Decide if the 2 sets of data belong to the same population:

set1	set2							
16.38	3	16.84	Grubb's test: $G = \frac{\max Y_i }{C}$					
19.15	5	15.46	H0 = There is no outlier in the data set 1. $G = \frac{G}{s}$					
19.1	l	14.41	Ha = There is one outlier in the data set 1.					
19.28	3	18.1						
19.12	2	16.99	Max value:	19.28	T (max)=	0.64	10528	
18.85	5	15.11	Min value:	12.45	T (min)=	2.57	76243	
18.1	L	15.1	Mean:	17.92	critical=		2.29	
19)		St. dev.:	2.123247				
17.77	7				H0 is rejecte	ed as	calculate	ed T (min
12.45	5				Therefore, t	he va	alue 12,4	5 is an οι

F-test:

9	7 .=N
0.9160	1.7529 .=variance
18.53	16.00 .=mean

H0 = both variances are equal

F= 1.913621 Fcrit2= 5.599623

H0 is accepted as the calculated F value is lower that critical value. The variances are equal.

T-test:	H0 = the m
dof=	14
T=	4.44019
Tcrit2=	2.144787

H0 is rejected as the ca Therefore, there is a di

$$rac{-ar{Y}|}{s}$$
 $G=rac{ar{Y}-Y_{min}}{s}$

H0 = There is no outlier in the data set 2. Ha = There is one outlier in the data set 2.

 Max value:
 18.1
 T (max)=
 1.58505

 Min value:
 14.41
 T (min)=
 1.20201

 Mean:
 16.00
 critical=
 2.02

St. dev.: 1.32398

) value is higher than critical value. utlier.

H0 is accepted as both of Therefore, there are no

eans of the 2 data sets are practicallz equal Pool varian 1.274689

alculated T value is higher than the critical value.

fference between the means of the 2 data sets, therefore, they do not belong to the same population.

Tento graf nie je k dispozícii vo vašej verzii programu Excel.

Ak tento tvar upravíte alebo ak zošit uložíte v inom formáte súboru, graf sa natrvalo poškodí.

calculated T values are smaller than critical value. outliers in the data set 2.