Phytochemistry

Extraction, Isolation And Separation of Physiologically Active Natural Compounds

Extraction Techniques

- Spontaneous isolation without extraction.
- Usually necessary at least one extraction and one purification step for compound isolation.
- Not only separation of high molecular compounds, but also removal of low molecular impurities disturbing late stages of separation and purification.
- Matrix effect.

Extraction – Fick's Diffusion Law

 $dc/dt = - (DA/h) \cdot (c_0 - c)$

- dc/dt diffusion speed
- D coefficient of diffusion (depending on temperature and particle size)
- A interface
- **h** diffusion layer
- **(** c_0 c) concentration gradient

- Type of drug and its form (*Matrix effect*)
 grade of disintegrations according to the diameters holes of sieve
 - grinding and mill apparatus
 - cutting apparatus
- Weight ratio of drug and extraction medium
- Humidity of drug
- Extraction method
- Extraction medium and its composition

Supercritical Fluid Extraction (SFE)

Extraction process is running with help of supercritical fluids.

Supercritical fluid

- Pressure and temperature crosses critical levels.
- Its physical properties are on the cross between gases and liquids.
- Diffusion constant close to gases ---- rapid transfer of mass.
- Viscosity lower then liquids advantage especially for supercritical fluid chromatography.
- Low surface tension _____ easy material penetration.

_								
	Chara	naracteristics Density (kg/		m ³)	Viscosity (cP)		Diffusivity (mm ² /s)	
	Gas		1		0.01		1-10	
	SCF		100-800		0.05-0.1		0.01-0.1	
	Liquid		1000		0.5-1.0		0.001	
			Component	ponent P		_c [bar] T _c		
			CO ₂		73.8		31.1	
			N ₂ O		72.4		36.4	
		NH ₃		112.7		132.5		
			SO_2		78.8		57.6	
			SF_6		37.6		45.5	
			Xe		58.3		16.6	

Liquid	Critical temperature (Kelvin)	Critical pressure (bar)
CO ₂	304.1	73.8
Ethan	305.4	48.8
Ethylen	282.4	50.4
Propan	369.8	42.5
Propylen	364.9	46.0
Trifluoromethan	299.3	48.6
Chlrortrifluoromethan	302.0	38.7
Trichlorofluoromethan	471.2	44.1
NH ₃	405.5	113.5
H ₂ 0	647.3	221.2
Cyclohexan	553.5	40.7
n-Pentan	469.7	33.7
Toluen	591.8	41.0

■ SFE Advantages:

- Fine technique.
- In ideal case no need of organic solvents.
- Ecological harmlessness.
- Relatively cheap.
- Rapid.
- Possibility of automatization.
- Solvation power affected by changes of pressure.

SFE Disadvantages:

- Less suitable for more polar compounds.
- More demanding on equipment.
- Need to use high pressures.
- Less suitable for extraction of plant leaves.
- Problems with extraction tuning.
- Difficult to extract fresh material (water content).

CO₂ – inflammable, non-explosive, easy available, cheap, ecological harmlessness, useful supercritical area, (T=31.1 °C; P=7.28 MPa), suitable for extraction of less polar (hydrophobic) compounds (volatile oils, oils, waxes, carotenoids etc.)

- Used for:

- Hop extraction.
- De-caffeinization of coffee (production of caffeine).
- Extraction of taxol (Paclitaxel TM) from *Taxus brevifolia*.
- Extraction of essential oils and spices.
- Non-pharmaceutical purposes.

Distillation with Water Steam (Hydrodistillation)

- Method suitable for isolation of water insoluble volatile compounds.
- Common content of volatile compounds in plant material > 1 % of weight – difficult SFE or solvent extraction.
- Selective.
- Simple.
- Pure.

Advantages:

- Selective for volatile compounds.
- Simple apparatus.
- Very cheap method.
- Only water used as a "solvent".
- Useable in preparative scale.
- Extract obtained very pure.

- Utilizable for non-polar (hydrophobic) volatile compounds.
- Possibility of material decomposition (presence of water, high temperatures).
- Improper for very low quantities of starting material.
- Quantitative extraction time consummating.
- Possibility of loss of polar compounds from total bulk of compounds.

Principles of Water Steam Distillation

Possible forms:

- 1. "True" water steam distillation.
- **2**. Hydrodistillation.

- True water steam distillation

- Steam is generated separately in "steam generator".
- Steam is forced down into material.
- Used in industry.

Hydrodistillation

- Plant material is suspended in boiling water.
- Water steam is generated *in situ*.
- Clevenger apparatus. Suitable for laboratory purposes.

Affection by matrix effect:

- If are volatile compounds (like essential oils) located on surface of plant material (trichomes, glandules...) – *matrix* effect is weak or not present, distillation is very rapid.
- If are volatile compounds present deeper inside the material, distillation is slower and it is affected by matrix effect and diffusion.

Special case – steam distillation extraction (SDE):

- Used not only water steam.
- Mixtures diethyl ether/water 1:1, pentane/water 1:1.
- Volatile non-polar compounds are dissolved in organic solvent, consequently two phases arise.

Separation and Purification Techniques

- Shake out (liquid-liquid extraction).
- Precipitation.
- Crystallization.
- Chromatography.

Shake out (liquid-liquid extraction).

- Following after the extraction.
- Based on different solubility in immiscible or limited miscible solvents.
- Coarse separation of compounds to fractions with similar polarity, or creation of complexes and salts.
- Coarse extract are usually not suitable directly for chromatographic separation:
 - Wide spectrum of compounds.
 - Very variant polarity.
 - Bad solubility in common chromatographic solvents.
- On analytical scale often replaced by SPE.

Advantages:
 Without necessity of special equipment.
■ Good capacity.
Possibility of fine tuning.
■ No irreversible adsorption.
 Solvents could be chosen directly according to the compounds characteristics.
Disadvantages:
Limited ability of separation.
 Formation of problematic inter-phases and emulsions.
 No possibility of automatization.

• Examples of common mixtures and their use:

- Water: diethyl ether (petroleum ether)
- Water: chloroform
- Water: n-butanol
- Methanol: hexane
- Isolation of alkaloids.
- De-fatting of extracts.
- Separation of steroids.
- Separation of glycosides from aglycones.

Crystallization

- Final purification step.
- Possible in range from milligrams to tons.
- Suitable solvent usually chosen by method trial and error.
- Target compounds usually less soluble than impurities.
- In present time of lower importance
- Stays necessary for some identification methods (X-ray).