Compare parametric and non-parametric statistics:

			Q-test:	H0 = Ther	ere is no outlier in the data set.	
Data set	sorted	Q		H1 = Ther	ere is one outlier in the data set.	
30.1	l 30.1	. 0.351				
32.56	32.56	;		alpha=	0.05	
33.33	33.33			range=	7	
34.1	34.1			N=	8	
34.45	34.45	i		Qcrit=	0.526	
35.12	35.12	1				
35.14	l 35.14	Ļ		The calculated value 0,351 is smaller than the critical valu		
37.1	l 37.1	. 0.280)	Therefore, the null hypothesis is accepted, no outlier pre		

N	Q _{orit} (CL:90%)	Q _{orit} (CL:95%)	Q _{orit} (CL:99%)
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568

PARAMETRIC:

	Grubb's test: H0 = There	is no outlier in the da	ta set.		
Data set	H1 = There	H1 = There is one outlier in the data set.			
30.1					
32.56	Max value=	37.1	T (max)=	1.500788	
33.33	Min value=	30.1	T (min)=	1.874478	
34.1	Mean=	33.99	critical=	2.1266	
34.45	St. dev.=	2.073911			
35.12			Both calcu	lated values are lower tl	
35.14			Therefore,	the null hypothesis is a	
37.1		\overline{V} V			
	$G = rac{\max Y_i - Y }{2}$	$G=rac{Y-Y_{min}}{ m c}$			
	8	3			

CONCLUSION:

Non-parametric tests are more suitable as there is a small sample of data and it is not normally distributed

NON-PARAMETRIC:

Data set sorted	
30.1	
32.56	
33.33	
34.1	
34.45	
35.12	
35.14	
37.1	

Confidence interval:

n	j	k	p
$n \leq$	5: no confidenc	e interval poss	ible.
6	1	6	0.969
7	1	7	0.984
8	1	7	0.961
9	2	8	0.961
10	2	9	0.979
11	2	10	0.988
12	3	10	0.961
13	3	11	0.978
14	3	11	0.965
15	4	12	0.965
16	4	12	0.951
17	5	13	0.951
18	5	14	0.969
19	5	15	0.981
20	6	15	0.959

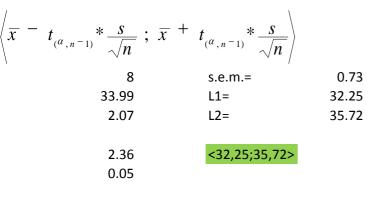
ie 0,526. sent.

Confidence interval - Student:

	Data set	
	30.1	
	32.56	
han the critical value 2,1266.	33.33	
ccepted, there is no outlier.	34.1	
	34.45	
	35.12	
	35.14	
	37.1	

 $\left\langle \overline{x} - t_{(\alpha, n^{-1})} * \frac{s}{\sqrt{n}} \right\rangle$

N= Mean= St. dev.=


8

<30,1;35,14>

N=

t= alpha=

١.

