DISSOLUTION & ABSORPTION

Interaction active ingredient × organism

> pharmaceutical phase – disintegration, dissolution (pharmaceutical availability)

pharmacokinetic phase – ADME (biological availability), AUC, c_{max}, t_{max}

> pharmacodynamic phase – interaction between drug and receptor (therapeutic effect)

Bioavailability

characterize a ratio between solubility in water and lipids

Biopharmaceutical Classification System (BCS)

highly soluble API (BCS) – its highest dose is soluble in 250 ml of a dissolution medium in physiological pH range

highly permeable API (BCS)

– absorption is > 90%

Permeability high	Class 1 (amphiphilic) tramadol.HCl losartan pravastatin	Class 2 (lipophilic) atorvastatin itraconazole valsartan
Permeability low	Class 3 (hydrophilic) gabapentin metformin.HCl valcyclovir	Class 4 (trouble makers!) acyclovir furosemide cyclosporine
	Solubility high	Solubility low

Biopharmaceutical Classification System (BCS)

BCS class	Solubility	Permeability	Speed limiting item	Dissolution requirements	Note
1	high	high	stomach emptying	fast in all pH range (85% in 30 min in all media)	
2	low	high	dissolution	specification based on IVIVC	absorption controlled by solubility of API
3	high	low	absorption through instestine membrane	very fast in all pH range (85% in 30 min in all media)	fast solubility required to maximize the absorption
4	low	low	dissolution and absorption	low chance for IVIVC	prodrug preparation, higher solubility = higher permeability

- Isintegration ability of a dosage form to disintegrate into particles (compression pressure, porosity, excipients)
- Issolution releasing of molecules (ions) from a crystal bond and their diffusion in a solvent or digestive juices (chemical form: salt, weak acid, weak base; physical form: amorphous, polymorph, particle size)

Disintegration

disintegration – studies if tablets or capsules disintegrate under defined experimental conditions in a defined liquid, within defined time

> process, by which a solid substance comes into a solvent and becomes a solution

- > necessary requirement for drug absorption
- important tool for proposal, manufacture, evaluation and quality control of dosage forms
- > connection of *in vitro* testing and *in vivo* availability

Dissolution of API – Intrinsic dissolution

D

S

CS

C δ

Noyes-Whitney equation

$$\frac{dn}{dt} = \frac{DS}{\delta}(c_S - c)$$

- dn/dt a mass of a tested substance dissolved per time unit
 - diffusion coefficient
 - area of phase boundary between a solid phase and a solution
 - concentration of a saturated solution on a phase boundary
 - concentration in all volume
 - width of diffusion layer

- > pure API or a mixture with excipients
- > critical parameter preparation (compression of a tablet)

Dissolution modifying factors		Physicochemical properties of API	Physiological factors in GIT
diffusion coefficient	D	molecule size M _r , temperature	viscosity of digestive juices
surface area	S	particle size, wettability	surfactants, bile
width of diffusion layer	- δ		motility, flow rate
solubility	CS	hydrophilicity, crystal structure, solubilisation	pH in GIT, bile, food, buffer capacity

Dissolution – Dissolution profile, specification

- > dissolution profile is a dependence of released amount of active substance on time
- Specification of dissolution is specified by minimal acceptable amount of released active substance within specified time (minimal XX % within YY min)

Rate of active substance releasing from a dosage form

> physicochemical properties of API (solubility, polymorphy, size and shape of particles, porosity)

- Formulation components (excipients, buffers, surfactants)
- > manufacturing process (mixing process, wet granulation, melt extrusion, tableting pressure)
- > physical properties of a dosage form (wettability, swelling, disintegration)

Rate of active substance releasing from a dosage form

dissolution test

- media composition, pH, ion power, buffer capacity
- media volume
- stirring (hydrodynamics)

Dissolution media

- ≻ temperature: (37 ± 0.5) °C
- > buffer pH: 1 to 6.8 (± 0.05)
- ≻ volume: 500 1000 ml

- saturated concentration determination, sink conditions calculation c_s/c_d > 3
- > additives: surfactants, enzymes
- rotation speed: 50 100 rpm

Dissolution methods

- > 7 types according to the USP
 - baskets
 - paddles
 - reciprocating cylinder
 - flow-through cell
 - paddle over disk
 - rotating cylinder
 - reciprocating holder
 - special instruments (TNO TIM-1, "Golem")
 - on-line
 - off-line

Dissolution methods – USP 1, 2

> 1 – basket, 2 – paddle

- Imitation traditional closed models, dissolved drug stays in the system – accumulation × absorption in vivo, concentration gradient is establishing
- Flowing on a surface, sticking on a bottom (spirals), different hydrodynamics in particular parts of solution

3 Turn Large Capsule Teflon Coated Sinker

3 Turn Large Capsule Stainless Steel Sinker

Time Release Tablet Sinker

6 Turn Small Capsule Stainless Steel Sinker

6 Turn Small Capsule Teflon Coated Sinker

Jap. Pharm. Capsule Sinker

- USP 3 equipment with reciprocating cylinder, closed system
- Simpler simulation of GIT conditions (pH changes and transit times)
- > product releasing in 6 different pH media
- Suitable mainly for MR products, proof of drug form against strong mechanic stress

- > USP 4 flow-through cell, open system
- > absorption process is simulated by keeping of concentration gradient, no peristalsis
- Suitable mainly for products containing low soluble API, MR products, special dosage forms

Dissolution methods – USP 5

> paddle over disk, extraction cell

> for transdermal preparations

≻ 32 °C

Dissolution methods – USP 6

- rotating cylinder
- > for transdermal preparations
- ≻ 32 °C

Dissolution – Requirements for dosage forms

- > fast releasing dosage forms minimum 85% within 15 min
- immediate releasing dosage forms minimum 70 80% within 30 45 min
- > modified release dosage forms dissolution lasts usually 8 – 24 h, specification minimum in three points in profile
- > delayed release dosage forms enterosolvent tablets

Dissolution methods – Physiological approaches

Dissolution methods – Physiological approaches

- ➢ pepsin
- bile salts
- > phospholipids (lecithin)
- > lipase, pancreatic enzymes
- Ca²⁺ (lipase activity)
- ion power
- Fasted State Simulated Gastric Fluid (FaSSGF)
- Fed State Simulated Gastric Fluid (FeSSGF)
- Fasted State Simulated Intestinal Fluid improved version (FaSSIF V2)
- Fed State Simulated Intestinal Fluid improved version
 - (FeSSIF V2)

Dissolution methods – Physiological approaches

> gastro-intestinal dissolution model TNO TIM-1

Full simulating of GIT (stomach, duodenum, jejunum, ileum, pancreatic and bile secretion, enzymes, dynamic conditions, peristalsis, body temperature, ion power)

Golem – user-friendly software

Examples

> Influence of bile and pancreatic juices (atorvastatin)

Examples

> Clopidogrel + acetylsalicylic acid (enterosolvent tablets)

Examples

Atorvastatin (batches 80 and 82 vs. reference) /thanks also to Dr. Čulen/

Dissolution methods – Directives, guidelines

European Pharmacopoeia Ph. Eur.

- Czech Pharmacopoeia Dissolution of solid dosage forms, Dissolution of transdermal preparations, requirements on particular dosage forms
- EMA guideline (European Medicines Agency) ICHQ2(R1) – method validation (accuracy, precision, linearity, robustness, ...)

Absorption – Methods of administration, barriers

Absorption influencing factors

Absorption influencing factors – Chemical factors

> ability to be ionized (pK_a)

- important influence on drug solubility and permeability (passive diffusion absorption – only nonionized form is absorbed)
- many drugs are weak acids or bases
- Henderson-Hasselbalch equation

for acids: $log ([HA]/[A^-]) = pK_a-pH$ for bases: $log ([BH^+]/[B]) = pK_a-pH$

Mechanisms of absorption

biological membrane

- coherent bilayer of lipid molecules with outer polar and inner nonpolar part
- inserted proteins working as receptors, enzymes, transport systems, keeping the shape, ...

Mechanisms of absorption

> paracelular × transcelular

- paracelular
 - tight junction
 - passive, diffusion (concentracion gradient),
 - hydrophilic molecules with low M_r (cimetidin, atenolol)

transcelular

- lipid diffusion: dissolution in membrane lipids, according to concentration gradient, lipophilic drugs, nonionized form (Henderson-Hasselbalch); majority of drugs
- diffusion across water pores: hydrophilic substances, M_r till 150, low importance for drugs; Li

transcelular

- facilitated diffusion: with the aid of protein carrier, but only on concentration gradient (protein oscillation); AK-HEB
- active transport: against concentration gradient, energy supply (ATP), with the aid of protein carrier (reversible binding), one-way; levodopa

Mechanisms of absorption

transcelular

- transport on ion pairs: quarter ammonia bases, neutral complex with mucin, pure diffusion
- exocytosis and endocytosis, pinocytosis and fagocytosis

- ➢ GIT anatomy
 - stomach, small (duodenum, jejunum a ileum) and large intestine
 - Iength and surface of particular parts
- transit time
 - dissolution, transporters, degradation
- ➢ local pH
 - ionization level, acids, bases

> physiological parameters of GIT

Part of GIT	Surface (m ²)	Length (m)	Transit time (h)	рН
stomach	0.053	—	0.5 – 1.5*	1.5 – 2
small intestine**	200	6.5 (81 %)	3 – 4	$\begin{array}{c} 6.0 \rightarrow 6.5 \rightarrow \\ 7.0 \end{array}$
large intestine	0.35	1.55 (19 %)	8 – 72	6.3

- * transit time in oesophagus: a few seconds
- ** duodenum, jejunum, ileum

> physiological pH in GIT

	рН		
Segment	fasted	fed	
Stomach	1.8 (1 - 3)	4 (3 - 6)	
Duodenum	6.0 (4 - 7)	5.0 (4 - 7)	
Upper jejunum	6.5 (5.5 - 7)	5.5 (5.5 - 7)	
Lower jejunum	6.8 (6 - 7.2)	6.5 (6 - 7.2)	
Upper ileum	7.2 (6.5 - 7.5)	7.2 (6.5 - 7.5)	
Lower ileum	7.5 (7 - 8)	7.5 (7 - 8)	
Proximal colon	5.5 - 6.5	5.5 - 6.5	

- volume of gastric liquids
- Iocal pH (solubility, dissociation)
- > stomach filling (fasted × fed)
- > speed of stomach emptying (size of bite, calories amount)
- > gastrin (absorption increasing)
- > somatostatin (absorption decreasing)
- bile salts (micelles, lipophilic drugs)

- Surface area
- > speed of peristalsis
- Ievel of perfusion (congestion)
- > activity of intestine microflora
- > activity of digestive enzymes

> presystemic elimination: destruction in cells of intestine epithelium, first pass effect, pass through lungs, ... !!! > originator companies: to find out, if a candidate has suitable biopharmaceutical properties (peroral absorption – marketing)

generic companies: to find out, if a candidate has a same absorption profile as original product

Absorption models

- > experiments performed
 - in silico
 - in vitro
 - in situ
 - in vivo

> computer models

- on basis of information about a structure and data from preceding *in vivo* experiments, counting of absorption of new substances
- important factors lipophilicity, hydrogen bindings, inter- and intramolecular bindings, charge, molar weight ⇒ prediction of passive transport
- QSAR (Quantitative Structure Activity Relationship)

- > chromatographic methods
- > artificial lipid membranes
- > cell cultures
- > parts of small intestine
- > (SHIME)

!!! together with in silico methods – saving of animals !!!

> chromatographic methods

- stationary phase resembling lipid bilayer or immobilised phospholipids or liposomes
- only interaction with lipid bilayer, not a transportation across a membrane

- > artificial lipid membranes
 - hydrophobic porous filter impregnated with phospholipids
 - prediction of passive diffusion, transportation across a membrane
 - PAMPA (Parallel Artificial Membrane Permeation Assay)

12 thousand CZK / 5 plates

Experiments performed in vitro – PAMPA

> PAMPA

Experiments performed in vitro – PAMPA

Comparison of nanonized and standard API

API	Particle size (nm)	Particle size (µm)	
	(Nano API (x ₉₀))	(standard API)	
Meloxicam	290	20	
Valsartan	697	30	
API	Permeability (%)	Permeability (%)	
	(Nano API)	(standard API)	
Meloxicam	20.8	9.8	
Valsartan	56.0	10.7	

- > cell cultures
 - prediction of transportation across a cell membrane including active transport
 - Caco-2 cells 10 500 22 500 CZK / 1 compound

Caco-2 cells

- cells of human adeno<u>ca</u>rcinoma of large intestine (<u>co</u>lon)
- suggested for simulation and prediction of intestinal drug absorption after oral administration

Teflon lid

واولوا وإماره بمامر وراما والمرام بالمام بالما والمام والما والما والم

Caco-2 cells

Basolateral com

- dispose of enzymatic and transportation systems (with limitations – low capacity)
- correlation with *in vivo* data has shown that Caco-2 cells are able to predict absorption *in vivo* and identify low permeable substances; BCS classification
- Iow amount of tested compound
- not possible to distinguish differences in absorption in particular parts of small intestine, better for APIs than drug forms, narrow range of working pH, time consuming

• absorption in particular parts

> SHIME (Simulation of the Human Intestinal Microbial System):

- model, which simulates physicochemical and enzymatic conditions and contains bacterial colonies resembling colonies situated in human GIT
- multi-compartment 5-step system, 2 steps small intestine, 3 steps large intestine
- decomposition of active molecule × prodrug (Sulfasalazin)

- perfused organs
 - comparison of isolated absorption
 - solution, solid dosage forms
 - mass balance
 - small sample series surgical adjustment

- ➤ animal models
 - mouse
 - rat
 - guinea pig
 - dog
 - pig
 - mini-pig
 - ape
 - surgical adjusted (probes etc.)
 - there is not a single universal suitable mate of animal model

6 000 USD / 1 compound

Thank you for your attention

