515.131			

336694.0903 12840.16

he last 12 days:

ion between the number of ice cream sell and the temperature

n between the number of ice cream sell and the temperature

$$rs = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n^3 - n}$$

n\ ^a	0.2	0.1	0.05	
4	1.000	1.000	_	
5	0.800	0.900	1.000	1
6	0.657	0.829	0.886	(
7	0.571	0.714	0.786	(
8	0.524	0.643	0.738	(
9	0.483	0.600	0.700	(
10	0.455	0.564	0.648	(
11	0.427	0.536	0.618	(
12	0.406	0.503	0.587	(
13	0.385	0.484	0.560	(
14	0.367	0.464	0.538	(
15	0.354	0.446	0.521	(
16	0.341	0.429	0.503	(
17	0.328	0.414	0.488	- (

$$= \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

Pearson One-Tailed Test							
r crit.	.05	.025	.01				
	Two	o-Tailed Test	_				
df	.10	.05	.02				
1	.988	.997	.9995				
2	.900	.950	.980				
3	.805	.878	.934				
4	.729	.811	.882				
5	.669	.754	.833				
6	.622	.707	.789				
7	.582	.666	.750				
8	.549	.632	.716				
9	.521	.602	.685				
10	.497	.576	.658				

0.02	0.01	n\α	0.2	0.1	0.05	0.02	0.01
_	_	18	0.317	0.401	0.472	0.550	0.600
1.000	_	19	0.309	0.391	0.460	0.535	0.584
D.943	1.000	20	0.299	0.380	0.447	0.522	0.570
D.893	0.929	21	0.292	0.370	0.436	0.509	0.556
0.833	0.881	22	0.284	0.361	0.425	0.497	0.544
0.783	0.833	23	0.278	0.353	0.416	0.486	0.532
D. 74 5	0.794	24	0.271	0.344	0.407	0.476	0.521
0.709	0.755	25	0.265	0.337	0.398	0.466	0.511
0.678	0.727	26	0.259	0.331	0.390	0.457	0.501
D.648	0.703	27	0.255	0.324	0.383	0.449	0.492
D.626	0.679	28	0.250	0.318	0.375	0.441	0.483
D.604	0.654	29	0.245	0.312	0.368	0.433	0.475
0.582	0.635	30	0.240	0.306	0.362	0.425	0.467
D.566	0.618		rho cr	itical valu	es for 2-tai	led test	