

BASICS of enzymology -Enzyme Kinetics

Biochemistry-3

Two basic conditions of life

- 1. Living organisms must be capable of self-replication
- 2. Organisms must be capable of catalyzing chemical reactions efficiently and selectively

-Enzymes are biological catalysts systems enabling chemical transformations. They also allow the transformation of one form of energy to another.

-For enzymes characteristic catalytic power and specificity.

- The catalytic power of the enzyme is defined as the ratio of the rate of reaction catalyzed by the enzyme reaction rate and uncatalyzed.

- Catalysis takes place in the enzyme molecule called **active site**.

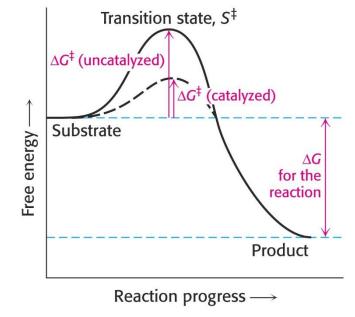
- A substance which catalyses the conversion is called a **substrate**.

- Nearly all known enzymes are proteins (RNA are probably the earliest catalysts - ribozymes).

Biochemistry-3

General properties of enzymes

- proteins
- biocatalysts specific (due to the substrate effect) highly active operate under mild conditions may be regulated in vitro - sensitive to external conditions


Enzymes are different proteins

- -simple proteins
- with covalently bound **prostetic** group
- metalloenzymes
- oligomeric, multienzyme complexes
- associated with membranes
- differently distributed in body/cell
- forms isoforms Biochemistry-3

Enzymes are highly efficient catalysts

- Enzymes are highly efficient catalysts
- reduce the activation energy \Rightarrow accelerate reactions
 - -efficiency by several orders of magnitude higher than that of other catalysts
 - reaction with the enzyme is about 10 6-10 14 faster than without enzyme do not affect the equilibrium constant K
 - relatively low stable

If the reaction biol. systems were catalyzed by enzymes, they would be so slow that it could not ensure the existence of living matter

Enzymes work under mild conditions

- atmospheric pressure
- narrow temperature range about 37 ° C.
 - above 50 ° C usually denatured
- \Rightarrow narrow pH range
- pH optimum

•

There is a possibility of <u>regulation</u>

The enzyme activity

- -activators
- -inhibitors
- covalent

modification

(phosphorylation)

The amount of enzyme

- -regulation of protein synthesis
- enzyme proteolysis
- some hormones inducers ×
 repressors

The specificity of enzymes is double

Consecutive, effects Substrate specificity -possible substrates of the possible for a reaction can reactions choose one (or a they catalyze only a single group of single substrate substrates) -often stereospecific

Enzymes are stereospecific catalysts

- There are two types of transformations:
 - conversion of an achiral substrate to a chiral product (= single enantiomer), for example. pyruvate \rightarrow L-lactate
 - transformation of a chiral substrate (only one enantiomer) of

the product (also important for pharmacology)

L-alanin \rightarrow pyruvate (D-alanin do not interact)

D-glucose $\rightarrow \rightarrow$ pyruvate (L-glucose do not interact)

chiral signal molecule \rightarrow complex with receptor \rightarrow biological answer

chiral drug_{(ant)agonista} \rightarrow complex with receptor \rightarrow farmacological answer

Example: hydrogenation of pyruvate

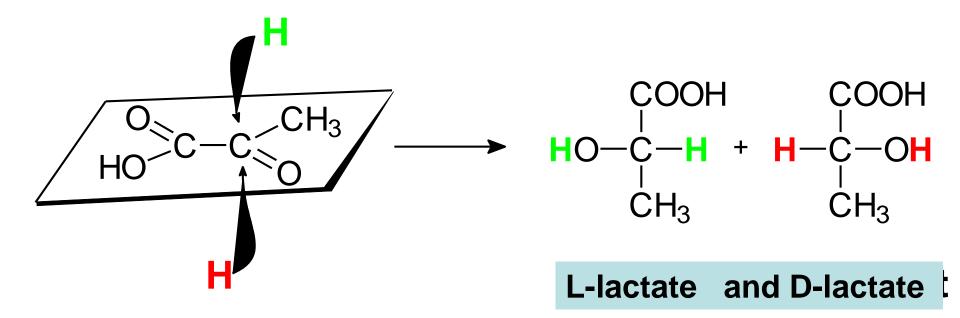
in vitro

in vivo

Non-enzymatic

created racemate

(D, L-lactate)


enzyme

created only one

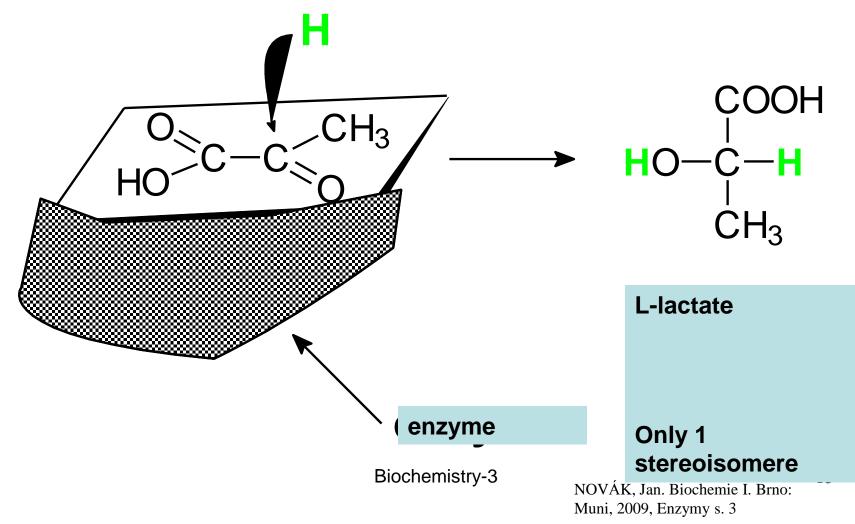
enantiomer (L-lactate)

Hydrogenation of pyruvate in vitro

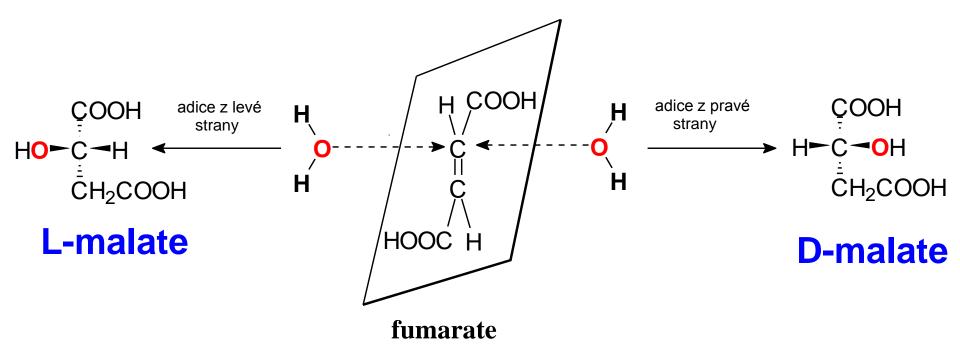
adition of hydrogen to planar substrate from both sides

There are statistically the same probability approach reagent from both sides of a planar substrate - therefore arises racemate

Biochemistry-3


12

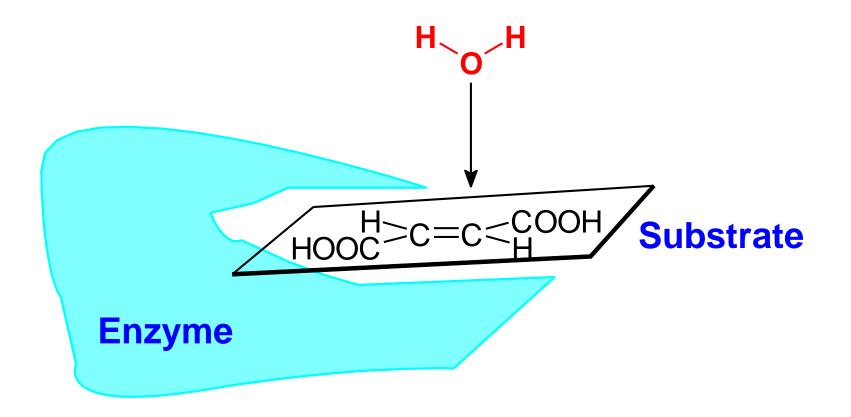
NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 3


Hydrogenation of pyruvate in vivo

(anaerobic glycolysis) addition of hydrogen to the planar

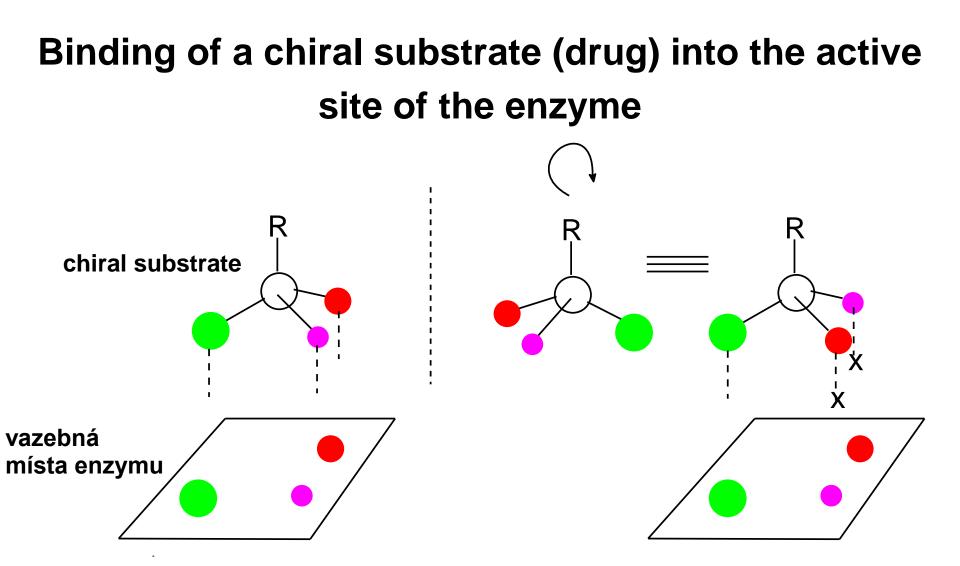
substrate from one side only

Example: Non-enzymatic hydration of fumarate



in vitro formed racemic D, L-malate

Biochemistry-3


NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 3 14

Enzyme hydration of fumarate (CC)

occurs in vivo, only one enantiomer (L-malate)

Biochemistry-3 _{NOVÁK}, Jan. Biochemie I. Brno: Muni, 2009, 15 Enzymy s. 3

active enantiomer

nonactive enantiomer

Biochemistry-3

16

NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 4

The nomenclature of enzymes

trivial

extension **-in, ase** pepsin, trypsin amylase, lipase

recommended trivial names

<u>system</u>

terminal -**ase** name contains information on:

- 1. substrate
- 2. type of response

examples of names

Recommended trivial name: alcohol dehydrogenase
 System name: ethanol: NAD + -oxidoreductase
 Reaction: ethanol + NAD + → acetaldehyde + NADH + H +

Recommended trivial name: alanine aminotransferase (ALT)
 System name: L-alanine-2-oxoglutarate aminotransferase
 Reaction: L-alanine + 2-oxoglutarate → pyruvate + L-glutamate

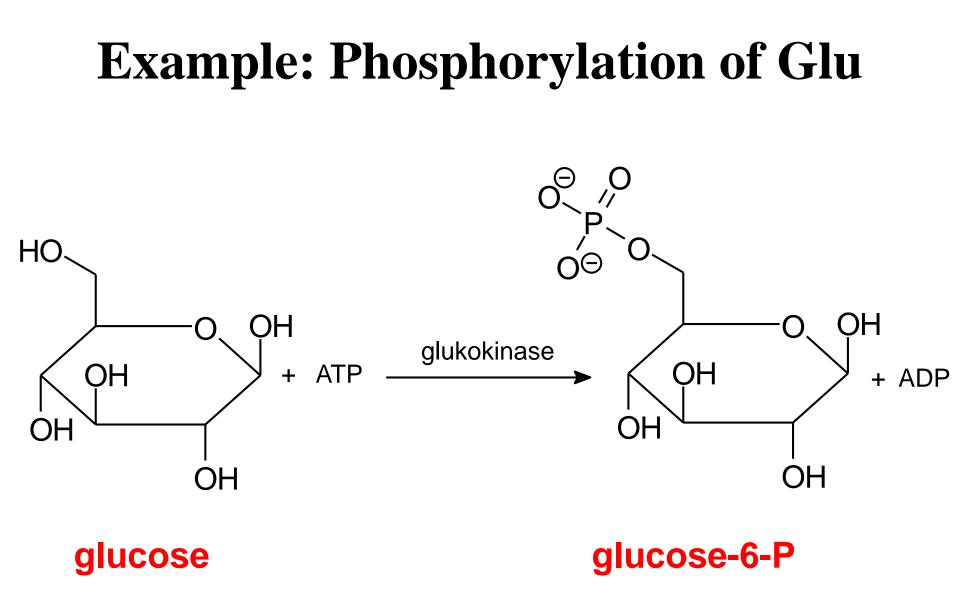
Classification of enzymes:

Six classes according to the type of reaction

- 1. oxidoreductase
- 2. transferase
- 3. hydrolases
- 4. Iyase
- 5. Isomerase

6. ligase

1. Oxidoreductases


- redox conversion of substrates
 various mechanisms, subclasses:
- dehydrogenases, transmit two H atoms (dehydrogenase)
- oxidase, transmitted electrons from substrate to substrate (cytochrome c oxidase)
- oxygenase, incorporated into the substrate O atom (monooxygenases, dioxygenase)
- Peroxidase (degradation of H2O2) Biochemistry-3

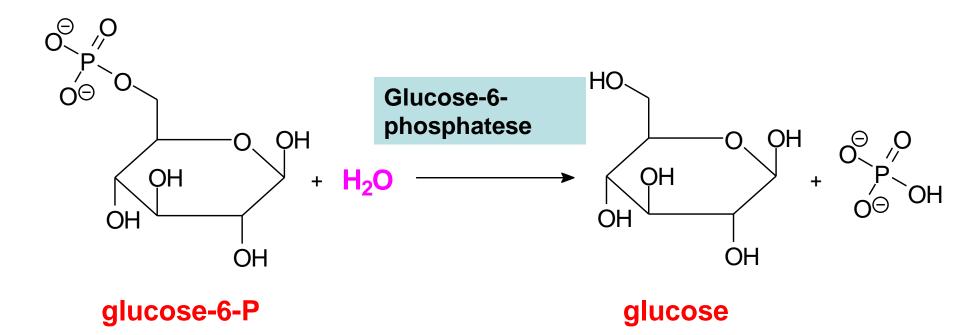
2. Transferases

transfer groups from one substrate to another

aminotransferase, methyl, amino, glucose ...

kinase - phosphorylation substrates $-PO_3^{2-}$ transfer from ATP to the OH group of the substrate

Biochemistry-3 NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 5

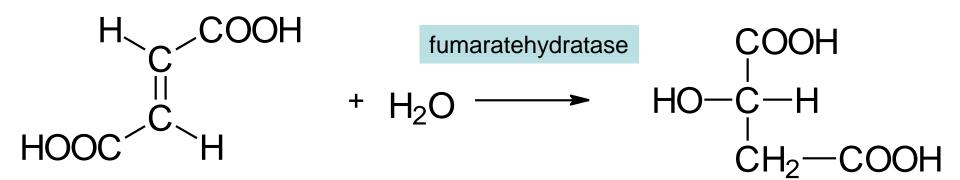

3. Hydrolases

 hydrolytically cleaves the links established by condensation

peptide, ester, glycosidic
 protease, amylase, lipase, lysozyme

• phosphatase - cleaves phosphate esters

Example: Phosphatase



 non-hydrolytic cleavage and formation of C-C bonds, C-O, C-N

 cleaved from the substrate or to bring it a small molecule (CO₂, H₂O)

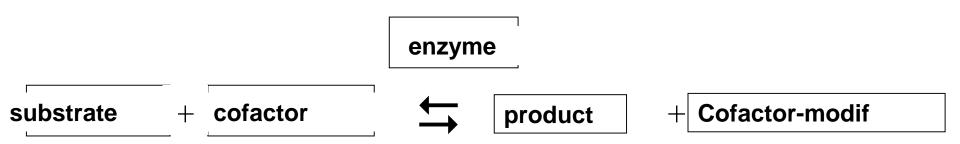
• for example. fumaratehydratase

Example: Hydratation of fumarate on malate (fumaratehydratase)

5. Isomerases

 intramolecular rearrangements of atoms glucose-4-epimerase (epimerization of glucose)

UDP-glucose \rightarrow UDP-galactose



 formation of energy-intensive ties with decomposition energy compounds (ATP)

pyruvate carboxylase

pyruvate + CO_2 + ATP + $H_2O \rightarrow oxalacetate + ADP + P_i$

Three different components in the enzyme reaction

- Substrate (s) a low molecular weight
 cofactor low molecular
- 3. enzyme high molecular weight, coordinates and accelerates the reaction

Note .: some reactions proceed without cofactor (eg. hydrolysis), the substrates can be a high molecular weight

Biochemistry-3

Cofactors of enzymes

- low molecular weight non-protein compounds
 - transmit *e* or *2H*--- *oxidoreductase*
 - transfer of groups --- transferase
 tightly bound prosthetic group
 loosely coupled coenzymes (co-substrate)

Coenzymes and prosthetic groups

Biochemistry-3

Nomenclature

- Cofactor: nonprotein component of enzymes
- Cofactor a co-catalyst required for enzyme activity
- Coenzyme a dissociable cofactor, usually organic
 Prosthetic group non-dissociable cofactor
- Vitamin a required micro-nutrient (organism cannot synthesize adequate quantities for normal health may vary during life-cycle).
 - water soluble not stored, generally no problem with overdose
 - lipid soluble stored, often toxic with overdose.
- **Apoenzyme** enzyme lacking cofactor (inactive)
- Holoenzyme enzyme with cofactors (active)

Vitamins are precursors of cofactors

Vitamin	Coenzyme	Typical reaction type	Consequences of deficiency
Thiamine (B ₁)	Thiamine pyrophosphate	Aldehyde transfer	Beriberi (weight loss, heart problems, neurological dysfunction)
Riboflavin (B ₂)	Flavin adenine dinucleotide (FAD)	Oxidation-reduction	Cheliosis and angular stomatitus (lesions of the mouth), dermatitis
Pyridoxine (B_6)	Pyridoxal phosphate	Group transfer to or from amino acids	Depression, confusion, convulsions
Nicotinic acid (niacin)	Nicotinamide adenine dinucleotide (NAD ⁺)	Oxidation-reduction	Pellagra (dermatitis, depression, diarrhea)
Pantothenic acid	Coenzyme A	Acyl–group transfer	Hypertension
Biotin	Biotin–lysine complexes (biocytin)	ATP-dependent carboxylation and carboxyl-group transfer	Rash about the eyebrows, muscle pain, fatigue (rare)
Folic acid	Tetrahydrofolate	Transfer of one-carbon components; thymine synthesis	Anemia, neural-tube defects in development
B ₁₂	5'-Deoxyadenosyl cobalamin	Transfer of methyl groups; intramolecular rearrangements	Anemia, pernicious anemia, methylmalonic acidosis
C (ascorbic acid)		Antioxidant	Scurvy (swollen and bleeding gums, subdermal hemorrhages)

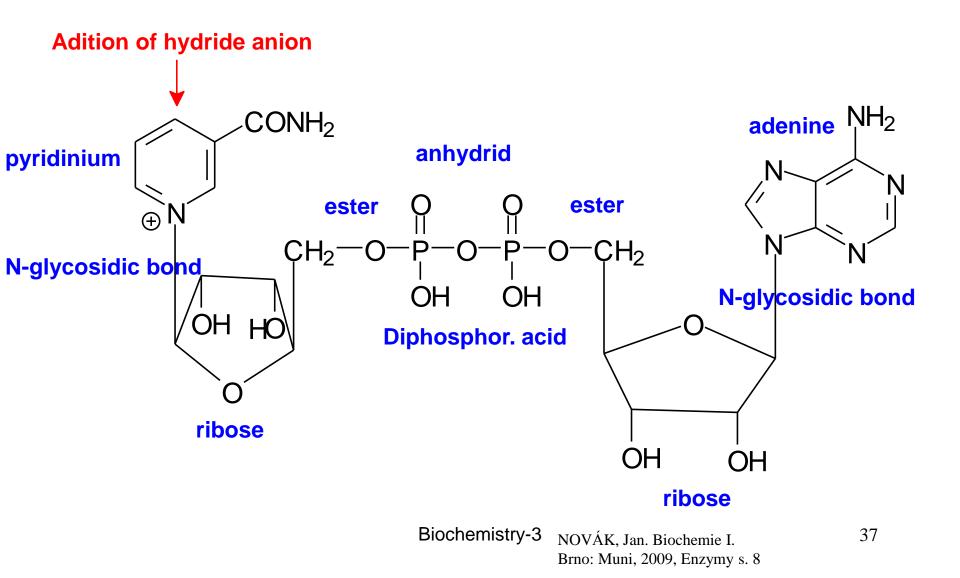
Biochemistry-3

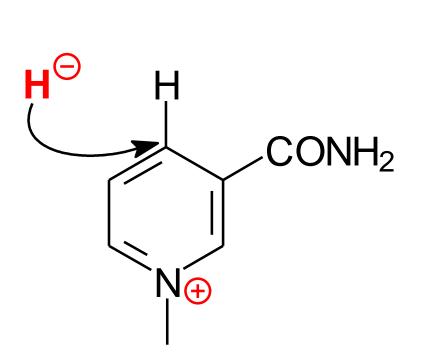
Vitamins and cofactors of oxidodeductases

Vitamine	Cofactors	Function of cofactors	
Niacin	NAD ⁺	acceptore 2H	
Niacin	$NADPH + H^+$	donore 2H	
Riboflavin	FAD, FMN	accceptore 2H	
	tetrahydrobiopterin	donor 2H	
	molybdopterin	e transport	
	lipoate	acceptore 2H	
	ubichinon	2 electron transport (and 2H ⁺)	
	hem cytochrom	1 electron transport	
	nonhem Fe a S	1 electron transport	
	2 GSH	donore 2H	

Cofactors of oxidoreductases always exist in two forms

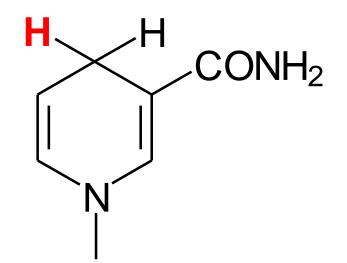
oxidized \leftrightarrows reduced


form a redox couple


Biochemistry-3

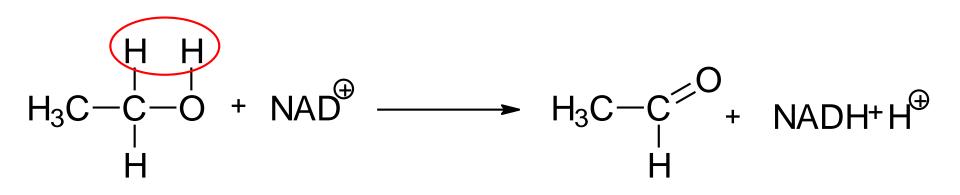
Nicotinic Acid/Nicotinamide Coenzymes

- These coenzymes are two-electron carriers
- They transfer hydride anion (H-) to and from substrates
- Two important coenzymes in this class:
- Nicotinamide adenine dinucleotide (NAD+)
- Nicotinamide adenine dinucleotide phosphate (NADP+)


Structure of NAD+

NAD⁺

Oxidized form


Redused form

Biochemistry-3 NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 8

Dehydrogenation with NAD⁺

 substrate loses two H atoms from the groups: primary alcohol group CH2-OH secondary alcohol group> CH-OH a secondary amino group> CH-NH2 there is a double bond

Dehydrogenation of ethanol (alcoholdehydrogenase)



Biochemistry-3

NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 8

40

Dehydrogenation of glutamate (glutamatedehydrogenase)

2-amino acid

2-imino acid

Biochemistry-3

NOVÁK, Jan. Biochemie I. Brno: 41 Muni, 2009, Enzymy s. 9

NAD+-dependent enzyme

• Citrate cycle:

isocitratedehydrogenase 2-oxoglutaratedehydrogenase malatedehydrogenase

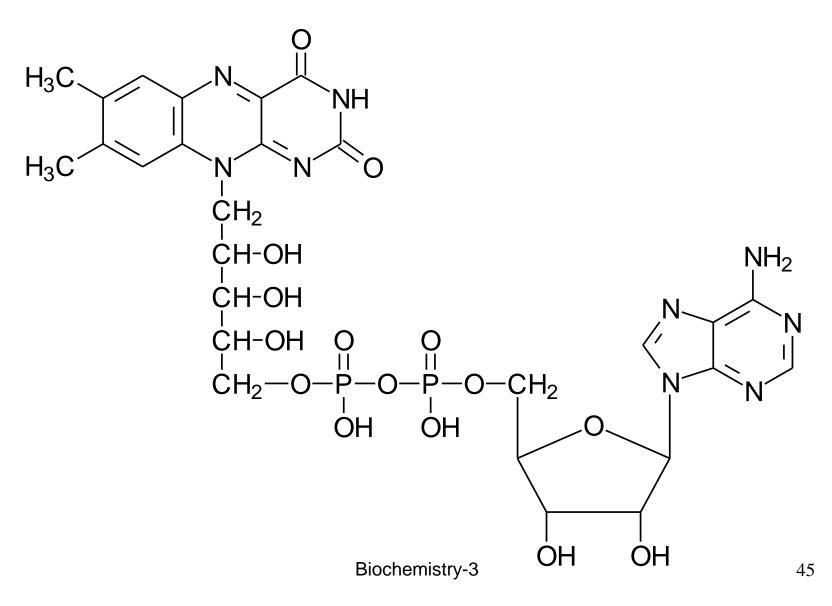
• Glykolysis:

glyceraldehyd-3-P dehydrogenase laktatedehydrogenase

• Detoxication of ethanol: alcoholdehydrogenase acetaldehyddehydrogenase Biochemistry-3

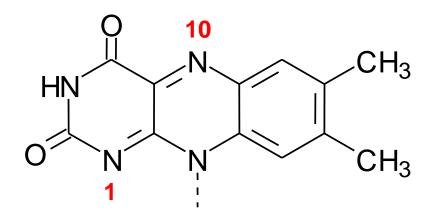
NADPH + H^+ hydrogenation agent

 donor 2H hydrogenation reducing cofactor synthesis (FA, cholesterol) regeneration of GSH in erythrocytes! cofactor hydroxylation reactions: cholesterol bile acids kalciol -- calcitriol xenobiotic -- hydroxylated xenobiotic general scheme hydroxylation:

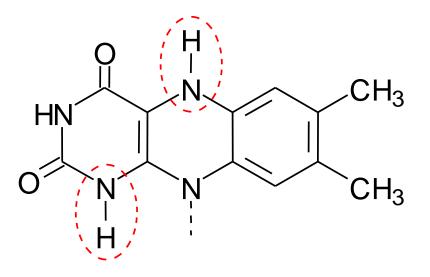

$\text{R-H} + \text{O}_2 + \text{NADPH} + \text{H}^+ \rightarrow \text{R-OH} + \text{H}_2\text{O} + \text{NADP}^+$

FAD is dehydrogenation agent

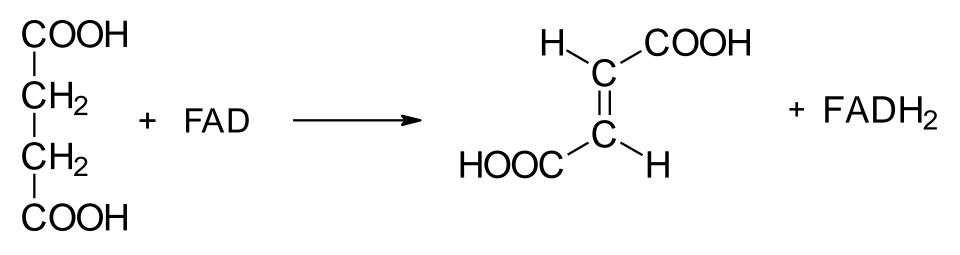
- <u>flavinadenindinucleotide</u>
- cofactor dehydrogenase
- Dehydrogenation of $-CH_2-CH_2$ group
- 2H are bindint to 2N of riboflavine


Prostetic group

Structure of FAD



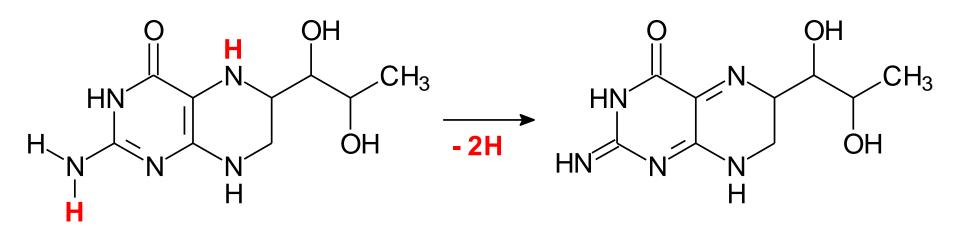
FAD



Oxidized form

Reduced form

Dehydrogenation of succinate to fumarate

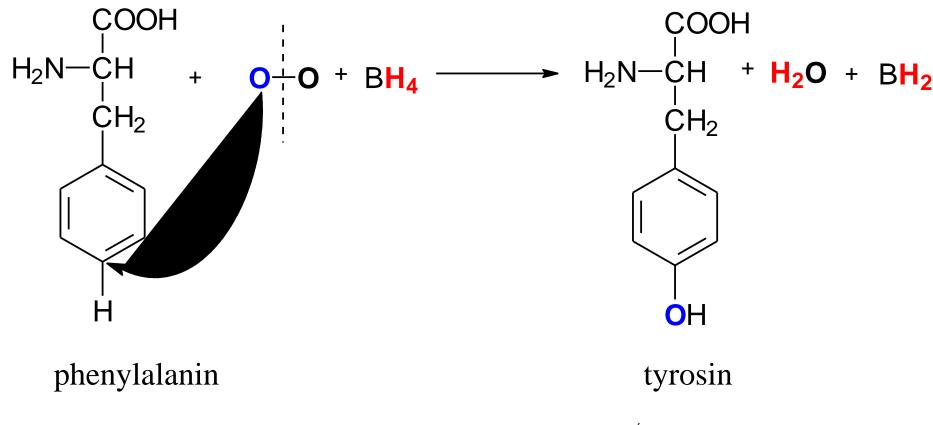

Biochemistry-3

NOVÁK, Jan. Biochemie I. Brno: 47 Muni, 2009, Enzymy s. 10

Tetrahydrobiopterine (BH₄) is hydrogenation agent

- coffactor of hydroxylation reactions
- gives 2H on O (water is produced)
- Oxidation on chinoid dihydrobiopterine

Dehydrogenace tetrahydrobiopterine

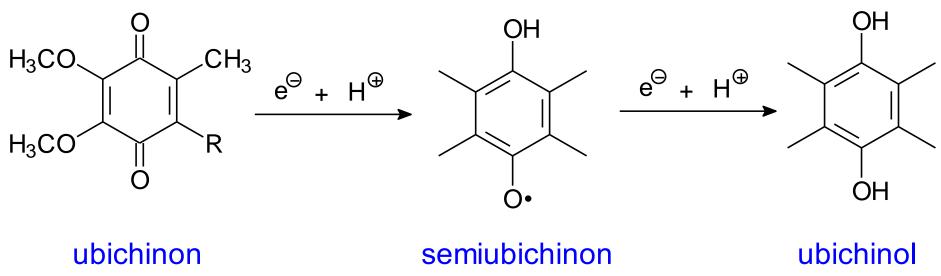

tetrahydrobiopterin (BH ₄) dihydrobiopterin (BH ₂)

chinoid

Biochemistry-3

NOVÁK, Jan. Biochemie I. Brno: 49 Muni, 2009, Enzymy s. 10

Hydroxylation of phenylalanine


Biochemistry-3

NOVÁK, Jan. Biochemie I. Brno: 50 Muni, 2009, Enzymy s. 11

Coenzym Q (ubichinon)

- a derivative of 1,4-benzoquinone
 - component of the respiratory chain
 - gradually accepts an electron and proton (2x)
 - reduces the semiubichinon and ubiguinol

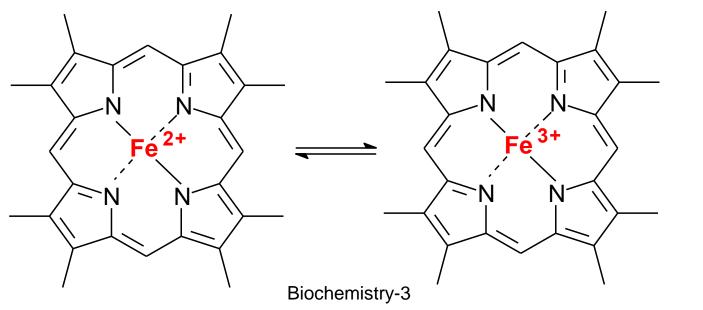
Hydrogenation of ubichinone

no arom. ring

arom. ring + radical

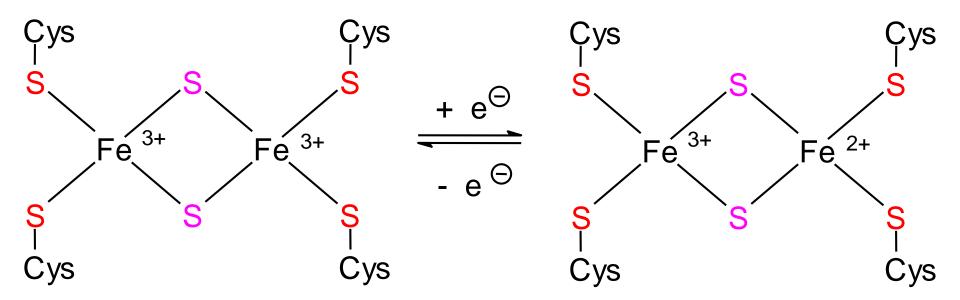
diphenol

elektrone (e⁻) and protone (H⁺) have different origine: elektrone from red. coffactors (=nutrients), H⁺ from matrix of mitochond.


 $R = polyisoprenoid chain \Rightarrow lipophilic$

Biochemistry-3

NOVÁK, Jan. Biochemie, I. Brno: Muni. 2009. Enzymy s. 11


Hem of cytochromes

 transfers one electron cytochromes are hemoproteins, reversible transition occurs between Fe2 + and Fe3 +

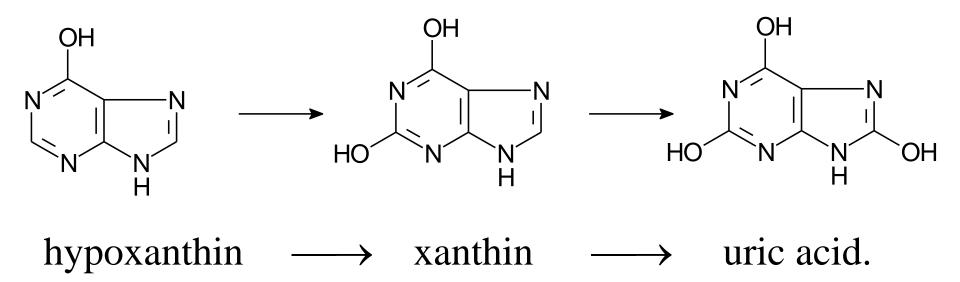
NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 11

Non hem Fe – claster of Fe₂S₂

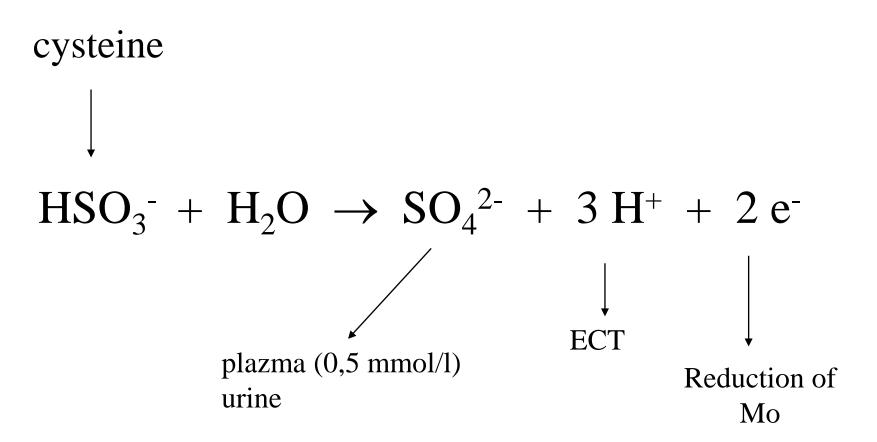
Oxidized form

Reduced form

only one atome of Iron changes oxid. number

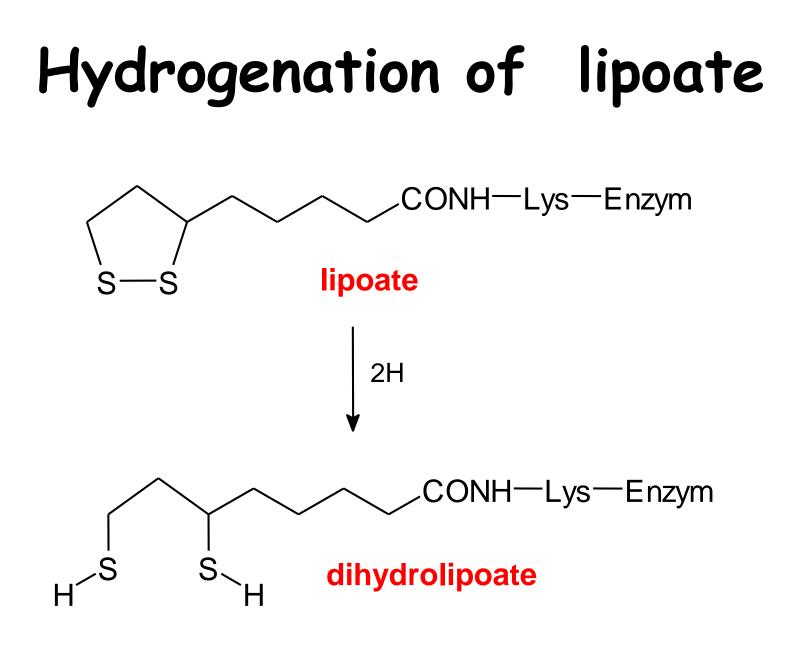

Biochemistry-3

NOVÁK, Jan. Biochemie I. Brno: 54 Muni, 2009, Enzymy s. 11


Molybdopterine

 the pteridine system heterocycle bonded with molybdenum oxygenase cofactor for example. xanthine oxidase, sulfitoxidase

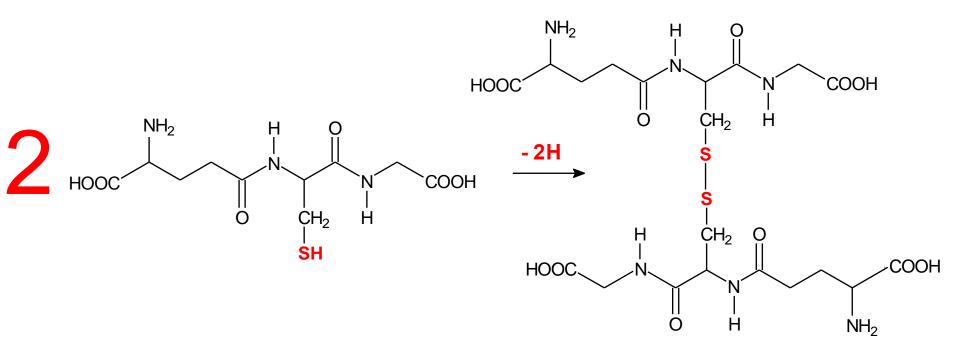
Xanthinoxidase: oxygenation of purine



Sulfitoxidase: formation of sulfate anion

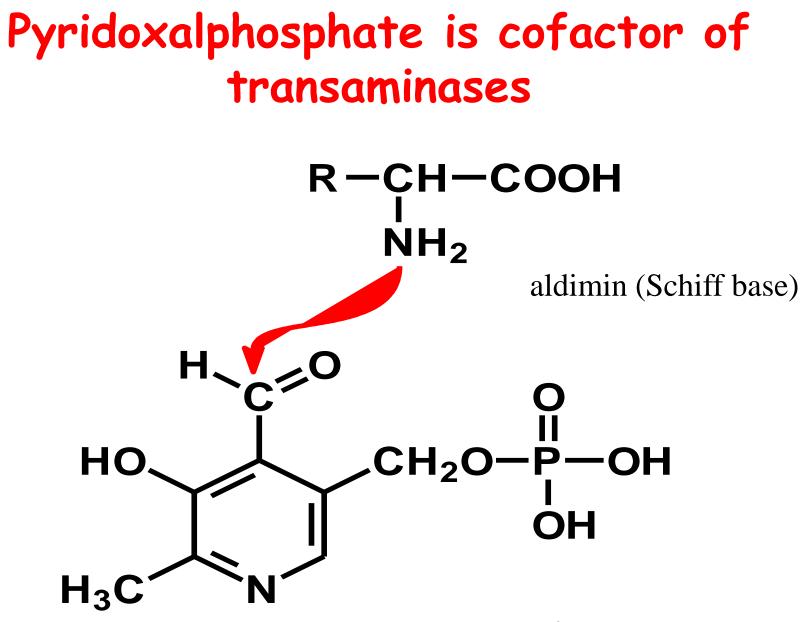
Lipoate

- cyclic disulfide (S-S)
- 1,2-dithiolane-3-pentanoic acid
 - amide linkage to lysine enzyme
 - adoption 2H has two SH groups
 - part of a complex oxidative decarboxylation of 2-oxo acids (pyruvate, 2-OG)



Glutathione (GSH)

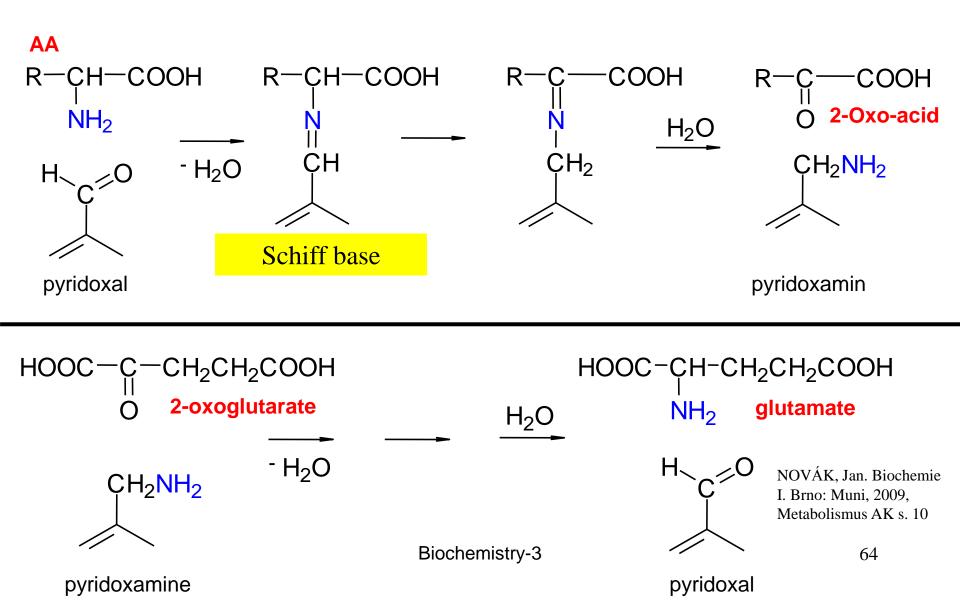
- tripeptide
- v-glutamylcysteinylglycin
- cofactor of glutathionperoxidase
- Reduction of H_2O_2 to water


\Rightarrow compounds with -SH reduction properties \Leftrightarrow

Dehydrogenation of 2 molecules of GSH

Vitamins and cofactors of transferases

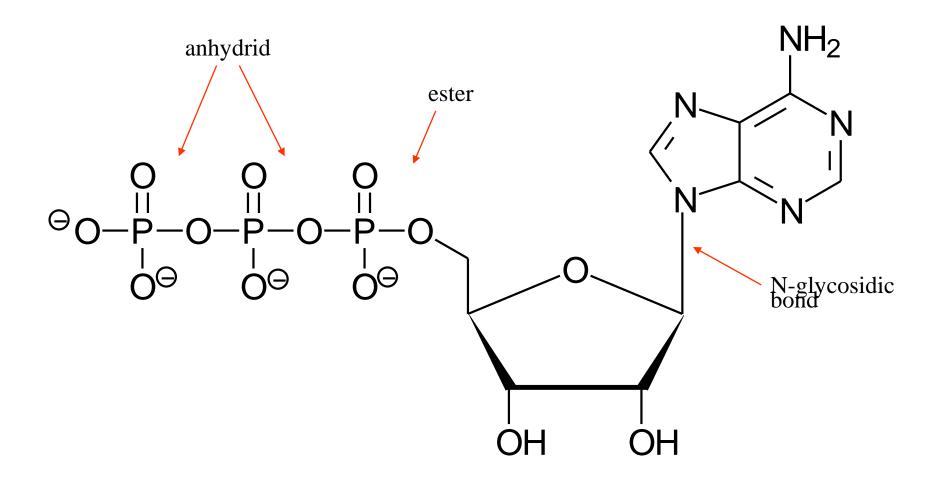
Vitamine	cofaktor	group
	ATP	-PO ₃ ²⁻
	PAPS	-SO ₃ ²⁻
	H ₄ -folate	C ₁ group
folic acid	carboxybiotin	CO ₂
Biotin	thiamindiP	aldehyd
Thiamin	pyridoxalP	-NH ₂
Pyridoxin	CoA-SH	acyl
Pantothen.acid	dihydrolipoate	acyl
	SAM	-CH ₃
[Methionin]	Methylcobalamin	-CH ₃
cyanokobalamin		

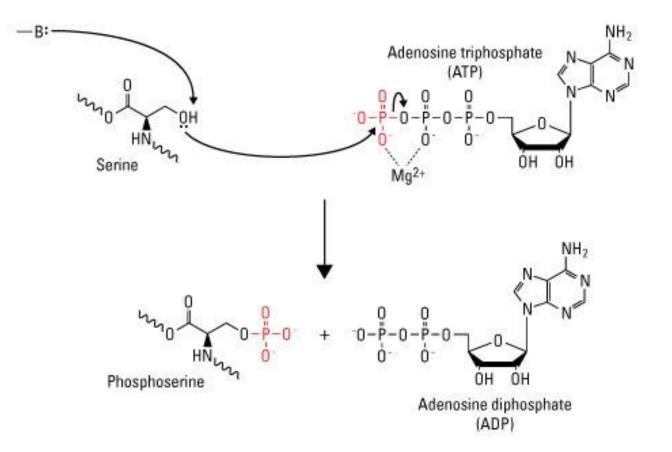


Biochemistry-3

NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 13

63


Scheme of 2 phases of transamination


ATP (adenosintriphosphate)

- 2 importances :
- macroergic compound
- cofactor of kinases phosphorylation reagent

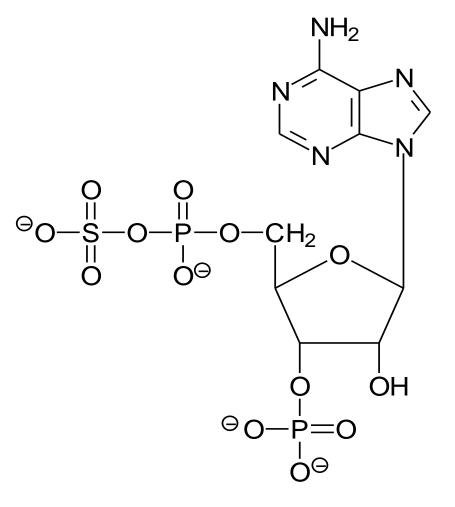
Structure of ATP

Phosphorylation of substrate

PAPS is the sulfation agent

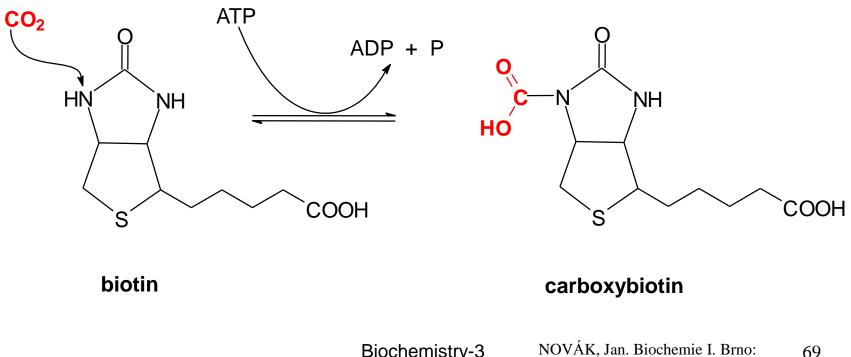
• 3'-5'-fosfoadenosin

phosphosulfate


- mixed anhydride of H2SO4

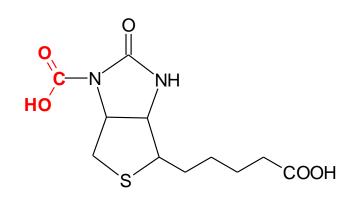
and H3PO4

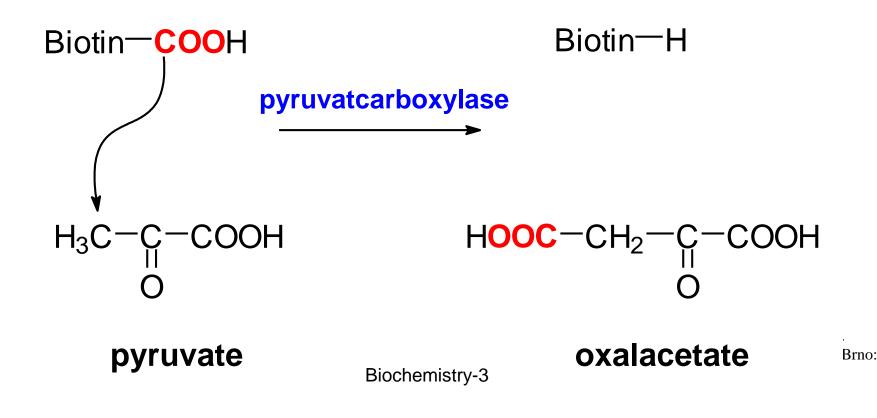
- esterification of the


hydroxyl groups of the acid.

sulfuric

Carboxybiotin

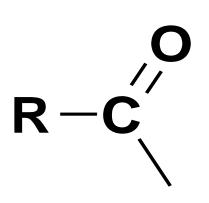

 cofactor for carboxylation reactions carboxylation of biotin requires ATP

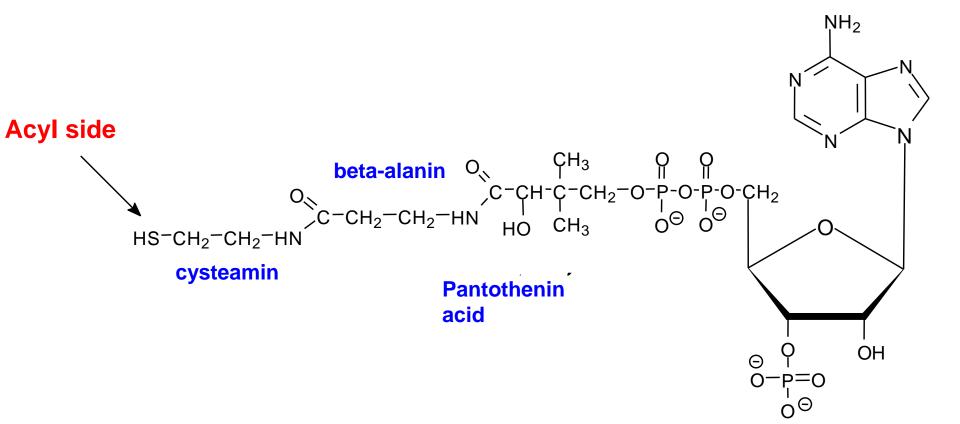


Biochemistry-3

Muni, 2009, Enzymy s. 14

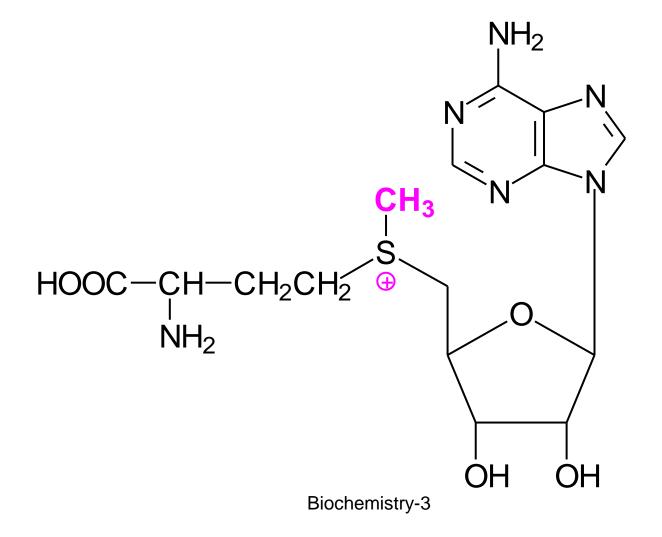
carboxybiotin is cofactor of carboxylation reactions




- Carboxylation
- carboxybiotin
- Decarboxylatione
 enzymatic (AA pyridoxalphosphate, 2-oxo acid. -TDP)
- non enzymatic (spontanous, without enzyme and cofactor, ex. acetoacetate \rightarrow aceton)

Coenzym A (CoA-SH)

- transfers the acyl
 - bonded to the sulfur atom
 - thioester bond
 - acyl-CoA is activated acyl
 - eg. acetyl-CoA


NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 14

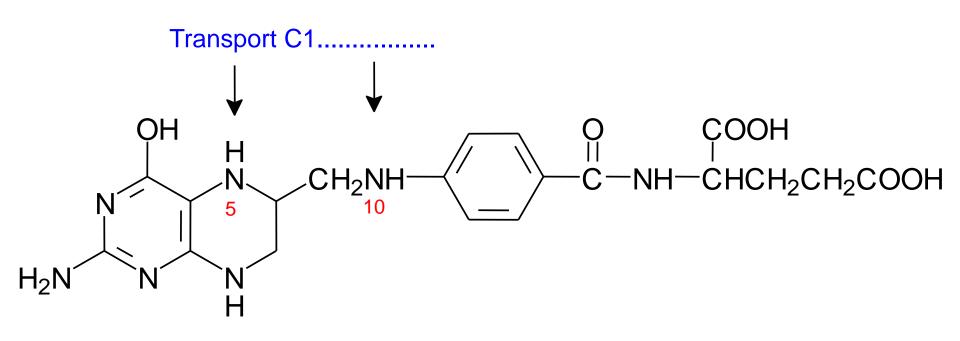
73

S-Adenosylmethionine (SAM)

- "Active methyl"
- S with 3 bonds
- cofactor methylation
- enzymes for example: phosphatidylcholine phosphatidylethanolamine \rightarrow methionine from homocysteine arises

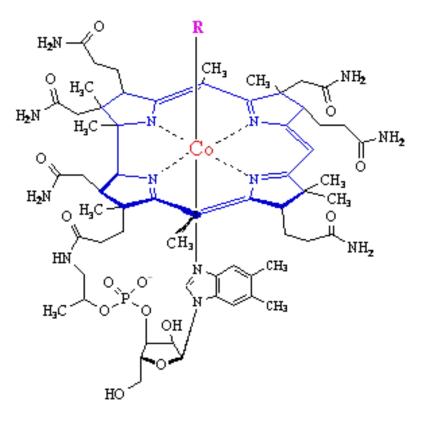
S-Adenosylmethionin (SAM)

Tetrahydrofolate

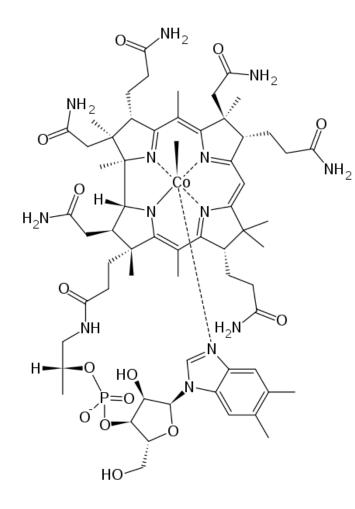

- Transport (C1) fragments
 - bind to the nitrogens N5 and / or N10
 - purine biosynthesis, methylation uracil
 - C1 fragments of the redox state:
 - reduced: methyl -CH₃
 - Mild reduced: methylen -CH2-•
 - oxidized:
 - formyl -CHO formimino -CH=NH methenyl -CH=
 - **Biochemistry-3**

Sources C1 residues

• Trp catabolism: formate \rightarrow formyl


His catabolism: formimino \rightarrow methenyl Catabolism Ser: hydroxymethyl methylene \rightarrow Catabolism of Gly: methylene Methionine \rightarrow SAM \rightarrow methyl + homocysteine

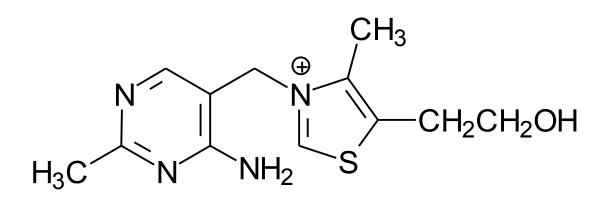
Tetrahydrofolate


NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 15 78

Vitamin B₁₂ <u>cyano</u>cobalamine and/or <u>hydroxoc</u>obalamine

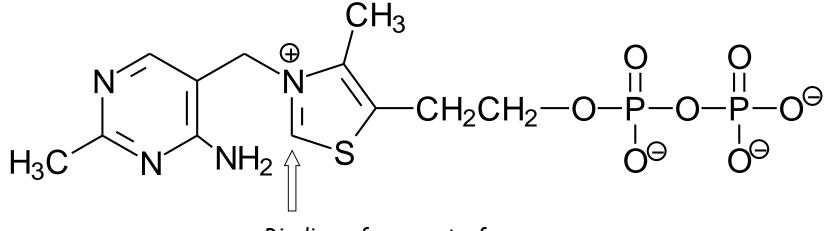
http://www.chm.bris .ac.uk/motm/vitami nb12/b12.gif

Cofactor is <u>methylc</u>obalamin


- methylation reactions
- remethylation of homoCys to Met
- hydroxocobalamin treatment of cyanide poisoning binds to toxic cyanide anions cyanocobalamin intravenous infusion

Two reactions with $B_{\rm 12}$

- S-methylation of homocysteine = regeneration, methyl is withdrawn from methyl tetrahydrofolate (and thereby creating H4 folate)
- propionyl-CoA \rightarrow succinyl-CoA


B₁₂ necesary for regneration of tetrahydrofolate

Thiamin is vitamin B_1

- cofactor is thiamindiphosphate (TDP) oxidative decarboxylation of pyruvate,
- 2-oxoglutarate transfers so. activated aldehyde pyruvate → acetyl-CoA
- $2-OG \rightarrow succinyl-CoA(CC)$

Thiamindiphosphate (TDP) is cofactor of oxidative decarboxylation of pyruvate

Binding of pyruvate for decarboxylation

glucose \rightarrow pyruvate $\stackrel{\text{TDP}}{\rightarrow}$ acetyl-CoA

NOVÁK**Bioc Bentistrig-B**Brno: Muni, 2009, Enzymy s. 16

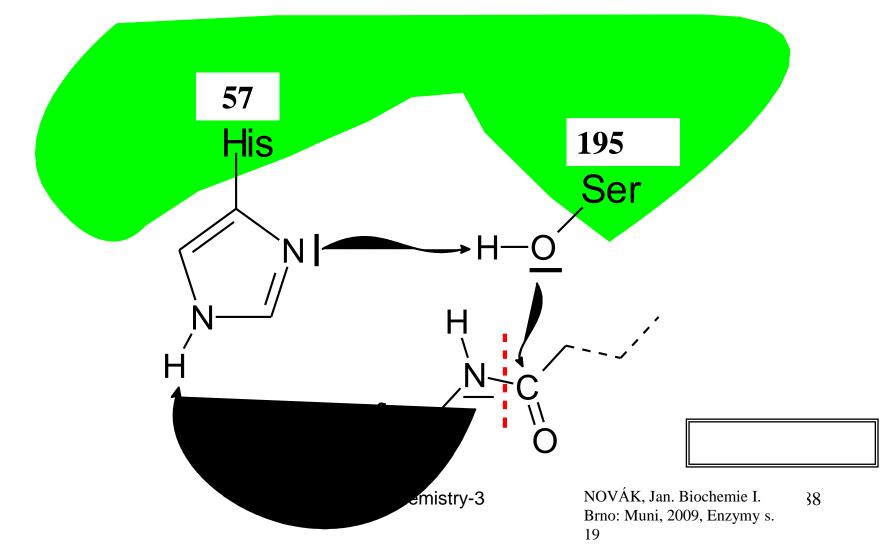
The mechanism of enzyme reactions, metalloenzymes, kinetics, activity, enzymes in medicine

Active site of enzyme

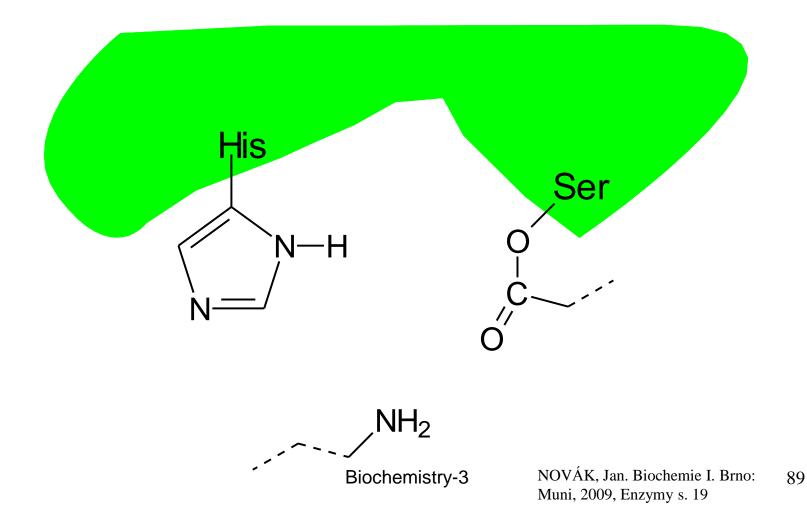
- small portion of the molecule,
- the three-dimensional arrangement deep slot (eg. amylase), surface depression
- Attending side chains AA distant in the primary structure
- Protein flexibility allows adaptation induced conformation corresponding substrate

Binding of substrate

 substrate binding to the active site causes conformational change of the molecule corresponding to the enzyme - induced adaptation creates a complex enzyme-substrate


catalytic groups

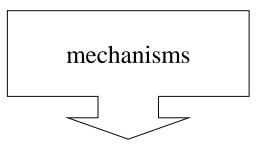
- the realization of chemical transformations in the active site are used so. catalytic groups:
 - nucleophilic (cysteine sulfhydryl, serine OH)
 - acidic (Asp, Glu), basic (His, Arg, Lys)



acid-base (proton transfer) transient covalent bond metal ion catalysis (metalloenzymes) electrostatic interactions (without water) deformation of the substrate https://www.youtube.com/watch?v=gJNMryCX3YY

Example: the active site of chymotrypsin? Nucleophilic attack of OH to the carbonyl carbon of serine peptide bond - serine protease

The active site of chymotrypsin: cleavage of peptide bonds



Metaloenzymes

- containing functional metal ions, which participate directly catalyzed reactions, metal ions are bound quite tightly (Enz-M)
 - some enzymes need metal ions only to activate, in which case they are bound weakly (Enz ... M), a bivalent metal ions, Ca2 + (coagulation factors), Mg2 + (kinase)

Metal cation is a part of the ternary complex

three components form a complex: enzyme (Enz), a substrate (S) and the metal cation (M) various types (bridged) complexes Enz-SM, Enz-MS sometimes arise cyclic complexes

 to vacant orbitals can accept an electron pair to form a nucleophilebinding

may form chelates with appropriate groups of the enzyme or substrate structure \Box deformation tension which facilitates chemical transformation coordination sphere of metal actso as rasthree-dimensional template \Box stereospecific control

molybdenum

Parts of some oxidoreductases
 Part of the cofactor - molybdopterin
 Xanthine oxidase (xanthine → uric acid)
 Sulfitoxidasa (HSO₃⁻ → SO₄²⁻)
 Aldehydoxidasa (less common, acetaldehyde to acetic acid.)

Sources Mo: legumes, whole grains

Zinc

- Many enzymes
- **Alcoholdehydrogenase** (ethanol → acetaldehyd)
- carbonatedehydratase $(H_2O + CO_2 \rightleftharpoons H_2CO_3)$
- carboxypeptidase (cleavage of the polypeptide from the C-terminus)
- Cu, Zn-superoxiddismutase (cytosolic izoform) $(2 \cdot O_2^- + 2 H^+ \rightarrow O_2 + H_2O_2)$

Sources Zn: red meat, shellfish, legumes, sunflower and pumpkin seeds, whole grain cereals

Copper

- oxidoreductases
- Ceruloplazmin (ferrooxidase) $(Fe^{2+} \rightarrow Fe^{3+})$
- **Cytochrom-***c***-oxidase** (RCh, transport of e- to O₂)
- Monoaminooxidase (MAO, inactivation of biogenic amines, H_2O_2 ,
- **Dopaminhydroxylase** (dopamin \rightarrow noradrenalin)
- Lysyloxidase (colagene, Lys \rightarrow alLys)

Cu Sources: liver, meat, cocoa, legumes, nuts Biochemistry-3

Mangan

 Numerous hydrolases, decarboxylase transferase

Mn-superoxide dismutase (mitochondrial isoform)

- Arginase ((Arg \rightarrow urea + ornithine)
- The synthesis of proteoglycans, glycoproteins

Sources Mn: legumes, whole grains, nuts

Iron

- Heme enzymes, non-heme transporter
- Catalase (hem, $H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2$)
- Myeloperoxidase (hem, neutrophil) $H_2O_2 + Cl^- + H^+ \rightarrow HClO + H_2O$
- Cytochromes (heme electron carrier in the RCh)
- Fe-S proteiny (nehem, přenos elektronů v DŘ)

Sources Fe products from pork, goose, duck blood (red) meat, liver, egg yolk, nuts Biochemistry-3

Selen

- Several enzymes (redox reaction), Se is always selenocysteine
- glutathione peroxidase
- $(2 \text{ GSH} + \text{H}_2\text{O}_2 \rightarrow 2 \text{ H}_2\text{O} + \text{G-S-S-G})$
- **Dejodasy thyronin** (thyroxin T4 \rightarrow trijodthyronin T3)
- Thioredoxin reductase (ribose \rightarrow deoxyribosa)
- **Selenoprotein P** (plasma, antioxidant function?)

Sources Se: cephalopeoids, ³marine fish, legumes ⁹⁷

Basic concepts of kinetics

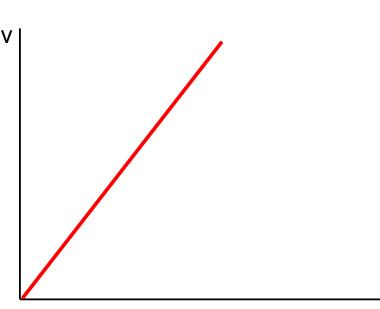
- reaction: $S \rightarrow P$ (S = substrate, P = product)
- definition of reaction rate:

$$v = -\frac{\Delta[S]}{\Delta t} = \frac{\Delta[P]}{\Delta t} > 0 \quad [\frac{\text{mol}}{1.\text{s}}]$$

Note: this is defined as the average reaction rate, instantaneous velocity: d [S] / dt (derivative, share two infinitely small numbers) Biochemistry-3

What determines the rate of reaction?

the substrate concentration [5]

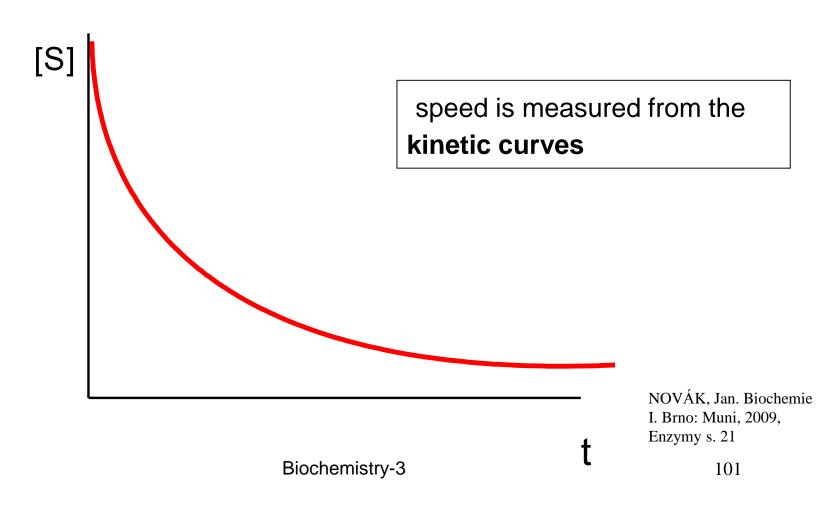

temperature in the presence of effector (catalyst inhibitor)

In addition, enzymatic reactions: enzyme concentration [E] pH

The kinetic equation for the reaction $S \rightarrow P$

$v = k[S] = k[S]^1 \implies \text{reaction of}$ 1. order

k = rate constant


[S]

100

Biochemistry-3

NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 21

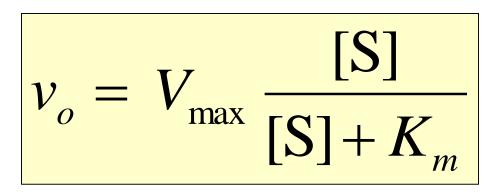
The substrate concentration during the reaction decreaseskinetic curve

Reaction 0. order is special case

- the reaction rate doesn't depends on the concentration of the substrate
- $v = k[S]^{0} = k \cdot 1 = k = constant$
- occurs when a large excess of S,
- so that the loss is almost negligible

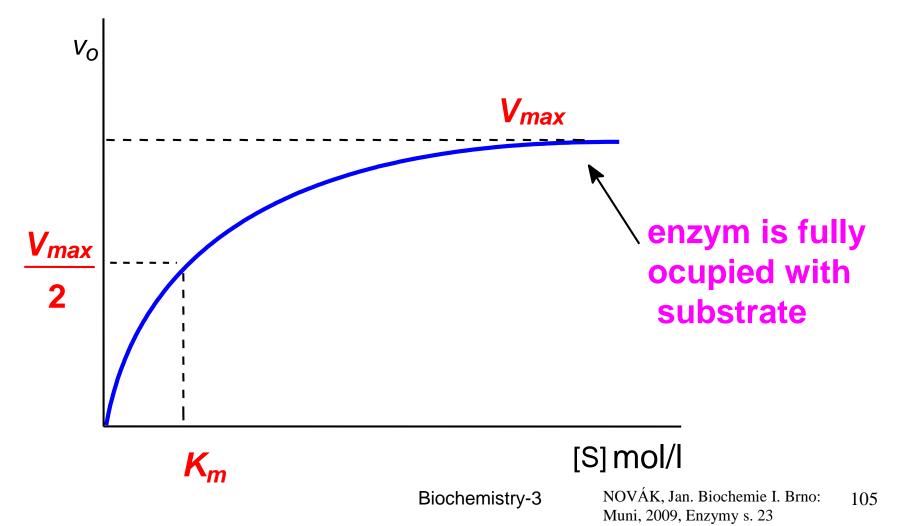
on laboratory condition

Biochemistry-3 NOVÁK, Jan. Biochemie I. Brno: 102 Muni, 2009, Enzymy s. 22


[S]

The initial rate V_0

- speed measured before significant amounts of product formed
- the highest speed value
- "Virtual value,"
- is not affected by the loss of substrate
 conversion or return the product
- sets of curves,


Dependence of v_0 on concertation of substrate

- Michaelis-Menten equation
- single-substrate reaction

 $V_{\text{max}} = \text{maximal speed}$ (for one concetration of enzyme) $K_{\text{m}} = \text{Michaelis constant}_{\text{Biochemistry-3}}$

Saturation curve - Michaelis-Menten equation

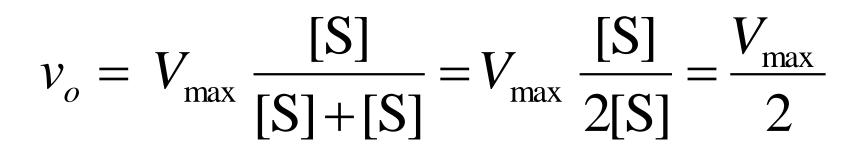
For
$$[S] \ll K_m$$

$$v_o = V_{\max} \frac{[S]}{[S] + K_m} = \frac{V_{\max}}{K_m} [S] = k[S]^1$$


At low substrate concentrations the reaction is governed by 1st order kinetics

For $[S] >> K_m$

$$v_o = V_{\max} \frac{[S]}{[S] + \kappa_m} = V_{\max} \frac{[S]}{[S]} = V_{\max} = k[S]^0$$


At high substrate concentrations, the reaction is governed by the kinetics of the 0th order

Two parts of saturation curve

NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 23

For $[S] = K_m$

Biochemical importance of K_m

- substrate concentration at which the reaction has half of the maximum speed
- at this concentration the enzyme is saturated with 50%
- Km has the dimension of concentration (mol / l)
- Km is inversely proportional to the affinity of the enzyme for the substrate,
- if there is more structurally similar substrates, which has the smallest Km is considered to be the most natural for the enzyme

How to obtain a saturation curve?

- set of experiments, a constant concentration of the enzyme, various concentrations of the substrate ranges from 2 to 3 orders
- from kinetic curvs is estimated v_o
- v_o is graphically plotted against the relevant [S]
- arises hyperbolic saturation curve

Distinguish

Kinetic curve

Saturation curve

• Time record of one

reaction

• [S] = f(t)

• dependence obtained

from many of the

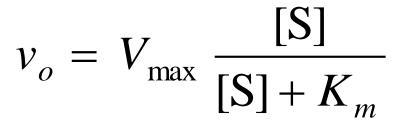
same reactions

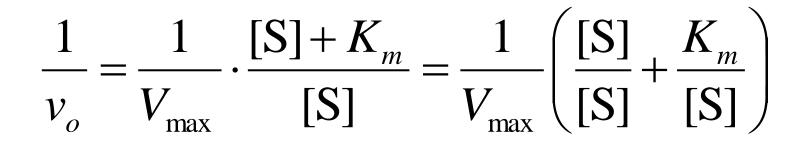
• $v_{o} = f([S])$

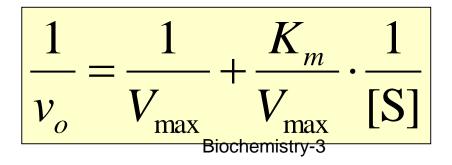
- [S] concetration of substrate
- ffunction
- t time
- v_o Initial speed

Biochemistry-3

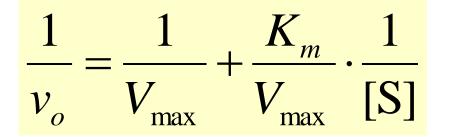
Value V_{max} a K_{m} characteristics of kinetic properties of enzymes

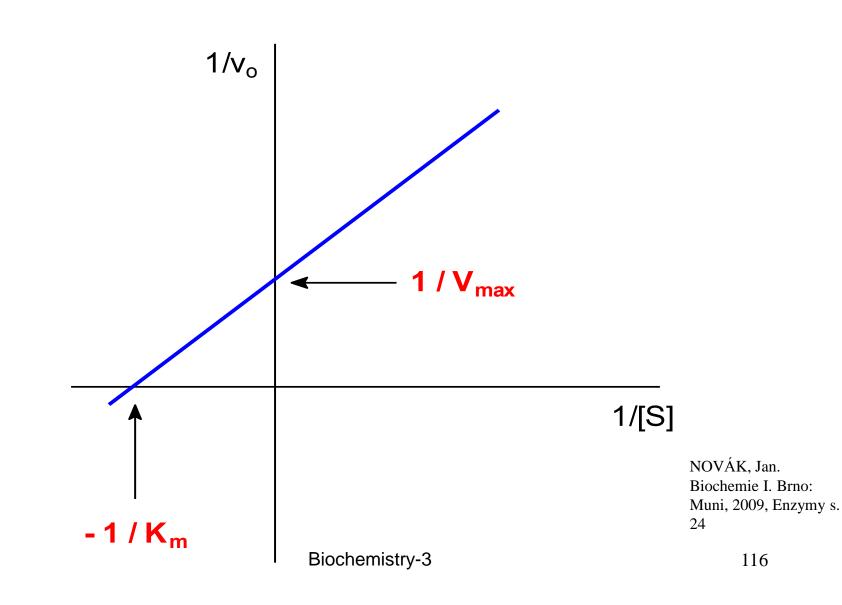

• is easily determined from the graph of the


linearized


Lineweaver-Burk

double reciprocal plot

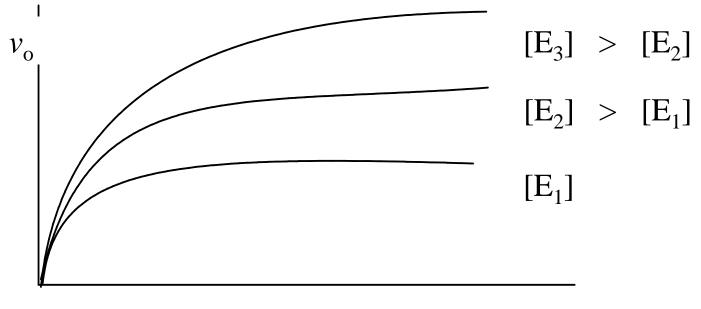

• 1/*v*_o against 1/[S]



Reciprocal relationship is the equation of a line

$1/v_0$ the dependent variable 1/[S] independent variable K_m/V_{max} slope of the line $1/V_{max}$ the intercept of the_bdependent variable

Linear graph: $1/v_0$ is function of 1/[S]


The concentration of enzyme [E] also affects the speed

saturated enzyme : $v_o = k [E]_t$

• $[E]_t$ is the total concentration of enzyme

$[E]_t = [E] + [ES]$

Saturation curves for different concentrations of enzyme

 $K_{\rm M}$ is unchanged, $V_{\rm max}$ increases

Biochemistry-3

NOVÁK, Jan. Biochemie I. Brno: 118 Muni, 2009, Enzymy s. 25 How to determine the amount of enzyme in biological material?

- very difficult
- low (trace) the concentration of enzyme
- present in many other proteins
- normal chemical reactions are not applicable
- not specific for differentiation of individual enzymes

The amount of enzyme in the biological material can be determined in two ways

Indirect determination

Catalytic concetration

- µkat/l
- determined by the product of the enzyme reaction most clinically important enzymes

Direct determination

- mass concentration
- µg/l <====
- determine the enzyme molecule as antigen (immunoassay)
- some, for example. tumor Biochemistry-3 markers ¹²⁰

The catalytic activity of the enzyme

- Unit **katal**, 1 kat = mol/s
- One katal is the catalytic activity of the enzyme at which the reaction is converted per mole of substrate for second

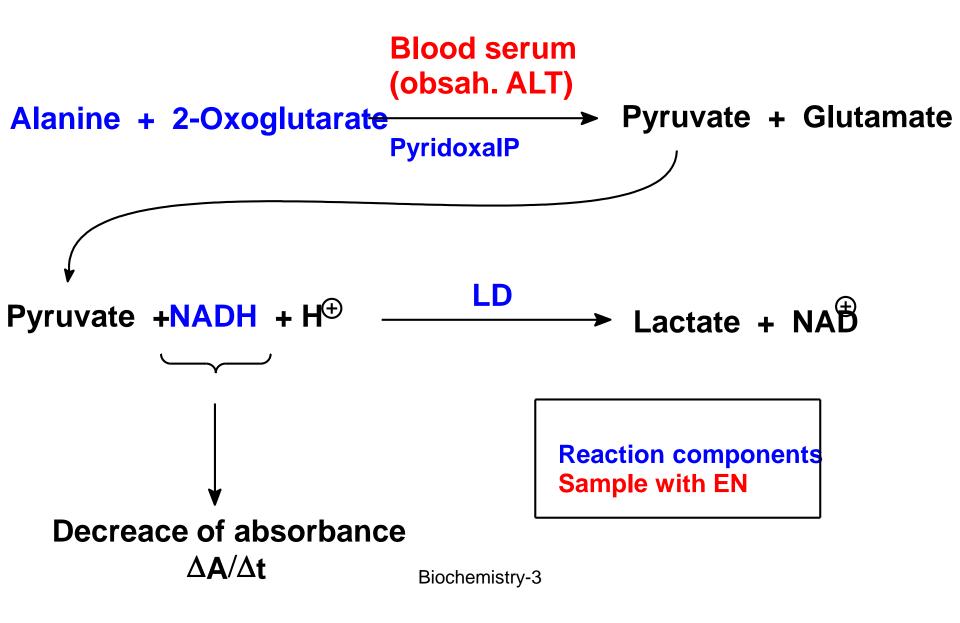
IU (international unit)

- $1 \text{ IU} = \mu \text{mol/min}$
- $1 \mu kat = 60 IU$
- 1 IU = 16,6 nkat

Catalytic enzyme concentration

- Activity is based on the volume of biological fluid (blood serum)
- Units mkat/l, µkat/l

Compare the different analytical approaches


<u>Glucose</u> <u>ALT</u>

- substrate
- low molecular weight concentration in serum
- 3,3-5,6 mmol/l
- Glucose is determined directly

enzyme high molecular weight cat. concentration in serum

- 0,2-0,9 µ**kat/l**
- determined not by the enzyme, but the product or a cofactor in enzymatic reactions

Methodology for determination of ALT (all ingredients are colorless)

Determination of the catalytic activity in laboratory

- optimal conditions (temperature, pH, cofactors)
- measured $\Delta[S]$ or $\Delta[P]$ in a certain time interval
- kinetics of the Oth order, [S] >> Km
- saturated enzyme, velocity is constant,
- Approaching $V_{\rm max}$

Two methods for the determination of catalytic concentration of enzymes

- <u>Kinetic</u>
- continuously measured
 [S] or [P] (eg., after 10
 s)
- Plot the kinetic curve it is found in the kinetic curves
- accurate method

constant time/End

<u>point</u>

- measured [P] after the reaction
- kin. curve is not needed
- average speed
- Δ[P]/Δ **†**
- Less accurate method
 126

Biochemistry-3

Enzyme inhibition (reduction of activity) <u>irreversible</u> reversible

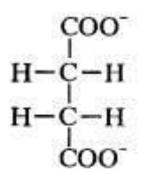
inhibitor tightly bound to the enzyme (active place)

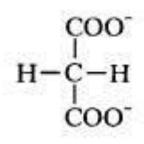
loosely bound inhibitor balance E + I E-I

organophosphates

inhibitor can be removed (dialysis, gel. filtration)

heavy metal ions


cyanides

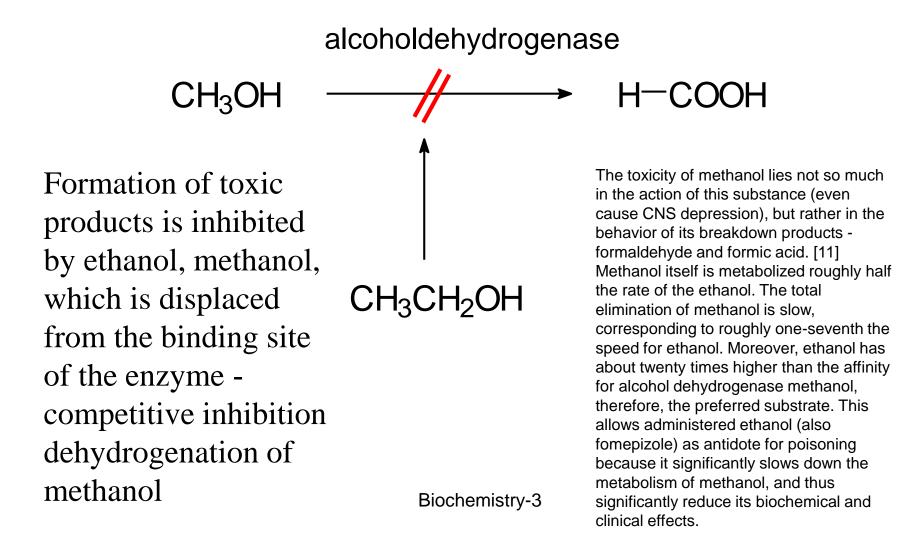

two basic types: competitive, noncompetitive

competitive inhibition

- inhibitor is structurally similar to the substrate
 - binds to the active site
 - competes with the natural substrate binding site

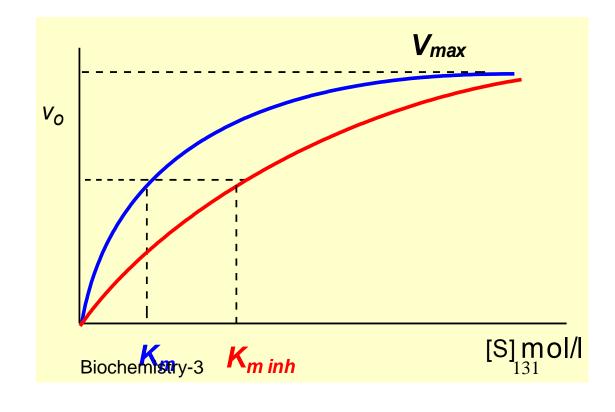
Natural substrae x competitive inhibitor

Succinate

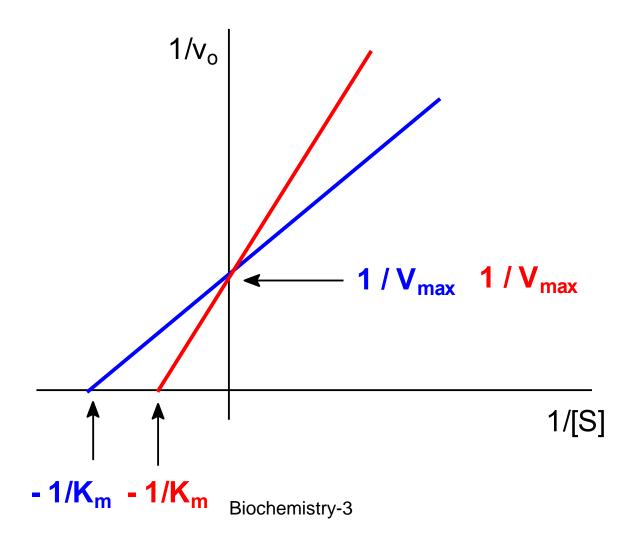

Malonate

Malonate is inhibitor of succinatedehydrogenase

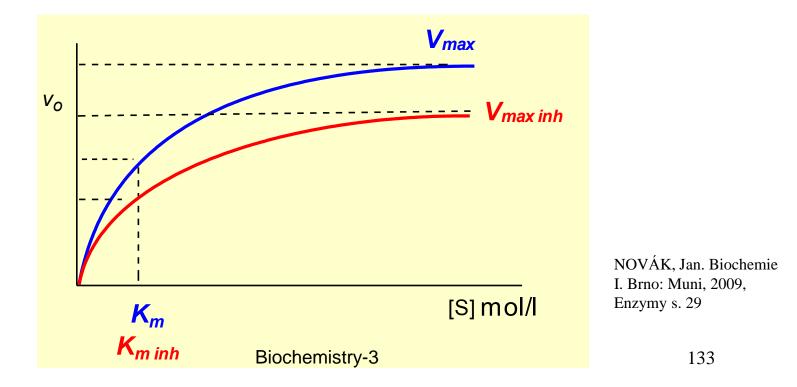
http://www.scool.co.uk/assets/test_its/ alevel/biology/biological -molecules-andenzymes/quest24.jpg


Biochemistry-3

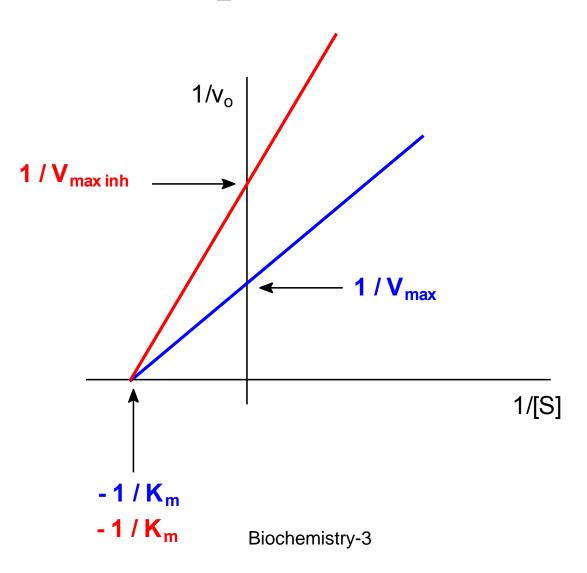
Methanol poisoning is treated with ethanol


Competitive inhibition

- maximum speed is reached at higher value [S]
- V_{max} no change
- $K_{\rm m}$ increase


NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 29

Competitive inhibition



Noncompetition inhibition

- The inhibitor binds outside the active center on the complex E and ES
- Km does not change (the active site is free for substrate)
- Vmax is reduced because the concentration decreases functional complex

Non competitive inhibition

Many drugs are enzyme inhibitors

- Acetylsalicylic acid (cyclooxygenase)
- Ibuprofen (cyclooxygenase)
- Statins (HMG-CoA reductase) lipid lowering drugs reduce cholesterol synthesis (lovastatin)
- ACE inhibitors (angiotensin converting enzyme) treatment of hypertension (enalapril)
- Reversible inhibitor of acetylcholinesterase (neostigmine) neuromuscular disease, postoperative intestinal atony
- Selective brain acetylcholinesterase inhibitors (rivastigmine, galantamine) - Alzheimer's disease

Antibiotics inhibit the enzymes necessary for a life of bacteria

- Penicillin inhibit transpeptidasy (construction of cell walls)
- Tetracyclines, macrolides, chloramphenicol inhibition of protein synthesis
- Fluorinated quinolones (ciprofloxacin) inhibition of bacterial gyrase (topoisomerase II) (untwisting of DNA during replication)

Regulation of enzyme activity (three general ways)

1. Control of the number of molecules of the

enzyme

- 2. Regulation of the biological activity of the enzyme
- Availability and concentration of substrate and / or cofactor (in vivo less significant factor)

Regulating the amount of enzyme

- Controlled constitutive enzyme, protein synthesis and induce the expression of genes, speed regulation of transcription, posttranscriptional modifications of RNA, regulation of the speed of translation and posttranslational modifications
- Controlled degradation enzyme specific intracellular proteases - determine the different biological half-lives of enzymes

Regulation of the biological activity of the enzyme

- Isoenzymes (one type of response is regulated differently in various tissues)
- Activation of the enzyme and irreversible partial proteolysis
- Breakage of covalent modification of the enzyme
- allosteric regulation Biochemistry-3

Isoenzymes

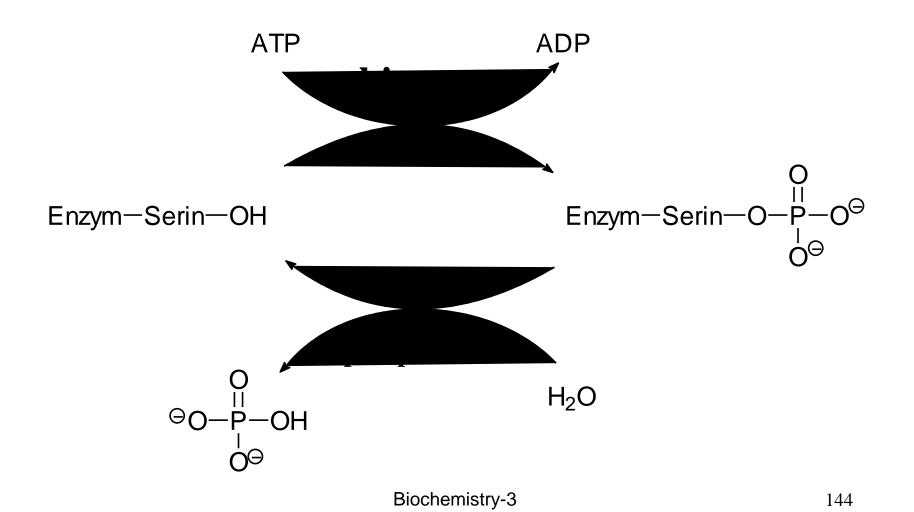
- catalyze the same reaction, but differ in primary structure and thus phys.-chem. and kinetic properties
- often have different tissue distribution
- They are determined by electrophoresis
- isoforms a more general term (include more pseudoizoenzymy, posttranslational variants)

Creatinkinase (CK) is dimer and form isoenzymes

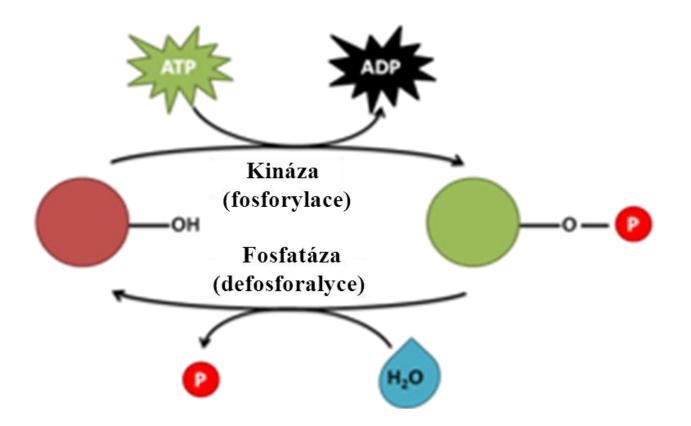
Izoenzyme		% of activity	increased
CK-MM	muscle	94-96%	muscle trauma
СК-МВ	heart	to 6%	heart attack
CK-BB	Brain	trace	brain Injury

In the <u>cells</u>, the "cytosolic" CK enzymes consist of two subunits, which can be either *B* (brain type) or *M* (muscle type). There are, therefore, three different <u>isoenzymes</u>: CK-MM, CK-BB and CK-MB. The genes for these subunits are located on different <u>chromosomes</u>: *B* on 14q32 and *M* on 19q13. In addition to those three *cytosolic* CK isoforms, there are two <u>mitochondrial</u> creatine kinase isoenzymes, the *ubiquitous* and *sarcomeric* form. The functional entity of the latter two mitochondrial CK isoforms is an octamer consisting of four dimers each.^[4] While mitochondrial creatine kinase is directly involved in formation of phosphocreatine from mitochondrial ATP, cytosolic CK regenerates ATP from ADP, using PCr. This happens at intracellular sites where ATP is used in the cell, with CK1acting as an *in situ* ATP regenerator.

Activation of the enzyme by partial proteolysis


- Active enzyme arises irreversible cleavage of a particular sequence of the proenzyme molecule
- Proteinase in GIT (pepsinogen pepsin)
- Blood clotting factors
- Proteases (caspases) activated during apoptosis

Reversible covalent modification of the enzyme


- phosphorylation catalyze kinase -PO3 2 phosphoryl transfer from ATP to the OH group of
 the enzyme (Ser, Thr, Tyr)
- reciprocal plot (dephosphorylation) phosphatase
 catalyze the hydrolysis of ester-bound phosphate
- Other modification: carboxylation,

acetylation.....

Phosphorylation and dephosphorylation of enzyme

Mechanism of phosphorylation

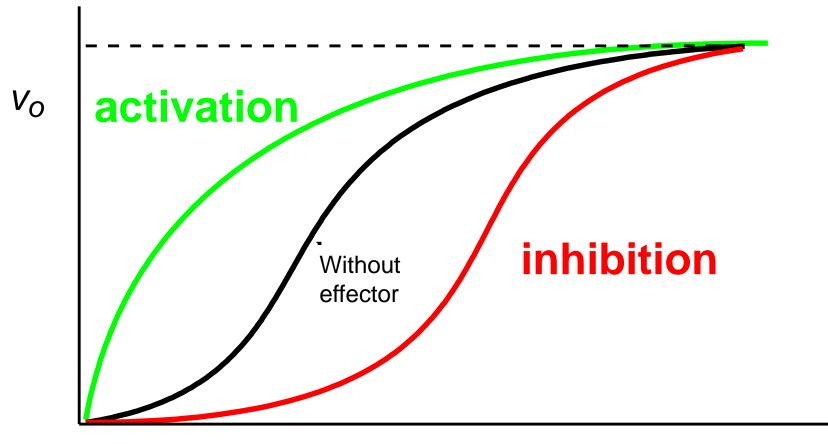
145

Examples

glycogen phosphorylase

Catalyzes the cleavage of glycogen by inorganic. Phosphate

- Phosphorylated enzyme is active
- Dephosphorylated enzyme is inactive


Glykogensynthasa

Catalyzes the synthesis of glycogen from UDP-glucose The phosphorylated enzyme is inactive Dephosphorylated enzyme is active

Allosteric enzymes are oligomeric

- multiple subunits often regulatory and catalytic
- the enzyme binds effector structurally distinct from the substrate often product
- binds to the allosteric sites other than the active site
- binding causes a conformational change in the enzyme activity change - allosteric activation or inhibition

Saturation curve of allosteric enzymes are sigmoid

Biochemistry-NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, Enzymy s. 32

Cooperative effect

- for oligometric enzymes and proteins
- more subunits --- more binding sites
- binding of substrate (or other substance) to one subunit induces a conformational change in the other, that bind other molecules more easily (difficult)
- Example: hemoglobin \times myoglobin

Using of enzymes in medicine

- 1. enzymes as indicators of a pathological condition: when cell damage increases intracellular enzyme activity in the extracellular fluid
- 2. enzymes as analytical reagents in her lap. biochemistry
- 3. enzymes as medicaments

Examples of enzymes in clinical diagnosis

Enzym e	Referenční hodnoty	Interpretace zvýšení
ALT (alaninaminotransferase)	to 0,9 μkat/l	hepatopatie
CK (creatinkinase)	to 4 μkat/l	myopatie, heart atact
PSA (prostatic specific antigene)	to 4 μg/l	carcinom of prostate

^a The serum values for men over 15 years
 ALT alanine aminotransferase, creatine kinase CK,
 PSA prostate specific antigen, neuron specific enolase NSE

Enzymes as analytical reagents

Enzyme	Origine of enzyme	The substance / method
Glucosaoxidase	Aspergillus niger	glucose
Peroxidase	křen (Armoracia sp.)	glucose
Lipase	<i>Candida</i> sp.	triacylglycerol
Cholesteroloxidase	Pseudomonas sp.	cholesterol
Uricase	<i>Candida</i> sp.	Uric acid
Bilirubinoxidase	Myrothecium sp.	bilirubin
Urease	bob (Canavalia sp.)	urea
Lactatdehydrogenasa	Pediocus sp.	ALT, AST
<i>Taq</i> polymerase	Thermus aquaticus	PCR

Enzymatic determination of glucose

glucose + $O_2 \xrightarrow{glucosaoxidasa}$ gluconolacton + H_2O_2 $H_2O_2 + H_2A \xrightarrow{peroxidase} 2 H_2O + A_{Product (absorbance)}$

Principle of glucose analyzers

Biochemistry-3

Personal glucometers

- intended for personal control diabetic
- glucose oxidase is anchored on the solid phase
- H2O2 produced is determined by another method (using Pt electrodes)
- the display shows the concentration of glucose (mmol / l)

Personal glucometers

Biochemistry-3

http://zdrav-pro.cz/wpcontent/uploads/glukometrg423-1.2.jpg

Pancreatic enzymes in therapy

- a mixture of enzymes (lipases, amylases, proteases) obtained from porcine pancreas
- indication: pancreatic secretory insufficiency of different etiology, cystic fibrosis
- dosage: 3 times a day with meals
- range of OTC products

acid-resistant capsules to disintegrate insitheisduodenum

Asparaginase in the treatment of leukemia

- Catalyze hydrolysis of the amide group asparagine
- $Asn + H_2O \rightarrow Asp + NH_3$
- L-asparagine is essential for protein synthesis of some tumor cells
- Hydrolysis of Asp leads to a reduction of proliferation
- Indications: acute lymphoblastic leukemiaKatalyzuje hydrolýzu amidové skupiny asparaginu

fibrinolytic enzyme

- drugs that dissolve blood clots
- streptokinase (bacterial), urokinase (human)
- cleaves plasminogen to plasmin that causes degradation of fibrin and thrombolysis
- indications: venous thrombosis, pulmonary embolism, acute IM

Proteases in local therapy

- fibrinolysin, chymotrypsin, collagenase
- after topical application leads to lysis of necrotic tissue, do not harm healthy cells (containing protease inhibitors)
- main indication in surgery
- festering wounds, venous ulcers, diabetic gangrene, pressure ulcers, postoperative wounds, etc..

Proteases in systemic therapy (oral administration)

- Trypsin, chymotrypsin, plant proteases papain (papaya),
 bromelain (pineapple)
- Some studies suggest an anti-inflammatory effect, influencing immunity in autoimmune disease
- Indication: auxiliary drug for rheumatoid arthritis, traumatic inflammation and edema, lymphoedema, phlebitis, etc..
- CHC, quite expensive (Wobenzym, Phlogenzym etc..) to 30 tabl. daily

Example 1

- When the enzymatic reaction of a substrate solution was added to the buffer containing the enzyme is added to the sample (0.1 ml). After 5 min was determined 0.2 mmol of product.
- What is the catalytic concentration of enzyme in the sample?

Example 1 - Solution

 $t = 5 \min = 5.60 \text{ s} = 300 \text{ s}$

for 300 s ... 0.2 mmol of product formed

for $1 \text{ s} \dots \text{ x} = 0,2/300 = 6,7 \dots 10^{-4} \text{ mmol} / 0,1 \text{ ml sample}$

for 1 litr sample = $6,7 \cdot 10^{-4} \cdot 10^{4} = 6,7 \text{ mmol/l.s} = 6,7 \text{ mkat/l}$

Example 2

- The reaction mixture contained:
- 2.5 ml buffer
- 0.2 ml of coenzyme NADH (optical test)
- 0.1 ml of blood serum
- 0.2 ml of substrate solution

For 60 s was a decrease in absorbance of coenzyme $\Delta A = 0,03$. $\epsilon_{\text{NADH}} = 6220 \text{ l/mol.cm}, \text{ L} = \text{cuvette}$ width of 1 cm. What is catalytic concentration of enzymes?

Solution of example 2

Serum was diluted : $V_{con}/V_{orig} = 3,0/0,1 = 30$ Lambert-Beer: $\Delta A = \varepsilon \Delta c l$ / for $\Delta t \Rightarrow$ 60 s:

 $\frac{\Delta c}{\Delta t} = \frac{\Delta A}{\varepsilon \cdot l \cdot \Delta t} = \frac{0.03}{6220 \cdot 1.60} = 8.10^{-8} \text{ mol/l.s}$

Dilution: $30.8.10^{-8} = 2,4.10^{-6} \text{ mol/l.s} =$

2,4 . 10⁻⁶ kat/l = 2,4 μ kat/l

Biochemistry-3

catalytic enzyme concentration = chemical

reaction rate

[mol / l.s]