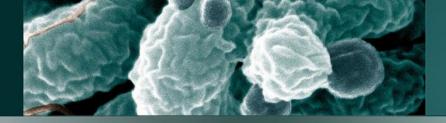


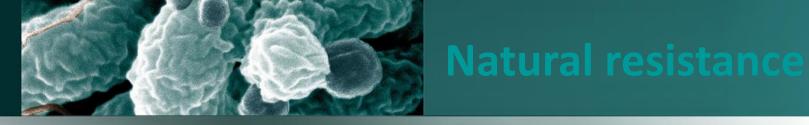
acteria

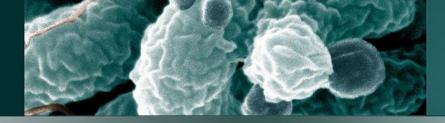
Bacterial resistance Synergy Biofilm


fppt.com

Bacterial resistance

- Bacterial infections were, are and will be one of the most serius problems in medicine.
- Usually endogenic character arise from therapeutic and diagnostic procedure.
- Infections caused by resistant strains in hospital patients have higher mortality compared to infections caused by sensitive strains of the same bacteria (↑ costs more expensive ATB, paatient isolation and prolonged hospital stay).

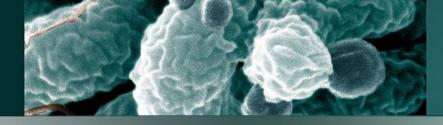



Bacterial resistance

 Resistance to an ATB is ability of bacterial population survive the effect of inhibiting concentration of given antimicrobial product.

- Resistant strain contains genes of resistance to one or more ATBs.
 - **natural** or primary
 - acquired or secondary

- Innate insensitivity of certain bacterial species to an ATB.
 - Lack of target for the ATB
 - Inactivation of the ATB
- Typical for all members of that species
- Coded by chromosomal genes
- Horizontal gene transport impossible.
- Applies in evolution of microbes as an mechanism of adaptation to new conditions in environment.
- Beta-lactamases probably evolved from enzymes responsible for synthesis of peptidoglycans (PBP).



Acquired resistance

- Secondary resistance can arise by two means:
 - phenotypic adaptation
 - genetic changes
- Conjugation sex pilus transfer of plasmids, transposones
- Transformation absorption of free NA from outside
- Transduction genetic information is part of phage NA bacteriophages

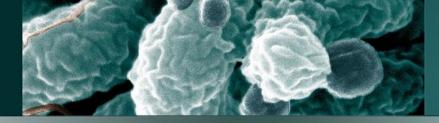
Factors:

Selection pressure and overusage of ATBs in human and veterinary medicine and agriculture.

Key concepts

MULTIRESISTANCE

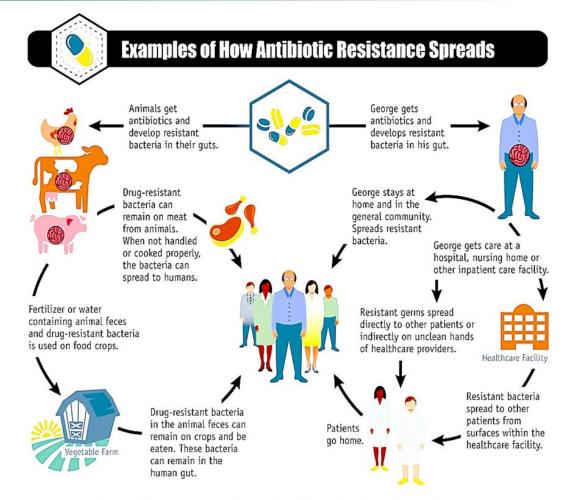
= resistance of microorganism to more than one ATBs


- Methicilin-resistant *Staphylococcus aureus* (MRSA)
- Vancomycin-resistant enterococci (VRE)
- Enterobacteriaceae producing broadspectrum beta-lactamase (ESBL) (E. coli a K. pneumoniae)
- Multiresistant *Pseudomonas aeruginosa*
- Clostridium difficile

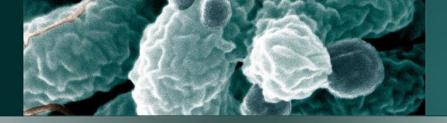
CROSS RESISTANCE

= to antibiotics, which act with same mechanism (penicilins and cephalosporins)

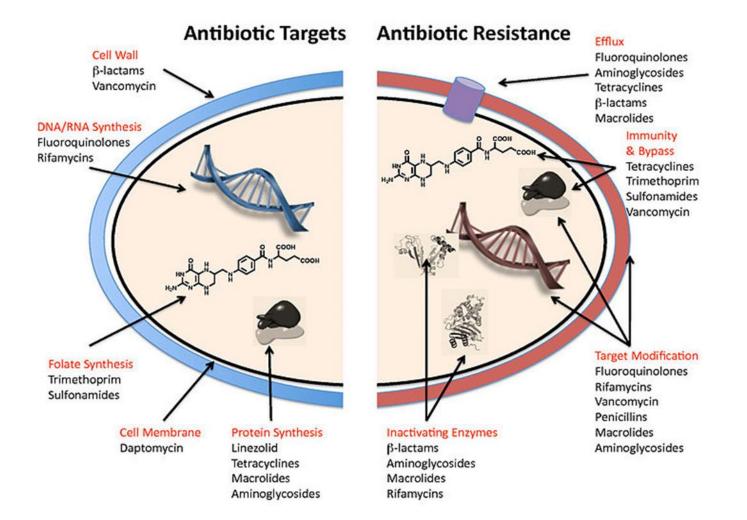
ASSOCIATED RESISTANCE


= genes are in clustres

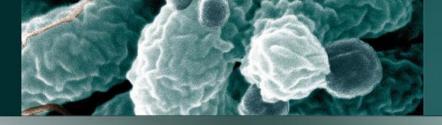
Spreading

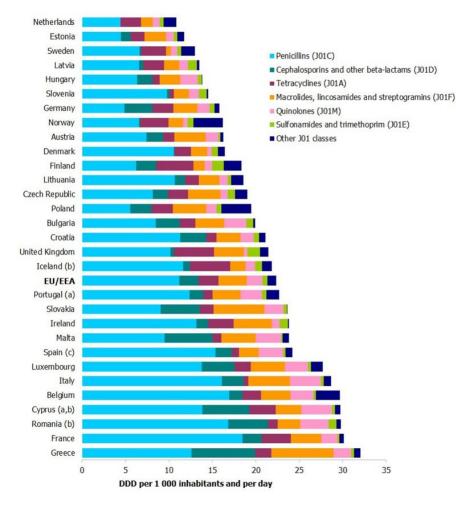

Resistant strains are in:

- People
- Animals (big farms)
- Foodstuff
- Environment (air, water, soil)
- Hospitals



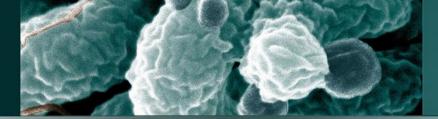
Simply using antibiotics creates resistance. These drugs should only be used to treat infections.


http://www.care2.com/greenliving/antibiotic-drug-resistant-threat-growing-at-alarming-rate-warns-cdc-infographic.html

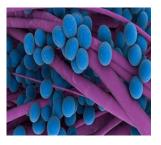

Mechanisms

https://en.wikipedia.org/wiki/Antimicrobial_resistance#/media/File:Antibiotic_resistance_mechanisms.jpg

Resistant bacterias in EU


http://www.zdravotnickydenik.cz/2015/11/rezistentnichbakterii-v-eu-stale-pribyva-o-zivot-rocne-pripravi-25-tisic-lidi/

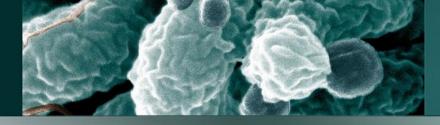
- 25 000 patients lose life p.a.
- 50% indications of ATB are needless
- 1,5 bilions € p.a. for
 - complications in treatment
- max. 30% of infections are


bacterial

• 80% of antibiotics are

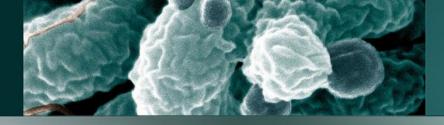
prescribed out of hospitals

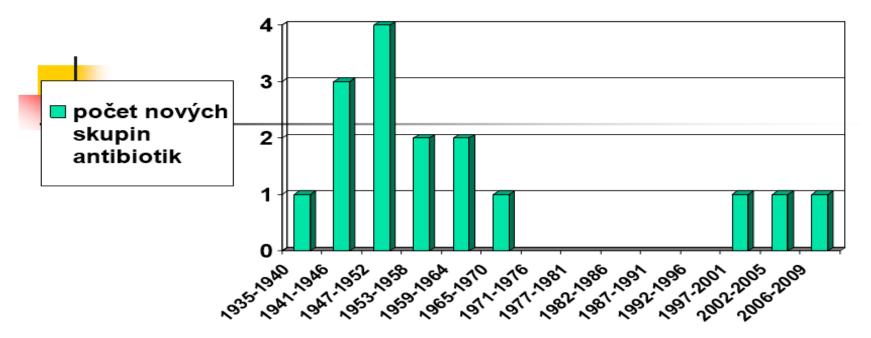
Clinically important



- Methicillin resistant *Staphylococcus aureus* (PEN, MET, TET, ERY, VAN, LIN)
- Multi-resistant *Mycobacterium tuberculosis* (ISO, RIF)
- Multi-resistant *Plasmodium falciparum* (ARTE)
- Multi-resistent Neisseria gonorrhoeae (CEF, AZI, TET, AMG)
- Multi-resistant Acinetobacter
- Multi-resistant *Pseudomonas aeruginosa*
- Carbapenem resistant *Enterobacteriaceae*
- Carbapenem resistant *Klebsiella*

Disinfectants have significant contribution to production of resistance


- in healthcare and agriculture and in households everyday usage of disinfictants
- damaging of commonly present bacterias in environment
- effectivness is reduced by dilution
- it stimulates eflux pumps present in multi-resistant strains
- usage of disinfectants in community stimulated presence and spreading of MRSA.


Clonal spreading

If there is acquisition of gene for resistance in a strain – it has higher abaility to survive and spread itself by clonal mulitiplication and spreading.

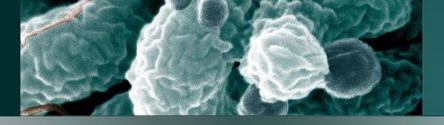
- faster colonisation of GIT
- survive more successfully
- can be mor pathogenic
- spread to environment waste water, food comtamination
- *E. coli* producing broadspectrum beta-lactamase (ESBL) CTX-M-15.
- Clones of *K. pneumoniae* (ESBL, carbapenemase) belonging to clonal complex (CC) 11
- MRSA USA300

New ATBs

1935-1940: sulfonamidy 1941-1946: peniciliny,aminoglykosidy,cefalosporiny

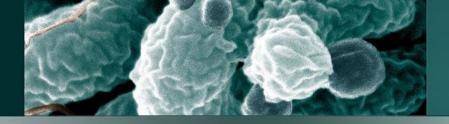
1947-1952: chloramfenikol,tetracykliny,

makrolidy,linkosamidy


- 1953-1958: glykopeptidy,rifamyciny
- 1959-1964: nitroimidazoly, chinolony

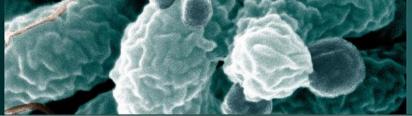
1965-1970: trimetoprim 1997-2001: oxazolidinony 2002-2005: lipopeptidy 2006-2009: glycylcykliny

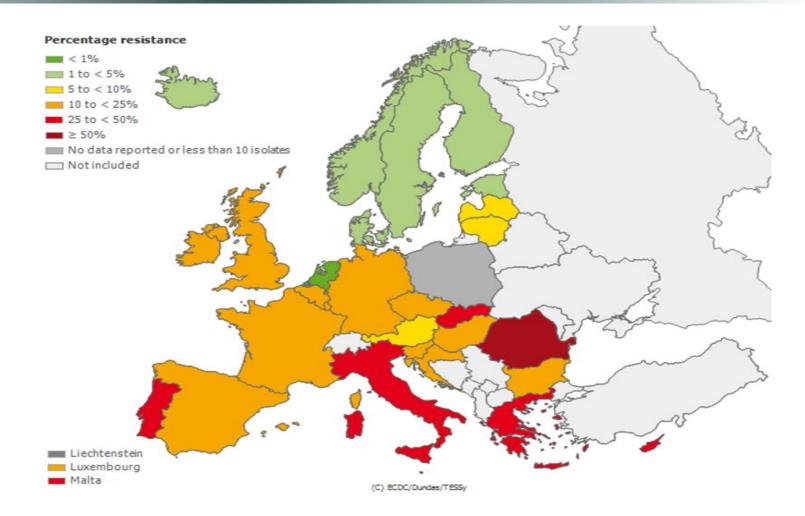
http://is.muni.cz/el/1411/jaro2014/VSAT081/um/1__INT_Uvod_do_antimikrobialni_terapie__25.2.2014_.pdf



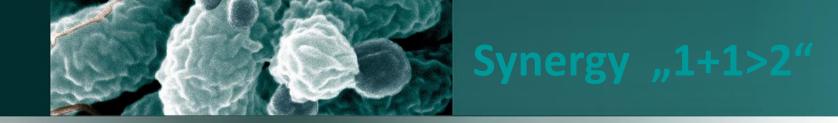
- ATBs are safe drugs and it is always better to prescribe them
- application in case of potential pathogen presence or antibody titer in blood, without any other clinical or lab markers
- application of ATBs is always risky in sense of resistance
- ATB therapy should be aimed to clinically proven baterial infections

Common mistakes in ATB therapy


- ATB in therapy of non-infectious disease (should be antipyretic)
- prescription of ATB for banal respiratory disease (rhinitis - viral)
- subdosing of ATB (production of resistant clones)
- too long or too short therapy

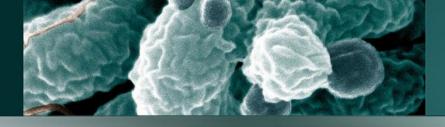

MRSA Methicillin resistant *S. aureus*

- CA-MRSA x HA-MRSA x LA-MRSA
- frequent post-traumatic/operative infection
- 24 48 hrs topical symptoms \rightarrow tissues
- CA-MRSA: 个 virulence caused by PVL, PSM, TSST-1, sepsis
- resistance to beta-lactam antibiotics (penicillins, cephalosporins)
- *mecA* (SCCmec): penicillin-binding protein 2a (PBP2a)- alternative transpeptidase
- other genes of resistance: tetracyclin, streptomycin, chloramphenicol,


MRSA in EU

http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/map_reports.aspx

- multi-efector pharmacological effect
- influence on pharmacokinetics
- reduction of toxicity
- interaction with mechanisms of bacterial resistance:
- 1) deactivation of esterases (penicillinases)
- 2) interaction with PBPs
- 3) damage of peptidoglycan
- 4) inhibition of NA synthesis
- 5) blocking of eflux systems



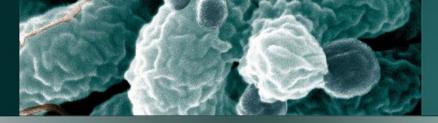
- 2 antibiotics
- antibiotic + potentiating agent (natural compound)

DEFINITION

- = cooperation, joint action
- final effect of compounds acting together is bigger than sum of effects of that compounds

Combination therapy

Aditive effect:


• effect of two compounds in combination is equal to sum of the individual effects

Synergic effect:

effect of two compounds in combination is bigger than sum of the individual effects

Antagonistic effect:

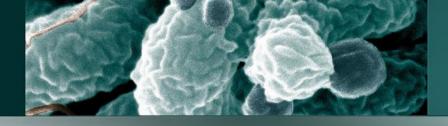
effect of two compounds in combination is smaller than sum of the individual effects

Indication for ATB in combinations

Prevention of resistance

- combination of β -lactam ATBs and aminoglycosids (to suppress production of β -lactamase)

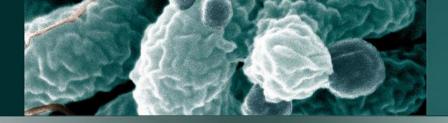
Infections caused by more microorganisms


- abdominal infections: ciprofloxacin ane metronidazol
- mixed aerobic and anaerobic organisms

Initial therapy

- when the cause of infection is not known yet
- high doses of cephtriaxone with vancomycin in case of suspection of pneumococci meningitis in regions with high resistance to PEN

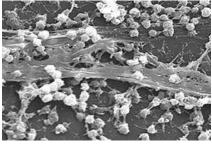
Reduction of toxicity


reduction of the dose need to treat

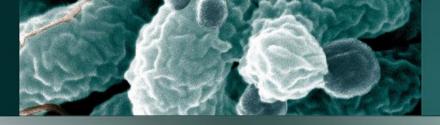
Example of synergy

 increased uptake of aminoglycoside ATB into bacteria in combination with β-lactam

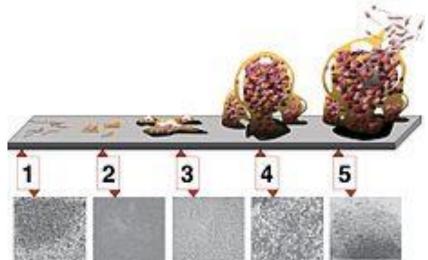
- treatment of enterococci endocarditis: ampicilin + gentamicin
- streptococci endokarditis: penicilin + gentamicin
- staphylococci bacteraemia: vancomycin + gentamicin
- pseudomonas infection: beta-lactam ATB + aminoglycoside

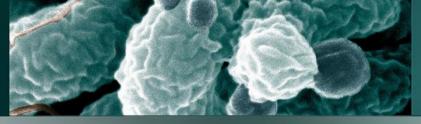


Wrong combinations

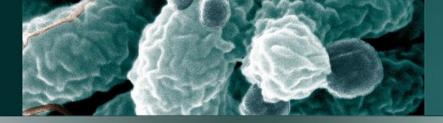

- Antagonism (PEN+TTC)
 - bactericidal compounds become bacteriostatic
 - serious for immunocompromized patients; isolated infections, where is inadequate reaction of host – meningitis, endocarditis
- Higher costs
- Adverse effects (toxicity, allergic reactions)
- Superinfections (colonisation with resistantn strains)
- False feeling of safety
- Chloramphenicol + erythromycin: in same infusion → precipitation, loss of activity
- Ticarcillin or carbenicilin with aminoglycosides → inactivation of aminoglycoside

= microbial colony in extracellular matrix (polysaccharides), adhering to inert and living surfaces

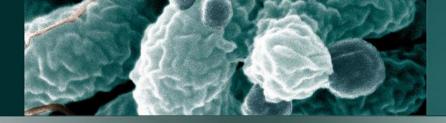

- complex structure with channels (water brings nutrients and takes away waste)
- **similar to tissues** of higher organisms
- its formation frequently depends on more bacterial species
- bacteria are shielded in biofilm v biofilmu from environment and immunity system
- biofilm can be thick from several to hundreds mm


FORMATION

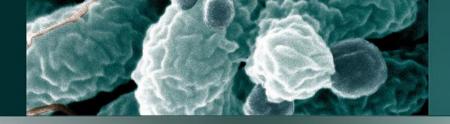
- adherence on surface → turning on genes for extracellular polymer formation → microcolonies with mucus → differentiation into biofilm → separation of bacteria and spreading
 - chemical signals turn on genes, active also in **quorum sensing** (activation of gene expression dependent on density of bac. population)


- **1.** initial adherence
- 2. irreversibile adherence
- 3. maturation I
- 4. maturation II
- 5. separation and spreading

Biofilm



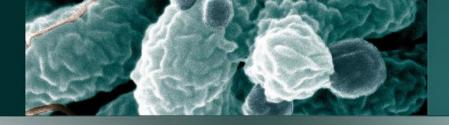
- Resistance of bac. In biofilm to ATB
- cells in biofilm are very resistant to ATB and disinfection (1000x more)
- even high doses of ATB are not enough to treat it lab results of sensitivity to ATBs can show wrong results
- resistance is expressed phenotypically not genetic resisitance
- resistant cells, which tolerate ATBs and stay in the body are called persisters
- between the cells genes transfers even 1000x more efficiently than between planctonic (free) cells
- cells in biofilm are also protected from antibodies


Places where biofilm is formed

- **dental caries** (viridans streptococci)
- **periodontitis** in pockets under gum
- otitis media (haemofilus)
- **osteomyelitis** (Staphylococcus aureus)
- cystic fibrosis (P. aeruginosa)
- burns
- **IUDs** can induce infection in pelvis and sepsis
- **artificial breathing** on surface of tubules can reach bronchus and lungs
- intravenous catheter (coagulasenegative staphylococci)
- artificial heart valves
- joint replacements
- **contact lenses** by incorrect handling *Pseudomonas aeruginosa*

- Determination of MBEC for bacteria forming biofilm is much more suitable than determination of MIC
- In patients irresponsive to therapy is appropriate to determine synergic effect of combination of ATBs
- When microbes are resistant also to combination of ATBs, then only option is to take out the biofilm source (catheters, joint replacements, etc.)
- Prevention: catheters coated with antimicrobial substances e.g. minocyclin and rifampicin, flushing, hygiene.

MBEC= (minimum biofilm eradication concentration) - 4x-1024x higher than MIC



Oral plaque

Old – **BLUE**

Newly formed – **PINK**

Questions for test:

- What is the difference between primary and secondary resistance
- Secondary resistance can develop by two means, name them
- Name two microorganisms, in which secondary resistance was developed to an ATB
- Name three mechanisms of resistance
- Name some of the common mistakes in ATB therapy
- Explain what these abbreviations CA-MRSA, HA-MRSA, LA-MRSA stand for
- What is synergic effect, name an example
- What is biofilm, name an example
- What does MBEC mean?
- Name some of the places in human body, where biofilm can be formed