Drug transporters

2018

Transporters

- membrane proteins able to facilitate flux of molecules into and out of cells
- primary function is to transport nutrients
 (sugars, aminoacids, nucleotides, vitamines)
 inside or to efflux endogenous and exogenous
 toxines outside the cell
- drugs bearing similar parts to natural substrates can be carried too – problems with bioavailability, efficiacy and toxicity (substrate competition)

Transporters

- **Passive transporters** (facilitated transporters): move molecules down their electrochemical gradient
- Active transporters works against electrochemical gradients
- Primary transporters move molecules consumpting ATP
- Secondary transporters use energy of facilitated transport (e.g. of ions)
- -co-transporters (in same way)
- -exchangers (in opposite way)

Transporters

Most transporters are expressed om barrier cells: - liver

- kidney
- intestine
- placenta
- brain

Different transporters on inner and outer part of cells

Transporters classification

cellular level:

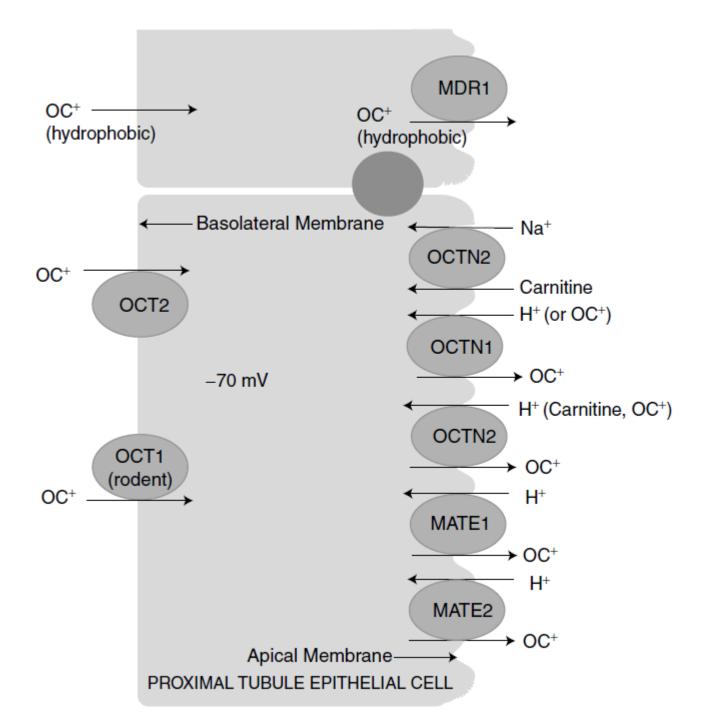
- influx tr.
- efflux tr.

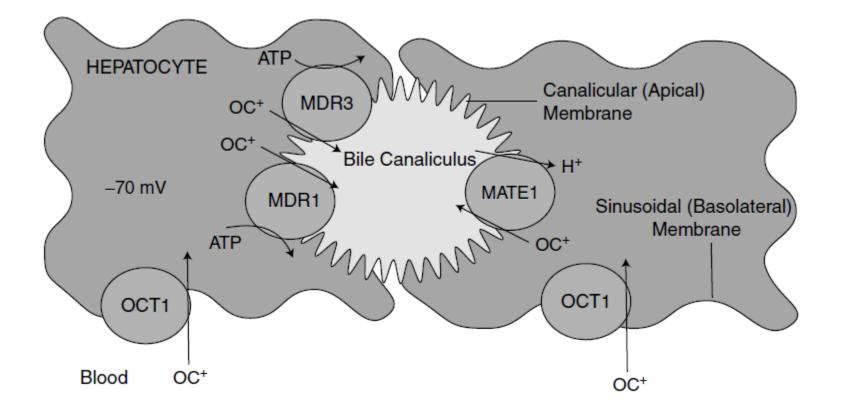
pharmacological level:

absorptive tr. (absorption into bloodstream) *secretory tr.* (transport from bloodstream into urine, bile or gut lumen)

conventionally, transporters enhancing absorption into brain and fetus are *absorptive*

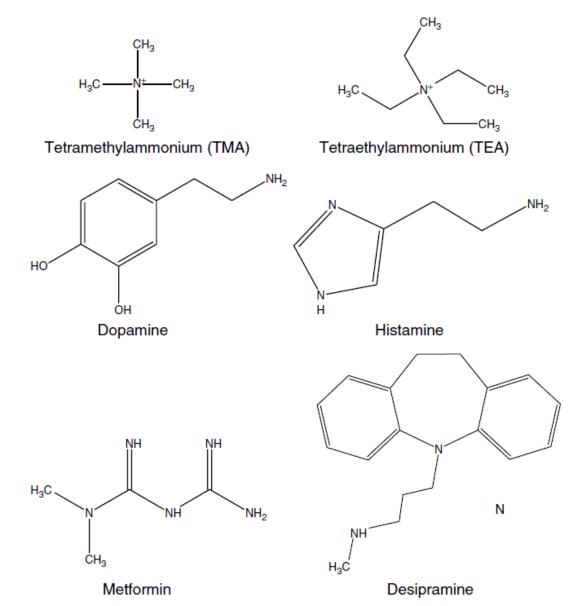
Substrate classification


- Organic cation transporter (OCT)
- Organic cation/carnitine transporter (OCTN)
- Organic anion transporter (OAT)
- Organic anion transporter polypeptides (OATP) Peptide transporter (PEPT)
- Monocarboxylate transporter (MCT, SMCT)
- Nucleoside transporter (CNT, ENT)
- Bile acid transporter (NTCP, ASBT, BSEP, OST)
- Multidrug resistance protein (MDR)
- Multidrug resistance associated protein (MRP) Breast cancer resistance protein (BCRP)


Mechanistical classification

presence of ATP consumption **ABC (ATP-binding casette)** – e.g. MDR, MRP, BCRP)

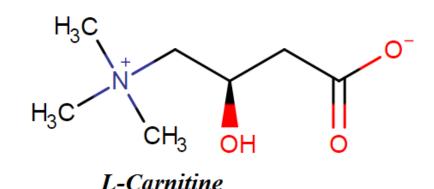
SLC (Solute carrier) – most of transporters


Organic cation transporters (OCT) OCT 1, OCT 2, OCT 3 similar transmembrane topology shared group of substrates common transport mechanism

common substrates

- generally low molecular weight
- relativelly hydrophilic
- organic cation
- (positive charge not necessary:
- anions prostaglandines
- neutral beta estradiol)

TABLE 2.2. Tissue Distribution of Human OCT Isoforms


	OCT1	OCT2	OCT3
Liver	+++	_	+
Kidney	_	+ + +	+
Lung	+	_	+
Trachea	_	—	_
Heart	+	_	++
Skeletal Muscle	++	_	++
Placenta	+	—	++
Pancreas	_	—	_
Brain	_	_	+
Spinal cord	_	—	+
Adrenal gland	+	_	_
Testis	—	—	—
Ovary	+	_	+
Fetal liver	+	_	_
Fetal lung	+	—	—
Fetal brain	+	_	_

	OCT1		OCT2		OCT3	
Compound	Inhibitor	Substrate	Inhibitor	Substrate	Inhibitor	Substrate
Acebutolol	+	N.D.	N.D.	N.D.	N.D.	N.D.
Acyclovir	+	+	N.D.	N.D.	N.D.	N.D.
Agmatine	+	+	+	+	+	+
Amantadine	+	N.D.	+	+	N.D.	N.D.
Aquinavir	+	N.D.	N.D.	N.D.	N.D.	N.D.
Choline	+	N.D.	+	+	N.D.	_
Cimetidine	+	N.D.	+	+	+	+
Clonidine	+	_	N.D.	N.D.	+	_
Cocaine	N.D.	N.D.	+	N.D.	N.D.	N.D.
Corticosterone	+	N.D.	+	N.D.	+	N.D.
Creatinine	+	N.D.	N.D.	N.D.	N.D.	_
Cyanine-863	N.D.	N.D.	+	N.D.	N.D.	N.D.
Debrisoquine	N.D.	N.D.	+	+	N.D.	N.D.
Decynium-22	+	N.D.	+	N.D.	+	N.D.
Desipramine	+	N.D.	+	N.D.	+	N.D.
Disopyramide	+	N.D.	N.D.	N.D.	N.D.	N.D.
Disprocynium-24	N.D.	N.D.	N.D.	N.D.	+	N.D.
Dopamine	+	N.D.	+	+	+	+
Epinephrine	N.D.	N.D.	N.D.	N.D.	+	+
β-Estradiol	+	N.D.	+	N.D.	+	N.D.
Famotidine	+	+	+	_	+	_
Ganciclovir	+	+	N.D.	N.D.	N.D.	N.D.
Guanidine	N.D.	N.D.	N.D.	N.D.	+	_
Histamine	+	_	+	+	+	+
Indinavir	+	N.D.	N.D.	N.D.	N.D.	N.D.
Memantine	N.D.	N.D.	+	+	N.D.	N.D.
Mepiperphenidol	N.D.	N.D.	+	N.D.	N.D.	N.D.

	00	OCT1		OCT2		OCT3	
Compound	Inhibitor	Substrate	Inhibitor	Substrate	Inhibitor	Substra	
Metformin	+	+	+	+	N.D.	N.D.	
O-Methylisoprenaline	+	N.D.	+	N.D.	+	N.D.	
Midazolam	+	N.D.	N.D.	N.D.	N.D.	N.D.	
MPP^+	+	+	+	+	+	+	
Nelfinavir	+	N.D.	N.D.	N.D.	N.D.	N.D.	
NMN	+	+	+	+	+	N.D.	
Norepinephrine	N.D.	N.D.	+	+	+	+	
Phenformin	+	N.D.	+	N.D.	N.D.	N.D.	
Phenoxybenzamine	+	N.D.	+	N.D.	+	N.D.	
Prazosin	+	N.D.	+	N.D.	+	N.D.	
Procainamide	+	N.D.	+	N.D.	+	N.D.	
Progesterone	+	N.D.	+	N.D.	+	N.D.	
Quinidine	+	N.D.	+	N.D.	N.D.	N.D.	
Quinine	+	N.D.	+	+	N.D.	N.D.	
Ranitidine	+	+	+	+	+	_	
Ritonavir	+	N.D.	N.D.	N.D.	N.D.	N.D.	
Saquinavir	+	N.D.	N.D.	N.D.	N.D.	N.D.	
Serotonin	N.D.	N.D.	+	+	+	+	
Tetrabutylammonium	+	+	+	N.D.	N.D.	N.D.	
Tetraethylammonium	+	+	+	+	+	+	
Tetraheptylammonium	+	N.D.	N.D.	N.D.	N.D.	N.D.	
Tetramethylammonium	+	+	+	N.D.	N.D.	N.D.	
Tetrapropylammonium	+	+	+	N.D.	N.D.	N.D.	
Tyramine	N.D.	N.D.	N.D.	N.D.	+	+	
Vecuronium	+	N.D.	N.D.	N.D.	N.D.	N.D.	
Verapamil	+	N.D.	+	N.D.	N.D.	N.D.	

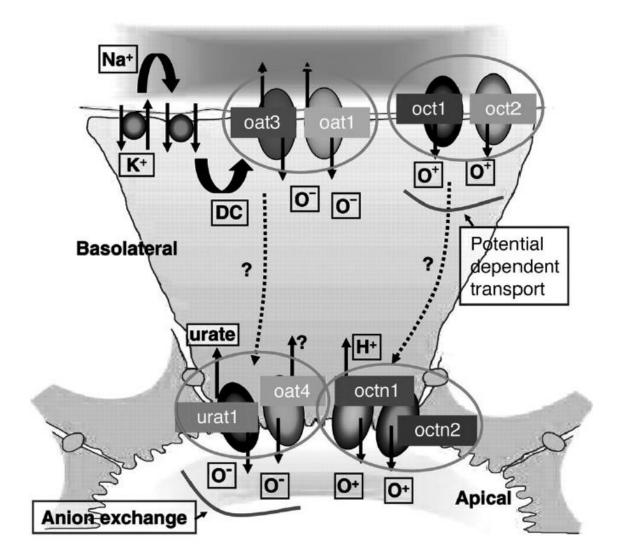
Organic cation/carnitine transporters (OCTN)

- Carnitine
- zwitterion
- essencial cofactor in the lipid metabolism involvement in beta-oxidation absorbed from diet by OCTN reabsorbed in distal tubulus by OCTN

Organic cation/carnitine transporters (OCTN) OCTN 1 H⁺ antiporter

OCTN 2 Na⁺ cotransporter or cation uniporter

substrates: quinidine, verapamil, small compounds with quarternary N


s. are competetive inhibitors and causes secondary carnitine deficiency

- organic acids secretory system excretion of acidic metabolites into urine
- utilizes electrochemical gradient of substrate itself or another solute
- mechanism of action:

organic anion – dicarboxylate exchange organic anion – urate exchange

- OAT is mainly expressed in kidney multispecific transporters binds very vast array of
- substrates
- specifity based on general physicochemical properties:
- charge
- hydrophobicity
- hydrogen bonding ability

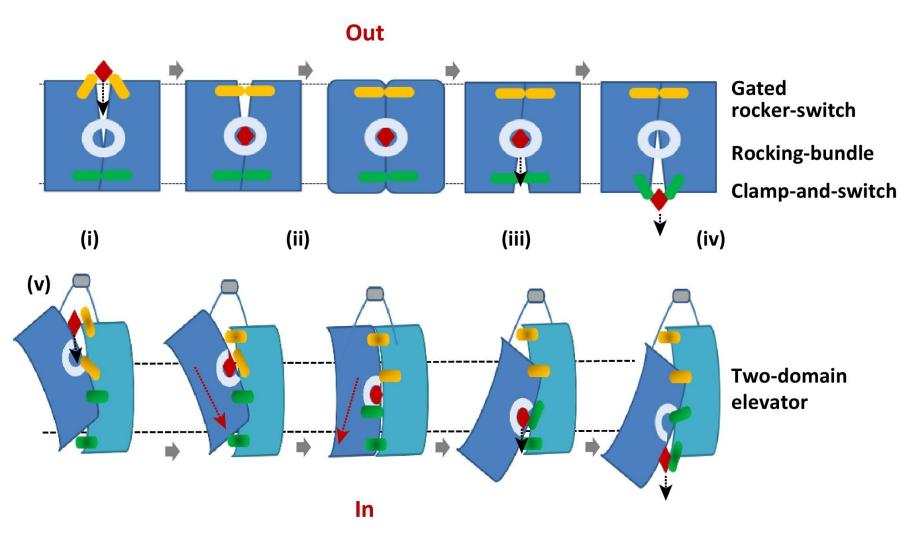

Mechanism coupled with ion exchange:

TABLE 4.2. Examples of Nephrotoxic and Neurotoxic Agents Demonstrated to Interactwith OATs

Nonsteroidal	Uremic toxins	Antivirals
anti-inflammatory	Hippuric acid	Acyclovir
drugs	Indoleacetic acid	Adefovir
Acetaminophen	Indoxyl sulfate	Azidothymidine
Diclofenac	Chemotherapeutics	Cidofovir
Ibuprofen	Methotrexate	Ganciclovir
Indomethacin	Heavy Metals	Mycotoxins
Ketoprofen	Cadmium	Ochratoxin A
Naproxen	Mercury	Neurotransmitter metabolites
Phenacetin	Chlorinated phenoxyacetates	3,4-Dihydroxymandelic acid
Piroxicam	2,4-Dichlorophenoxyacetic	3,4-Dihydroxyphenylacetic
Salicylate	acid	acid (DOPAC)
Antibiotics	Chlorinated haloalkenes	Miscellaneous
Cephalosporins	1,2-Dichlorovinyl-L-cysteines	Homovanillic acid (HVA)
Penems		Hydroxyindoleacetic
Penicillins		acid (5-HIAA)

- Mechanisms are diverse
- all posesses rocker-switch type of mechanism, exchanging different co-substrates
- Substrates are relatively large (from benzylpenicilin 334 to cholecystokinin octapeptide 1143) In general, substrates are steroid or cyclic peptide compounds, often negativelly charged

Trends in Genetics

Endogenous substrates are: thyroid hormones bile acids steroid hormones bilirubin prostaglandines Whole drug families are substrates: **Statins** Sartans ACE inhibitors (Prils) Cardiac glycosides

Transporter	Substrates	Nonsubstrates	Inhibitors
OATP1A2	Fexofenadine ¹²⁴ , BSP ^{15,27,125} , T ₃ ²⁷ , T ₄ ²⁷ , E ₂ G ²⁷ , E ₁ S ^{27,125} , GCA ¹⁵ , TCA ^{15,27} , DHEAS ²⁷ , deltophin ²⁷ , DPDPE ²⁷ , BQ-123 ²⁷ , oubain ^{27,125} , PGE ₂ ²⁷ , <i>N</i> -methylquinine ²⁷ , rosuvastatin ³⁹ , pitavastatin ¹²⁶ , MTX ¹²⁷ , microcystin-LR ¹²⁸	Digoxin ²⁷ , LTC ₄ ²⁷	Grapefruit juice ⁹⁴ , orange juice ⁹⁴ , apple juice ⁹⁴
OATP1B1	$\begin{split} & E_1S^{27}, benzylpenicillin, PGE_2^{27}, E_2G^{27}, BSP^{27}, T_3^{27}, \\ & T_4^{27}, E_2G^{27}, E_1S^{27}, GCA, TCA^{27}, DHEAS^{27}, \\ & DPDPE^{27}, BQ\text{-}123^{27}, ceriv astatin^{73,129}, \\ & atorvastatin^{73,130}, rosuvastatin^{39}, pitavastatin^{126}, \\ & caspofungin^{131}, phalloidin^{132,133}, \\ & troglitazone\text{-sulf} ate^{134}, rif ampin^{66}, bilirubin^{96,97}, \\ & bilirubin\text{-glucuronides}^{96}, arsenic^{135}, atrasentan^{81}, \\ & valsartan^{136}, olm esartan^{137}, enalapril^{138}, MTX^{38}, \\ & temocaprilat^{75}, DADLE^{64}, microcystin\text{-}LR^{128}, \\ & SN\text{-}38^{74} \end{split}$	Digoxin ²⁷ , oubain ²⁷ , <i>N</i> -methylquinine ²⁷ , deltorphin ²⁷	CyA ^{66,67} , FK-506 ^{67,132} , rapamycin ¹³² , glycirrizic acid ¹³⁹ , glibenclamide ⁶⁷ , ketocon azole ¹⁴⁰ , gemfibrozil ¹²⁹ , gemfibrozil-glucuronide ¹²⁹ , ciprofibrate ¹⁴¹ , bezafibrate ^{67,141} , clarithromycin ⁶⁷ , erythromycin ⁶⁷ , indinavii ⁶⁶ , nelfinavii ⁶⁶ , nitonavir ⁶⁶ , saquinavir ⁶⁶ , probenacid ⁶⁷ , rifamycin SV ¹⁴² , digoxin ⁶⁷ , verapamil ⁶⁷ , warfarin ⁶⁷ , MK-571 ¹⁴¹ , biochanin A ¹⁴³ , Genistein ¹⁴³ , epigallocatechin-3-gallate ¹⁴³ , hyperforin ⁶⁶
OATP1B3	Fexofenadine ¹⁴⁴ , BSP ²⁷ , T3 ²⁷ , T4 ²⁷ , E ₂ G ²⁷ , E ₁ S ²⁷ , GCA ²⁷ , TCA ²⁷ , TUDC ¹⁴⁵ , GUDC ¹⁴⁵ , DHEAS ²⁷ , deltophin ²⁷ , DPDPE ²⁷ , BQ-123 ²⁷ , oubain ²⁷ , PGE ₂ , digoxin ²⁷ , rosuvastatin ³⁹ , valsartan ¹³⁶ , pitavastatin ¹²⁶ , fluo-3 ¹⁴⁶ , docetaxel ¹⁴⁰ , paclitaxel ¹⁴⁰ , CCK-8 ¹⁴⁷ , phalloidin ^{132,133} , rifampin ^{66,146} , MTX, bilirubin ⁹⁷ , repaglinide, telmisartan ⁶⁵ , olmesartan ¹³⁷ , enalapril ¹³⁸ , temocaprilat ⁷⁵ , microcystin-LR ¹²⁸	<i>N</i> -Methylquinine ²⁷ , PGE ₂ ²⁷ , caspofungin ¹³¹ , folate	Ketocon azole ¹⁴⁰ , glycirrizic acid ¹³⁹ , rifamycin SV ¹⁴²
OATP1C1	BSP ⁹ , T ⁹ ₃ , T ⁹ ₄ , E ₂ G ⁹ , E ₁ S ⁹	GCA ⁹ , TCA ⁹ , DHEAS ⁹ , deltophin ⁹ , DPDPE ⁹ , BQ-123 ⁹ , digoxin ⁹ , oubain ⁹ , LTC ₄ ⁹ , PGE ₂ ⁹ , N-Methylquinine ⁹ , MTX ⁹ , folate ⁹	

Transporter	Substrates	Nonsubstrates	Inhibitors
OATP2A1	PGE_2^{118} , PGE_1^{118} , $PGF_{2\alpha}^{118}$, PGD_2^{118} , TXB_2^{118}	Hoprost ¹¹⁸	Furosemide ¹¹⁸ , TGBz T34 ¹⁴⁸
OATP2B1	E ₁ S ¹¹⁶ , benzylpenicillin ¹¹⁶ , PGE ₂ ¹¹⁶ , BSP ²⁷ , DHEAS ²⁷ , pravastatin ²² , fluvastatin, rosuvastatin ³⁹ , glybenclamide ¹⁴⁹ , fexofen adine ¹⁷	E ₂ G ¹¹⁶ , GCA ²⁷ , TCA ²⁷ , oubain ²⁷ , digoxin ²⁷ , LTC4 ²⁷ , PGE2 ²⁷ , T3 ²⁷ , T4 ²⁷ , deltophin ²⁷ , DPDPE ²⁷ , BQ-123 ²⁷	 Benzoate²², nicotinate²², phthalate²², PAH¹⁵⁰, indomethacin¹⁵⁰, TCA¹⁵⁰, cimetidine¹⁵⁰, salicylate¹⁵⁰, valproate¹⁵⁰, rifamycin SV¹⁴², grapefruit juice¹⁴⁹, orange juice¹⁴⁹, naringenin¹⁴⁹, quercetin¹⁴⁹, bergamottin¹⁴⁹, dihydroxybergamottin¹⁴⁹, tangeritin¹⁴⁹, nobelitin¹⁴⁹, bilberry¹⁵¹, echinacea¹⁵¹, green tea¹⁵¹, banaba¹⁵¹, grape seed¹⁵¹, ginkgo¹⁵¹, soybean¹⁵¹, mulberry¹⁵¹, black cohosh¹⁵¹, and Siberian ginseng¹⁵¹
OATP3A1	PGE_{1}^{121} , $PGE_{2}^{116,121}$, $PGF_{2\alpha}^{121}$, benzylpenicillin ¹¹⁶ , E ₁ S ¹¹⁶	PGD ₂ ¹²¹ , TBX ¹²¹ , iloprost ¹²¹ , MTX ¹²¹ , TCA ¹¹⁶ , E ₂ G ¹¹⁶	PGD ₂ ¹²¹ , PAH ¹²¹
OATP4A1	T_3^{152} , T_4^{152} , TCA ¹⁵² , E_2G^{116} , benzylpenicillin ¹¹⁶ , PGE ₂ ¹¹⁶ , E_1S^{116}	$\begin{array}{c} PAH^{152}, PGE_{1}^{152}, PGD_{2}^{152}, \\ PGF2\alpha^{152} \end{array}$	BSP ¹⁵²
OATP4C1	Digoxin ¹⁴⁷ , oubain ¹⁴⁷ , T ₃ ¹⁴⁷ , T ₄ ¹⁴⁷ , MTX ¹⁴⁷ , cAMP ¹⁴⁷	TCA ¹⁴⁷ , E ₂ G ¹⁴⁷ , PGE ₂ ¹⁴⁷ , PAH ¹⁴⁷ , pravastatin ¹⁴⁷ , temocaprilat ¹⁴⁷ , ASA ¹⁴⁷ , salicylate ¹⁴⁷ , urate ¹⁴⁷ , acyclovir ¹⁴⁷ , ochratoxin ¹⁴⁷ , benzylpenicillin ¹⁴⁷ , cGMP ¹⁴⁷ , TEA ¹⁴⁷	Digitoxin ¹⁴⁷ , Digitoxigenin ¹⁴⁷
OATP5A1	?	?	?
OATP6A1	rGST1 (T3, T4, DHEAS, TCA) ¹⁰⁶		rGST1 (β-estradiol, testosterone) ¹⁰⁶

Organic anion transporting polypeptides (OATP) pharmacogenetics is very important

Drug	SLCO1B1 Genotype	Ethnicity	PK Effect in Comparison with Reference Genotype ^a	Ref.
Pravastatin	*15/*15	Asian	AUC↑ 187%	69
	*1a/*5	Caucasian	AUC† 143%	70
	*1b/*1b	Caucasian	AUC↓ 40%	70
	*17/*17	Caucasian	AUC↑ 130%	71
	*1b/*1b	Asian	AUC↓ 35%	75
	*5, *15, *17 variant haplotype	Caucasian	AUC↑ 110%	89
	*15/*15	Caucasian, African American	AUC ↑ 92 %	unpublished
Rosuvastatin	521CC	Caucasian	AUC↑ 217%	77
Pitavastatin		Asian	AUC↑ %	76
Repaglinide	521CC	Caucasian	AUC† 188%	78
Nateglinide	521CC	Asian	AUC↑ 108%	79
Atrasentan	Low-activity genotype	Caucasian, non-caucasian	AUC↑ 73%	81
Valsartan	*1b/*1b	Asian	AUC↓ 27%	75
Fexofenadine	521CC	Caucasian	AUC↑ 127%	80
Irinotecan	*15 carriers	Asian	AUC↑ 182%	82
Ezetimibe-	*15 carriers	Caucasian	AUC† 305%	83

TABLE 5.5. SLCO1B1 Genotype and Pharmacokinetics

glucuronide

Organic anion transporting polypeptides (OATP) drug interactions very common facilitating of fexofenidate excretion suppression of statins first-pass effect

TABLE 5.6. Drug Interactions Implicating a Role for OATPs in the Mecha	nism
--	------

OATP Implicated	Drug Affected	Interacting Substance	PK Impact on Affected Drug	Ref.
OATP1A2	Fexofenadine	Grapefruit juice	AUC↓ 63%	94
	Fexofenadine	Orange juice	AUC↓ 70%	94
	Talinolol	Grapefruit juice	AUC↓ 44%	156
OATP1B1	Pravastatin	Orange juice	AUC↑ 152%	157
	Pravastatin	Cyclosporine A	AUC↑	Pravachol product
				monograph
	Pravastatin	Gemfibrozil	AUC↑ 202%	158
	Rosuvastatin	Cyclosporine A	AUC↑ 710%	95
	Rosuvastatin	Gemfibrozil	AUC↑ 188%	159
	Cerivastatin	Cyclosporine A	AUC [↑] 3 to 5-fold	160
	Cerivastatin	Gemfibrozil	AUC ⁺ 559%	161

Mammalian oligopeptide transporters (PEPT) Aminoacids are mainly absorbed from the intestine in the form of di- and tri-peptides.

These are cleavaged by cytosolic peptidases and free aminoacids are transported into bloodstream

(by other transporters).

4 isoforms:

PEPT1, PEPT2

PHT1, PHT2 (peptide-histidine transporters)

Mammalian oligopeptide transporters (PEPT)

Mechanism of action:

utilizating H⁺ membrane gradient

- neutral and anionic peptides requires H⁺ cotransport
- cationic peptides do not need H⁺

Mammalian oligopeptide transporters (PEPT) Molecular requirements for substrate molecules: PEPT1: L-aminoacid

acid or hydrophobic moiety at C terminus weakly basic group in α position of N terminus ketomethylene / peptidic bond PEPT2: as PEPT1

aminocarbonyl group in α or β position PHT: not elucidaded yet

Endogenous substrates: all aminoacid di- and tri-peptides

Mammalian oligopeptide transporters (PEPT)

- Exogenous substrates:
- β -lactam antibiotics, ACE inhibitors,

L-DOPA prodrugs, valacyclovir, valgancyclovir, aminoacid prodrugs of bisphosphonates, peptide analogs (e.g. linezolid)

Activity and expression of PEPTs are dependent on diet volume and composition insulin / leptin regulation involved

Monocarboxylate transporters (MCT, SMCT) MCT1-14 isoforms

- MCT1-4 transports metabolic monocarboxylates
- (e.g. lactate, pyruvate, butyrate, acetoacetate)
- other MCTs involved in aminoacids transport
- MCT8 transports T3 and T4 thyroid hormones
- Mechanism of action: H⁺ cotransporters

Sodium-dependent monocarboxylate transporters (SMCT)

- Mechanism of action: Na⁺ cotransporters
- Exogenous substrates: acidic β -lactams, statins, valproic acid crossing blood-brain barrier

Nucleoside transporters (CNT, ENT)

Nucleosides are hydrophilic and has low membrane permeability

two classes of transporters:

Concentrative nucleoside transporters (CNT) Equilibrative nucleoside transporters (ENT)

Many therapeutic nucleoside analogues rely on these transporters to enter or exit cells Concentrative nucleoside transporters (CNT) mechanism of action: Na⁺ cotransporter 3 isoforms: CNT1, CNT2, CNT3 CNT1 typically found in epitelium of intestine kidney

typically found in epitelium of intestine, kidney and liver

mainly pyrimidine nucleosides, limited transport of adenosine

anticancer gemcitabine, cytarabine, capecitabine antivirotic zidovudine, lamivudine, zalcitabine cotransport nucleoside : $Na^+(1:1)$

Concentrative nucleoside transporters (CNT) CNT2

widely distributed in organism

purine nucleosides, limited transport of uridine ribavirin, 5-fluorouridine

cotransport nucleoside : Na⁺ (1 : 1) CNT3

widely distributed in organism purine and pyrimidine nucleosides many nucleoside analogs are substrates too cotransport nucleoside : Na⁺ (1 : 2) **Equilibrative nucleoside transporters (ENT)** mechanism of action:

- concentration-dependent facilitated transport **ENT1**
- ubiquitous distribution in organism both purine and pyrimidine nucleosides gemcitabine, fludarabine, cytarabine, ribavirin dipyridamol is potent ENT1 inhibitor ENT2

most abundant in muscle, but present in other tissues lower afinity for guanosine and cytidine transports also free nucleotide bases

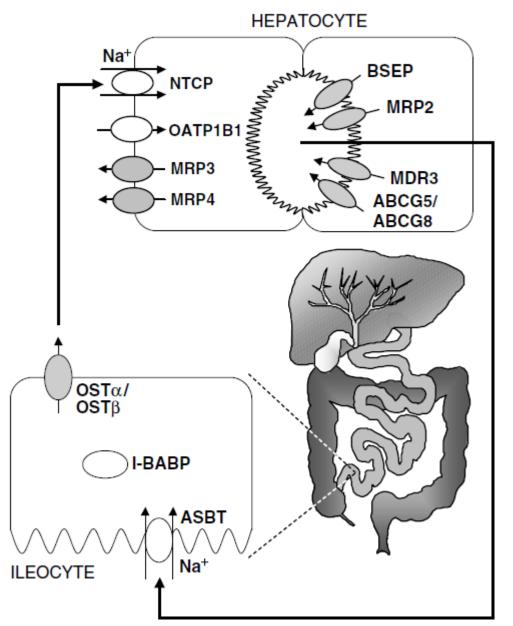
Equilibrative nucleoside transporters (ENT) ENT3

broadly selective for all nucleosides

and their analogues

located on lysozomal membrane

ENT4


in fact OCT, transports selectively adenosin

Bile acid transporters primary bile acids: cholic acid chenodeoxycholic acid secondary bile acids: deoxycholic acid lithocholic acid produced from primary acids by intestinal microflora

amphipatic detergents crucial for lipid absorption

hepatobiliary circulation – one molecule of bile acid is secreted and reabsorbed approximately 12X a day

Bile acid transporters

Bile acid transporters Bile salt export pump (BSEP) secretes monovalent bile acid salts into bile ATP binding casette transporter Multidrug resistance protein 2 (MDR2) secretes divalent and glucuronated bile acids, glucuronated and sulfatated drug metabolites, chemotherapeutics and antibiotics ATP binding casette transporter Multidrug resistance protein 3 (MDR3) secretes phospholipids

Bile acid transporters

Apical sodium-dependent bile acid transporter (**ASBT**)

absorbs bile acid from ileum to enterocyte

Na⁺ cotransporter

Organic solute transporter (OSTα/OSTβ)

transports bile acids from enterocyte to blood stream

Sodium-taurocholate cotransporting polypeptide (NTCP)

transports bile acids into hepatocytes

Na⁺ cotransporter

Organic anion transporters (OATPs)

transports bile acids as well

Multidrug resistance protein (P-glycoprotein) two main human isoforms: MDR1, MDR2 present in all tissues, predominantly in secretory

organs

- ATP binding casette transporters
- systems are saturable

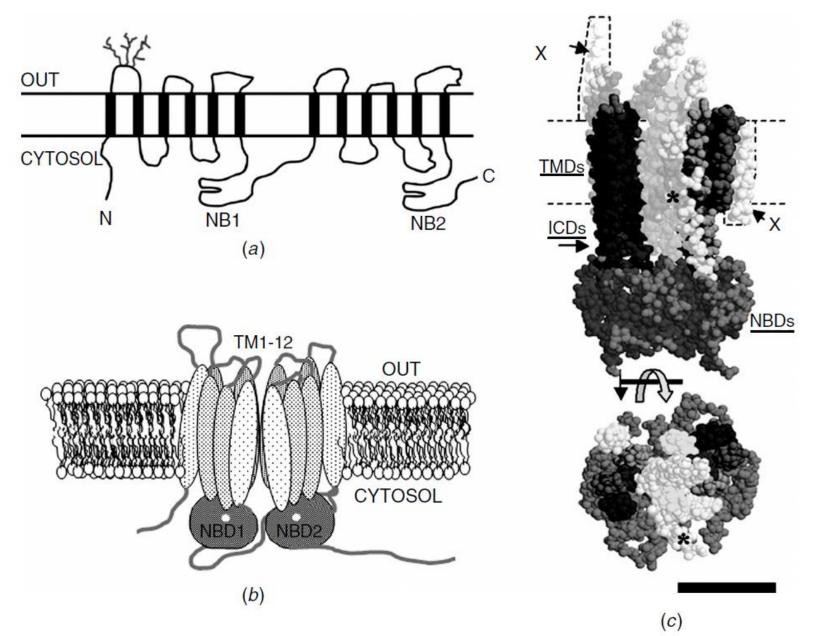
MDR1

transports broad spectrum of xenobiotics substrates generally nonpolar, weakly amphipathic MDR2

transports acetylcholin and other fosfolipids into bile

Multidrug resistance protein (P-glycoprotein)

Substrates


Modulators

Vinca alkaloids vinblastine vincristine Anthracyclines doxorubicin daunorubicin Taxanes paclitaxel docetaxel Epipodophyllotoxins etoposide teniposide Steroids aldosterone dexamethasone HIV protease inhibitors indinavir saquinavir nelfinavir ritonavir Analgesics morphine Cardiac glycosides digoxin Antihelminthics ivermectin

Detergents Triton X-100 nonylphenol ethoxylate Fluorescent dyes rhodamine 123 tetramethylrosamine Hoechst 33342 LDS-751 calcein acetoxymethyl ester Linear/cyclic peptides ALLN NAc-LLY-amide leupeptin pepstatin A *Ionophores* gramicidin D nonactin beauvericin Cytotoxic agents colchicine actinomycin D mitoxantrone Miscellaneous loperamide cimetidine

 Ca^{2+} channel blockers verapamil nifedipine azidopine dexniguldipine Calmodulin antagonists trifluoperazine chloropromazine trans-flupenthixol *Cyclic peptides* cyclosporin A **PSC833** Steroids progesterone tamoxifen cortisol Miscellaneous GF120918 LY335979 XR9576 OC144-093 disulfiram quinidine chloroquine reserpine amiodarone terfenadine

Multidrug resistance protein (P-glycoprotein)

Multidrug resistance proteins (MRP) 12 isoforms MRP1-9 cystic fibrosis transmembrane conductance regulator (CFTR) sulfonylurea receptors (SUR1, SUR2)

- all ATP binding casette proteins
 effluxes many endogenous and xenobiotic
 lipophilic organic anions
- predominant localization in renal epithelia, hepatocytes and blood-tissue barriers

Multidrug resistance proteins (MRP) MRP1

ubiquitous transporter substrates:

glucuronates of leucotriens, estradiol, bilirubin, cholic acid, methotrexate

MRP2

main hepatocytar transporter similar substrates as MRP1 MRP3

hepatocytar transporter similar substrates as MRP1 and MRP2

Multidrug resistance proteins (MRP) MRP4

ubiquitous transporter

substrates as MRP1, additionally prostanoids, urate,

topotecan

MRP5

urogenital tract and vascular system epitelium substrates: cAMP, cGMP, fluorouracil, methotrexate MRP6

kidney, liver

low affinity, same substrates as MRP1

Multidrug resistance proteins (MRP) MRP7, MRP9

little known

MRP8

predominant in periferal neurons substrates similar to MRP1, additionally cAMP and cGMP

Breast cancer resistance protein (BCRP)

ATP binding casette protein

located in GIT, genitals, placenta, liver and blood-brain barrier

overexpressed in some carcinoma cells substrates:

anticancers: mitoxantron, etoposide, topotecan, irinotecan, methotrexate

tyrosin kinase inhibitors: gefitinib, imatinib photodynamic therapeutics: porfyrins, chlorins steroids, antivirals, HMG-CoA reductase inhibitors, antibacterial quinolones, macrolides, nitrofurantoin