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1 Overview

The normality assumption is at the core of a majority of standard

statistical procedures, and it is important to be able to test this

assumption. In addition, showing that a sample does not come

from a normally distributed population is sometimes of impor-

tance per se. Among the many procedures used to test this as-

sumption, one of the most well-known is a modification of the

Kolomogorov-Smirnov test of goodness of fit, generally referred to

as the Lilliefors test for normality (or Lilliefors test, for short). This

test was developed independently by Lilliefors (1967) and by Van

Soest (1967). The null hypothesis for this test is that the error is

normally distributed (i.e., there is no difference between the ob-

served distribution of the error and a normal distribution). The

alternative hypothesis is that the error is not normally distributed.

Like most statistical tests, this test of normality defines a cri-

terion and gives its sampling distribution. When the probability

associated with the criterion is smaller than a given α-level, the
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alternative hypothesis is accepted (i.e., we conclude that the sam-

ple does not come from a normal distribution). An interesting pe-

culiarity of the Lilliefors’ test is the technique used to derive the

sampling distribution of the criterion. In general, mathematical

statisticians derive the sampling distribution of the criterion us-

ing analytical techniques. However in this case, this approach fails

and consequently, Lilliefors decided to calculate an approximation

of the sampling distribution by using the Monte-Carlo technique.

Essentially, the procedure consists of extracting a large number of

samples from a Normal Population and computing the value of the

criterion for each of these samples. The empirical distribution of

the values of the criterion gives an approximation of the sampling

distribution of the criterion under the null hypothesis.

Specifically, both Lilliefors and Van Soest used, for each sample

size chosen, 1000 random samples derived from a standardized

normal distribution to approximate the sampling distribution of a

Kolmogorov-Smirnov criterion of goodness of fit. The critical val-

ues given by Lilliefors and Van Soest are quite similar, the relative

error being of the order of 10−2.

According to Lilliefors (1967) this test of normality is more pow-

erful than others procedures for a wide range of nonnormal con-

ditions. Dagnelie (1968) indicated, in addition, that the critical

values reported by Lilliefors can be approximated by an analyti-

cal formula. Such a formula facilitates writing computer routines

because it eliminates the risk of creating errors when keying in the

values of the table. Recently, Molin and Abdi (1998), refined the

approximation given by Dagnelie and computed new tables using

a larger number of runs (i.e., K = 100,000) in their simulations.

2 Notation

The sample for the test is made of N scores, each of them denoted

Xi . The sample mean is denoted MX is computed as

MX =
1

N

N
∑

i

Xi , (1)
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the sample variance is denoted

S2
X =

N
∑

i

(Xi −MX )2

N −1
, (2)

and the standard deviation of the sample denoted SX is equal to

the square root of the sample variance.

The first step of the test is to transform each of the Xi scores

into Z -scores as follows:

Zi =
Xi −MX

SX
. (3)

For each Zi -score we compute the proportion of score smaller

or equal to its value: This is called the frequency associated with

this score and it is denoted S (Zi ). For each Zi -score we also com-

pute the probability associated with this score if is comes from a

“standard” normal distribution with a mean of 0 and a standard

deviation of 1. We denote this probability by N (Zi ), and it is equal

to

N (Zi ) =
∫Zi

−∞

1
p

2π
exp

{

−
1

2
Z 2

i

}

. (4)

The criterion for the Lilliefors’ test is denoted L. It is calculated

from the Z-scores, and it is equal to

L= max
i

{|S (Zi )−N (Zi )|, |S (Zi )−N (Zi−1)|} . (5)

So L is the absolute value of the biggest split between the proba-

bility associated to Zi when Zi is normally distributed, and the fre-

quencies actually observed. The term |S (Zi )−N (Zi−1)| is needed

to take into account that, because the empirical distribution is dis-

crete, the maximum absolute difference can occur at either end-

points of the empirical distribution.

The critical values are given by Table 2. Lcritical is the critical

value. The Null hypothesis is rejected when the L criterion is greater

than or equal to the critical value Lcritical.

3



H. Abdi & P. Molin: Lilliefors / Van Soest Normality Test

3 Numerical example

As an illustration, we will look at an analysis of variance exam-

ple for which we want to test the so-called “normality assump-

tion” that states that the within group deviations (i.e., the “resid-

uals”) are normally distributed. The data are from Abdi (1987, p.

93ff.) and correspond to memory scores obtained by 20 subjects

who were assigned to one of 4 experimental groups (hence 5 sub-

jects per group). The score of the sth subject in the ath group is

denoted Ya,s , and the mean of each group is denoted Ma.. The

within-group mean square MSS(A) is equal to 2.35, it correspond

to the best estimation of the population error variance.

G. 1 G. 2 G. 3 G. 4

3 5 2 5

3 9 4 4

2 8 5 3

4 4 4 5

3 9 1 4

Ya. 15 35 16 21

Ma. 3 7 3.2 4.2

The Normality assumption states that the error is normally dis-

tributed. In the analysis of variance framework, the error corre-

sponds to the residuals which are equal to the deviations of the

scores to the mean of their group. So in order to test the normality

assumption for the analysis of variance, the first step is to com-

pute the residuals from the scores. We denote Xi the residual cor-

responding to the i th observation (with i going from 1 to 20). The

residuals are given in the following table:

Yas 3 3 2 4 3 5 9 8 4 9

Xi 0 0 −1 1 0 −2 2 1 −3 2

Yas 2 4 5 4 1 5 4 3 5 4

Xi −1.2 .8 1.8 .8 −2.2 .8 −.2 −1.2 .8 −.2
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Next we transform the Xi values into Zi values using the fol-

lowing formula:

Zi =
Xi

√

MSS(A)

(6)

because MSS(A) is the best estimate of the population variance,

and the mean of Xi is zero. Then, for each Zi value, the frequency

associated with S (Zi ) and the probability associated with Zi un-

der the Normality condition N (Zi ) are computed [we use a table

of the Normal Distribution to obtain N (Zi )]. The results are pre-

sented in Table 1.

The value of the criterion is (see Table 1)

L= max
i

{|S (Zi )−N (Zi )|, |S (Zi )−N (Zi−1)|} = .250 . (7)

Taking an α level of α = .05, with N = 20, we find (from Table 2)

that the critical value is equal Lcritical = .192. Because L is larger

than Lcritical, the null hypothesis is rejected and we conclude that

the residuals in our experiment are not distributed normally.

4 Numerical approximation

The available tables for the Lilliefors’ test of normality typically re-

port the critical values for a small set of alpha values. For example,

the present table reports the critical values for

α= [.20, .15, .10, .05, .01].

These values correspond to the alpha values used for most tests

involving only one null hypothesis, as this was the standard pro-

cedure in the late sixties. The current statistical practice, however,

favors multiple tests (maybe as a consequence of the availability

of statistical packages). Because using multiple tests increases the

overall Type I error (i.e., the Familywise Type I error or αPF ), it has

become customary to recommend testing each hypothesis with a

corrected α level (i.e., the Type I error per comparison, or αPC )

such as the Bonferonni or S̆idák corrections. For example, using

a Bonferonni approach with a familywise value of αPF = .05, and
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Table 1: How to compute the criterion for the Lilliefors’ test of
normality. Ni stands for the absolute frequency of a given value
of Xi , Fi stands for the absolute frequency associated with a given
value of Xi (i.e., the number of scores smaller or equal to Xi ),
Zi is the Z -score corresponding to Xi , S (Zi ) is the proportion of
scores smaller than Zi , N (Zi ) is the probability associated with
Zi for the standard normal distribution, D0 =| S (Zi ) −N (Zi ) |,
D−1 =|S (Zi )−N (Zi−1) |, and max is the maximum of {D0,D−1}.
The value of the criterion is L= .250.

Xi Ni Fi Zi S (Zi ) N (Zi ) D0 D−1 max

−3.0 1 1 −1.96 .05 .025 .025 .050 .050

−2.2 1 2 −1.44 .10 .075 .025 .075 .075

−2.0 1 3 −1.30 .15 .097 .053 .074 .074

−1.2 2 5 −.78 .25 .218 .032 .154 .154

−1.0 1 6 −.65 .30 .258 .052 .083 .083

−.2 2 8 −.13 .40 .449 .049 .143 .143

.0 3 11 .00 .55 .500 .050 .102 .102

.8 4 15 .52 .75 .699 .051 .250 .250

1.0 2 17 .65 .85 .742 .108 .151 .151

1.8 1 18 1.17 .90 .879 .021 .157 .157

2.0 2 20 1.30 1.00 .903 .097 .120 .120

testing J = 3 hypotheses requires that each hypothesis is tested at

the level of

αPC = 1
J
αPF = 1

3
× .05 = .0167 . (8)

With a S̆idák approach, each hypothesis will be tested at the level

of

αPC = 1− (1−αPF )
1
J = 1− (1− .05)

1
3 = .0170 . (9)

As this example illustrates, both procedures are likely to require us-

ing different α levels than the ones given by the tables. In fact, it is

rather unlikely that a table could be precise enough to provide the

wide range of alpha values needed for multiple testing purposes. A
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more practical solution is to generate the critical values for any al-

pha value, or, alternatively, to obtain the probability associated to

any value of the Kolmogorov-Smirnov criterion. Such an approach

can be implemented by approximating the sampling distribution

“on the fly" for each specific problem and deriving the critical val-

ues for unusual values of α.

Another approach to finding critical values for unusual values

of α, is to find a numerical approximation for the sampling distri-

butions. Molin and Abdi (1998) proposed such an approximation

and showed that it was accurate for at least the first two signifi-

cant digits. Their procedure, somewhat complex, is better imple-

mented with a computer and comprises two steps.

The first step is to compute a quantity called A obtained from

the following formula:

A =
−(b1 +N )+

√

(b1 +N )2 −4b2

(

b0 −L−2
)

2b2
, (10)

with

b2 = 0.08861783849346

b1 = 1.30748185078790

b0 = 0.37872256037043 . (11)

The second step implements a polynomial approximation and

estimates the probability associated to a given value L as:

Pr(L) ≈−.37782822932809+1.67819837908004A

−3.02959249450445A2 +2.80015798142101A3

−1.39874347510845A4 +0.40466213484419A5

−0.06353440854207A6 +0.00287462087623A7

+0.00069650013110A8 −0.00011872227037A9

+0.00000575586834A10 . (12)

For example, suppose that we have obtained a value of L =
.1030 from a sample of size N = 50. (Table 2 shows that Pr(L) = .20.)
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To estimate Pr(L) we need first to compute A, and then use this

value in Equation 12. From Equation 10, we compute the estimate

of A as:

A =
−(b1 +N )+

√

(b1 +N )2 −4b2

(

b0 −L−2
)

2b2

=
−(b1 +50)+

√

(b1 +50)2 −4b2

(

b0 − .1030−2
)

2b2

= 1.82402308769590 . (13)

Plugging in this value of A in Equation 12 gives

Pr(L) = .19840103775379 ≈ .20 . (14)

As illustrated by this example, the approximated value of Pr(L) is

correct for the first two decimal values.
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Table 2: Table of the critical values for the Kolmogorov-Smir-
nov/Lillefors test of normality obtained with K = 100,000 samples
for each sample size. The intersection of a given row and column
shows the critical value Lcritical for the sample size labelling the row
and the alpha level labelling the column. For N > 50 the critical

value can be found by using fN =
.83+N
p

N
− .01.

N α= .20 α= .15 α= .10 α= .05 α= .01

4 .3027 .3216 .3456 .3754 .4129

5 .2893 .3027 .3188 .3427 .3959

6 .2694 .2816 .2982 .3245 .3728

7 .2521 .2641 .2802 .3041 .3504

8 .2387 .2502 .2649 .2875 .3331

9 .2273 .2382 .2522 .2744 .3162

10 .2171 .2273 .2410 .2616 .3037

11 .2080 .2179 .2306 .2506 .2905

12 .2004 .2101 .2228 .2426 .2812

13 .1932 .2025 .2147 .2337 .2714

14 .1869 .1959 .2077 .2257 .2627

15 .1811 .1899 .2016 .2196 .2545

16 .1758 .1843 .1956 .2128 .2477

17 .1711 .1794 .1902 .2071 .2408

18 .1666 .1747 .1852 .2018 .2345

19 .1624 .1700 .1803 .1965 .2285

20 .1589 .1666 .1764 .1920 .2226

21 .1553 .1629 .1726 .1881 .2190

22 .1517 .1592 .1690 .1840 .2141

23 .1484 .1555 .1650 .1798 .2090

24 .1458 .1527 .1619 .1766 .2053

25 .1429 .1498 .1589 .1726 .2010

26 .1406 .1472 .1562 .1699 .1985

27 .1381 .1448 .1533 .1665 .1941

28 .1358 .1423 .1509 .1641 .1911

Table continues on the following page . . .
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Table 3: . . . Continued. Table of the critical values for the Kolmogo-
rov-Smirnov/Lillefors test of normality obtained with K = 100,000

samples for each sample size. The intersection of a given row and
column shows the critical value Lcritical for the sample size labelling
the row and the alpha level labelling the column. For N > 50 the

critical value can be found by using fN =
.83+N
p

N
− .01.

N α= .20 α= .15 α= .10 α= .05 α= .01

29 .1334 .1398 .1483 .1614 .1886

30 .1315 .1378 .1460 .1590 .1848

31 .1291 .1353 .1432 .1559 .1820

32 .1274 .1336 .1415 .1542 .1798

33 .1254 .1314 .1392 .1518 .1770

34 .1236 .1295 .1373 .1497 .1747

35 .1220 .1278 .1356 .1478 .1720

36 .1203 .1260 .1336 .1454 .1695

37 .1188 .1245 .1320 .1436 .1677

38 .1174 .1230 .1303 .1421 .1653

39 .1159 .1214 .1288 .1402 .1634

40 .1147 .1204 .1275 .1386 .1616

41 .1131 .1186 .1258 .1373 .1599

42 .1119 .1172 .1244 .1353 .1573

43 .1106 .1159 .1228 .1339 .1556

44 .1095 .1148 .1216 .1322 .1542

45 .1083 .1134 .1204 .1309 .1525

46 .1071 .1123 .1189 .1293 .1512

47 .1062 .1113 .1180 .1282 .1499

48 .1047 .1098 .1165 .1269 .1476

49 .1040 .1089 .1153 .1256 .1463

50 .1030 .1079 .1142 .1246 .1457

> 50
0.741

fN

0.775

fN

0.819

fN

0.895

fN

1.035

fN
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