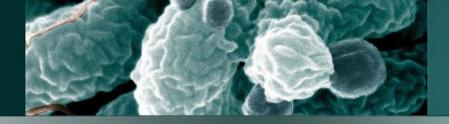

2nd Seminar of Microbiology FaF VFU BRNO (theory to lab 1)

dcteric

Disinfectants and antiseptics

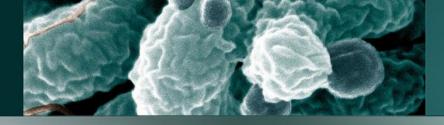
Nutrient media


Normal microbiota of human body

acteria

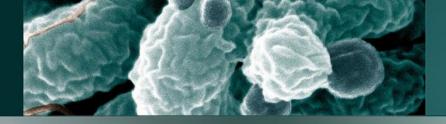
Disinfectants and antiseptics

fppt.com


Disinfectants and antiseptics

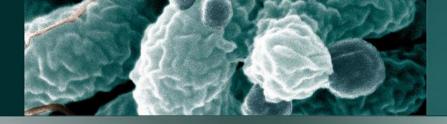
Disinfection = destruction of all pathogenic microorganisms in a given place

Decontamination = substantial reduction in the number of microbes in a given place


Sterilisation = killing of all forms of microorganisms in a given place

- *Disinfectants* used on inanimate surfaces
- Antiseptics disinfectants for application on living organisms in safe concentrations

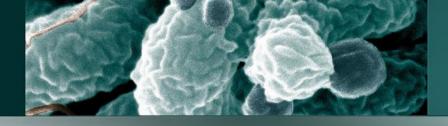
Principles for the use of chemical disinfectants


- 1) Use of recommended concentration, temperature and exposition time of disinfectant solution.
- 2) Before disinfection perform mechanical cleaning.
- 3) Prepare the disinfectant solution right before usage.
- 4) Change the types of disinfectant solutions to prevent development of resistance.
- 5) Observe the principles of occupational safety and health protection when working with disinfectants (most disinfectants are more or less toxic).

Appropriate disinfectant according to:

Spectrum of action (A - germicidal, B – fully virucidal, C - sporicidal, T - tuberculocidal, M - mycobactericidal, V - fungicidal)

- Exposure time
- Influence on the material under disinfection and environment
- Method of use
- Toxicity and irritability for animals and people
- Leaving residues and biodegradability
- Stability
- fppt.co. Economic demands

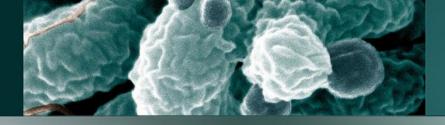

Spectrum of action

----- cidal

----- static

on:

- <u>bacteria</u> (vegetative forms or spores) + <u>mycobacteria</u>
- <u>viruses</u>
- <u>fungi</u> (molds, yeasts)

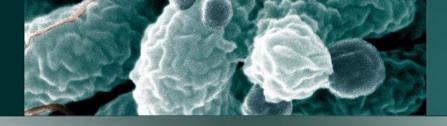


Method of use

- Wiping
- Spray
- Immersion
- Gassing

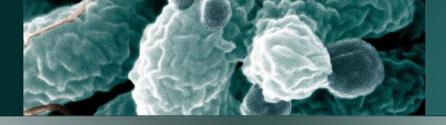
Forms of disinfectants

Liquid	Gas	Solid
Foam	Aerosol	Gel
Solution		Soap
		Cream



Disinfectants - Oxidants

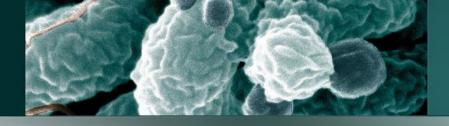
- in touch with tissues where peroxidases are present release molecular oxygen, which kills microorganisms.
- release of oxygen in the wound leads to formation of the foam, which helps remove dirt and germs.


Potassium permanganate (KMnO₄)

- acts also on viruses, has adstringent effect (higher concentrations cause irritation)
- 0,1 1% solution.... Wounds, mucosa
- 0,5 2% solution.... Disinfection of hands
- 2-4% solution.... Objects

Disinfectants - Oxidants

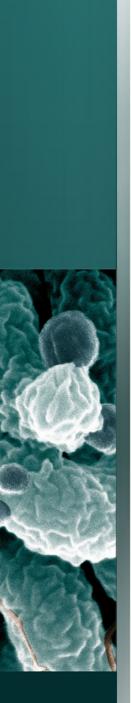
- Peracetic acid CH₃COOOH
- most common is 36 40% solution (PERSTERIL)
- acts on spores, fungi and mycobacteria, but has corrosive effects (discolouration of textiles, instability of solutions)
- even fumes are effective
- 0,5 1% solution Surfaces, objects



Disinfectants - Oxidants

- Hydrogen peroxide H_2O_2
- usually as 3% solution
- wound disinfection, but does not penetrate deep into tissues
- not effective on spores and viruses

```
Benzoylperoxide – (C_6H_5CO)_2O_2
```


therapy of acne

• Mainly compounds containing chlorine or iodine

Chlorine

- <u>mechanism of action</u>: oxidation and chloration (release of these atoms)
- chlorine compounds have strong effetc on bacteria, virues, fungi and protozoa
- chlorine gas itself is strong irritant (do not forget ventilation!) and also corrosive
- use: disinfection of water, hands, wounds, surfaces...

Sodium hypochlorite – NaClO

– Savo

Calcium hypochlorite – Ca(OCl)₂

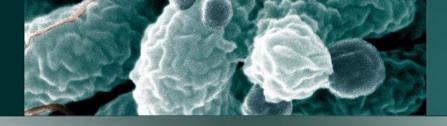
together with calcium chloride = chlorinated lime

Chloramin – NH₂Cl

– Chloramin B

Organic compounds with chlorine (benzenchloramins)

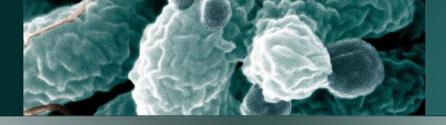
fppt.com



lodine

- <u>mechanism of action</u>: oxidation and iodation (release of these atoms)
- acts on bacteria (including spores and mycobacteria) and viruses
- rapid absorption, but can be irritant and toxic

Tincture of iodine (2% I₂ + 2,4% KI – solved in 50% ethanol)

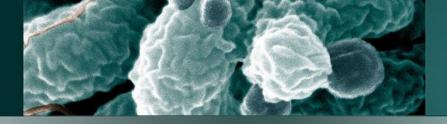

- ethanolic iodine solution
- used for skin disinfection before surgery and for small wounds

Iodophores

- e.g. povidone-iodine iodine bound to a complex continually released in water solution
- less corrosive, odorless, no discolouration
- Jodisol, Betadine
- Jodonal A, B
- for non-alergic patients should be used Jodonal B in stead of Ajatin (Benzododecinii bromidum)

Iodglycerin, Jodbenzine

Disinfectants - Phenols


- <u>mechanism of action</u>: denaturation of proetins
- destroys only vegetative forms of microorganisms

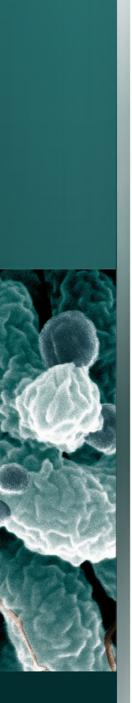
Phenol (carbol acid) $- C_6 H_6 O$

 cancerogenic, toxic, strong odor → not used on skin, usually for disinfection of equipment or contaminated organic materials

Cresol(hydroxytoluene) – C_7H_8O

 usually as 2% solution = lysol – disinfection of environment, equipment (less toxic than phenol)

Disinfectants - Alcohols and glycols


- <u>mechanism of action</u>: destruction of cellular membrane and protein denaturation
- lacks sporicidal effects, used mainly in skin disinfectants

Ethanol (60 - 70%) – C_2H_5OH

Isopropanol (50%) $- (CH_3)_2 CHOH$

Propylenglycol – $C_3H_8O_2$

- effective also againts mycobacteria

Disinfectants - Aldehydes

Formaldehyde

- gas, but used as 40% solution (formalin), mainly as preservative for biological materials
- strong effect on bacteria (also mycobacteria and spores), viruses, fungi
- irritant for skin and mucosa

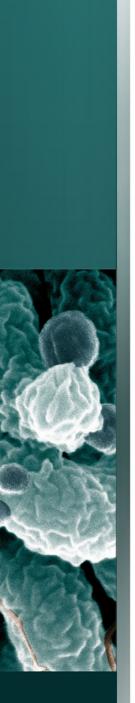
Glutaraldehyde

-0,1-1% for disinfection

Disinfectants - Surfactants

• <u>mechanism of action</u>: surfactants reduce surface tension of solutions and through it they disrupt energetic ratios on membranes

Anionic = soaps (RCOONa/K)


 basic solutions – often in combination with other disinfectants

Cationic = quaternary ammonium compounds

Benzalkonium chloride, Cetylpyridinium chloride,...

- does not destroy viruses and spores
- it is not possible to combine them with anionic
- -e.g. AJATIN, SEPTONEX

fppt.com

Disinfectants - Dyes

active mainly against G+ cocci

Aniline dyes

Methylene blue, Gentian violet, Brilliant green

Akridine dyes

non-irritant; decomposition under light

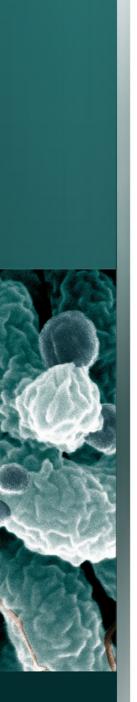
Akriflavine

- reduces wound and mucosa secretion
- used as 0,1% solution

Proflavine, Aminakrine, Rivanol

Disinfectants – Acides and bases

by change in pH or by disrupting some enzymatic reactions


Boric acid $-H_3BO_3$

- 3% solution, ointment (ophthalmology, dermatology)

Salicylic acid $-C_6H_4COOH$ - antiseptic, antiinflamatory, antihydrotic, keratolytic

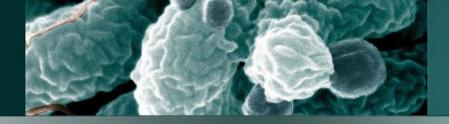
Sodium tetraborate – $Na_2B_4O_7 \cdot 10 H_2O$

Sodium bicarbonate – NaHCO₃

Disinfectants – Heavy metals

- coagulation of proteins of microorganisms

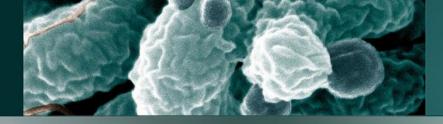
Compounds of mercury


Mercuric amidochloride

- bacteriostatic/fungistatic effect, not on mycobacteria and spores
- adjuvant drug in treatment of seborrhoeic dermatitis and psoriasis
- 1x daily max on ¼ body surface (nefrotoxic)

Compounds of silver

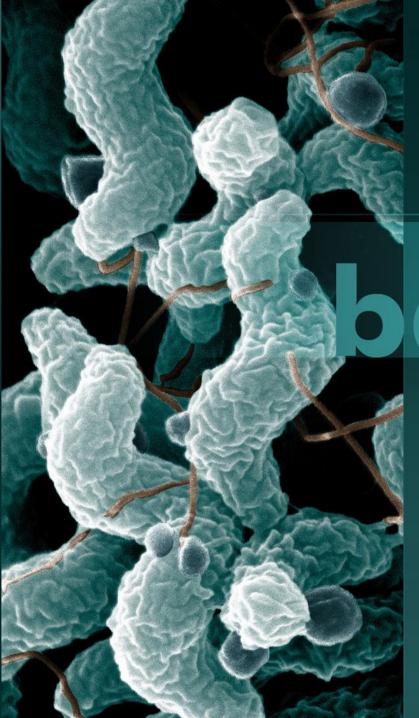
Silver nitrate

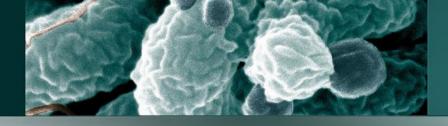

Targesin – in ophthalmology, ENT Zinc sulphate – ophthalmology

Disinfectants

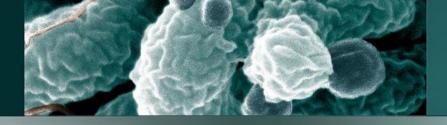
Chlorhexidine

- broad spectrum of activity
- bacteria, yeasts, spores
- surgical disinfection of hands





fppt.com

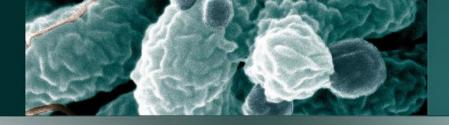


2nd Seminar of Microbiology FaF VFU BRNO

Nutrient media

- there is no universal medium or broth for all kind of bacteria
- * CONSISTENCY
- solid (agar plates; for isolation of strains)
- liquid (for multiplication)
- * USAGE
- basic (blood agar, broth...)
- selective (D.C., Slanetz-Bartley agar...)
- diagnostic (Endo agar, Tergitol 7...)

* USAGE

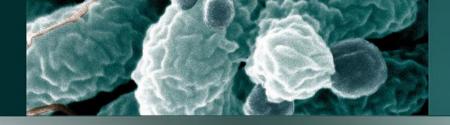

- Basic

Generally applicable culture medium. After the addition of blood or other suitable supplement can be used to cultivate nutritionally demanding microbes

Nutrient Broth w/ 1% Peptone (Nutrient medium)

Constituent	Amount (grams/liter)	
meat peptone	10 g	
beef extract	10 g	
sodium chloride	5 g	

pH: 7,4 ± 0,2



- * USAGE
- Selective

For isolation and cultivation of yeast, moulds and acidotolerant microorganisms.

Malt Extract Broth Base (Malt medium)

	Constituent	Amount (grams/liter)
	malt extract	17 g
pH 5.4±0.2	mycologic peptone	3 g

- **PREPARATION**
- natural

(from milk, rice, potatoes, meat or soil extract)

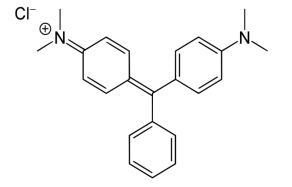
- synthetic

(water, minerals, source of C, vitamins, growth factors,

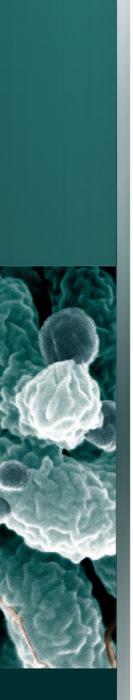
- AA, trace elements)
- semisynthetic

(synthetic + peptone, casein...)

Basic components of cultivation media

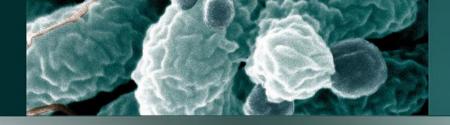

- * water (distiled)
- # trace elements (Zn, B, Mn, Mo, Ni,...)
- * chemicals (pure)
- * peptone = products of hydrolysis of meat proteins, blood serum, fibrin, casein, gelatin

BUFFERS


Basic components of cultivation media

***** DYES AND INDICATORS

- bacteriostatic effect
- inhibitors of growth
- indicators of metabolism

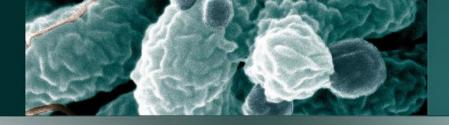


- color changes due to change in pH
- triphenylmethan dyes (malachite green, fuchsine, crystal violet, methylene blue), acridine dyes

Conditions of cultivations

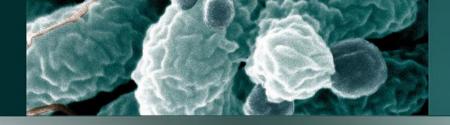
- # temperature
- * nutrition resources
- # humidity
- # atmosphere
- **₩** pH
- # light conditions

Nutrition resources


Carbon

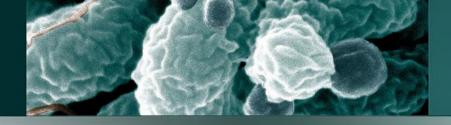
- autotrophic organisms: anorganic
- heterotrophic organisms: organic

Nitrogen


• from nitrates by reduction to ammonia

Vitamins, minerals, trace elements

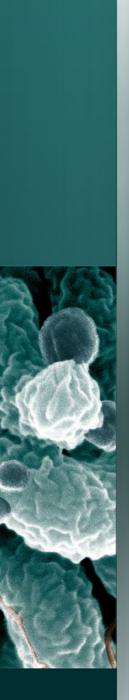
Carbon sources


- salts of organic acids
- sugars: pentoses (ara, xyl, rib, rha), hexoses (glu, man, gal, fru)
- disaccharides (sucrose, lactose)
- polysaccharides (starch, glycogen, pectin, celullose)
- lipids
- AA, proteins

Nitrogen sources

- molecular N: nitrogen-fixing organisms (*Clostridium, Azotobacter, Rhizobium*...)
- ammonium salts and ammonia formed form AA most bacteria
- nitrates actinomycetes
- urea ureolytic bacteria production of NH₃ and CO₂ (urease),

H. pylori, Proteus, Pseudomonas...



Temperature

- Psychrophilic b. under 20 °C
- Mesophilic b. 20-40 °C; 37 °C
- Thermophilic b. 75-90 °C; 55 °C

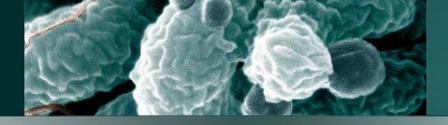
Humidity

- Sensitive gonococci, meningococci, Vibrio cholerae
- Resistant Mycobacterium tuberculosis, M. bovis, spores

Atmosphere

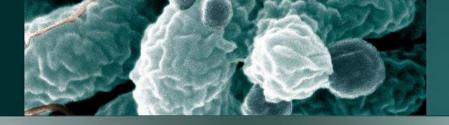
- aerobic
- anaerobic: Clostridium, E. coli (optional)
- microaerophilic more CO₂, less O₂
- capnophilic more CO₂

рΗ


- 7.2 7.4 pathogenic bacteria
- 3.0 6.0 moulds, yeasts
- 8.0 8.5 Vibrio cholerae

fppt.com

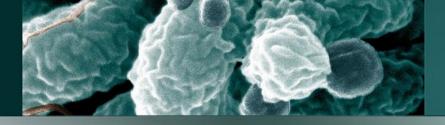
2nd Seminar of Microbiology FaF VFU BRNO


Normal microbiota of human body

Normal microbiota of human body

= microbes, which we usually find on normal individual

- composition vary according to part of the body and depends on: age, nutrition, genetics, hygiene, postnatal colonisation and environment
- total number of microbes exceeds approx. 10× number of somatic cells.
- microbes colonize all parts of macroorganism, which are in touch with external environment.
- normal microbiota prevents pathogenic microorganisms to settle and stimulate immune system.
- under certain circumstances, all of them can be pathogenic.



Microbes and macroorganism

Symbiotic relations:

- Commensalism = to one of the partners is benefiting, to the other there is no benefit or harm
- **Mutualism** = relation is benefiting for both partners
- **Parasitism** = to one of the partners is benefiting, to the other the relation is harmful
- Dynamics of the relations:

mutualism <----> commensalism <----> parasitism
(recovery <--) (--> infectious disease)

Relations between microbe and host

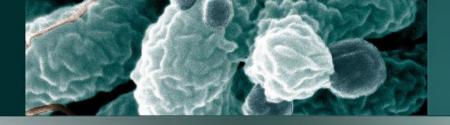
• Microbes:

- Species:

obligatory pathogenic --- facultative path. --- not pathogenic

- Strains:

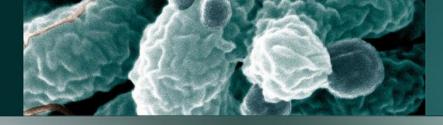
virulent --- avirulent

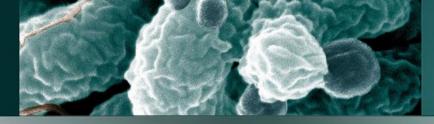

• Hosts:

- Individual:

senstitive --- unspecifically resistant

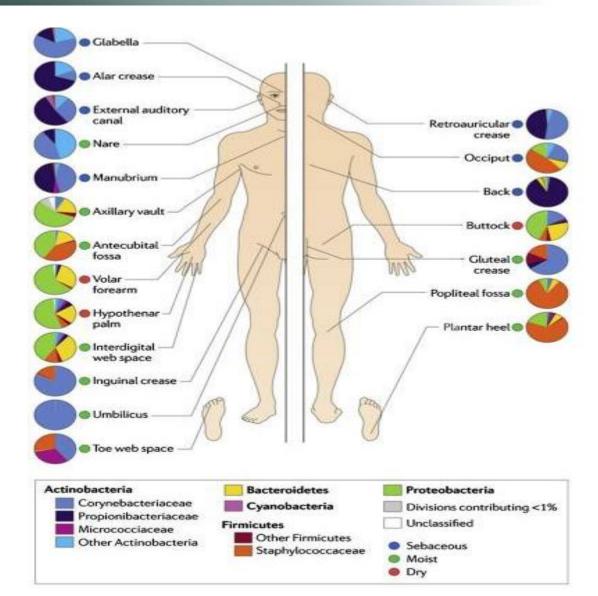
- Species:


suspectible --- resistant

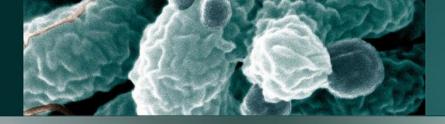

Pathogenicity (virulence)

- Portability of diseases
- Ability of overcome defense system of host:
 adherence + penetration

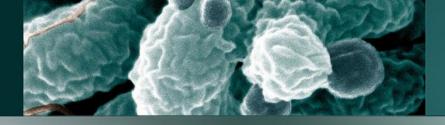
• Toxicity: direct or indirect



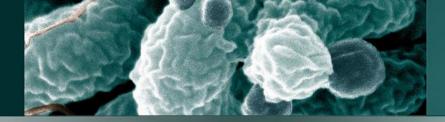
Skin	Propionibacterium acnes, Staphylococcus epidermidis, Staphylococcus aureus Corynebacterium
Respiratory tract	Staphylococcus epidermidis, non-pathogenic G+ bacilli – diphteroids, Staphylococcus aureus, Haemophilus influenzae, Streptococcus pneumoniae, Neisseria
Conjuctiva	Coagulasa-negative staphylococci, Diphteroids, Staphylococcus aureus, Streptococcus penaumoniae
GIT - nasopharynx, oral cavity	Non-pathogenic Streptococcus, Staphylococcus, Haemophilus, (Lactobacillus, Actinomyces, Peptostreptococcus, Veillonella, Bacteriodes, Prevotella, Porphyromonas, Fusobacterium)
GIT - colon	Bifidobacterium, Eubacterium, Peptostreptococcus Escherichia coli, enterococi, Clostridium perfringens, Bacillus cereus, Candida and harmless commensal protozoa
Vaginal mucosa	Lactobacillus acidophilus, Candida and others


Microbiota of skin

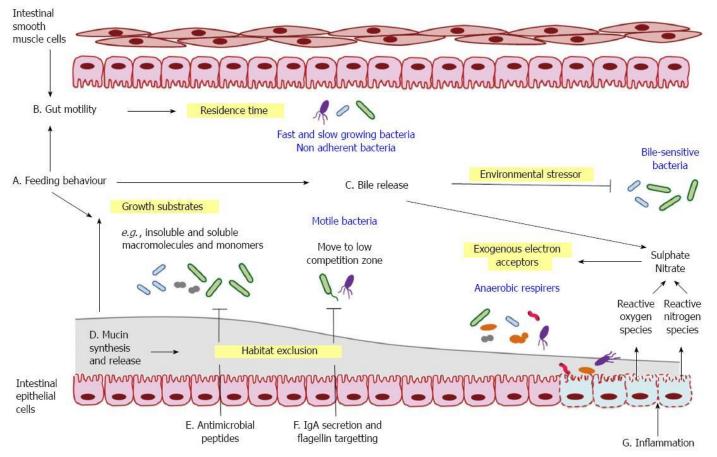
Importance of disinfection of hands for paramedics!


Semin Immunol. 2013 Nov 30;25(5):370-7. doi: 10.1016/j.smim.2013.09.005. Epub 2013 Nov 20. Functions of the skin microbiota in health and disease. Sanford JA¹, Gallo RL.

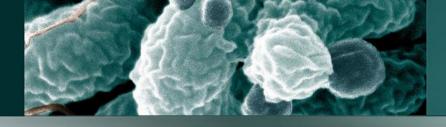
fppt.com


Microbiota of respiratory tract

- Total surface of lungs is 40–100 m² → there is stable (resident) and temporary (transient) microbiom.
- Natural elimination of microorganisms: mechanically (exhalation, cough, sneezing) transport (cilia) surfactant (= bacteriostatic) macrophage
- Staphylococcus epidermidis, nepatogenní G+ tyčinky difteroidy, Staphylococcus aureus, Haemophilus influenzae, Streptococcus pneumoniae, Neisseria



Microbiota of GIT – in relation to host


- digesting some otherwise ingestible food components
- biosynthesis of vitamins (group of vitamins B, vitamin K)
- contribution on absorption of nutrients (calcium)
- drug metabolization
- barrier against colonisation by pathogens
- regulation of immune system (innate as well as acquired)
- maintaining the integrity of an epithelial surface
- transformation of bile acids

Regulation of bacterial growth in GIT

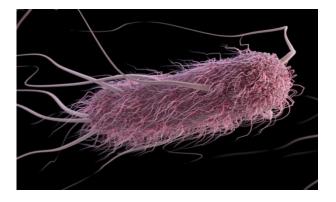
<u>World J Gastroenterol.</u> 2014 Nov 28;20(44):16498-517. doi: 10.3748/wjg.v20.i44.16498. **Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health.** <u>Ha CW¹, Lam YY¹, Holmes AJ¹</u>.

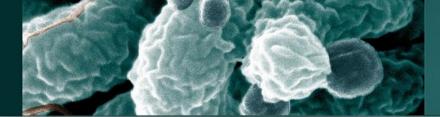
Microbiota of GIT

Oral cavity

 biofilms on teeths (*Streptococcus mutans*) – dental caries, parodontitis

Stomach


- Acid pH destroys most microorganisms
- *Helicobacter pylori*, yeast, lactobacilli


Intestine

Bacteroides – gain energy mostly from saccharides fermentation Prevotella - degrade glykoproteins of intestine mucosa Ruminococcus – bind mucins, transport and degrade saccharids

Microbiota URO-GEN tract

- mostly lower urinary tract (anaerobs)
- men: in genitals also mycoplasmata and ureoplasmata
- vaginal microbiota is distinctly influenced by hormonal dysbalance
- → lactobacilli (balance pH under 4,5 by production of lactate)

BACTERIA Actinomyces

Bacillus Bacteroides Bifidobacterium Capnocytophaga Clostridium Corynebacterium Enterococcus Escherichia Fusobacterium

Gardnerella

Haemophilus

Lactobacillus

Micrococcus

Moraxella

Neisseria

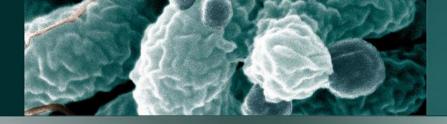
Prevotella

Propionibacterium

Proteus

Staphylococcus Streptococcus

YEASTS


Candida

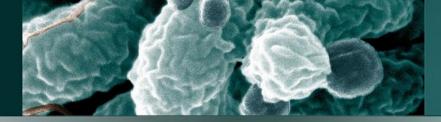
Saccharomyces

G+ strains anaerobic, microaerofilic G+ bacilli facultative aerobic, spores G-pleomorphy (cocci, bacilli, strains), anaerobic G+ bacilli anaerobic G-bacilli facultative anaerobic G+ bacilli anaerobic or aerotolerant, spores G+ bacilli facultative aerobic G+ cocci facultative anaerobic G-bacilli facultative anaerobic G-bacilli or strains anaerobic G-bacilli microaerofilic G-bacilli facultative anaerobic G+ bacilli anaerobic or microaerofilic G+ cocci aerobic G-bacilli microaerofilic G- cocci aerobic or microaerofilic G-pleomorphy (cocci, bacilli, strains), anaerobic G+ bacilli anaerobic G-bacilli facultative anaerobic G+ cocci facultative anaerobic G+ cocci facultative anaerobic

mouth, GIT, vagina intestine, spores mouth, GIT mouth, GIT, vagina oral cavity intestine, spores skin intestine intestine resp. tract, GIT, vagina vagina nosopharynx mouth, GIT, vagina skin, environment mammal musoca oral cavity mouth, GIT skin intestine nose, skin, mouth mouth, nosopharynx

mouth, GIT, vagina vagina, environment

Lab class no. 1


Cultivation of microorganisms and control of efficiency of disinfectants and antiseptics

Aims:

- Prepare nutient media for consequent cultivation of microorganisms.
- Control of efficiency of disinfectants and antiseptics.

Microrganisms from group 1 used in lab classes:

Micrococcus luteus CCM 732 *Escherichia coli* CCM 7929 *Saccharomyces cerevisiae* CCM 8191

Domovská stránka

Aktuality

O sbírce Adresa Jak najdete CCM? Zaměstnanci

CCM Nabizi Katalog kultur Kontrolni kmeny Ke staženi

Publikace Výzkum Odkazy

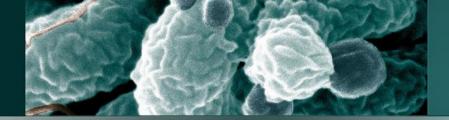
Vaše připomínky

Vítejte na domovské stránce

České sbírky mikroorganismů (CCM)

Masarykova univerzita, Přírodovědecká fakulta

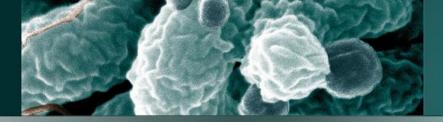
Zvolte jazyk:


Česky

Datum aktualizace: 09.06.2017

fppt.com

Non-pathogenic strain *Escherichia coli* CCM 7929


= CECT 433 = CIP 54.117 = CNCTC 7388 = DSM 11250 = IFO 3301 = NBRC 3301 = NCDO 1984 = NCIMB 10083 = NCTC 10538 = PCM 2560 = strain K 12 < CNCTC. Human faeces. Medium 71, 30°C.

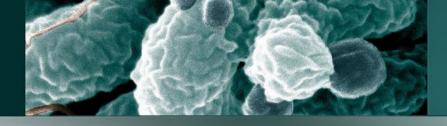
Pathogenic strain Escherichia coli CCM 4724

= H. Lhotová 27750

< H. Lhotová, NRL CEM < M. Bielaszewská. Serovar O.157. Stool; Czech Republic. Production of Vero cytotoxins VT1 and VT2. Sorbitol and ßglucuronidase negative. Biohazard group <u>2</u>. Medium <u>71</u>, 37°C.

Annex no. 7 to Govt. Regulation No. 361/2007 Coll. Biological agens, their groups, designation and workplace requirements

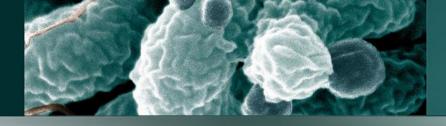
Examples:


Normal microbiota and common pathogens belong to gr. 2

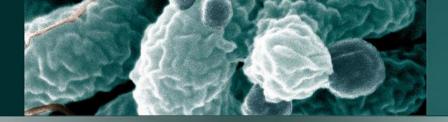
Bacillus anthracis gr. 3 Mycobacterium tuberculosis gr. 3

Virus Ebola gr. 4

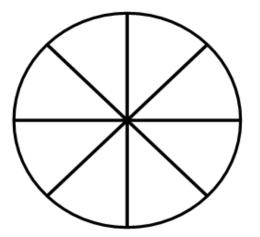
PART A Biological agens in groups 2, 3 or 4


Biologický činitel	Skupina	Poznámka
Corynebacterium diphtheriae	2	T,V
Corynebacterium minutissimum	2	
Corynebacterium pseudotuberculosis	2	
Corynebacterium spp.	2	
Edwardsiella tarda	2	
Ehrlichia sennetsu (Rickettsia sennetsu)	2	
Ehrlichia spp.	2	
Eikenella corrodens	2	
Enterobacter aerogenes/cloacae	2	
Enterobacter spp.	2	
Enterococcus spp.	2	
Erysipelothrix rhusiopathiae	2	
Escherichia coli (s výjimkou nepatogenních kmenů)	2	
Flavobacterium meningosepticum (Chryseobacteriummeningosepticum)	2	
Fluoribacter bozemanae (Legionella)	2	
Francisella tularensis (typ B)	2	
Fusobacterium necrophorum	2	

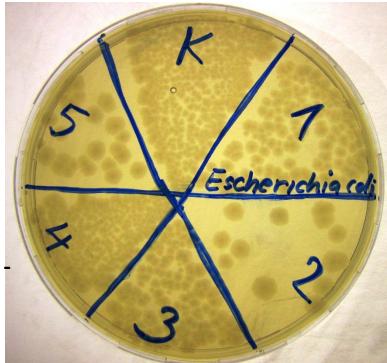
Micrococcus luteus CCM 732

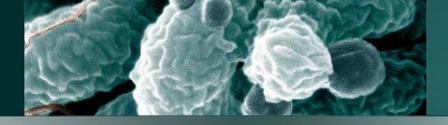

- = ATCC 10240 = CCTM La 2973 = CCUG 21988 = CIP
- 53.160 = CNCTC M 8/58 = DSM 1790 = FDA 16 = IFO
- 13867 = LMG 3293 = NBRC 13867 = NCDO 982 = NCIMB
- 8166 = NCIMB 8640 = NCTC 7743 = OUT 8276 = PCI 1216
- = Commercial Solvents Corp.130.21

< ATCC (*Micrococcus flavus*) < Commercial Solvents Corporation. Cylinder-plate assay of bacitracin in body fluids, feeds, milk and pharmaceutic preparations (<u>1451,2651,5738,5754,6287</u>). Medium <u>71</u>, 30°C.



Saccharomyces cerevisiae CCM 8191


Medium 23, 25°C. = ATCC 9763 = CBS 5900 = CCUG 1836 = CCUG 32994 = CCY 21-4-48 = CNCTC 51/65 = CNCTC 52/67 = DSM 1333 = IHEM 3961 = MUCL 30115 = NCTC 10716 = NCYC 87 = NRRL Y-567 = WDCM 00058 < E. Sláviková. Media testing. Assay of andicidin, amphothericin B, anisomycin, natamycin and nystatin.. Production of arginase. Production of nicotinic acid.



- 1. Preparation of nutrient media
- 2. Pouring into Petri dishes
- 3. Inoculation with microorganisms gr. 1 control of efficiency of disinfectants and antiseptics

bivide dish on bottom side into 6 quadrants -Betadine, 70% ethanol, 0,1% KMnO₄, 2% chlorhexidine, Septonex and sterile water

Question for lab class test:

- Name main groups on disinfectants and antispetics.
- What is the difference between disinfectant and antiseptic?
- What does the basic medium contain?
- What does the medium for cultivation of yeast and moulds contain?
- Which is the optimal pH for bacteria and which is optimal for yeast and moulds?
- Name at least 5 genuses of G+ and 5 genuses of G- bacteria.
- Which genuses do populate GIT (at least 5)?
- Which genuses can be found on skin?
- Name main representative of vaginal microbiota.
- Describe the relation between pathogenicity of microbe and resistance of host.