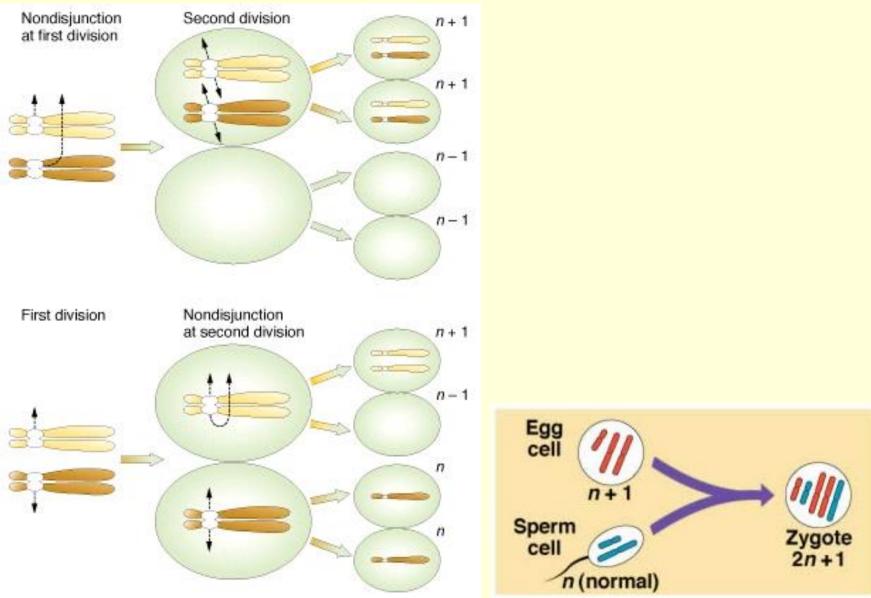
Cytogenetics Chromosomal Aberrations

seminar from Physiology and Pathophysiology II

20. 4. 2021

M. Chalupová


Chromosomes

- karyotype number and appearance of chromosomes in the nucleus
 - 22 pairs of autosomes
 - 1 pairs of gonosomes (XX/XY)
 - in women one X
 chromosome inactivated
 - Barr body

Nondisjunction

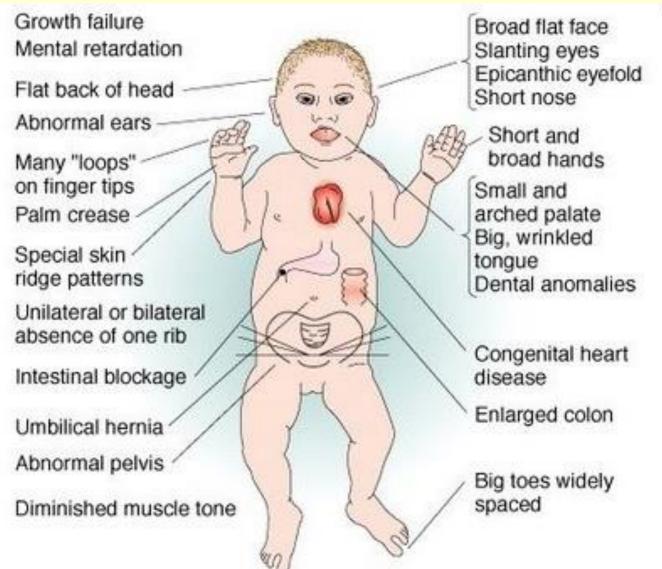
Chromosomal Aberrations

CONGENITAL (in gonades)

• STRUCTURAL

- with the change of genetic information
 - deletion
 - ring chromosome
 - duplication
 - isochromosome
- without the change of genetic information
 - inversion
 - insertion
 - translocation
- **NUMERIC** (change in number of chromosomes)
 - aneuploidy
 - abnormal number of chromosomes (trisomy, monosomy)
 - polyploidy
 - more than two haploid (n) sets (3n = triploidy, 4n = tetraploidy)

ACQUIRED (in somatic cells as an effect of mutagens)



Down Syndrome

- karyotype 47, XX, +21
 or 47 XY, +21
- 93 % simple trisomy (due to older mother)
- 4 % Robertsonian translocation
- 3 % mosaicism
- 1:800 neonates

Down Syndrome

Edwards Syndrome

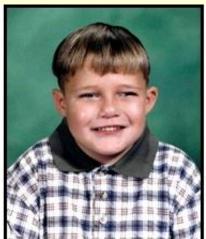
- karyotype 47, XX, +18 or 47, XY, +18
- 1:5000 neonates
- fetal growth retardation, frequent intrauterinne fetal death in II.-III. trimester
- mikrocephaly, narrow eyelid folds, small nose, micromandible, cleft lip/palate, short neck, narrow shoulders, clenched hand with overlapped fingers
- heart deffects, esophageal atresia, kidney malformations
- bad prognosis, suckling age survive only 12 % of children

Patau Syndrome

- karyotype 47, XX, +13 or 47, XY, +13
- 1:5000–10000 neonates
- frequent premature birth in II.-III. trimester
- mikrocephaly, trigonocephaly, skin defects, brain defects, low-set ears, cleft lip/palate, abnormal genitalia, kidney abnormalities, polydactyly
- more than 90% of children die within the first year of life

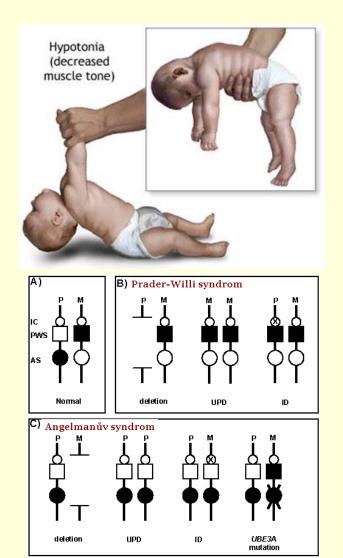
Cri du Chat Syndrome

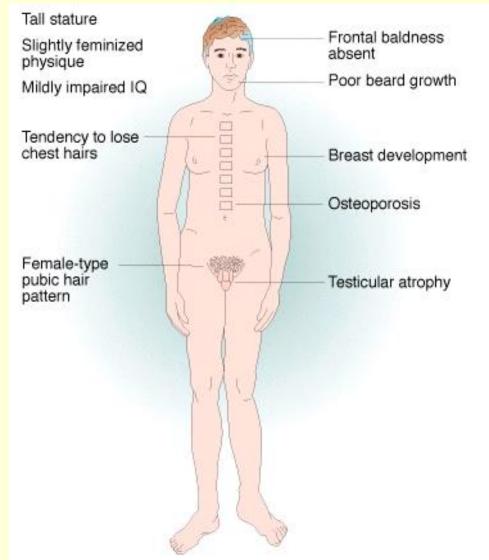
- deletion of the part of 5. chromosome
- karyotype 46, XX, 5p- or 46, XY, 5p-
- 1:50000-100000
- characteristic cry of affected infants, which is similar to that of a meowing kitten, due to laryngomalacia
- severe growth and psychomotoric retardation, hypotonia, epicanthic eyefolds, heart defects



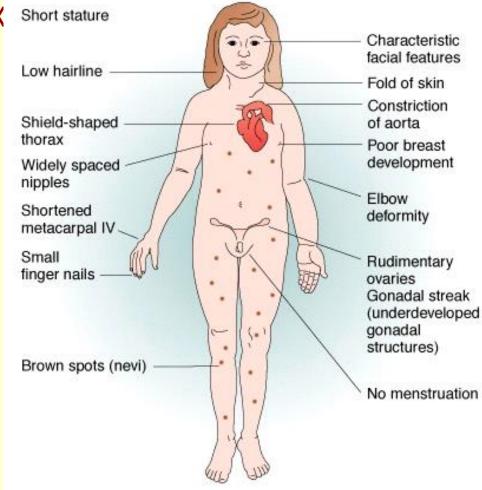
Microdeletion Synurone DiGeorge Syndrome

- deletion of 22. chromosome, del 22(q11)
- thymic and parathyroid gland aplasia
- severe deffect of cellular imunity
- abnormalities of calcium metabolism
- facial features (dysmorphy), heart deffects




Prader-Willi Syndrome

- chromosome 15q11-q13 microdeletion
- AD inheritance, parental imprinting
- mother allele is inactive, father allele has wrong expression
- hypotrophy and hypotonia, later extreme obesity, hypogenitalism
- Angelman syndrome: father allele is inactive, mother allele has wrong expression


Gonosomal Aberrations Klinefelter Syndrome

- karyotype: 47, XXY
- up to puberty normal development, can be mild psychomotoric retardation, late puberty, hypogenitalism, aspermia (sterility), gynecomastia, female pattern of adipous tissue
- diabetes mellitus, varicose veins, osteoporosis
- hormonal substitution by testosterone before puberty
- effective fertility can't be influenced

Turner Syndrome

- karyotype: 45, X0 monosomy X
- short stature (150–155 cm), lymphedema (swelling), lowset ears, broad chest
- reproductive sterility
- rudimentary ovaries gonadal streak
- heart and kidney deffects
- hormonal substitution by estrogens and growth hormones

Prenatal Diagnosis – Methods

I. Non-invasive (screening)

- ultrasound
- maternal serum screening (TRIPLE TEST)

II. Invasive (targeted examination of high-risk women)

- amniocentesis
- chorionic villus sampling
- cordocentesis
- fetoscopy

III. Special

- detection of fetal cells in maternal blood
- preimplantation genetic diagnosis (PDG)

Ultrasound Screening

- screening of congenital diseases and malformations
- three-phase US screening

I. 12. w.g.	 gestational age, congenital defects, numb 	ber of
	fetuses, heart rate, anencephalus	
II. 20. w.g.	 congenital defects 	
III. 3234. w.g.	 growth retardation, fetal position and pla 	acenta

Markers of chromosomal aberrations:

 fetal hypotrophy, urogenital abnormalities, defects of abdominal wall, heart defects, pleural effusion, hydrocephalus, early growth retardation

Biochemical Screening

- screening of aneuploidies
- necessary to know precise pregnancy duration
- I. trimester
 - PAPP-A pregnancy associated plasma protein A
 β-hCG subunit hCG
 β-core hCG in urine
- II. trimester
 - AFP α-1-fetoprotein
 hCG human chorionic gonadotropin
 SP1 trophoblast specific β-1 globulin
 uE3 unconjugated estriol

Prenatal Diagnostics – Invasive Methods

Amniocentesis

- extraction of amniotic fluid under US control, amniocytes (from the skin, GIT, urogenital tract...) are taken
 - later: 16.-18. w.g.
 - early: 12.-14. w.g.

Cordocentesis

- blood sampling from umbilical cord after 20 w.g. transabdominal under US, fetal haemoglobin assessment (HbF)
- karyotype, Fra-X syndrome, hemoglobinopathy, metabolic disorders, fetal infections

Chorionic villus sampling

- transabdominal/transcervical under US
 - early: 10.-12. w.g.
 - later: II. a III. trimestr (placentocentesis)

Fetoscopy

• direct aspection by fetoscope, transabdominal, general anesthesia