Toxins of cyanobacteria and algae (cyanotoxins)

- Cyanobacteria and algae
 - In prevalence autothrophic organisms
 - Uni-cellular and multi-cellular body
 - Cyanobacteria prokaryonta
 - Algae eukaryonta

- Cyanobacteria (Cyanophyta, Cyanobacteria)
- Colonies of photosyntethising cells
 - Fibers or fluffs
 - Prokaryotic organisms
 - No nucleus, no chloroplasts nor mitochondria
 - DNA in nucleoplasmatic area
 - · Photosynthesis similar to plants
- Classification:
 - Bentic sessile to surfaces and bed
 - Planktonic freely floating colonies
- Algal bloom
 - Concentration over 10000 cells/mL
 - Visible color of water
 - Summer period
 - Czech republic: Microcystis aeruginosa, Aphanisomenon phlos-aquae, Anabaena spp.
 - Northern Europe Oscillatoria rubescens
- Some species
 - Gas vacuoles
 - Flotation
 - $-\,$ Formation of foam over $10^6~cells/mL$
- High toxicity
 - Monitoring of levels in water
 - · Different levels of monitoring

•Obr. 1: Transversal section of cell Pseudanabaena species (Pankratz & Bowen 1963).

• Algae

- Eukaryotic organisms
- Numerous subdivisions:
 - Submicroscopic variability in morphology
 - Composition of photosynthetic pigments
 - · Composition of reserve compounds
 - Cross-penetration of types
- Developmental branch
 - Autotrophic organisms
 - Connected with water
- Bentic or planktonic
- Frequent toxicity
 - Rhodophyta red algae
 - Dinophyta dinophlagelates
 - Cryptophyta cryptomonads
 - Chromophyta brown algae

http://vydavatelstvi.vscht.cz/knihy/uid_es-006/hesla/img_d10e3894.html

Rhodophyta (Red Algae)

- In majority marine organisms
- Only few of them in sweet water
- Lots of different structural patterns of thallus
 - Unicellular microscopic
 - Complex tissue-like thalluses of microscopic parameters
 - Never possess flagellate stadium
- Pigments:
 - chlorophyll <u>a</u> and <u>d</u>, posses also phycobillines (similarly to Cyanobacteria).
 - Very complicated life cycles
- reproduction both non-sexual and sexual (oogamy).
- Cell surface is covered by thick polysaccharide wall – Polysaccharides industrial materials (for example
 - agar). – Food
 - Marine species *Porphyra* nori in Japan

Representatives: *Corallina* – very common marine species, easy incrustation with calcite (very huge geological sediments from dead bodies)

Batrachospermum – verticile branched sweet water species *Lemanea* – similar to *Batrachospermum*, looks tubular, but possess verticile branched thallus. Similar also ecology grows epilitic (on stones) in fast flowing pure waters *Gelidium* – one of the most used industrial sources of agar

Rhodophyta

Dinophyta

- Freely living flagellates
- Very complicated life cycles

 both sessile and amoeboid stadium
- Part of Dinophyta does not possess photosynthetic apparatus and nutrition is therefore heterotrophic Possible active "hunt" and phagothropia
- Pigments

 Chlorophylls <u>a</u> and <u>c</u>
- Cell surface is usually covered by huge cellulose casing
- Very strange nucleus, called dinokaryon.
 - Very big, cca 10x bigger amount of DNA, then usual
 Chromosomes of dinokaryon are permanently
 - Chromosomes of dinokaryon are permanently condensed and possess no histoproteins
- Dinophyta are able to produce large amounts of toxic compounds
- Very toxic flos acquae, so called ,,red tide"
 Most common:
 - Ceratium, Peridinium both genera include many species, both sweet water and marine
 - Noctiluca miliaris component of marine luminescent plankton

Cryptophyta

- Group of small flagellates
- Pigments:
 - chlorophyll $\underline{\mathbf{a}}$ and $\underline{\mathbf{c}}$ and fycobillines as cyanophyta
- In addition to own nucleus:
 - Organel called nucleomorph
 degenerated nucleus of endosybiont
 - chloroplast
 - Their surface is soft
 - well digestible for different plankton heterotrophs.
 - psychrophilic.
- Representative is genus Cryptomonas

Chromophyta

- Very large division
 - Includes seven classes
 - Very different organisms microscopic diatoms
 - multimeter marine seaweeds
 - Identical microscopic, ultrastructural and biochemic parameters
- Pigments
 - Chlorophyll <u>a</u> and <u>c</u>, mostly also xantophyll fucoxanthine Chloroplasts 4 membranes

 - Two of them are membranes of endoplasmatic reticule, mostly connected with nucleus
 Under surface of chloroplast wreath-like lamela showing position of chloroplast DNA
 thylacoids are connected in triplicates
- Storage compound is chrysolaminaran, deposited outside of chloroplast, never starch (further storage compounds: oils, polyphosphate grains - volutine and others)
- Flagellate stadia possess two heteroconte (non-comparable)) flagella, which are different in longitude, function snd strucutre of mastigonemates

Classification of Cyanobacterial and Algal Toxins

- Neurotoxins and paralytic poisons
- Hepatotoxins .
 - alkaloid
 - peptidic
- Tumor promoting factors, genotoxines and mutagens
- Cytotoxins, prymnetoxins
- Embryotoxins •
- Dermatotoxic alkaloids
- Lipopolysaccharides ٠
- Immunotoxins and alergens ٠
- Mixed bioactivity common •
- Population of one species produces more different toxins ٠

Neurotoxins and paralytic poisons (Paralytic shellfish poisons)

H₂N

Œ

Representative compounds: ٠

- anatoxin a, anatoxin a(s), anatoxin b, homoanatoxin
- saxitoxin, neosaxitoxin
- _ aphantoxins 1-5
- gonyautoxins _
- Chemical structure:
 - · Purine derivatives - Saxitoxins, aphantoxins, gonyautoxins
 - Tricyclic perhydropurine
 - Different substitution
 - Derivatives of cyclic Nhydroxyguanine
 - Anatoxin a(s) • Simple bicycles
 - Anatoxin a, homoanatoxin a

BRIEF REVIEW OF NATURAL NONPROTEIN NEUROTOXINS Jiri Patocka and Ladislav Stredab

Sources:

•

- Gonvaulax Dinophyta
 - Marine algae
- Anabaena, Aphanizomenon
 - Cyanobacteria
- **Principles of effect:** •
 - Aphantoxins, saxitotin, neosaxitoxin blockade of transfer of neural excitements via blocking of Na+ channels. No influence on K+ channels
 - Anatoxin A and homoanatoxin causes change of _ function in preganglial neural terminations, acetylcholine receptors, increases the flow of Ca2+ ions into cholinergic neural terminations
 - Anatoxin a(s) acts as blocker of cholinesterase, causes depolarisation of postsynaptic terminations, affects nicotinic, muscarinic and acetylcholine receptors
 - Saxitoxin is je blocker of Na+ channels (first toxin with essential influence for explanation of Na+ and K+ channels function and neurobiology), tetrodotoxin disrupts action potential of neural and muscular fibers

- Symptoms of intoxication by anatoxins
 - Anatoxin-a, homoanatoxin-a, anatoxin-a(s)
 - Anabaena flos-aquae
 - postsynaptic depolarizing neuromuscular blockers
 - inhibitors of acetylcholinesterase
 - Strong interaction with nicotine receptor
 - Hypersalivation
 - Diarrhea
 - Paralysis
 - Death caused by respiratory failure
- Potential war poisons (chemical warfare)
 - Absorption
 - Inhalation
 - Intact skin
 - Per oral

- Introduction into food chain
 - Accumulation in Crustaceans and fishes
 - Both dependent and independent on climate
- Intoxication PSP
 - Relaxation of smooth muscles
 - Depression of action potential in heart
 - Block of sodium channel
 - Guanidine ring condition of effect
 - Block from outer side of channel
 - Blocked both open and closed channel

 $http://www.pac.dfo-mpo.gc.ca/ops/fm/shellfish/Biotoxins/closures/default_e.htm$

•Cysts contain possible 1000 times higher amounts of toxines

- Symptoms of saxitoxin intoxication
 - Consumption of contaminated food
 - Oysters, Crustaceans
 - Very rapid onset
 - LD *p.o.* 0.5 mg, *i.v.* 0.05 mg
 - Anesthesia and immobility of tongue and fingers
 - Sense of thirst
 - Pain in tips of fingers
 - Massive intoxication
 - GIT disorders
 - Headache
 - Disorder of movement coordination
 - Ascendant type of paralysis
 - Disorders of cognitive functions
 - Respiratory paralysis
- · For differential diagnostics absence of hypotension
- PSP compounds
 - saxitoxin, neosaxitoxin, gonyautoxin I, gonyautoxin III, and decarbamoyl saxitoxin • Toxicity similar
 - gonyautoxins II, IV, V, VI, VIII, VIII-epimer, sulphocarbamoyl gonyautoxin I, IV • Substantially less toxic
 - Toxicity strongly dose-dependent
- Usage
 - Chemical warfare
 - Experimental compounds

Tetrodoxin TTX

- Potent and rapid action
- Tetraodontiformes
 - tetraodon, pufferfish
 - ovaria, liver, guts highest content
 - skin traces only
 - In Japan 646 of cases between 1974 nda 1983 (179 mortal), in present time 30-100 per year
- Some frogs, octopuses, snails and slugs
- Unusual tricyclic structure
 - · guanidinium toxins
 - aminoperhydroquinazoline
- Specific blocker of Na+ channels of neurons
 - Tetrodotoxin Na+ binding site extremely narrow
 - TTX acts as hydrated Na⁺
 - Inters the channel orifice, binding to a glutamate residue in channel peptide
 - Conformation changes
 - Electrostatic binding to an open channels

TETRODOTOXIN

http://www.life.umd.edu/grad/mlfsc/zctsim/ionchannel.html

- Extreme toxicity TTX
 - Minimal *p.o.* is 30 μg/kg
 Decomposition in acidic
 - environment in stomach
 - Termostable, decomposition in acids and bases
- Symptoms of intoxication
 - In minutes or hours
 - Trembling, tingling and paresthesia of tongue, lips and tips of finger
 - Headache, nausea, vomiting, diarrhea
 - Second degree
 - Continuous paresthesia
 - Paralysis
 - Impossibility of movements
 - Convulsions, arrhythmia, mental confusion
 - Death caused by respiratory arrest aprox. In 8 hours
 - Possible full consiousness close before death

Brevetoxins

•Gymnodinium breve (Ptychodiscus

brevis)

- -So called red tide •Massive death of fishes

 - •Mexican gulf, Australia, coast of N. America
- -Polycyclic ethers
 - •Lipophilic
 - •10 and 11 rings
 - •All-trans arrangement
 - •Relatively stable compounds (only very high and very low pH can cause decomposition)
- -Mechanism
 - •Depolarisation, opening ofotevření napěťově řízených Na+ kanálů

 - •Uncontrolled influx of Na+ into cell
 - •Change of voltage necessary for channels opening, hyperexcitability

-Symptoms:

- •Often confused with ciguatoxins intoxication
- •Tingling of face, throath, fingers
- •Trembling, nausea, vomiting, diarrhea,
- headache
- Mydriasis
- •Slowering of heart rate
- •No mortal cases described

BREVETO XIN-A, a type I brevetoxin

•Ciguatera toxins

- -Mixture of compounds • In present time 24 relative compounds (ciguatoxin, maitotoxin, scaritoxin, okadaic acid)
- -Dinoflagellate Gambierdiscus toxicus
 - •Corall reefs
- -Found in tropical fish
 - Tropics and subtropics
- -Low molecular lipid polyethers
- -Resistant to temperature
- -Stimulation of Na+ transitic

through

- membrane
- -Neurotoxins
- -4 categories of symptoms
 - •Neurologic 7 days
 - Cardiovascular
 - •Gastrointestinal 1-2 days
 - •General 1-7 days

CIGUATOXIN

- Onset of intoxication:
 - 10 minutes to 12 hours after contact, after intake of contaminated fishes possible 36 hours
- Beginning of poisoning
 - · Vomiting, general weakness, diarrhe Decreased sensitivity to painful •
 - stimules
 - Tingling and burning of fingers
 - · Sense of changing cold and heat
- Further stadia
 - Hypotension, mydriasis, arrhythmia
 - Convulsions, circulatory collapse, respiratory failure, death
- Possibility of persistence of symptoms (observed for months and years)
- Difficult diagnostic from other NSP
- First aid
 - Mannitol diuretic
 - Control of life functions •
 - No antidote
 - ٠ Treatment of long-termed symptoms - Amitriptiline, gabapentine

us toxicus Adachi et Fukuyo

Domoic acid

- Nitzchia pungens
- Amnesic shellfish poisoning (ASP)
 - Intoxication accompanied by neurologic disorders Hallucination, time-space disorientation - Loss of short-term memory
 - Symptoms of intoxication
 - Vom
 ASP Vomiting, stomach convulsions, diarrhea, headache
- Accumulation of toxin in hepatopancreas, branchiae, so called siphon of pelecypods
- Pelecypods resistant, meat becomes toxic _
- New Zealand, coast of Canada, Mexico _
- Red tide _
- Structure: _
 - Tricarboxylic acid
 - Derivative of proline
 - Structural similarity with excitation aminoacids (cainate, glutamate) .
- Mechanism of effect:

 - Excitation AMA
 100times higher effect then glutamate
 - Rigidity of ring
 - . Binding to a NMDA receptor
 - Influence on Ca2+ channels, entry of calcium into cell » Stimulation of many processes \rightarrow damage of neurons
 - Mediation of loss of memory http://www.regione.emilia-romagna.it/laguna/immagine_dettaglio.asp?id_img=1002

Obr. 1: Strukturální podobnost neurotoxinů ze skupiny excitačních aminokyselin (domoové a kainové) s kyselinou glutamovou, přirozeným agonistou NMDA-glutamátových receptorů.

KYSELINA DOMOOVÁ, NEBEZPEČNÝ NEUROTOXIN

Plk. v zál. prof. MUDr. Vratislav HRDINA, CSc., ^{1,2}prof. RNDr. Jiří PATOČKA, DrSc., plk. v zál. doc. RNDr. Vladimir MĚRKA, CSc., ³doc. MUDr. Radomir HRDINA, CSc.

- Doses:
 - 0.9-1.9 mg/kg GIT disorders
 - 1.9-4.2 mg/kg neurotoxic to lethal
- Clinical symptoms:
 - neurotoxic symptoms predominating
 - Headache, vertigo, confusion, time-space distortions
 - Disorders of motoric coordination, hallucinations, loss of short termed memory
 - gastrointestinal difficulties
 - excessive secretion of mucus into respiratory tract
 - tachycardia, peripheral vasodilatation and hypotension
 - cardiac arrhythmia and coma.
 - Intoxication can terminated sudden death 12 to 14 hours caused by respiratory paralysis
- Therapy:
 - antagonists of NMDA
 - prophylactic administration of melatonin

Hepatotoxins

• Representatives of compounds

- Alkaloid:
 - Cylindrospermopsine
- Protein:
 - Microcystins (cyanoginosin) and nodularins
 - cyclic heptapeptides
- Sources:
 - Trichodesmium, Umezakia, Cylindrospermopsis, Aphanizomenon, Microcystis, Anabaena, Planktothrix, Nostoc, Anabaenopsis, Nodularia

• Mechanism of action:

- Inhibitors of proteosynthesis and synthesis of glutathione
- Active inhibitor of eukaryota protein serine/threonine phosphatases 1 and 2A.
 - Uncontrolled phosphorylation of target proteins leads to cell proliferation, posttranslational modification of proteins, errorneous transmission of signals nad to cellular transformation to a cancer type cell

• Cylindospermopsine

- Cylindrospermopsis raciborskii, Umezakia natans, Aphanizomenon ovalisporum
- Alkaloid
 - tricyclic guanidine derivative bridged with hydroxymethyluracil
 - OH group of the bridge necessary for toxicity
- Liver damage
 - Inhibition of proteosynthesis, proliferation of smooth endoplasmatic reticulum
 - Fat degeneration
 - · Centrilobular necrosis
- Common in tropical waters, especially Australia
- Health problems:
 - Water contamination, strong need of purification
 - · Degradation products also toxic

- Mycrocystins (cyanoginosins) •
 - Seven AMA
 - To date more than 50 compounds known
 - Nodularins

.

5 AMA _

•

- amino-9-methoxy-10-fenyl-2,6,8 trimethyl deca-4,6-dienooic acid (ADDA) essential for pharmocologic/toxic activity _
- Mechanism of effect _
 - · Hepatotoxicity •
 - Inhibitors of serine/threonine protein phosphateses Inhibition of dephosphorylation, switchers of function
 - •
 - - »
 - If cells neighboring with vein penetration of blood to liver tissue, gathering of blood in liver
 - Inflammation, death »
 - Symptoms of intoxication
 - Vomiting, nausea
 Pale skin, cyanosis, breath difficulties, hepatic coma, death

 - Promotors of cancerogenesis of liver

 Epidemiological studies in China
 - Brasil
- Contamination of drinkable water _
 - In danger both human and animals

Tumor Promoting Factors, Genotoxins and Mutagenes

• Compounds representatives:

- Microcystins, nodularin
- Okadaiic acid
- Sources:
 - Microcystis, Nodularia

• Principples of effect:

- Inhibitors of proteinphosphatases (PP) type 1, 2A and 3
- Elevated activity of phosphorylation of proteins caused by inhibition of proteinphosphatases
- Uncontrolled phosphorylation of target proteins lead to cellular proliferation, posttranslational modification of proteins, errorneous signal transmission and cell transformation to a cancer cell type.

• Nodularin more active than microcystins

- Nodularin not only tumor promoting factor, but can also initiate.
 Lower molecular weight higher penetration to hepatocytes
- Promotors of liver cancerogenesis
 - Epidemiologic studies in China
 - Brazil

Cytotoxins, prymnetoxins

- Compounds representatives:
 - Tubercidine
 - Proteolipids
 - Macrolides
 - Amphidinolid B
 - Caribenolid
 - Goniodomin
 - Polycyclic ethers
 - Prymnesins
 - Mechanism of primnetoxins effect:
 - Decay of blood elements
 - Cytotoxicity integrity of cell membranes
 - Ichtyotoxicity (jen na žábry obojživelník po metamorfóze není intoxikován, zatím co pulec umírá do 5 min)

Cytotoxic and cytostatic effects

- Biotechnologic promising organisms
- Freshly isolated species (from natural environment) higher producing ability than "pure" laboratory species
 - Cyanobacteria Spirulina subsalsa
 - Alga Chlorella pyrenoidosa
 - Cytostatics stopping development of S-180 cancer type

Dermatotoxic compounds

- Lyngbyatoxins A, B, C
 - Lyngbya majuscula
 - Bentic marine cyanobacteria
- Ebromoaplysiatoxin
 - Proteinkinase C activator
 - Dermatitis
 - Puchýřnatění pokožky
 - Tumor promotor

Lyngbyatoxin A

Lipopolysaccharides

• Mechanism of effect:

- Increased capillary permeability for proteins, effect on nonspecific immune response, part of LPS complex so-called Oantigenic region posses several antigenic dominants with receptor site for lysogenic bacteriophages.
- Chemical composition of LPS is not very different fo cell wall of *Salmonella* species.
- Difficult to predict physiologic activity of single species without performance of tests
- Symptoms
 - Pustules, nausea, vomiting, diarrhea

Imunotoxiny a alergeny

- Vodnatá rýma, ekzémy, slzení očí, spasmus bronchů
- Kosmopolitní organismy
 - Žijí všude, identifikovány i domácím prachu
- Vysoký obsah proteinů
- Počet alergiků vzrůstá
 - ?změna alergenů nebo zvýšená citlivost?
 - Přesun od vláknitých ke koloniálním sinicím
 - Narůstající kontaminace stojatých vod