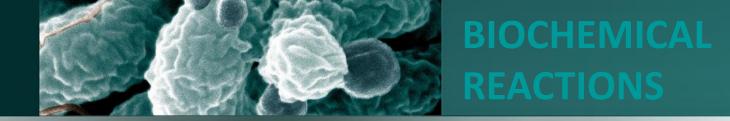
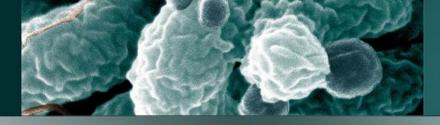

4rd Seminary from microbiology FaF VFU BRNO (theory for lab class no. 3,4)

acteria

Diagnostic procedures (II)



PROCEDURES


Direct methods (microb – part – product):

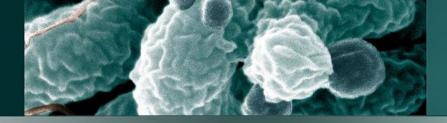
- Microscopy evidence in sample and identification
- Cultivation evidence in sample and identification
- Biochemical identification only identification!
- Evidence of antigens evidence in sample and identification
- Nucleic acids mainly evidence in sample
- Experiment on animals mainly evidence in sample

Indirect metods (antibodies)

- Identification group/genus/species/intraspecific analysis
- <u>Principle:</u>
 - Substrate → reaction to product → detection of product/changes in environment
 - usually catabolic reactions
- Clean culture old max. 24 hours
- Reactions in plastic microtitration plate ("panel")
 - <u>Principle</u>: at the bottom of wells there are lyophilized substrates (or with indicator), bacterial suspension is then added and plaste is incubated.
 - change in colour with naked eye or spectrophotometrically
 - result: some positive (+) and negative (-) reactions, which give you specific code number there is code book to find the bacteria

Catalase test

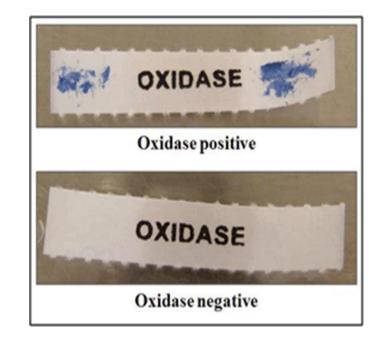
- Aerobic and fac. anaerobic bacteria equipped with cytochromoxidase
- Deactivation of peroxide (peroxidase)
- reaction releases oxygen (bubbles)
- $2 H_2O_2 \rightarrow 2 H_2O + O_2$

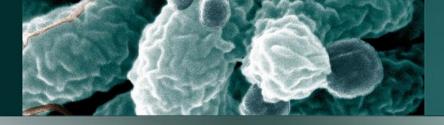

Positive

 Staphylococcus, Corynebacterium, Neisseria, Listeria

Negative

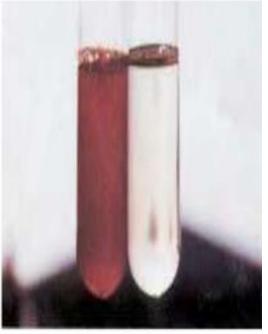
 Streptococcus, Enterococcus, Arcanobacterium

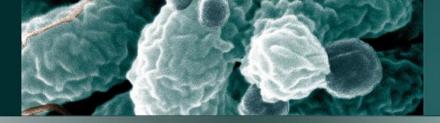



Oxidases/cytochromoxidases

- enzymes involved in respiratory chain
 Oxidase:
- tetramethyl-*p*-fenylendiamin chloride
 Cytochromoxidase:
- dimethyl-*p*-fenylendiamin chloride

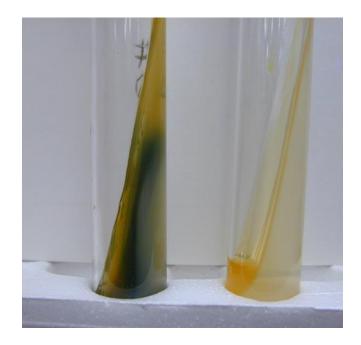
- in positive case we can see blueing.
- for differentiation of gramnegative bacteria
- Positive: Neisseria, Moraxella, Pseudomonas, Vibrionaceae
- Negative: Enterobacteriaceae, Acinetobacter spp.

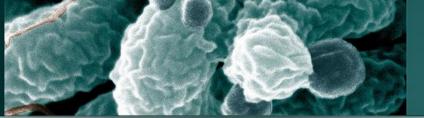



Reduction of nitrates to nitrites

- evidence of presence of nitrate-reductase
- <u>used in:</u>
 - solid media with nitrate
 - nitrate liquid broth
 - detection of nitrites and NH₃
 - Gries-Ilosvay reagent (solution of naftylamin in acetic and sulfanilic acids)
- red colour shows positive result
- negative result (no colour change) must be verified with powdered zinc

Nitrate Reduction Test

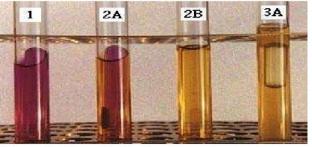



Peptone nitrate broth on left is positive (E. coli); tube on right is negative.

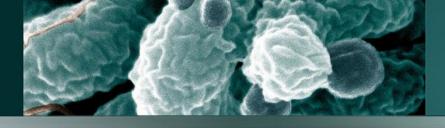
Oxidative deamination of phenylalanin

- evidence of presence of phenylalanindeaminase
- phenylalanin is deaminated to phenylpyruvate
- positive: reaction with FeCl₃ greening
- negative: yellow
- positive e.g.: *Proteus, Providentia, Morganella*

Sugar enzymes

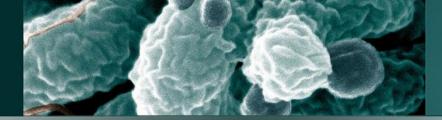

Evidence of fermentation of sugars

- pepton water with 1 % sugar (glucose, sucrose, lactose, manitol, xylose)
- bromthymol blue as indicator
- in positive case medium is acidified and turns yellow.


Reaction with *ortho*-nitrophenyl-β-D-galactopyranoside

- evidence of β-galactosidase
- cleavage of nitrophenol yellowing
- distinction in *Enterobacteriaceae*

Tube 1: Negative acid /Negative gas Tube 2A: Must incubate longer (ambiguous result) Tube 2B: Positive acid /Negative gas 3A: Positive acid/ Positive gas



Proteases and peptidases

- enzymes released into environment
- proteolysis
- substrates are mainly casein and gelatin
- positive reaction leads to liqufaction
- positive e.g. *Pseudomonas aeruginosa*

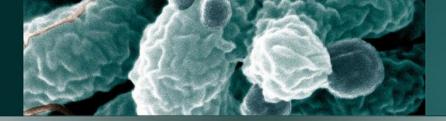
III.6 Gelatin hydrolysis. After hydrolysis (1), gelatin remains liquid. 2 is unhydrolyzed gelatin (Exercise 15).

Amidases

Ureases

- substrates are media with 2% of urea
- production of urease cleavage of urea to ammonium
- alkalisation leads to pink (indicator is phenol red)

Argininhydrolases


- cleaves arginin to ornithin, CO₂ and NH₃
- alkalisation indicator: bromphenol red or bromcresol purpur)

PYRases

- cleavage of pyrrolidonyl-β-nafthylamide
- reaction with *N*,*N*-dimethylaminocinnamaldehydem
- red colour
- identification of group A β-hemolytic streptococci and enterococci (*Streptococcus pyogenes*)

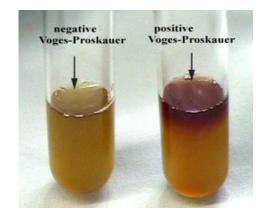
Lyases

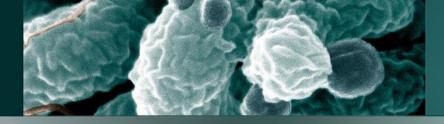
Tryptophanase, cysteindesulphydrase a decarboxylases

Production of indole

- cleaved from tryptophan,
- part of Hottinger broth
- after incubation add drops of Ehrlich or Kovacs reagent
- in positive case there is a red ring on borderline of the two liquids.
- positive E. coli, negative Salmonella spp.

- Production of hydrogen sulfide


- cleavage of sulfur-contaning amino acids (cystein)
- in solid media with 1% lead acetate
- in positive case, lead sulfide is formed and the media is blackening
- negative E. coli, positive Salmonella spp.


- VP (Voges-Proskauer's test for acetoin) test and MR (methyl red) test

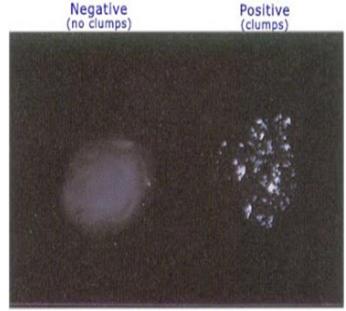
- cleavage of pyruvate
- change in pH
- after 48 hrs
- Enterobacteriaceae

- Evidence of decarboxylation of lysin and ornithin

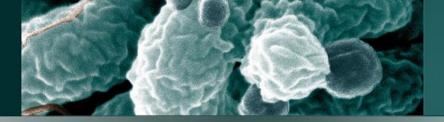
- Lysindecarboxylase kadaverine + CO₂
- Ornithindekarboxylase putrescine + CO₂
- change in pH (alkalisation)
- longer cultivation (even 5 days)

Coagulase

Detection of plasma-coagulase

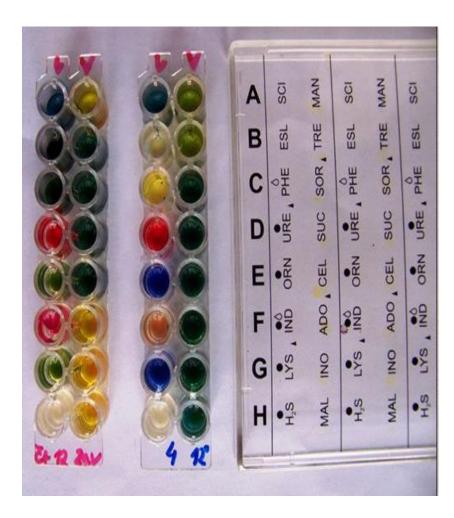

- for staphylococci (mainly S. aureus)
- free form adhesive factor
- bond form

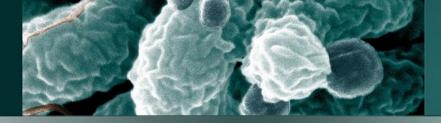
clumping factor


 to citrate rabbit plasma add tested colony and incubate

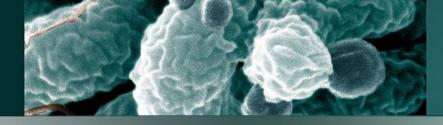
4 - 12 hours at 37 °C.

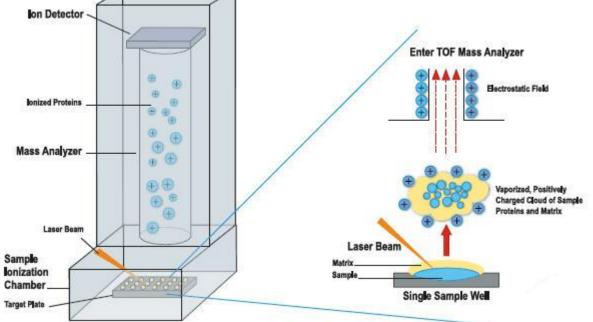
• positive result = coagulated plasma

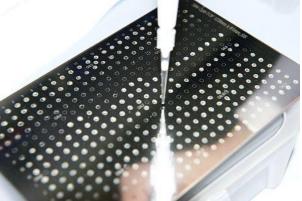


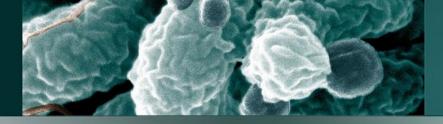

Slide Coagulase Test

Practical performance


- manufacturer makes the test with dried substrates on hte bottom of wells
- clinical microbiologist prepares bacterial suspension in medium or phys. solution
- adds suspension to each well
- rest of suspension is used for other tests with diagnostic strips in testtubes (ONPG, VPT)
- microplate and test-tubes are incubated in thermostat
- the result is determined with reading through transparent glass cover




MALDI-TOF


- separation of ionized particles according to their molecular mass
- due to laser ionisation we are able to detect also large molecules specific for different species of bacteria and yeasts
- MALDI, *matrix assisted laser desorption/ionization* in combation with TOF detector, *time-of-flight*
- speed of particle (inversely proportional to its mass, or weight) can be calculated from time of flight in detector
- mixture of matrix (e.g. 4-hydroxycinnamic acid) and tested strain on stainless plate is impacted with nanosecond pulse of laser
- matrix absorbs energy of the pulse and molecules of sample are ionised by its decay
- the method then "finds" specific proteins of tested strain and compares them with database

MALDI-TOF

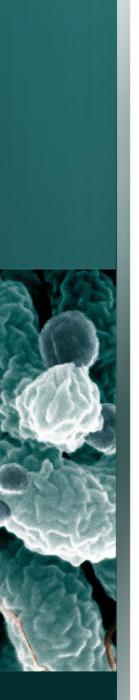
MIC/MBC

MIC – Minimal inhibition concentration

= lowest concentration of antimicrobial compound, which prevents visible growth of bacterial culture in 24 hours.

- Preparation of stock solution of antibiotic
- Preparation of its dilution series
- Preparation of bacterial inoculum
- inoculation
- Incubation
- evaluation

MIC₅₀ a MIC₉₀

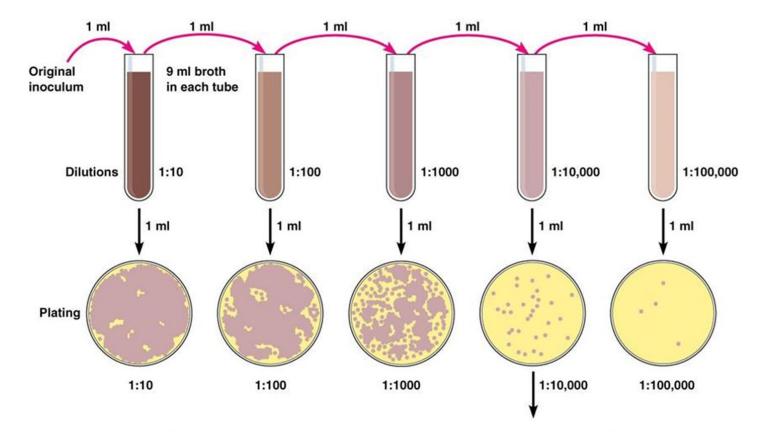

MBC – minimal bactericidal concentration

= lowest concentration of antimicrobial compound needed to kill a microorganism. For right evaluation at least 99,9% of cells must be dead.

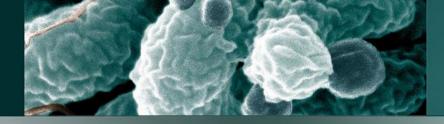
McFarland scale of optical density

- suspension of bacteria in phys. solution or medium must be standardized
- there is recommended level of optical density (i.e. level of transparency of that suspension)
- we use densitometer: device (simple photometer) able to measure directly optical density

application: biochemical identification tests, preparation of microdilute test when testing sensitivity to antibiotics

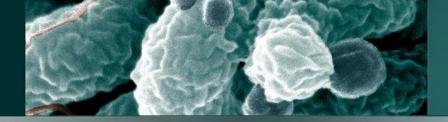


McFarland scale of optical density

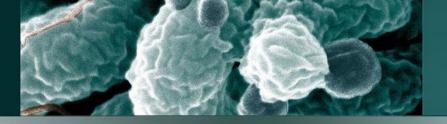

Mixing solution of barium chloride and sulfuric acid \rightarrow insoluble precipitate of barium sulfide (basis for preparation of turbidity scale, by which one can assume concentration of bacterial suspension

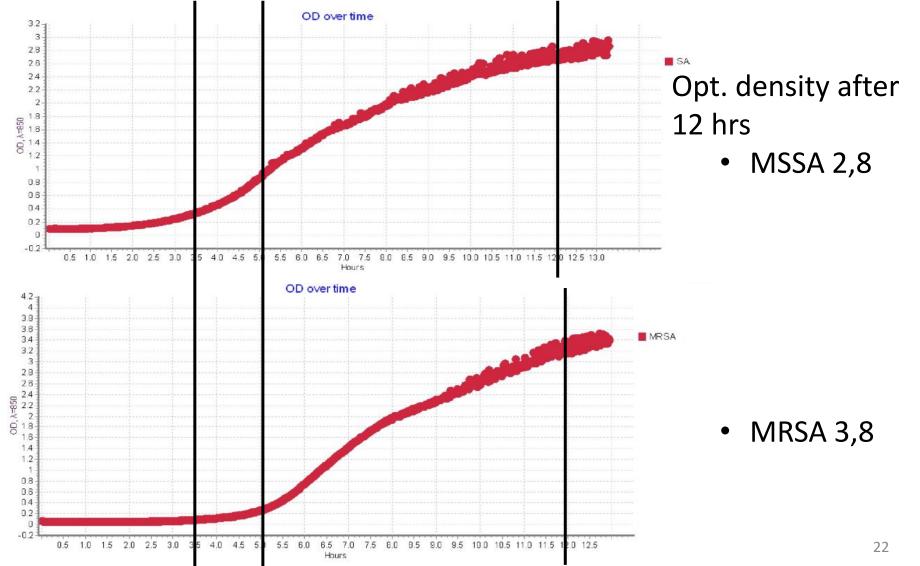

	Stupeň číslo										
	0,5	1	2	3	4	5	6	7	8	9	10
1,175% roztok chloridu barnatého (ml)	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
1% roztok kyseliny sírové (ml)	9,95	9,9	9,8	9,7	9,6	9,5	9,4	9,3	9,2	9,1	9,0
Přibližná koncentrace bakterií (x 10 ⁸ /ml)	1,5	3	6	9	12	15	18	21	24	27	30

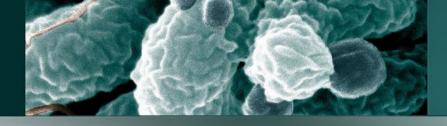
How else can we determine concentration of bacterial suspension?



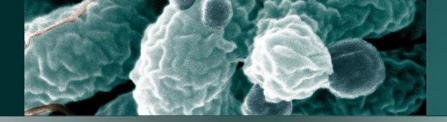
Calculation: Number of colonies on plate \times reciprocal of dilution of sample = number of bacteria/ml (For example, if 32 colonies are on a plate of ¹/10,000 dilution, then the count is 32 \times 10,000 = 320,000 bacteria/ml in sample.)





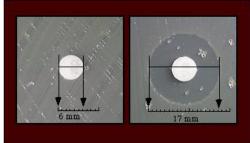

RTS-1 Personal Bioreactor (BioSan Ltd.)

Determination of growth curve of suspension of *S. aureus*

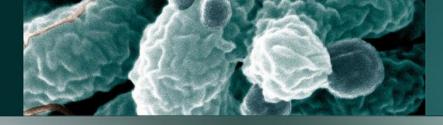

Diffuse methods

Procedure:

1) Take colony of particular bacterial strain and add to physiological solution


(it is necessary to determine optical density according to McFarland; recommended value is 0,5)

- 2) Suspension of bacteria inoculate with sterile cotton swab onto agar plate (e.g. Müller-Hinton medium)
- 3) Apply ATB discs
- 4) Cultivation; mostly 24 hrs. at 37 °C
- 5) Evaluation measuring diameters of inhibition zones


Diffuse methods

- qualitative (semiquantitative)
- determination of either sensitivity or resistance of bacteria to given ATB
- diffusion of ATB to agar plate
- in case of effectivity of ATB there is formed so called inhibition zone

Evaluation:

measurement of inhibiton zones and comparison with reference values

Diffuse methods

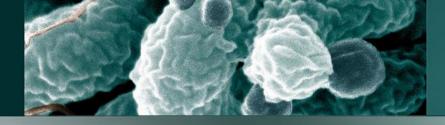
Enterobacteriaceae

EUCAST Clinical Breakpoint Tables v. 6.0, valid from 2016-01-01

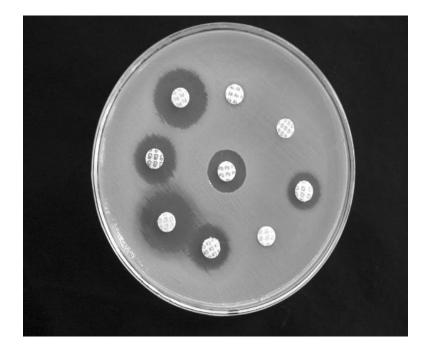
Disk diffusion (EUCAST standardised disk diffusion method) Medium: Mueller-Hinton agar Inoculum: McFarland 0.5 Incubation: Air, 35±1°C, 18±2h Reading: Read zone edges as the point showing no growth viewed from the back of the plate against a dark background illuminated with reflected light. Quality control: Escherichia coli ATCC 25922. For control of the inhibitor component of beta-lactam inhibitor-combination disks, use either Escherichia coli ATCC 35218 or Klebsiella pneumoniae_ATCC 700603.

Penicillins ¹	MIC bre (mg	g/L)	Disk content (µg)			Notes Numbered notes relate to general comments and/or MIC breakpoints. Lettered notes relate to the disk diffusion method.					
	S≤	R>		S≥	R<						
Benzylpenicillin	-	-		-	-	1/A. Wild type Enterobacteriaceae are categorised as susceptible to aminopenicillins.					
Ampicillin	8 ¹	8	10	14 ^{AB}		Some countries prefer to categorise wild type isolates of <i>E. coli</i> and <i>P. mirabilis</i> as intermediate. When this is the case, use the MIC breakpoint $S \ge 0.5 \text{ mg/L}$ and the corresponding zone diameter breakpoint $S \ge 50 \text{ mm}$.					
Ampicillin-sulbactam	8 ^{1,2}	8 ²	10-10	14 ^{AB}	14 ⁸	 For susceptibility testing purposes, the concentration of subactam is fixed at 4 mg/L. 					
Amoxicillin	8 ¹	8		Note ^C	Note ^C	 For susceptibility testing purposes, the concentration of clavulanic acid is fixed at 2 mg/L. 					
Amoxicillin-clavulanic acid	8 ^{1,3}	8 ³	20-10	19 ^{A,B}	19 ⁸	 For susceptibility testing purposes, the concentration of tazobactam is fixed at 4 mg/L. 					
Amoxicillin-clavulanic acid (uncomplicated UTI only)	32 ^{1,3}	32 ³	20-10	16 ^{AB}		5/D. Meeillinam (pivmeeillinam) breakpoints relate to E. coli, Klebsiella spp. and P. mirabilis only.					
Piperacillin	8	16	30	20	17						
Piperacillin-tazobactam	8 ⁴	16 ⁴	30-6	20	17	B. Ignore growth that may appear as a thin inner zone on some batches of Mueller-Hinton agars.					
Ticarcillin	8	16	75	23	23	C. Susceptibility inferred from ampicillin. D. Ignore isolated colonies within the inhibition zone for <i>E. coli</i> .					
Ticarcillin-clavulanic acid	8 ³	16 ³	75-10	23	23						
Phenoxymethylpenicillin	-	-		-	-						
Oxacillin	-	-		-	-						
Cloxacillin	-	-		-	-						
Dicloxacillin	-	-		-	-						
Flucloxacillin	-	-		-	-						
Mecillinam (uncomplicated UTI only) E. coli, Klebsiella spp. and P. mirabilis	8	8	10	15 ⁰	15 ⁰						

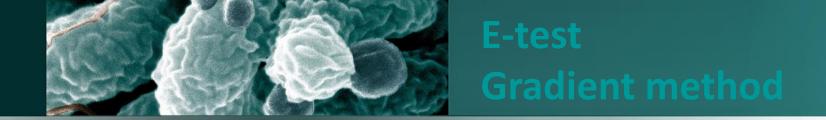
Disc diffuse methods


<u>Results:</u>

Tested strain is resistant to given ATB:


ATB diffusing from disc was not able to stop growth of bacteria and there is no inhibition zone

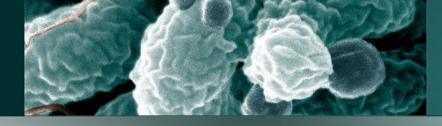
<u>Tested strain is sensitive to given ATB:</u> ATB diffusing from disc stops gowth of bacteria and inhibition zone is formed


- inhibition zone is smaller than reference value = bacteria is resistant to given ATB
- inhibition zone is larger than reference value = bacteria is sensitive to given ATB

Disc diffuse methods

• test for determination of MIC of an antibiotic

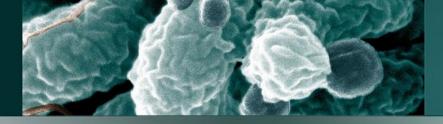
Principle:


- diagnostic strip, in which concentration of ATB decrease in logaritmic grandient – when laid on medium, similar concentration gradient is formed in medium
- after incubation inhibition zone is formed in shape of a drop in spot where the drop touches diagnostic strip, we see the MIC value

<u>Advantage:</u>

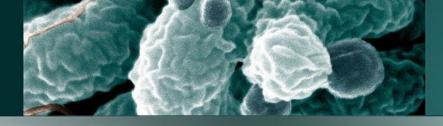
 this method combines advantages of disc method (easy manipulation) with ability to determine MIC directly

<u>Disadvantage:</u>


• costly

E-test Gradient method

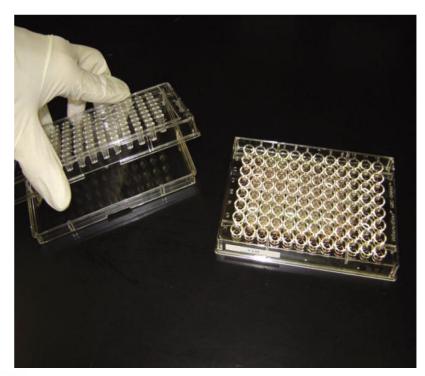
Dilution methods

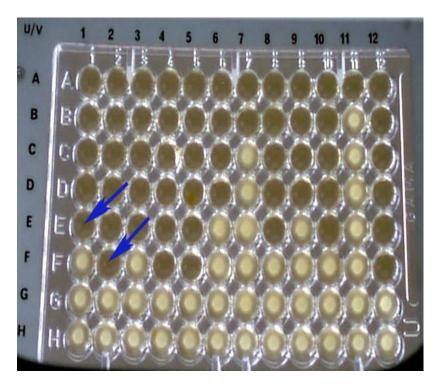

- quantitative tests

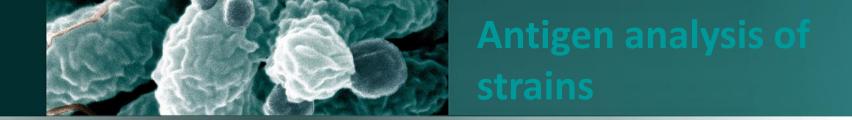
Principle:

- inhibition of bacterial growth due to given concentration of ATB
- ATB diluted in geometric series (two-fold)
- diluted ATB are mixed with liquid medium
- mixtured is added to 96-well microtitration plate
- growth of bacetria is demonstrated as turbidity
- in case of inhibition of bacteria with ATB the turbidity disappears

<u>Results</u>:

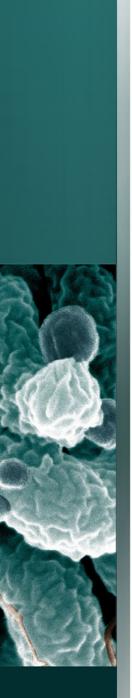

 the well in which the growth is stopped is evaluated as minimal inhibition concentration = MIC (more accurated than disc diffusion methods)



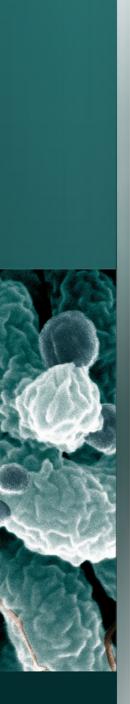

Dilution methods

Performance:

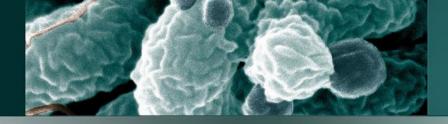
After application of mixture of bacteria and ATB, plate is incubated 24 hrs/ 37 °C and MIC is read.



- we need to know the specific antigen
- and have antibody to that antigen
 - many antigens
 - many antibodies
- in sample
 - precipitation
 - aglutination on carriers
 - immunoenzymatic reactions
 - immunofluorescence


Determination of bacterial toxin

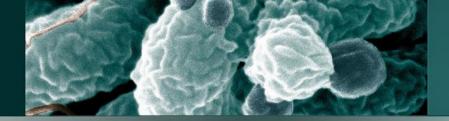
- Not very often (small amounts of toxin in samples)
- ELISA
- Experiment on animal
- Antigen antibody
 - ELISA
 - Toxins of Clostridium difficile
- Experiment on animal
 - Botulotoxin
 - Staphylococci enterotoxin
- Limulus test
 - Endotoxin of gramnegative bacteria


Determination of bacterial nucleic acids

- Without amplification
 - Gene probe
 - DNA complementary to wanted DNA
 - Chemically labeled
 - Neisseria gonorhoae and Chlamydia trachomatis in samples from urogenital tract
- With amplification
 - PCR (polymerase chain reaction)
 - Duplication of wanted sequence
 - Electrophoresis in gel

Indirect methods

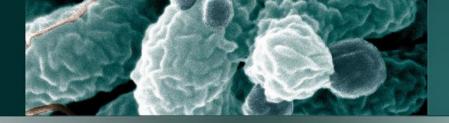
- Determination of antibodies in plasma
 - Precipitation
 - Aglutination on carriers
 - Complement binding
 - Neutralisation
 - Methods with labels: Western blot, ELISA, immunofluorescence
- Determination of specific parts of acquired immunity



Lab class no. 3

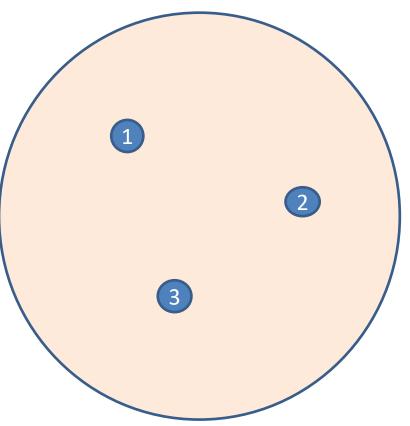
Evaluation of microorganism sensitivity to antimicrobial compounds

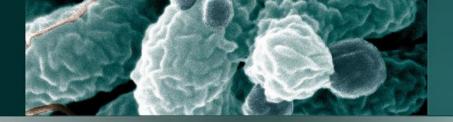
Aims:


- Disc diffusion test
- Microdilution method determination of MIC

• preparation of inoculum (suspension) of E. coli:

use one colony from cross scattering; suitable density is 0,5 McFarland, measure with densitometer

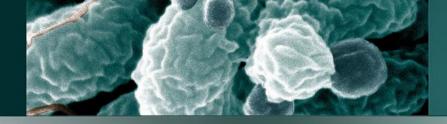




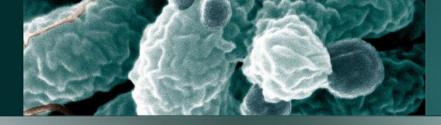
• disc diffusion test

transfer 0,5 ml of bacterial suspension to Nutrient broth agar with pipette; aspirate surplus liquid

1st disc 3000 μg/mL sol. chloramphenicol (amount in disc is 30 ug) 2nd disc 1500 μg/mL sol. chloramphenicol (amount in disc 15 ug) 3rd disc 750 μg/mL sol. chloramphenicol (amount in disc 7,5 ug)

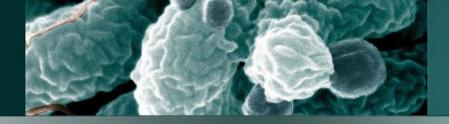





• microdilution method – determination of MIC

chloramphenicol 320 µg/ml

	1. dvojice studentů		2.	dvojice	e studer	ntů	3.	. dvojice	studer				
	1	2	3	4	5	6	7	8	9	10	11	12	výsledná koncentrace chloramfenikolu:
A													32 µg/ml
В													16 µg/ml
с													8 μg/ml
D													4 μg/ml
E													2 μg/ml
F													1 μg/ml
G													0.5 μg/ml
н													KONTROLA



Enterobacteriaceae

EUCAST Clinical Breakpoint Tables v. 7.1, valid from 2017-03-10

Miscellaneous agents	0.000 5.552	MIC breakpoint (mg/L)		Zone diameter breakpoint (mm)		Notes Numbered notes relate to general comments and/or MIC breakpoints. Lettered notes relate to the disk diffusion method.		
warmen and and an	\$s	R>		S2	R<			
Chloramphenicol	8	8	30	17	17	1. Quality control of collstin must be performed with both a susceptible QC strain (E. coll ATCC 25922 or P. aeruginosa ATCC		
Colletin ¹	2	2		Note ^A	NoteA	27853) and the collstin resistant E. coll NCTC 13846 (mcr-1 positive).		
Daptomycin	•				- 2	 <u>Agar diution is the reference method for fosfomycin</u>. MICs must be determined in the presence of glucose-6-phosphate (25 		
Fostomycin Iv	322	32 ²	200 ⁸	2400	24 ^{0.0}	mg/L in the medium). Follow the manufacturers' instructions for commercial systems. 3. Trimethoprim:sulfamethoxazole in the ratio 1:19. Breakpoints are expressed as the trimethoprim concentration.		
Fostomycin oral (uncomplicated UTI only)	322	32 ²	200 ⁸	24 ^{0,0}	24 ^{0,0}	а, питеририппацианевижаеме и не тако 1.15. в езвропне аге ехреваев ав ите инневирии консенцации.		
Fusidic acid		•		•	8	A. Use an MIC method.		
Metronidazole			-			B. Fostomycin 200 µg disks must contain 50 µg glucose-6-phosphate.		
Mupirocin						C. Zone diameter breakpoints apply to E. coli only. For other Enterobacteriaceae, use an MIC method.		
Nitrofurantoin (uncomplicated UTI only), E. col/	64	64	100	11	11	D. Ignore isolated colonies within the inhibition zone (see pictures below).		
Nitroxoline (uncomplicated UTI only), E. col	16	16	30	15	15			
Rufampicin	•	•		•	•	1		
Spectinomycin	-	•		•	÷.	1		
Trimethoprim (uncomplicated UTI only)	2	4	5	18	15	1		
Trimethoprim-sulfamethoxazole ¹	2	4	1.25-23.75	14	11	1		

Questions for the last test:

- Name basic <u>fast</u> biochemical tests
- Which test can discern *Staphylococcus aureus* from other staphylococi?
- Define MIC and MBC
- How can we measure concentration of bacteria in unknown sample and what are the units?
- What is E-test?
- Describe microdilution method, what is it for and where can we find reference values?
- Describe principle of biochemical tests
- What is MALDI-TOF and what is it used for?
- What is the use of McFarland scale
- Describe disc diffusion method, what is it for and where can we find reference values?