Aerobic metabolism 6.1) Citric Acid Cycle 6.2) Electron transport 6.3) Oxidative phosphorylation 6.4) Oxidative stress

- Aerobic oxidation of glucose- greater amounth of energy then does fermentation

- Oxygen highly reactive
- Oxidative cell damage: enzymes, antioxidant molecules

The Citric Acid Cycle

The citric acid cycle is the final common pathway for the oxidation of fuel molecules: amino acids, fatty acids, & carbohydrates.

- Most fuel molecules enter the cycle as <u>acetyl coenzyme A</u>
- This cycle is the central metabolic hub of the cell
- It is the gateway to aerobic metabolism for any molecule that can be transformed into an <u>acetyl group</u> or <u>dicarboxylic acid</u>,
- It is also an important source of precursors for building blocks
- Also known as, Krebs Cycle, & Tricarboxylic Acid Cycle (TCA)

Chapter 17: Outline

17.1 The citric acid cycle oxidizes two-carbon units

17.2 Entry to the cycle and metabolism through it are controlled

17.3 The cycle is a source of Biosynthetic precursors

Overview of citric acid cycle

- 1. The function of the cycle is the harvesting of high-energy electrons from carbon fuels
- 2. The cycle itself neither generates ATP nor includes O₂ as a reactant
- 3. Instead, it removes electrons from acetyl CoA & uses them to form NADH & FADH₂ (high-energy electron carriers)
- In <u>oxidative phosphorylation</u>, electrons from reoxidation of NADH & FADH₂ flow through a series of membrane proteins (electron transport chain) to generate a proton gradient
- 5. These protons then flow back through ATP synthase to generate ATP from ADP & inorganic phosphate
- O₂ is the final electron acceptor at the end of the electron transport chain
- 7. The cytric acid cycle + oxidative phosphorylation provide > 95% of energy used in $human_0$ aerobic cells

Fuel for the Citric Acid Cycle

Initiates cycle

Mitochondrion

Double membrane, & cristae: invaginations of inner membrane

Mitochondrion

Citric Acid Cycle: Overview

Cellular Respiration

8 high-energy electrons from carbon fuels

Electrons reduce O₂ to generate a proton gradient ATP synthesized from proton gradient

Glycolysis to citric acid cycle link

Oxidative decarboxylation

A large, highly integrated complex of three kinds of enzymes

Pyruvate + CoA + NAD⁺ \Rightarrow acetyl CoA + CO₂ + NADH

Groups travel from one active site to another, connected by tethers to the core of the structure

-irreversible oxidation_Bcarhoxylgroup is removed from pyruvate as CO2 + AcCoA

3 enzymes 5 Coenzymes:

Vitamines:thiamine, riboflavin (FAD), niacin (NAD), pantothenate (CoA^{BIOCH-9 2017}

FIGURE 16-4 Lipoic acid (lipoate) in amide linkage with a Lys residue. The lipoyllysyl moiety is the prosthetic group of dihydrolipoyl transacetylase (E_2 of the PDH complex). The lipoyl group occurs in

Fuel for the Citric Acid Cycle

Initiates cycle

TPP

Thiamine pyrophosphate (TPP)

1.

Citrate Cycle: step 1 (citrate formation)

Enzyme: Citrate synthase

Condensation reaction

Hydrolysis reaction

Conformational changes in citrate synthase

Homodimer with large (blue) & small (yellow) domains

Citrate isomerized to Isocitate: step 2

Enzyme: aconitase

Dehydration

Hydration

Aconitase: citrate binding to iron-sulfur cluster

Isocitrate to α -ketoglutarate: step 3

Enzyme: isocitrate dehydrogenase

Oxidation of IC to aKG and CO2 Mn2+ in active site

Succinyl CoA formation: step4

Enzyme: α -ketoglutarate dehydrogenase

oxidation

BIOCH-9 2017

Succinate formation: step5

Enzyme: succinyl CoA synthetase

$GTP + ADP \Rightarrow GDP + ATP (NPTase)$

Succinyl CoA synthetase

Rossman fold binds ADP component of CoA

ATP-grasp domain is a nucleotide-activating domain, shown binding ADP.

His residue picks up phosphoryl group from near CoA, & swings over to transfer it to the nucleotide bound in the ATP-grasp domain 27

Oxaloacetate regenared by oxidation of succinate: Steps 6 - 8

Oxidation, hydration, and oxidation

Succinate to Fumarate: step 6

Enzyme: succinate dehydrogenase

Fumarate to Malate: step 7

Enzyme: fumarase

Fumurate to L-Malate

Malate to Oxalate: step 8

Enzyme: malate dehydrogenase

The citric acid cycle

Summary of 8 steps

TABLE 17.2 Citric acid cycle

			Prosthatic		$\Delta G^{\circ \prime}$	
Step	Reaction	Enzyme	group	Type*	kcal mol−1	kJ mol ^{−1}
1	Acetyl CoA + oxaloacetate + $H_2O \longrightarrow$ citrate + CoA + H ⁺	Citrate synthase		a	-7.5	-31.4
2a	Citrate \implies cis-aconitate + H ₂ O	Aconitase	Fe–S	b	+2.0	+8.4
2b	cis -Aconitate + H ₂ O \implies isocitrate	Aconitase	Fe–S	С	-0.5	-2.1
3	Isocitrate + NAD ⁺ \implies α -ketoglutarate + CO ₂ + NADH	Isocitrate dehydrogenase		d + e	-2.0	-8.4
4	α -Ketoglutarate + NAD ⁺ + CoA \implies succinyl CoA + CO ₂ + NADH	α-Ketoglutarate dehydrogenase complex	Lipoic acid, FAD, TPP	d + e	-7.2	-30.1
5	Succinyl CoA + P_i + GDP \Longrightarrow succinate + GTP + CoA	Succinyl CoA synthetase		f	-0.8	-3.3
6	Succinate + FAD (enzyme-bound) \Longrightarrow fumarate + FADH ₂ (enzyme-bound)	Succinate dehydrogenase	FAD, Fe–S	е	~0	0
7	Fumarate + $H_2O \implies L$ -malate	Fumarase		с	-0.9	-3.8
8	L-Malate + NAD+ \implies oxaloacetate + NADH + H+	Malate dehydrogenase		е	+7.1	+29.7

*Reaction type: (a) condensation; (b) dehydration; (c) hydration; (d) decarboxylation; (e) oxidation; (f) substrate-level phosphorylation.

Proton gradient generates 2.5 ATP per NADH, & 1.5 per FADH₂ 9 ATP from 3 NADH + 1 FADH2. Also, 1 GTP Thus, 1 acetate unit generates equivalent of 10 ATP molecules. In contrast, 2 ATP per glucose molecule in anaerobic glycolysis

Pyruvate to Acetyl CoA, irreversible

Regulation of pyruvate dehydrogenase

Control of citric acid cycle

Allosteric regulationRegulated primarily byATP & NADH concentrations,control points:Pyruvate dehydrogenaseisocitrate dehydrogenase &α- ketoglutarate dehydrogenase2-oxo-glutarate dehydrogenase)

Inhibition by product: citrate synthase- citrate- 2-oxo-glutarate dehydrogenasesuccinyl CoA

Biosynthetic roles of the citric acid cycle

Key Enzymes for regulation of CAC, inhibitors and activators

Enzyme	ATP ^a	NADH ^a	different	
Pyruvate dehydrogenase	-	-	- acetyl-CoA (inh. prod.)	
Citrate syntethase	-		 citrate (inhibition by product) 	
Isocitrate dehydrogenase	-	-	+ ADP (allosteric activation)	
2-OG-dehydrogenase		-	- sukcinyl-CoA (inh. prod.)	

^a allosteric inhibitor

^b feedback inhibitor (inhibition by reaction product)

^c allosteric activator

NOVÁK, Jan. Biochemie I. Brno: Muni, 2009, s. 237.

BIOCH-9 2017

Regulation of CAC

BIOCH-9 2017

