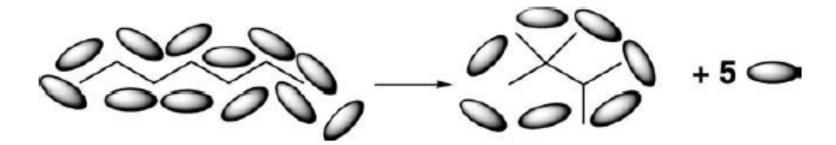
Physicochemical properties

8.3.2018

LogP depends on:

Molecular volume

Dipolarity


Hydrogen bond acidity

Hydrogen bond basicity

LogP depends on:

Molecular volume

-related to molecular weight and affects the overall size of the cavity that must be formed in the solvent

Fig. 19.2 Fewer structured water molecules are needed to wrap a compact molecule (2,2,3-trimethylbutane) than to wrap an extended one (*n*-heptane).

LogP depends on:

Molecular volume

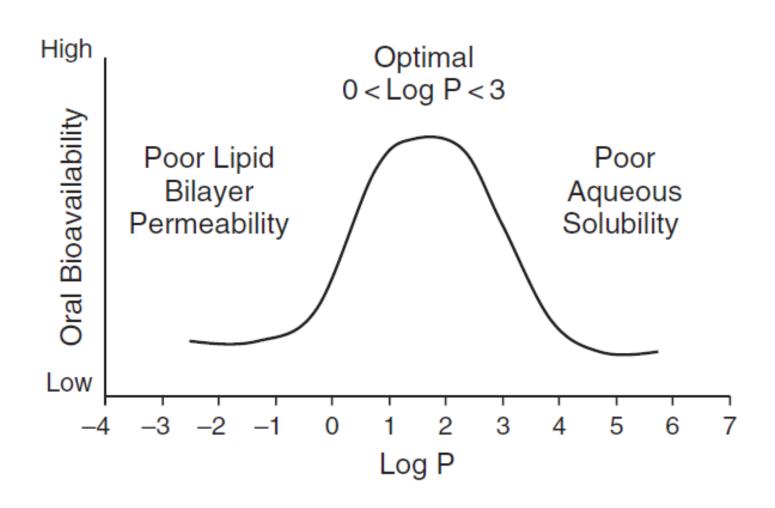
Dipolarity

-affects the polar alignment of the molecule with polar solvent (dipole-dipole interaction with molecules of water)

Hydrogen bond acidity

Hydrogen bond basicity

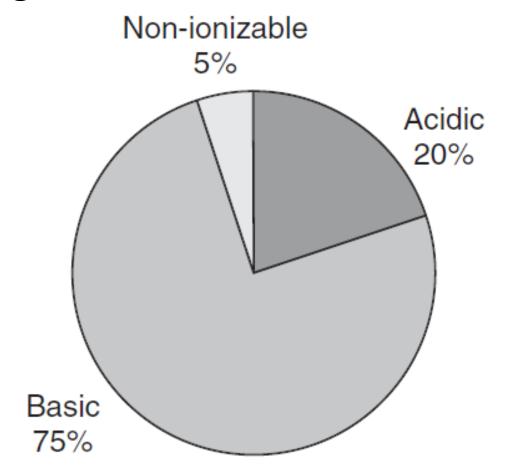
LogP depends on:


Molecular volume Dipolarity

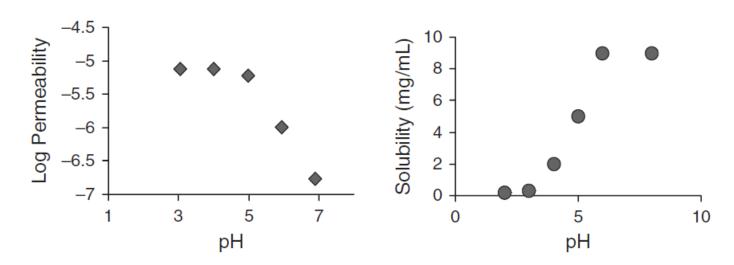
Hydrogen bond acidity

-hydrogen bond donation – hyrogens with polar bonds (OH, NH₂, NH)

Hydrogen bond basicity


-hydrogen bond acceptance (O, N, F atoms)
Both affects the hydrogen bonding rate with
environment

Log D _{7.4}	Common Impact on Drug-like Properties	Common Impact In Vivo
< 1	Solubility high	Volume of distribution low
	Permeability low by passive transcellular diffusion	Oral absorption and BBB penetration unfavorable
	Permeability possible via paracellular if MW < 200 Metabolism low	Renal clearance may be high
1 to 3	Solubility moderate	Balanced volume of distribution
	Permeability moderate	Oral absorption and BBB penetration favorable
	Metabolism low	
3 to 5	Solubility low	Oral bioavailability moderate to low
	Permeability high Metabolism moderate to high	Oral absorption variable
> 5	Solubility low	High volume of distribution (especially amines)
	Permeability high Metabolism high	Oral absorption unfavorable and variable

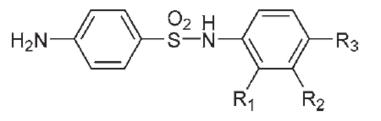

pKA

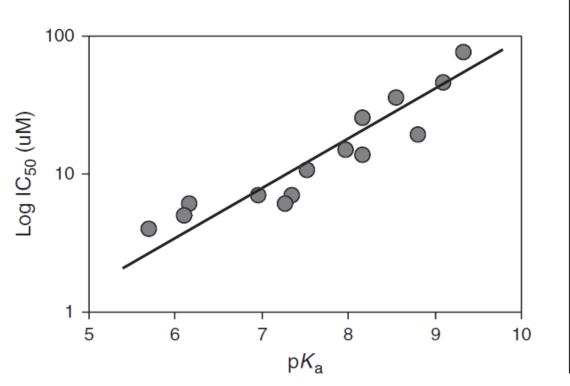
Most of drugs are **ionizable** Most of drugs are **basic**

pKA

pKa determines the degree of ionization and affects both solubility and permeability, but in opposite way

Figure 6.3 ▶ Permeability and solubility profiles for an acidic compound with a pK_a of 5. Permeability and solubility are pH dependent for ionizable compounds. The properties exhibit opposite effects with pH because of the effects of ionization.


Acids	pK_a
Penicillin V	2.7
Salicylic acid	3.0, 13.8
Acetylsalicylic acid	3.5
Diclofenac	4.1
Sulfathiazole	7.1
Phenobarbital	7.4, 11.8
Phenytoin	8.3
Acetaminophen	9.9
Caffeine	14


Bases	pK_a
Caffeine	0.6
Quinidine	4.1, 8.0
Tolbutamide	5.3
Cocaine	8.4
Ephedrine	9.4
Imipramine	9.5
Atropine	9.7

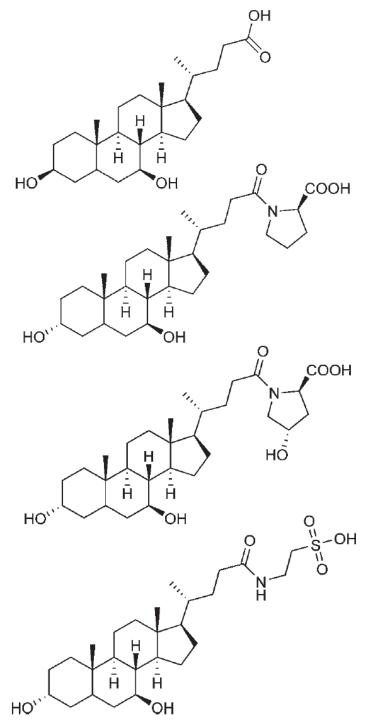
pKA

Effect of mesomeric effect on sulfonamide activity:

most acidic compounds are most potent almost linear dependence

Compounds	IC ₅₀ (uM)	р <i>К</i> а
4-OCH ₃	75	9.34
Н	45	9.10
4-Cl	35	8.56
4-1	25	8.17
2-Cl, 4-OCH ₃	19	8.81
3-CF ₃	15	7.98
2-Cl	14	8.18
4-COCH₃	11	7.52
4-CN	7	7.36
4-NO ₂	7	6.97
2-OCH ₃ , 4-NO ₂	6	7.27
2-Cl, 4-NO ₂	6	6.17
2-NO2, 4-CF3	5	6.10
2-Br, 4-NO ₂	4	5.70

basic drugs permeates blood-brain barrier, acidic do not so


Basic p
$$K_a = 7.81$$

CNS + N

Trifluoroperazine

HOOC Acidic
$$pK_a = 4.18$$
CNS -

Indomethacin

pKa effect on water solubility of bile acids:

 $pK_a = 5.0$, Solubility = $8 \mu M$

 $pK_a = 3.9$, Solubility = 113 μ M

 $pK_a = 3.1$, Solubility = 250 μ M

 $pK_a = 1-2$, Solubility = 450 μ M

pKA

The strenght of acid can be increased by electron withdrowing group on α carbon (halogen, carboxy, cyano, nitro...)

The strenght of base can be decreased by adding conjugated double bond system close to nitrogen (nitrogen lone electron pair is delocalized)

Basicity of aniline can be increased by -OCH₃ and decreased by -NO₂ substitution

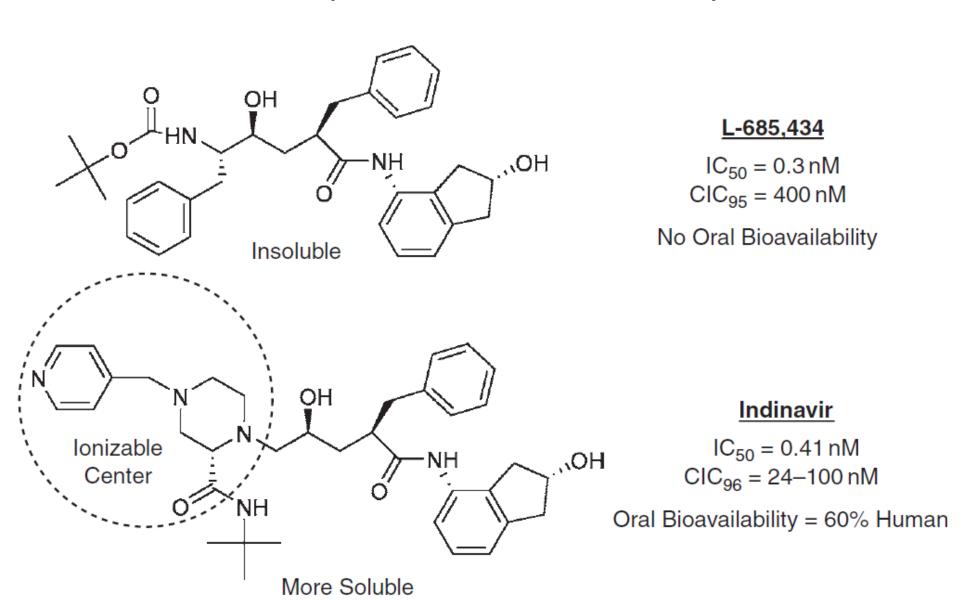
Solubility is a determinant of intestinal absorption and oral bioavailability

Solubility is increased by adding ionizable groups or reducing logP and MW

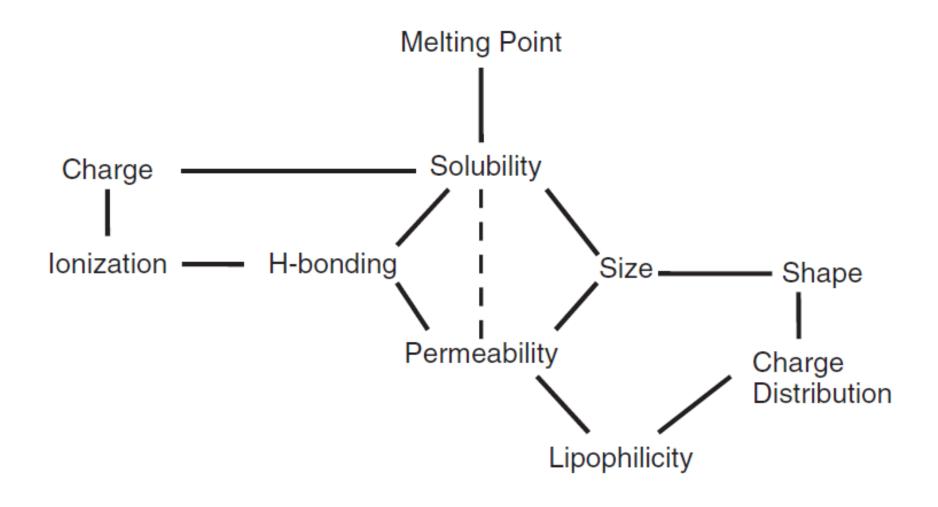
Salt formation increse dissolution rate

Problems of low-soluble compounds:

- ▶ Poor absorption and bioavailability after oral dosing
- ► Insufficient solubility for IV dosing
- ► Artificially low activity values from bioassays
- ► Erratic assay results (biological and property methods)
- ▶ Development challenges (expensive formulations and increased development time)
- ▶ Burden shifted to patient (frequent high-dose administrations)


design problem:

- -lipophillic groups are often added to enhance target binding
- -most active compounds are often poor soluble

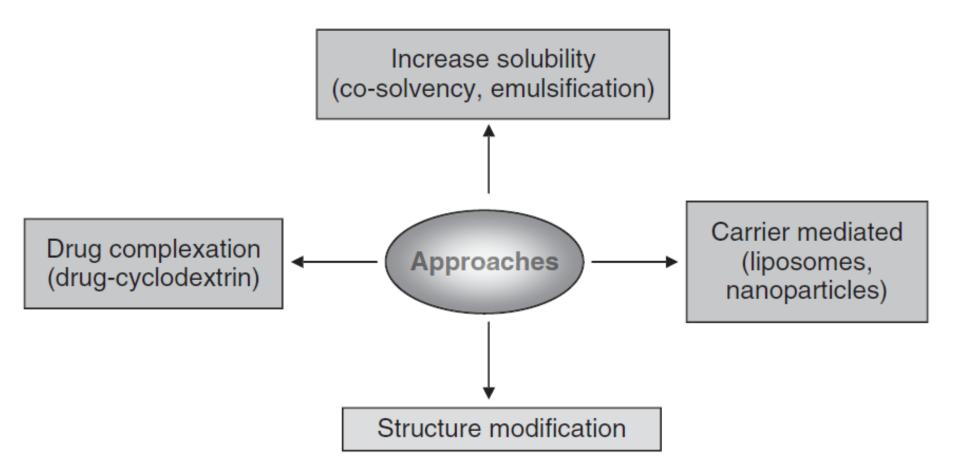

Structural properties affecting solubility:

- ► Lipophilicity: Determined by van der Waals, dipolar, hydrogen bonds, ionic interactions
- ► Size: Molecular weight, shape
- \triangleright p K_a : Determined by functional group ionizability
- ► Crystal lattice energy: Determined by crystal stacking, melting point

Effect of solubility on oral bioavailability:

Changing one property affest other properties:

Permeability tends to vary over a more narrow range than does solubility.


The difference between a high-permeability and low-permeability compound can be 50-fold (0.001-0.05 min⁻¹)

The difference between a high-solubility and low-solubility compound can be million-fold $(0.1 \, \mu g/mL-100mg/mL)$

Therefore, if a structural modification improves solubility by 1000-fold while reduces permeability by 10-fold, there will be still 100-fold improvement of absorption

Approaches to improve solubility

structure modification is the first choice

Structure modification strategies for solubility improvement:

Structure modification

Add ionizable group

Reduce Log P

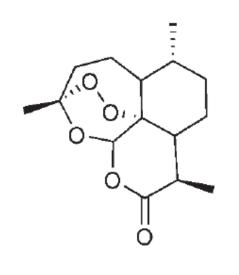
Add hydrogen bonding

Add polar group

Reduce molecular weight

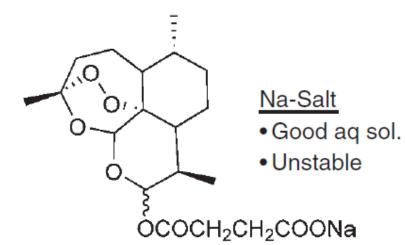
Out-of-plane substitution to reduce crystal packing

Construct a prodrug


1. Addition of ionizable groups

typically basic amine or carboxylic group is added

Small groups or simple functionalities	Larger solubilizing moieties
—CO₂H	R — $OH \rightarrow R$ — O — CH_2 — CH_2 —
-	CO ₂ H
—SO ₃ H, —OSO ₃ H	R — $NH_2 \rightarrow R$ — NH — CH_2 —
	CH ₂ —CH ₂ —SO ₃ H
$-PO_3H_2$, $-OPO_3H_2$	$(R)_2C = O \rightarrow (R)_2C = N - O -$
	CH_2 — CO_2H
$-NH_2$, $-NHR$, $-NR_2$	R—OH → O-morpholinylethyl
N-oxides	R—OH → O-glucoside
S-oxides	R — $OH \rightarrow O$ — CO — CH_2 —
	CH_2 — CO_2H
Sulfones	$R\longrightarrow m-O\longrightarrow C_6H_4\longrightarrow SO_3H$


1. Addition of ionizable groups

typically basic amine or carboxylic group is added

<u>Artemisinin</u>

- · Low aq sol.
- Low oil sol.

R R

R = O(CH₂)nNR₁R₂OCH₂CH(OH)NR₁R₂O(CH₂)₂NR₁R₂

Amine Maleates or Oxlates

- Better aq sol.
- Good stability
- Active P.O.

1. Addition of ionizable groups

IC50 (μM)

				,	
<u>R</u>	Solubility (μM)	AA8	<u>UV4</u>	EMT6	SKOV3
5,6,7-triOMe	32	0.35	0.055	0.27	0.63
5-OMe	23	0.31	0.047	0.23	0.67
5-O(CH ₂) ₂ NMe ₂	700	0.16	0.044	0.12	0.26
5-OMe, 6-O(CH ₂) ₂ NMe ₂	>1200	0.22	0.039	0.11	0.15
5-OMe, 7-O(CH ₂) ₂ NMe ₂	47	0.14	0.029	0.09	0.16

1. Addition of ionizable groups

Figure 7.17 ▶ Series compounds that are more active in vitro and have low solubility may not be as active in vivo as series analogs that have lower in vitro activity but are soluble and, thus, better absorbed.

1. Addition of ionizable groups - acids

$$R = H$$

$$R = CO - CH_2 - CH_2 - CO_2Na$$

$$R = PO_3Na_2$$

$$R = O$$

$$SO_3Na$$

$$O_2N$$

$$CI$$

$$CI$$

prednisolone derivatives

chloramphenicol hemisuccinate

benfurodil hemisuccinate

succinylsulfathiazole

oxazepam hemisuccinate

1. Addition of ionizable groups - base

6-(piperidinoacetyl)-7-deacetylforskolin hydrochloride

OH ,2 HCI, H₂O

6-(4-methylpiperazinobutyryl)-7-deacetylforskolin dihydrochloride (4-morpholinylmethyl)-benzoate of metronidazole

1-(N,N-diethylglycyloxymethyl)allopurinol hydrochloride

1. Addition of ionizable groups - base

The most active compound in vitro is not necessarily the most active in vivo

A successfull drug candidate posesses balanced potency and suitable physico-chemical properties

2. Reduction of logP

#	R	Cmax (uM)	Solubility (mg/mL) at pH 7.4	Log P
1	benzyloxycarbonyl	<0.10	<0.001	4.67
2	8-quinolinylsulfonyl	<0.10	<0.001	3.7
3	2,4-difluorophenylmethyl	0.73	0.0012	3.69
4	3-pyridylmethyl	11.4	0.07	2.92

Figure 7.18 ▶ For a series of protease inhibitors, absorption increased (as indicated by C_{max}) as solubility increased. Compound 4 in the chart was developed into the commercial drug indinavir.

3. Increasing hydrogen bonding properties

R=Camphanoyl

Low Solubility Poor Bioavailability

More Soluble Moderate Oral Bioavailability (15%)

Figure 7.19 ► Effects of H-bonds on solubility for anti-AIDS agents.

3. Increasing hydrogen bonding properties rapid increase of solubility due to disruption of aggregate formation

4. Addition of polar group

ester or carboxylic group (epoxide hydrolase inhibitors)

 $37 \mu M$

7.06 mg/mL

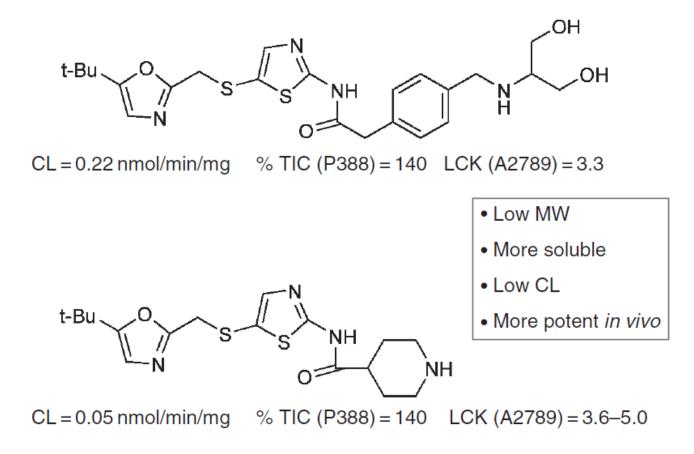

4. Addition of polar group

Fig. 36.19 Glycolyl and glyceryl side chains.

4. Addition of polar group

polyethylene glycol

5. Reduction of the molecular weight

Figure 7.22 ► Reduction in molecular weight for these CDK2 inhibitors resulted in increased solubility improved metabolic stability, and increased in vivo potency.

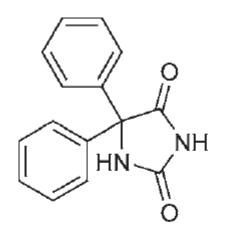
6. Out-of-plane substitution

planar molecules forms tight crystall lettice and aggregates in water solutions

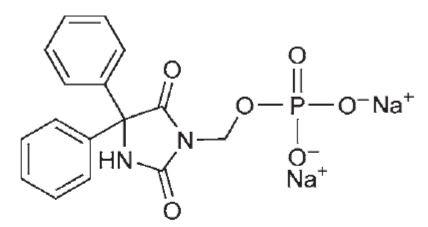
H N-N

H O IC₅₀ = 25 nM

Sol. < 10
$$\mu$$
g/mL


$$CI$$
 $N-N$
 $N-N$

6. Out-of-plane substitution


PNQX Solubility 8.6 μg/mL

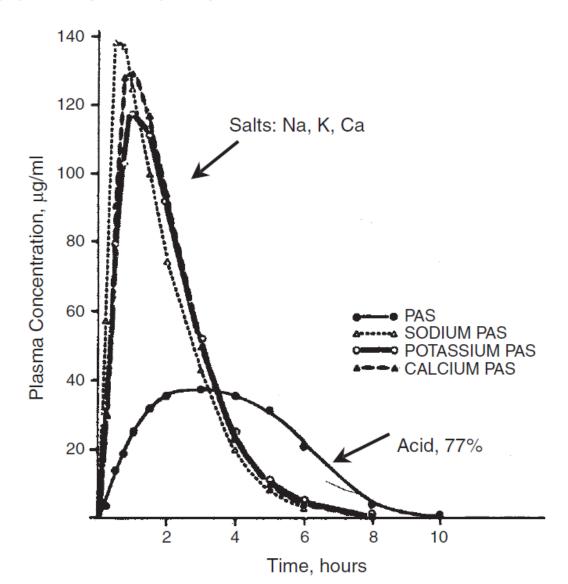
Solubility 150 μg/mL

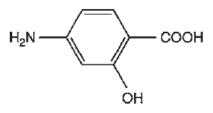
7. Prodrug construction addition of carged or polar groups

Phenytoin
Solubility 20–25 μg/mL
Problematic Formulation

Fosphenytoin

Solubility 142 mg/mL 4400 fold increase! Cerebyx™


8. Salt formation


Solubility of salts are generally higher than of free acid or base

After dissolving, free acid or base may crastallize due to pH of environment. However, compound may stay at supersaturated solution and do not precipitate immediately

Salt increases bioavailability due to increasing dissolution rate

8. Salt formation

<u>Salts</u>

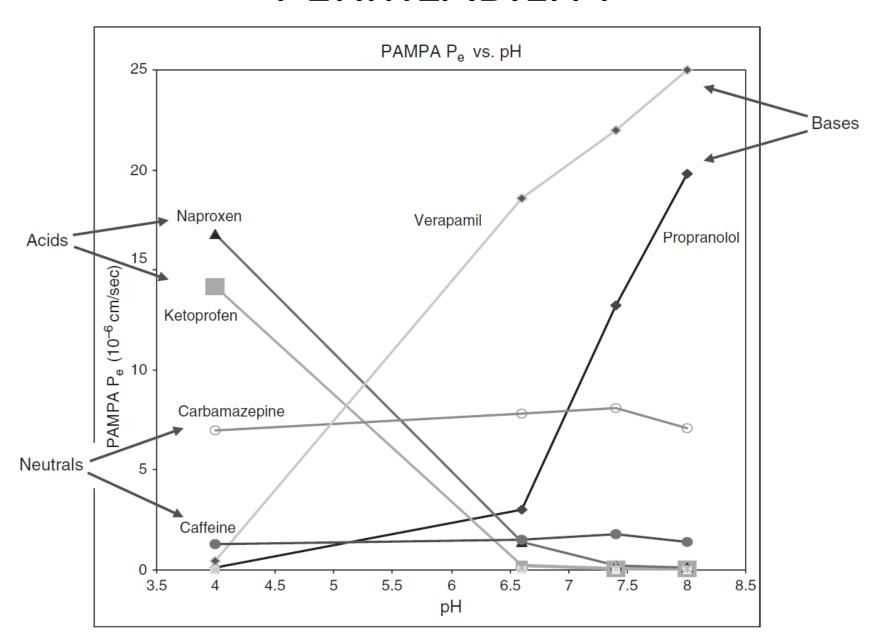
- Increase dissolution rate
- Slow precipitation
- Precipitates as amorphous

8. Salt formation

Counter anions	Percent
Chloride	48
Sulfate	5.8
Bromide	5.2
Mesylate	3.2
Maleate	3.1
Citrate	2.8
Tartrate	2.7
Phosphate	2.5
Acetate	2.1
Iodide	1.2

8. Salt formation

Counter cations	Percent
Sodium	58
Calcium	12
Potassium	9.8
Magnesium	4.5
Meglumine	2.4
Ammonium	2.0
Aluminum	1.4
Zinc	1.1
Piperazine	0.90
Tromethamine	0.90


9. Crystalline solid formation

structure modification gains crystalline derivatives of liquid active compounds or increases low m.p.

95% of drugs permeates by passive diffusion

generally, uncharged molecules are able to permeate

but small part of ionizated molecules are able to permeate too, while forming neutral pairs with suitable counterions

The only way to improve permeability is structure modification

Formulations are not effective in fixing poor permeability

Structure modification strategy

Ionizable group to non-ionizable group Add lipophilicity

Isosteric replacement of polar groups

Esterify carboxylic acid

Reduce hydrogen bonding and polarity

Reduce size

Add nonpolar side chain

Prodrug

1. Reducing ionizable groups

R	ETA, Ki (nM)	Caco-2 (cm/h)	%F (rat)
CO ₂ H	0.43	0.0075	4
CH₂OH	1.1	0.2045	66

2. Increasing lipophilicity

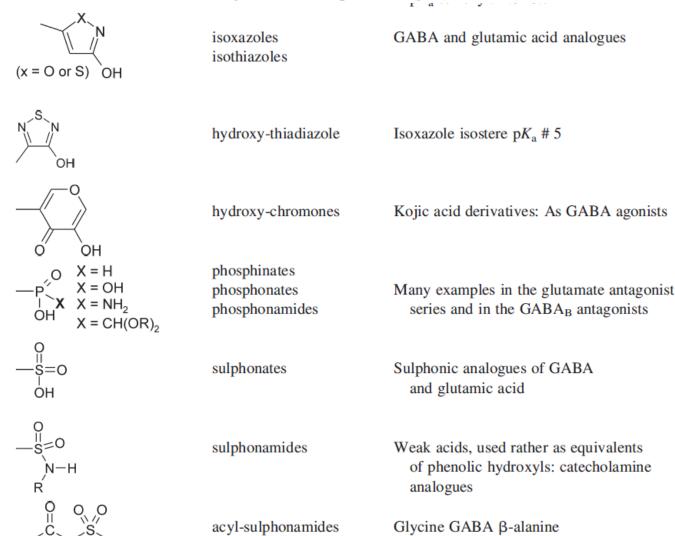
R	FXa K _i	Caco-2 P _{app}	CL	T _{1/2}	Vdss	F
	(nM)	(×10 ⁻⁶ cm/s)	(L/h/Kg)	(h)	(L/Kg)	(%)
CH ₂ NHMe	0.12	0.2	1.1	3.7	4.6	24
CH ₂ NMe ₂	0.19	5.6	1.1	3.4	5.3	84

3. Isosteric replacement of polar groups tetrazole for carboxylic group

 K_i (PTP1B) = 2 μ M Caco-2 < 1 × 10⁻⁷ cm/s No Cellular Activity K_i (PTP1B) = 2 μ M Caco-2 = 1.9 × 10⁻⁷ cm/s Positive Cellular Activity

3. Isosteric replacement of polar groups

isosteres of carboxylic group


$$\begin{array}{c}
O \\
N-OH \\
H \\
O \\
N-C \equiv N \\
H
\end{array}$$

Very popular
Great number of publications.
Recent in use.
$$pK_a = 6.6$$
 to 7.2

Phosphonate isosteres
$$pK_a$$
 mercapto: 8.2–11.5 pK_a sulfinyl: 5.2–9.8 pK_a sulfonyl: 4.8–8.7

3. Isosteric replacement of polar groups

isosteres of carboxylic group

antiatherosclerotics p K_a # 4.5

4. Esterification of craboxylic groups

	<u>Diacids</u>	Di-Ethyl Ester Prodrug
In vitro (PTP1B)	Potent & Selective	
Oral Bioavailability (Rat)	13%	Not Determined
Permeability (MDCK)	Low	High
2-DOG Uptake in C2C12 Cell	Inactive	70%

5. Reduction of hydrogen bonding and polarity

Caco-2 Permeability

6. Reduction of size

F ₃ C CF ₃	<u>R4</u>	<u>R2</u>	($\times 10^{-7}$ cm/s, n = 3, mean \pm SD)
	CF ₃	CI	11 ± 4
O _N NH	Н	CI	61 ± 7
R ₄	CH ₃	CI	62±6
N N	CH ₂ CH ₃	CI	58±9
\uparrow	CH ₂ CH ₂ CH ₃	CI	31 ± 9
R ₂	CF ₂ CF ₃	CI	9 ± 9
	CI	CI	31 ± 6
	Ph	CI	9 ± 7
	CF ₃	F	19±6

6. Reduction of size

	<u>R1</u>	<u>R2</u>	% Dose Absorbed (rat ileum)
0 - Ro	ОН	OMe	29–35
HO $O > S$	ОН	O ⁿ Bu	2–5
N - N	OMe	O-4-Pyr	50–68
	O ^t Bu	O-4-Pyr	10–18
\tilde{N}_{R_1}	OPh	O-4-Pyr	not detected
	OMe	OMe	78–81
	OMe	OEt	23–42
	OMe	O ⁿ Bu	28–36
	OMe	OPh	15–18

7. Addition of non-polar side chain

cyclic peptide:

increasing membrane affinity by long saturated chain

7. Addition of non-polar side chain

8. Prodrug construction

example of modifications increasing lipohilicity/reducing number of ionizable groups