High performance (pressure, problematic) liquid chromatography HPLC

 Sixties – massive development of chromatography

- Development of:
- HPLC high performance (pressure) chromatography
- MPLC medium pressure liquid chromatography

Requirements laid on HPLC:

- 1. Columns filled with very smooth sorbent particles
- 2. High flow rates of mobile phases

Solution:

Usage of

- high pressure pumps
- on-line continuous detectors
- complicated injection systems
- novel chromatographic sorbents

Advantages:

- Rapidity
- Effectiveness
- Automation
- The possibility of easy result description and quantification
- Reproducibility

Equipment for HPLC chromatography contains

- Reservoir of mobile phase
- Degassing equipment
- Pump
- Injector
- Column with chromatographic sorbent
- Fraction collector

HPLC

HPLC pumps

- Alternating piston pumps with volume 35-400 µL, 2-4 pistons, alternating work in 90-180°, piston volume and velocity of movement can be changed
- A reciprocating pump is used where relatively small quantity of liquid is to be handled and where delivery pressure is quite large.
- A piston is a component of reciprocating pumps

- Characteristic sign is pulse flow rate of mobile phase
 - Pumped liquid is pushed out by a piston or a membrane
 - Pump head possess inlet and outlet valve

HPLC pumps

- Syringe shaped pumps with volume 250-500 mL, piston with constant volume
 - Pressure on piston is produced by an electric engine
 - Working volume 100 500 ml
 - Main advantage is constant flow without pulsing
 - High stability of detector signal
 - Generally high price of pump
 - Very precise manufacturing of single parts
 - Stable flow rate after 15 to 60 min
 - Necessary to degas mobile phase in advance
 - No gradient

HPLC pumps

- Pumps produce a constant flow by a stream of gas from the bomb, low gas pressure can produce high pressure in liquid
 - Pneumatic pumps
 - Source of energy is compressed gas
 - Gas is flowing directly on the liquid level or is compartmentalized by using pistons
 - During the contact of the gas with liquid, the gas is partially dissolved
 - Advantageous separation of gas from liquid
 - Pumps are pulseless, very simple and cheap

Softening of pressure pulses

- Necessary to use multi-piston pumps with low internal volume
- Possibility of using the next "reversed" phased pump
- Possibility of using more pump heads with coordinated inlets and outlets
- Often programmed movement of pistons
- Usage of dumpers (elastic tubing system)
- Residual pulses are in software filtered and removed

Vacuum Chamber From Solvent From Solvent \rightarrow masses Bottles **Bottles** Inlet Inlet Valve Valve 0 Solvent Solvent Selection Valve Selection Valve Electronic Outlet Outlet Flow Control (EFC) Valve Valve

Damper Mixer

To Waste

To Sampling Unit and

Column

Mobile phase

- Single component
- Multi component
 - isocratic elution
 - gradient elution
- Gradient elution
 - change of ratio of mobile phase components shorten time of analysis
 - improves separation of complex mixtures
 - iincreases sensitivity of detector
 - step wise or continuous

Injection in HP liquid chromatography

- During injection it is necessary to overcome the high pressure inside the column
- It is not possible to use simple injectors as for gas chromatography
- Most common HPLC injector is 6-path injection valve with exchangeable loop
- Injector used in HPLC possess very high reproducibility of injection volume

Prep Injection Valve Block Diagram

HPLC columns

According to usage:

- Micro columns
- guard
- analytical
- preparative

According to sorbent:

- normal phased
- reversed phased

- More smooth particles of sorbent = higher pressure, but better separation abilities:
 - 1) silica gel or Al₂O₃
 - 2) silica gel or other carrier bonded phases
 - 3) gels
 - 4) other materials with pores of controlled size
- 5) Ion exchangers
- 6) others

Preparation of modified silica gel

Advantage of Monolayer Bonding: Single Step, Reproducible Reaction

Choice of column

- chromatographic column is chosen according to the analysis demands and used technique
- Besides analytic columns we have special column for preparative separation (big diameter and length)
- Conditions of analysis are selected as a compromise in relation to the analysis time, demanded resolution, and demanded load with material:
 - If high resolution is needed, the time of analysis is prolonged, and the column should not be overloaded with high volume of the sample
 - If a short time of analysis is needed, lower resolution will be obtained, and the column should not be overloaded with high volume of the sample
 - If high amounts of sample should be separated, the time of analysis will be prolonged, and lower resolution will be obtained

Analytical columns

- Internal diameter less than 4 mm
- Length 30, 100 up to 250 mm
- Stainless steel
- Filled with particles with diameter 2-10 μm, usually inorganic matrix silica gel, with bonded stationary phase
- So called sectioned columns for separation of very complex mixtures of compounds

Preparative columns

- Bigger diameter
- Bigger length
- Higher amount of loaded and separated sample
- Designated for the separation of higher amounts of compounds (milligrams to tens of milligrams)

Guard column

- The tasks of guard column
 - To saturate the mobile phase with sorbent material to prevent the damage of the analytical column
 - Protection of the analytical column during the analysis of biological material
 - Filtration of mobile phase
- As guard column can be used old or damaged "normal" column