
Phytochemistry in the System of Science, Methodology

Introduction into Phytochemistry, Historical Excurse

- Greek origin of word ,,phytochemistry"
- All chemical aspects touching the plant kingdom and life of plants
 - Plant nutrition and primary metabolism of plants (photosynthesis etc.) excluded to the plant physiology and plant biochemistry
 - Chemical studies of organic carbon-containing compounds created by plants (especially in so called secondary metabolism)
 - For example: comparative phytochemistry comparing differences of natural compounds synthesis in plant species and botanical families

Founders

- 1664 Boyle (England) flavonoids
- 1806 Sertürner (Deutschland) - morphine
- 1817-1820 Pelletier a Caventou (France) - quinine
- 1848 Merck (Deutschland) papaverine
- 1829 Posselt a Reimann nicotine and 1819 Runge caffeine (Deutschland)

- Bigger development at century turning point
- Till the fifties slow progress
 - Compounds isolated and identified only in crystal form, identification based on chemical degradation and biogenetic principals
- 1957 5000 of natural compounds including alkaloids
- After WW2 great progress in chromatographic and spectral applications (separation and identification)
- Present time more than 600 000 natural compounds

Primary and Secondary Plant Metabolism

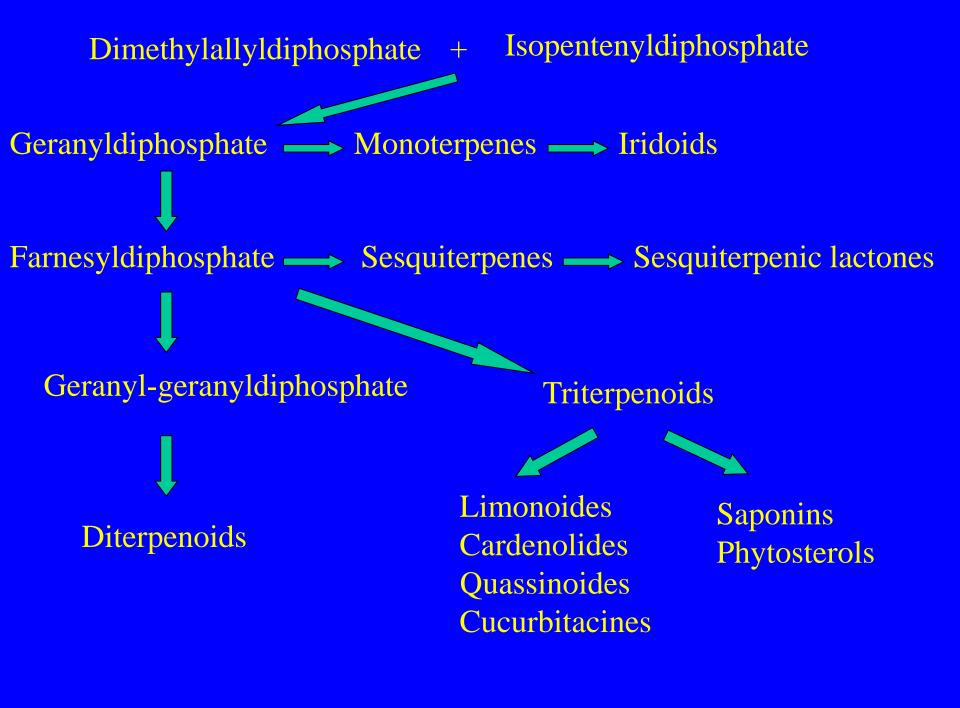
- Primary metabolites: ubiquitous, vital compounds
 - Simple sugars
 - Amino acids (especially proteinogenic)
 - Purines and pyrimidines of nucleic acids
 - Chlorophyll
 - Fatty acids and low-molecular carboxylic acids

- Secondary metabolites: taxonomically limited occurrence, the importance for plants not explicit, specific conditions necessary for their production.
- Production in different plant organs, transportation and chemical modifications.
- Probably not necessary for life.
- Nomenclature by different systems:
 - Trivial
 - Semi trivial
 - Chemical
 - According to the biosynthetic origin

Main classes of secondary metabolites:

Terpenoids

Alkaloids and other nitrogen-containing compounds


Phenolic compounds

Terpenoids

 Biosynthetic origin in isopentyl-diphosphate and dimethylallyldiphosphate

- Lipophillic properties
- Unsaturated carbohydrates, different oxidation pattern.
- Individual subdivisions according to the number of C5 units
- Approx. 20 000 compounds

Group of Terpenoids	Characteristics
Monoterpenes	Volatile compounds, essential oils
Iridoids	Usually lactones, bitter taste, often glycosides
Sesquiterpenes	Essential oils, higher boiling point
Sesquiterpenic lactones	Asteraceae family, bitter taste
Diterpenoids	Resins and plant growth hormones
Triterpenoid and steroidal saponins	Foam making compounds, hemolytic activity
Cardenolides and bufadienolides	Cardioactive glycosides, toxins
Phytosterols	Building blocks of membranes
Cucurbitacines	Bitter taste, typical for Cucurbitaceae
Carotenoids	Plant pigments

Alkaloids and other Nitrogen-Containing Metabolites

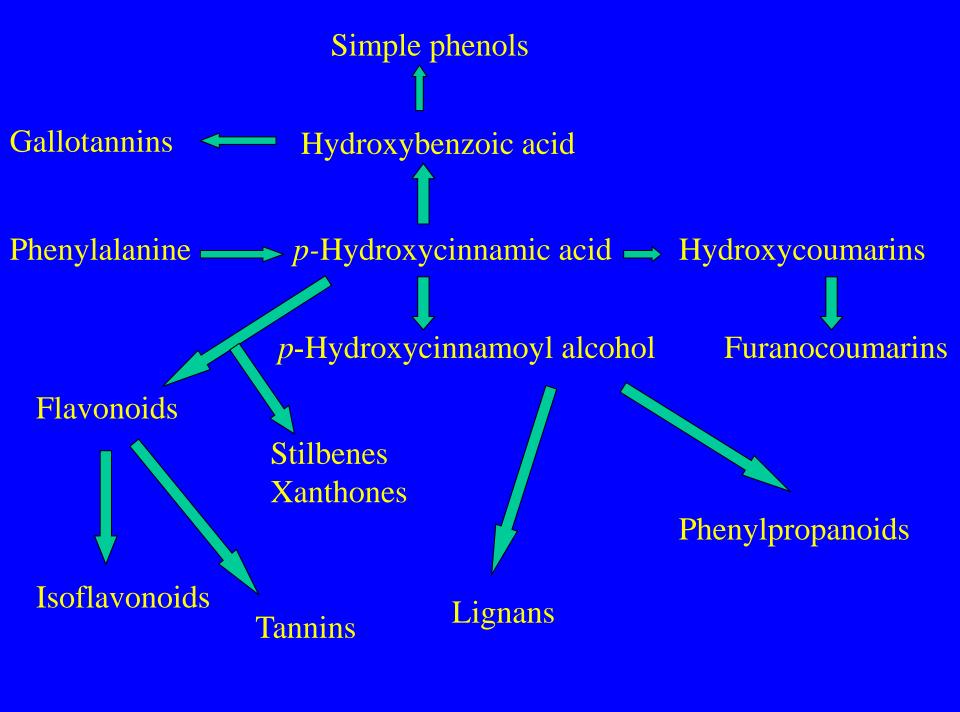
- The most known nitrogen-containing compounds
- Nitrogen part of structure (usually in cyclic system)
- Basic
- Limited distribution in species or families chemotaxonomic limitations
- More than 10 000 compounds

Peptides Non-protein amino acids Amino acids Amines Cyanogenic glycosides (protein building blocks) **Aldoxims** Alkaloids Glucosinolates

Limited to Amaryllidaceae, 275 different structures
Yellow and red pigments
Very poisonous, mainly Ranunculaceae
Many structures, mainly Apocynaceae and Loganiaceae
Widely distributed, greatest group, many subdivisions
150 structures, clubmosses, mosses
Relative to iridoids, different heterocycles
Mainly orchids
Mainly Rhamnaceae
Polyhydroxyalkaloids, inhibitors of enzymes, pharmacologically active
Senecio, Asteraceae
Rutaceae

Apocynaceae, Buxaceae, Liliaceae, Solanaceae

Solanaceae


Steroidal

Tropane

Non-proteinogenic amino acids	Often present in seeds, especially Leguminosae
Amines	Mainly volatile compounds, sporadic occurrence, in traces
Cyanogenic glycosid	Widely distributed in Rosaceae, low concentrations
Glucosinolates	Brassicaceae
Purines a pyrimidines	Nucleic acids, methylxanthines

Phenolic compounds

- Aromatic compounds with one or more hydroxyl groups
- Possible and common in glycosidic form
- Biosynthesis mainly from phenylalanine via shikimic acid

Subclass of phenolic compounds	Characteristics
Anthocyans	Red and blue pigments
Anthochlors	Yellow pigments - chalcons and aurones
Benzofurans	Distributed through some higher plants and lichens
Chromones	Small group
Coumarins	700 compounds, widely distributed
Flavonoids	May compounds, widely distributed
Isoflavonoids	Mainly Leguminosae, rare as glycosids, estrogen-like effect
Lignans	Wood and bark
Phenols a phenolic acids	Universal for plant
Phenylpropanoids	Many structures, form glycosides, as aglycones part of essential oils
Quinoid compounds	Benzoquinons, naftoquinons
Tannins	Tannins hydrolyzable, condensed
Xanthones	Pigments, mainly Gentianaceae

Functions of Secondary Metabolites

- Difficult to establish the true function
- Multifunctional
- Occurrence both as secondary and primary metabolites
- Common the occurrence of group of very similar compounds, difficult to establish function of selected metabolite
- Advantage of presence of group of similar compounds before presence of single metabolite

Functions of Secondary Metabolites

Multifunction

Salicylic acid: signal stress molecule, metabolic signal for pollen production, protection against herbivores, allelopathic effect

Ethylen	H H	Simple structure, hormone of ripening, seed germination, inflorescence development, stress response
Indol-3-acetic acid	COO	30 different conjugates, "auxine", tropism, elongation, induction of cambial cells division
Gibberellines	OH COOH	102 of structures, elongation and growth of plant organs, stratification and vernalization
Cytokinines	Э Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б Б	14 structures, cell division, cell differentiation, inhibition of abscission
Abscisic acid	ОНСООН	Seed ripening, inhibition of seed germination, durability to lack of water
Brassinosteroids	SH SH	More than 40 structures, stem elongation, increase of ethylene production, wood growth, stamina growth
Polyamines	H ₂ N(CH ₂) ₃ NH(CH ₂) ₄ NH(CH ₂) ₃ NH ₂	4 structures, interaction with RNA, effect on DNA and RNA replication, growth and development of cells, ripening, flowering

Plant Pigments and Odors

- •Mainly as attractants for pollinators (bats, birds, bees, butterflies and others)
- •Different pollinators different attractants
 - bees blue and yellow (flavonoids and anthocyanins), soft odors
 - bats night pollinators fruit odors, sulphuric odors (for example methylsulphides)

•Compounds always in combinations (anthocyanins + flavonoids in blue, carotenoids + flavonoids in yellow)

- Extra large panel of compounds as plant odor components
- Monoterpenes, sesquiterpenes, benzoates, derivatives of anthranilic acid, simple sulphuric compounds, simple esters, amines
- Different panel of compounds in leaves, flowers and fruits
 - Different purposes of presence color and odor should repel
 - Sometimes opposite attraction because of seed spreading

Delphinidin-3,5-diglucoside	но от он он	Blue color, attractive for humble bees
Pelargonidin-3,5-diglucoside	HO O Glc OH	Scarlet color
Indol and p-cresol	GIC-O GIC	
Geraniol	ОН	Attractive for drones
Dimethyldisulphid, 2,4 dithiopentan	c S s CH ₃	Attractive for bats
Methylanthranilate and isoeugenol	COOH NH ₂ HO	Synergy of compounds in butterflies attration

Protection Against Herbivores

Toxic for:

- •Species salicin
- All species oubain
- •For plant alone cyanogenic glycosides
- Concentration increases after stimulus elicitation
- Appreciated insecticides (rotenone, pyrethroids)
- Differences in activities of similar structures (monoterpenoids more effective when oxygenated, pyrrolizidine alkaloids when hydroxylated and in frm of esters)

Fluoracetic acid	F C OH
Miserotoxin	Glc NO ₂
Oubain	Glc OH OH
Salicin	oн G
Sinigrin	HO S NO NO OH OH

Senecionin

Dichapetalum cymosum, interaction with Krebs cyclus, respiratory poison for mammalians

3-nitro-1-propanol-β-D-glucosid, *Astragalus atropubescens*, toxic for cattle, mitochondrial poison

Acokanthera oubaio, cardial poison for mammalians

Salix spp.

Brassica, toxic especially for cattle

Senecio, hepatotoxic, mainly for cattle

Antifungal effect

- Different types of barrier: defensive proteins, lignification, membranes and wax-compound layers, low molecular compounds
- 1. constitutive
- 2. synthesis *de novo* as response on infection so called phytoalexins (more than 300 compounds identified)
- Attacking fungi product toxins toxicity possible for plant and also for consumer

Antifungal effect

Compounds located on the surface

» catechol, parthenolide, luteon

Vacuole located compounds

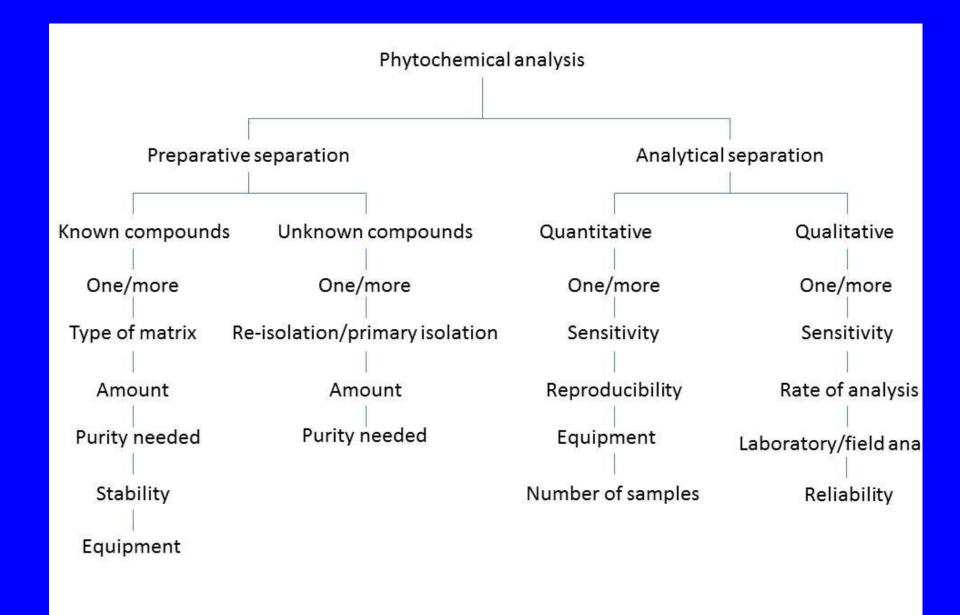
» arbutin, sinigrin, tomatin, avenacin, avenacosid

- Compounds with activity of animal hormones
 - steroids:
 - » ecdysons
 - terpenoids
 - estrogen-like compounds
 - » formononetin
- Plant compounds entering the symbiotic relationships
 - Lichens and root parasites
 - Chemical changes after infliction of microbes and parasites

Methods of Isolation and Analysis of Plant Secondary Metabolites

- Reasons for isolation and separation of compounds:
 - Initial extract shows promising biological activity
 - Chemotaxonomic studies
 - Isolation of commercially interesting compounds, for example for breeding
- Necessity clearly select targets
- To found an idea about chemical character of target compounds
 - Polarity, presence of acidic and basic functionalities,
 chemical relationship of single compounds

- To found an idea about physical character of target compounds
 - Melting points, boiling points, UV absorption and other spectral characteristics


• Make a thorough literature research.

'It is not necessary to develop a bicycle again.'

• 1. Cultivation of medicinal plants, collection/harvest, drying, storage of drugs

The term "drug" means unmodified or modified conserved or fresh plants or plant parts, animals or their parts or metabolic products of plants, animals and microorganisms.

- 2. Quality control
- 3. Isolation and separation of physiologically active compounds
- 4. Identification of physiologically active compounds

Preparative Separation

- Search in the available literature make a literature research on the topic
- Optimization of methods
- Look for all known properties of target compounds.
- First make a trial with small amount of sample.
- Use sensitive methods.
- Partial material, do not work on the whole amount at once.
- Make a taxonomical search.

Analytical Separation

- Search in the available literature make a literature research on the topic
- Choose optimal method, modify or confirm the functionality/ reliability.

• If necessary pre-purify sample.

Phytochemical Literature

- Chemical abstracts, Biological abstracts
- Beilstein abstracts
- Phytochemical Analysis phytochemical metods
- Journal of Natural Products,
 Phytochemistry, Planta Medica
- Journal of Chromatography, Journal of Liquid Chromatography, Chromatographia.

Cultivation of Medicinal plants, Collection/Harvest, Drying, Storage of Drugs

 Small consumer/individual person – collection of plants in wild nature contra mass production for business

- •Active principles usually present unevenly in all parts of plant.
- •Proper term of harvest.
 - •Concentration of content compounds changes in the life of plant, seasonal variations (concentration could change in seasons, weeks, hours).

- Menthol in spearmint only in older plants,
 young plant contain precursors only.
- Camphor collected from 40 years old trees.
- variability in the season:
 - » Subterranean parts collect in autumn.
 - » Seeds and fruits from beginning to full maturity.
- Daily variability of content compounds depend on external factors:
 - » Changes of light and dark
 - » Temperature
 - » Humidity
- Collection of wild plants is the oldest way of harvest. Drug collected in this way has not standard content of active compounds.

- Standard cultural cultivation of medicinal plants is better for standard content of active compounds.
- Usage of pharmaceutical industry.
- Main conditions for successful propagation:
 - Choice of location.
 - Choice of cultivar.
 - Time of harvest.
 - Usage of breed cultivars with high resistance against diseases and noxious animals.
 - Resistance to frost and drought.
 - Economical aspects.

• Phytotherapeutic usage:

– Fresh plants:

- » To get compounds which could decompose by drying and storage.
- » By-pass of energy-consumpting drying
- » Homeopathy

– Conserved plants:

- Rapid processing.
- Stopping of undesired changes: treatment of alcohol vapors on harvested material, lyophilization- freeze drying.
- In some cases active compound synthesis arises after collection post mortal synthesis cardioactive glycosides.

• Drying:

- Fastest and most economic way of conservation.
- Bad drying can destroy material
- Removal of water we stop the invasion of microbes and fungi, stopping of unwanted metabolic procedures which could change compounds.
- Good drying procedure did not affect the level of active compounds.

- Well defined drying temperature:
- Usual drying temperatures
 - Leaves, herbs, flowers 30-40 °C.
 - Roots and bark 30- 65 °C.
 - Volatiles contaning plants less than 35 °C.
 - Use of short-termed higher heating to stop enzymatic procedures and decomposition of unwanted compounds.
 - Sometimes opposite wanted procedures, by enzymatic process could be created active content compounds fermentation.
 - Fermentation can change the "design" of drug, taste, color etc. (black tea).

Time of drying:

- Herbs, leaves, flowers several days.
- Roots several weeks.
- Way of drying:
 - Directly on sun light.
 - Natural heat.
 - Well air conditioned room.
 - Special drying cabinets with controlled temperature.

- Regular Conditions of Storage:
 - Bad conditions excessive humidity causing the invasion of moulds (*Penicillium*, *Rhizopus* and *Eurotium*).
 - Important to maintain low air humidity max. 65 %.
 - Direct sun light is bad.
 - Fluctuation of temperature.
 - between 5-15 °C.
 - Some drugs must be preserved against malefactors, especially insects, different types of Některé drogy je také potřeba chránit proti škůdcům, zejména hmyzu, různým typům roztočů, červotočů a pod.

Extraction Techniques

- Spontaneous isolation without extraction.
- Usually necessary at least one step of sample extraction and one step of sample purification.
- Not only separation from high molecular compounds, but also removal of low molecular compounds which can disturb the final steps of separation and purification.
- Matrix effect.