

Modern Extraction and Isolation Methods

Faculty of Pharmacy MU Department of Natural Drugs

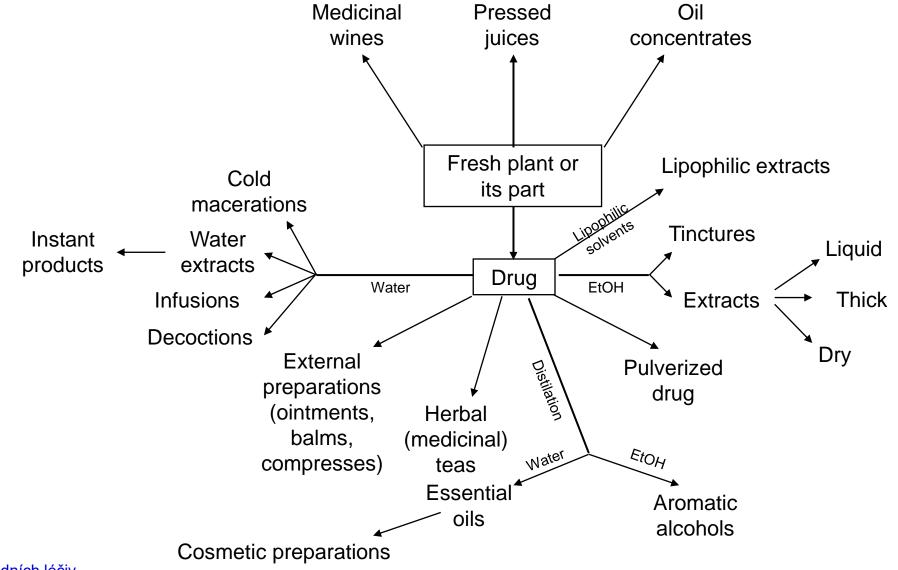
prof. PharmDr. Karel Šmejkal, Ph.D.

Introduction to Extraction and Isolation

Why to extract?

- Content of active compounds in drug low
- Content of active compounds variable
- Presence of unwanted compounds
- Drug not acceptable because of bad organoleptic properties
- The amount for direct preparation of application

form/administration too big


- Better possibility of dosage
- Better compliance of patient

Content compounds

- Main active compounds
- Supporting content compounds
- Ballast compounds

- The aim of extraction:
 - Remove ballast substances, to maintain main and supporting content compounds, the obtain extract rich in target substance

Traditional processing of medicinal plants, their parts and drugs

Methods of standardization

Analytical techniques for determination of markers and standardization

Determination of class of compounds

Total phenolics, total flavonoids, total alkaloids... Amount of volatile substances (essential oil quantification) Common utilization of color reactions Fast, simple, cheap Possible false-positive results, possible falsification

Requirements for marker:

- 1) Bioactivity
- 2) Sufficient content
- 3) Physico-chemical stability

Combination of analytical technique and biological activity

Single compounds as markers

- HPLC-DAD, HPLC-MS, GC-MS
- Quantification of one or more compounds
- Precise, more expensive, low chance of falsifying

Extraction - Fick diffusion law

$\Delta n / \Delta t = - (DA/h) \times (c_0 - c)$

- $-\Delta n/\Delta t$ velocity of diffusion
- D diffusion coefficient based on temperature and diameter of diffunding particles
- A diffusion space (surface)
- -h diffusion layer
- -(c₀-c) concentration gradient

Improved effectiveness of extraction

- Maceration (one batch method - periodic)

- Decantation, centrifugation, filtration

Matrix effects

Desintegration of material Meating Stirring Repetition of process Solvent selection Sonication

Extraction - Fick diffusion law

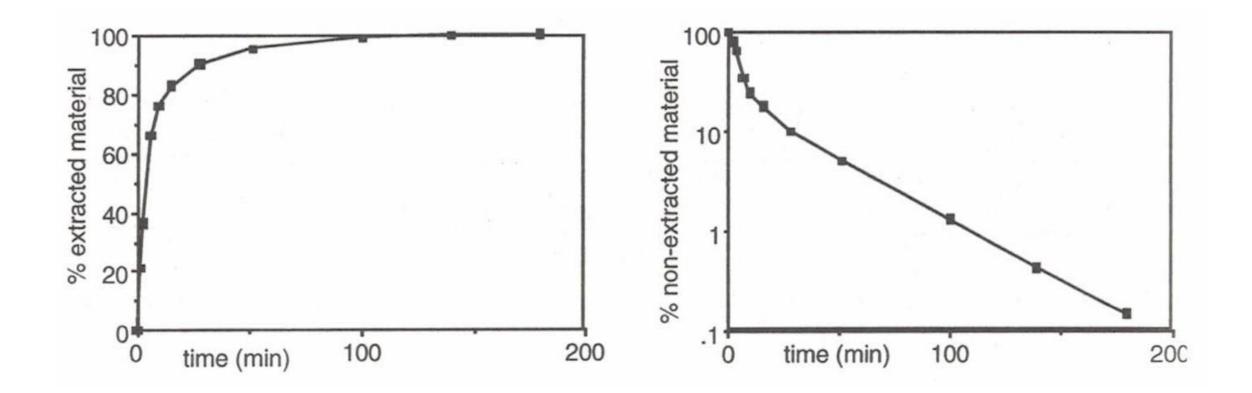
$\Delta n / \Delta t = - (DA/h) \times (c_0 - c)$

- $-\Delta n/\Delta t$ velocity of diffusion
- D diffusion coefficient based on temperature and diameter of diffunding particles
- A diffusion space (surface)
- h diffusion layer
- -(c₀-c) concentration gradient

Improved methods

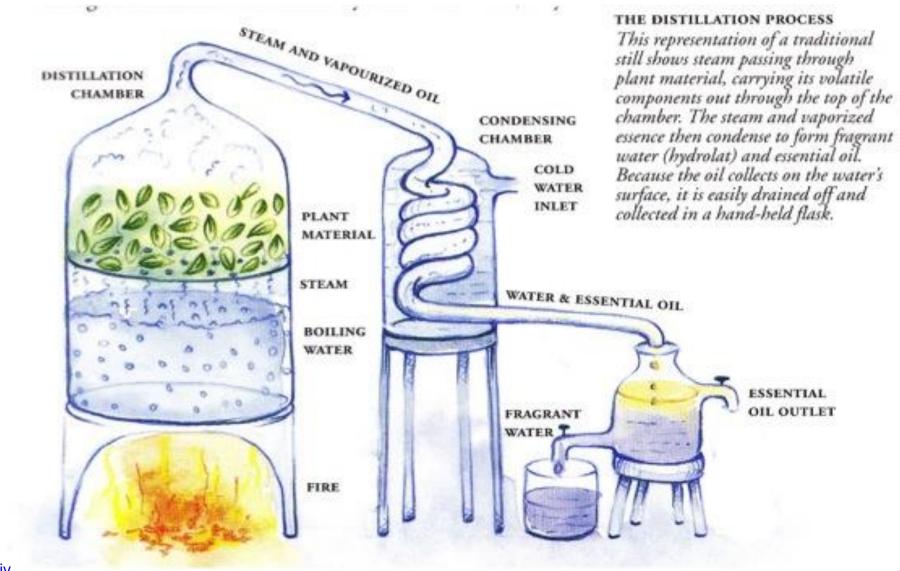
(semicontinual)

- Percolation
- Digestion
- Variations on Soxhlet extractor

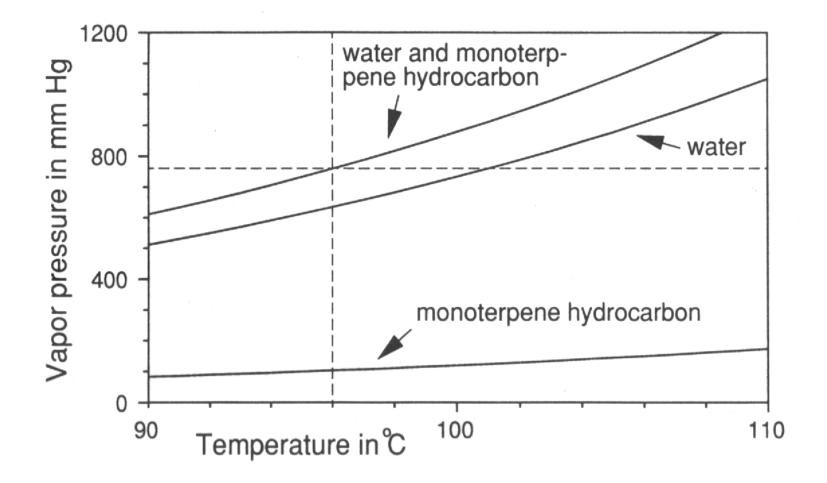

Solid-liquid extraction techniques

- Conventional extraction techniques

- maceration, percolation, squeezing, counter-current extraction, extraction through Soxhlet, distillation, etc.
- high quantities of expensive and pure solvents, a low selectivity of extraction; a high solvent evaporation rate during the process; long extraction times, thermal decomposition of thermolabile compounds


- Unconventional (innovative) extraction techniques

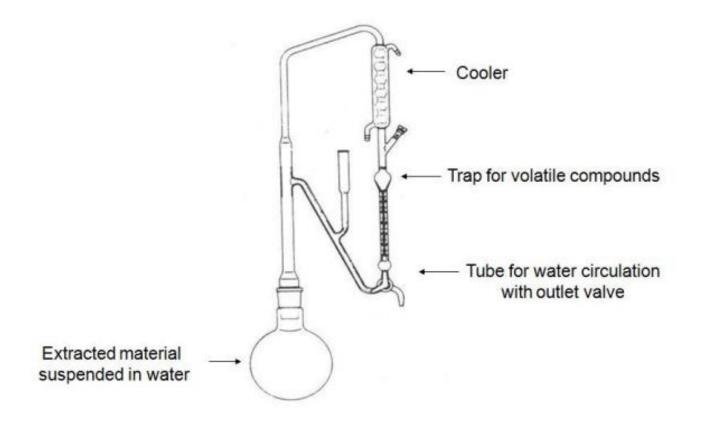
 ultrasound-assisted extraction (UAE), supercritical fluid extraction (SFE), microwaveassisted extraction (MAE), extraction with accelerated solvent, solid phase microextraction, enzyme-assisted extraction, and rapid solid-liquid extraction dynamic (RSLDE) via the Naviglio extractor


MUNI

Water steam destillation

11 Ústav přírodních léčiv

Dalton's law


MUNI

12 Ústav přírodních léčiv

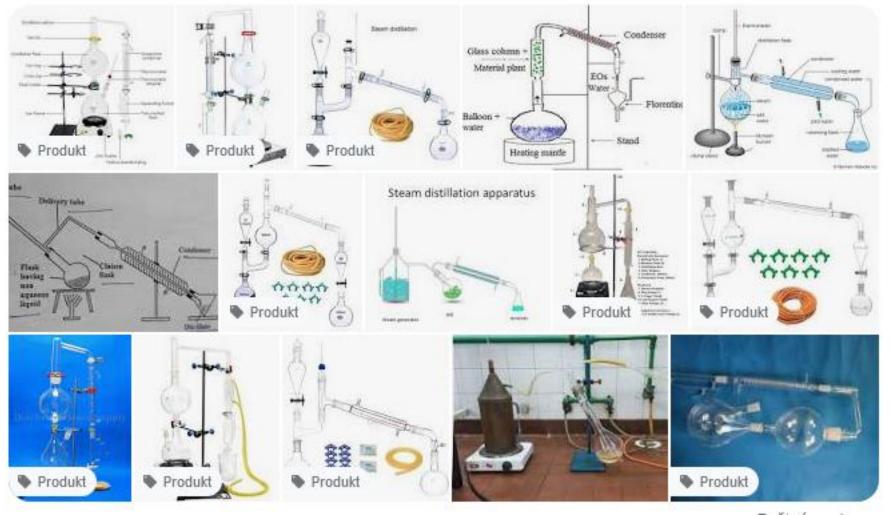
Steam distillation

Suitable for water-insoluble substances, only volatile compounds

Selective Simple Cheap

MUNT

Products of steam distillation


- Essential oils

- Eucalyptus, tea-tree oil, camphora
- Hydrolates
 - Rose water
 - Orange blossom water
- Aromatic spirits

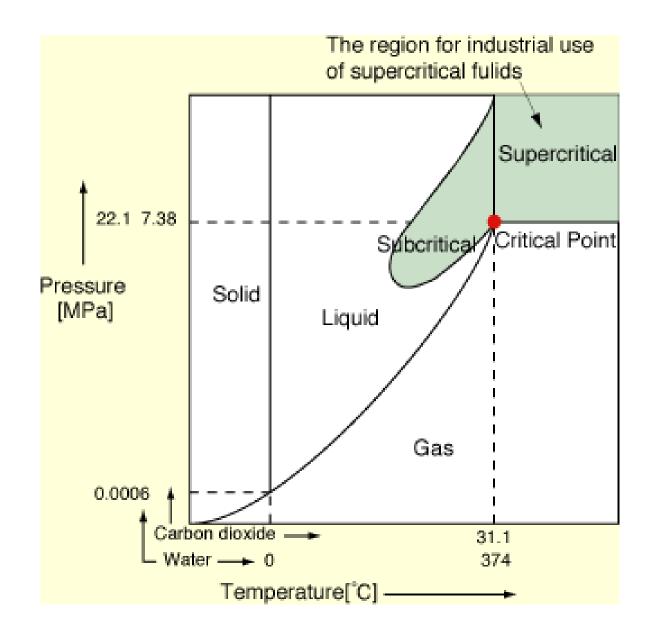
able 1: Table of analytes suitable for steam-distillation extractio

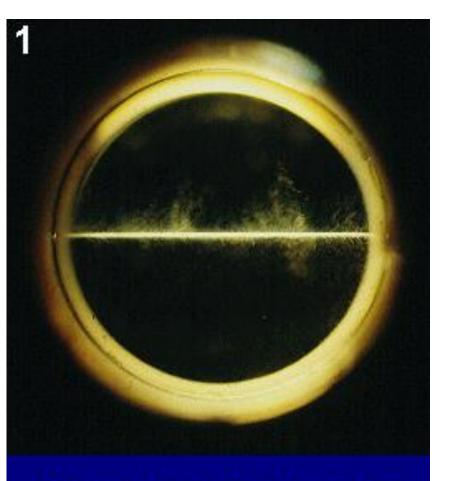
Analyte	Matrix	Quantification Method	Related Norms
Protein (nitrogen), TKN, TVBN	Food, beverages, pharmaceuticals, feed, waste water	Potentiometric / Colorimetric Titration	AOAC 2001.11 AOAC 920.87 ISO 937 ISO 3188
Ammonium, nitrite, nitrate (Devarda), urea	Fertilizer, soil, cosmetics, hair dye	Potentiometric / Colorimetric Titration	AOAC 892.01 AOAC 955.04 83/514/EEC
Alcohol	Wine, beer, spirits	Densitymeter	EC 2870/2000
Volatile acids	Wine, juice	Potentiometric Titration	OIV-MA- AS313-02
Sulfite, Sulfur dioxide	Wine, beer, dried fruits, seafood	Potentiometric Titration	AOAC 962.16
Cyanide, Amygdalin	Food, feed, waste water	Complexometric Titration	ISO 2164-1975, AOAC 915.03
VDKs	Beer	UV-Vis Spectrometry	
Phenol	Soil, waste water	UV-Vis Spectrometry	ISO 6439:1990 DIN 38409- H16-3
Formaldehyde	Textiles, maple sirup	UV-Vis Spectrometry	ISO 14184-1 AOAC 964.21
Limonene (essential oils)	Juice, fragrances, hops	Redox Titration	

Equipment

MUNI

Equipment

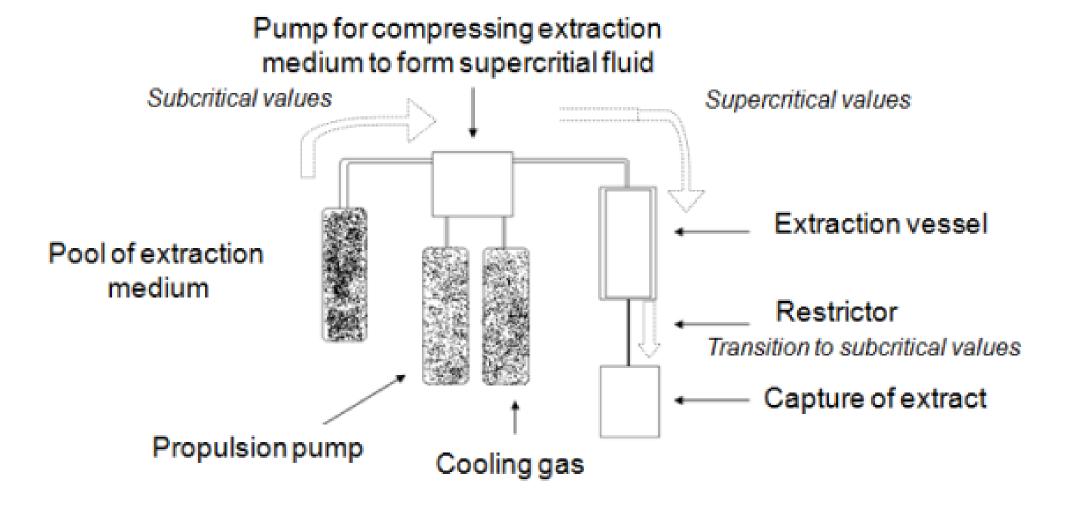

MUNI


Superkritical fluid extraction

Extraction with utilization of supercritical fluids Supercritical fluid

Pressure and temperature over critical values Physical properties form a transition between the properties of gases and liquids

Density close to liquids \rightarrow good dissolving ability Diffusion constant close to gases \rightarrow rapid mass transfer Viscosity lower than liquid \rightarrow advantage of better flow properties Low surface tension \rightarrow easy material penetration



Below the critical parameters, two distinct phases exist

MUNI

Supercritical fluid extraction

Advantages of SFE:

Gentle technique.

Ideally, no organic solvents are needed. Ecologically harmless.

Cheap.

Fast.

Possibility of automation.

Changes of solvation strength by changes of pressure.

Disadvantages of SFE:

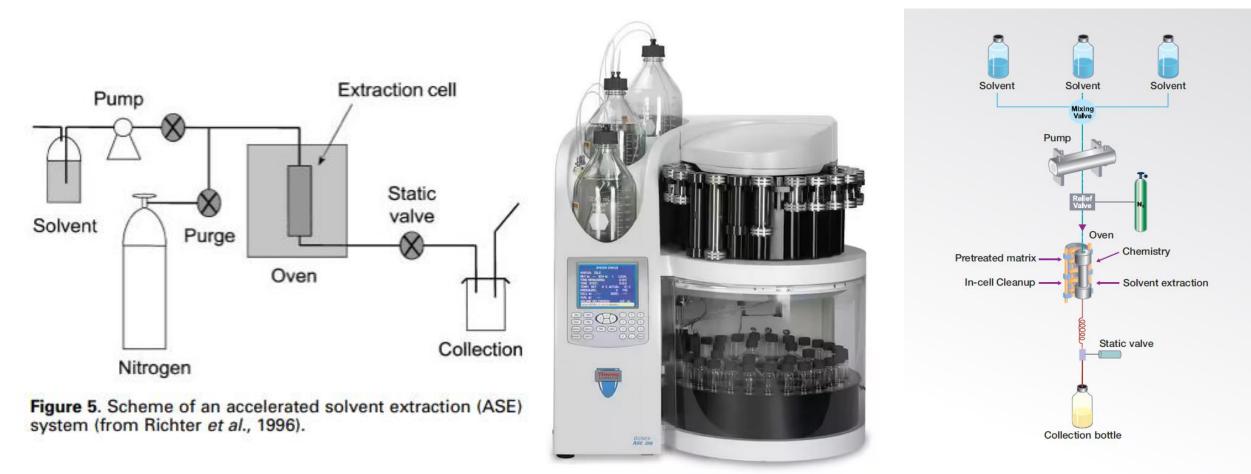
Less suitable for polar compounds. More demanding instrumentation. Requires the use of high pressures. Less suitable for leaf extraction. Extraction tuning issues. Difficult extraction of fresh material (water content).

CO₂ – non-flammable, non-explosive, easily available, cheap, environmentally friendly, advantageous supercritical region (T=31.1 °C; P=7.28 MPa), suitable for the extraction of low polar substances (essential oils, oils, waxes, carotenoids)

- Utilization:

Hop extraction. Decaffeination of coffee. Extraction of taxol from *Taxus brevifolia*. Extraction of essential oils and spices. Non-pharmaceutical purposes

SFE

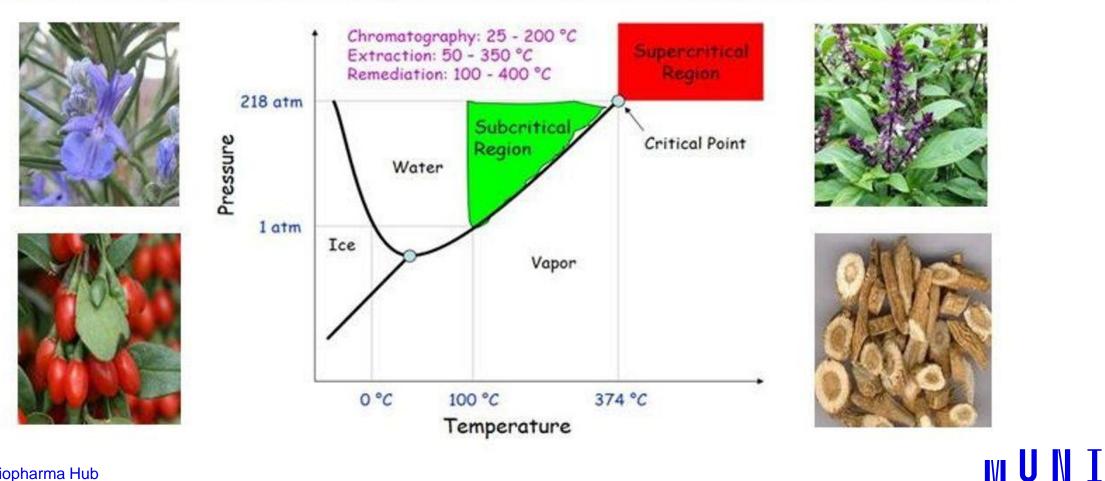

22 Ústav přírodních léčiv htt

https://www.youtube.com/watch?v=DunzmKCDk0c

Accelerated solvent extraction (ASE)

- Increased extraction yields and reduced time
- An increased diffusion
- Liquids operating above their boiling temperature while being maintained in a liquid state by the increase in pressure
- A cylindrical steel container, the extracting solvent is introduced
- The temperature of the system is raised above the boiling point of the solvent, which is maintained in the liquid state thanks to a simultaneous increase in pressure (the vial is sealed to resist high pressure values: 100–200 bar)
- Not suitable for thermally labile substances

Accelerated solvent extraction (ASE)

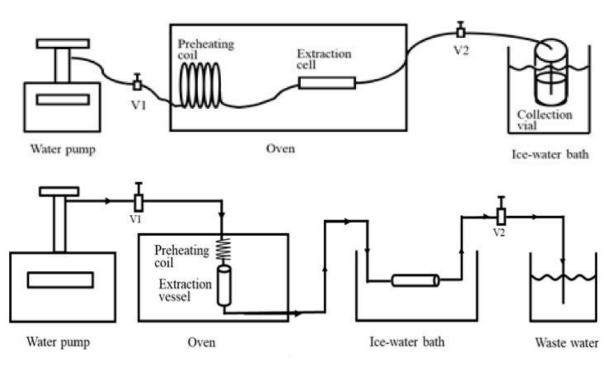


https://www.thermofisher.com/cz/en/home/industrial/chromatography/chromatography -sample-preparation/automated-sample-preparation/accelerated-solvent-extractionase.html

24 Ústav přírodních léčiv

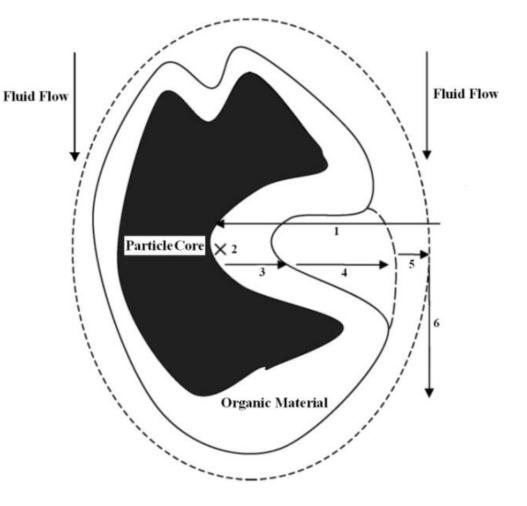
https://www.thermofisher.com/order/catalog/product/083114

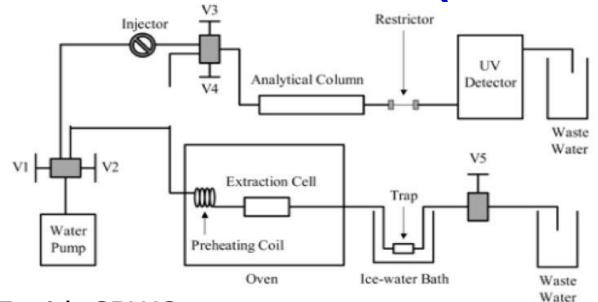
Green Subcritical Water Extraction of Natural Products

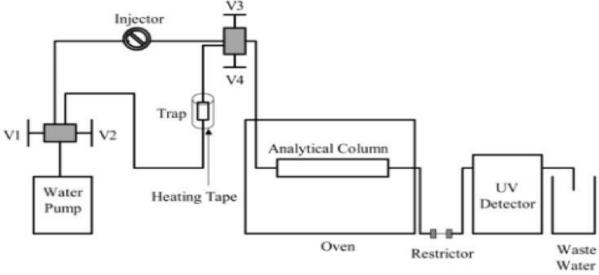


- 1) reversed-phase liquid chromatography using subcritical water as the sole mobile phase-subcritical water chromatography
- 2) extraction of environmental samples
- 3) hydrolysis, degradation, polymerization, and synthesis reactions using subcritical water as both a solvent or a reactant
- 4) environmental remediation such as cleaning contaminated sewages and soils, decomposing pollutants (pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls) and explosives
- 5) extraction of active ingredients from medicinal and seasoning herbs, vegetables, fruits, and other plant related matrices

- High-temperature and high-pressure water
 - Temperature and pressure below its critical point (Tc = 374.15 °C, Pc = 22.1 MPa).
- Its polarity can be dramatically decreased with increasing temperature
 - Dielectric constant, viscosity, and surface tension all decrease steadily
 - Its diffusion coefficient is improved with increasing water temperature
- SW can behave similar to methanol or ethanol
- Co-solvents include ethanol, methanol, salts, and ionic liquids
- Support by microwave and sonication


27 MUNI Biopharma Hub




Static × dynamic

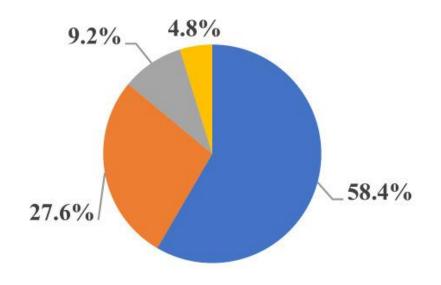
The SWE process can be proposed to have six sequential steps: (1) rapid fluid entry; (2) desorption of solutes from matrix active sites; (3) diffusion of solutes through organic materials; (4) diffusion of solutes through static fluid in porous materials; (5) diffusion of solutes through layer of stagnant fluid outside particles; and (6) elution of solutes by the flowing bulk of fluid

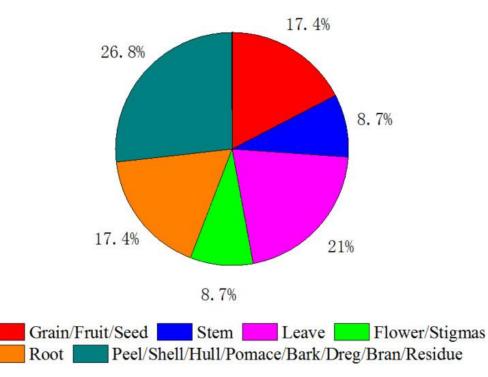
Offline coupling of SBWE with SBWC

29 MUNI Biopharma Hub

Vater

MUNI




- The major advantage of SBWE

- Water is nontoxic \rightarrow suitable for the extraction of herbs, vegetables, and fruits
- No liquid waste disposal
- Ecology, economy, and safety
- Density, ion product, and dielectric constant can be adjusted by temperature
- Optimal temperature 130 to 240 °C

 Flavonoids, organic acids, glycosides, carbohydrates, polyphenols, essential oils, alkaloids, lignans, steroids

Plants Food by-products Marine algae Fungi

32 MUNI Biopharma Hub

Ultrasound assisted extraction

- An innovative technique, used in different settings
- "Clean technology"
- Use of low solvent volumes
- Short Ets
- Few instrumental requirements
- Low economic and environmental impact
- Technique employs ultrasonic waves frequencies between 20 kHz and 10 MHz
 - power ultrasound (20–100 kHz), characterized by a high intensity, used for extraction and processing applications
 - signal or diagnostic ultrasound (100 kHz– 10 MHz), employed as a clinical diagnostic technique, and for control and quality assessment
- Acoustic cavitation (AC)

Figure 1

(A) The sound spectrum: audible range (20 Hz–20 kHz), ultrasound range (20 kHz–10 MHz) and microwave range (>10 MHz). (B) Bubble growth cycle during acoustic cavitation. Rarefaction and compression. A cycle of ultrasonic wave holds an expansion (rarefaction) and compression phases. In rarefaction phase, gas diffused into a bubble because of external pressure (P_0) is higher than internal pressure (P_1). However, gas diffused out of bubble during compression phase due to internal pressure is higher than external pressure.

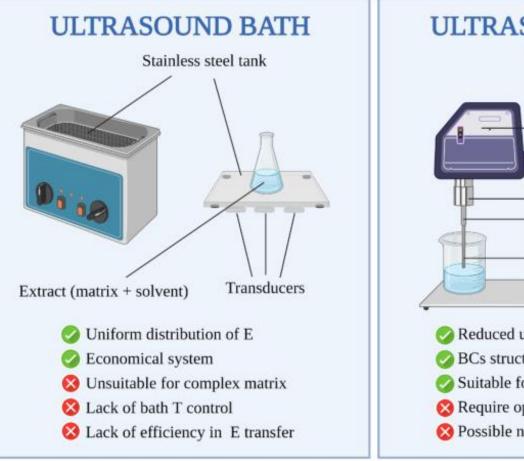
Ultrasound assisted extraction (UAE)

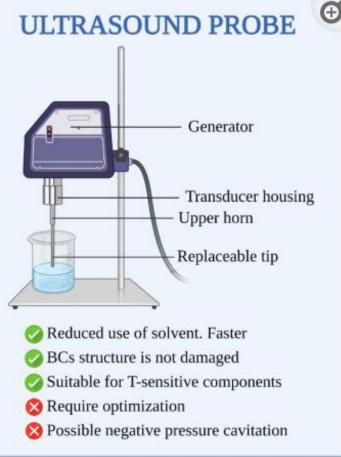
– UAE-Associated Mechanisms

- Fragmentation → the reduction of matrix particle size guided by the ultrasonic action → increases the solid surface area to develop mass transfer, driving to better extraction yields
- Erosion → the release of solid structures from the matrix into the extractive solvent, caused by the collapse of cavitation bubbles
- Sonocapillary \rightarrow an enhanced penetration of solvent into the canals and pores of the matrix
- Detexturation \rightarrow the solid matrix destruction
- Sonoporation \rightarrow an increase in cell membranes permeability, forming of membrane pores
- Local shear stress → generation of shear forces onto the matrix surface, causing the later rupture of its structures and the extraction of inner compounds in the solvent

Relevant Parameters Associated with UAE

- Physical parameters power, frequency, and ultrasound intensity, related with the ultrasound equipment – ET, shape and size of ultrasonic reactors
- Medium parameters the solvent nature and its properties (polarity,, viscosity, surface tension, solvent vapor pressure), extraction time, the presence of gases, new green solvents for lipophilic extraction → ionic liquids and deep eutectic solvents
- Matrix parameters
 - type of matrix, structure, pre-treatment, particle size, or solid-liquid ratio


Ultrasound assisted extraction


Advantages

- Similar results as extraction by pressing (squeezing)
- High speed
- Economic advantage
- Relatively low-cost technology involved

Disadvantages

- The system heats up due to the prolonged treatment
- The solid matrix is completely crushed
 → difficult to separate the mass from extract
- The use of ultrasound energy of more than 20 kHz may influence the active phytochemicals through the formation of free radicals.

MUNT

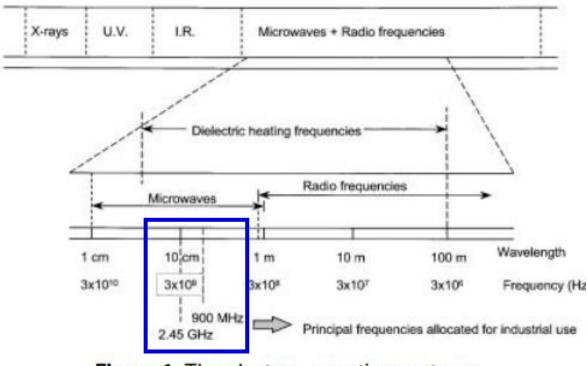
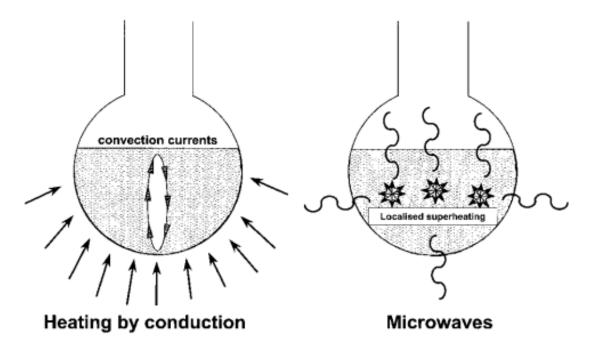



Figure 1. The electromagnetic spectrum.

Figure 2. Scheme of the heating principle by conduction in the classical method of extraction and by microwave irradiation in microwave-assisted extraction.

– Microwaves at 2.45 GHz

- Electric field causes heating

- Dipolar rotation
 - Molecules with dipol moment (permanent or induced), both in solvent and solid
 - Oscillation caused collisions and interactions with surrounding molecules \rightarrow deliberation of thermal energy
 - Larger dielectric constant of solvent greater heating
- Ionic conduction
 - Ion currents formation resistence induces heat

– Extraction

- Disruption of weak hydrogen bonding
- Viscosity decreases effect
- Migration of ions increases solvent penetration into matrix
- In some cases, the matrix itself interacts with microwaves while the surrounding solvent possesses a low dielectric constant and thus remains cold
 - Advantageous in the case of thermosensitive compounds the extraction of essential oils, microwaves interact selectively with the polar molecules present in glands, trichomes or vascular tissues. Localized heating leads to the expansion and rupture of cell walls and is followed by the liberation of essential oils into the solvent

 Table 1. Dielectric constants and dipole moment values of some commonly used solvents

Solvent	Dielectric constant (20°C)	Dipole moment (25°C) (Debye)
Hexane	1.89	<0.1
Toluene	2.4	0.36
Dichloromethane	8.9	1.14
Acetone	20.7	2.69
Ethanol	24.3	1.69
Methanol	32.6	2.87
Water	78.5	1.87

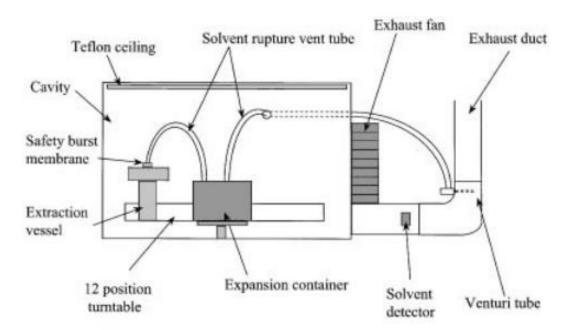
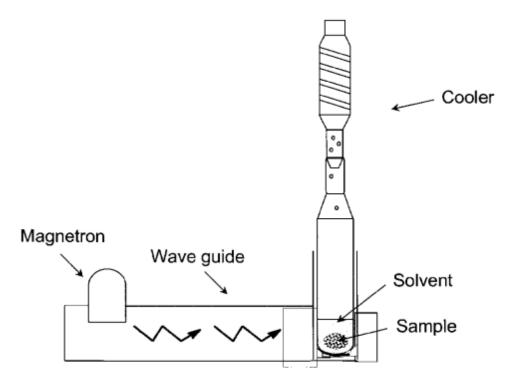
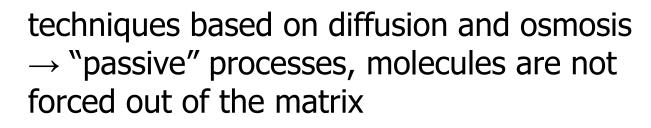



Figure 3. Schematic diagram of a closed-vessel microwave system for extraction.

- Closed and open vessels

Figure 4. Schematic diagram of an open focused-microwave system for extraction.

Table 2. Application of MAE to natural product extraction

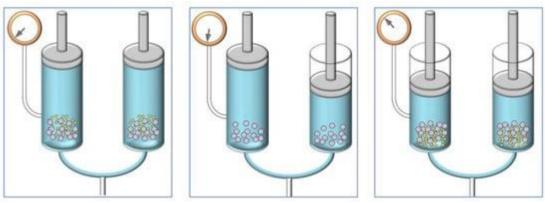

- Combination of MAE with different methods
 - Maceration
 - Percolation
 - Distillation

Compounds	Matrix	System	Extraction conditions	Reference
Vicine, convicine (pyrimidine glycosides)	Faba beans (<i>Vicia faba</i>)	Domestic oven	Methanol:water (1:1); two successive irradiations (30 s) with an intermediate cooling step	Ganzler <i>et al.</i> (1986a, 1986b); Ganzler and Salgò (1987)
Gossypol	Cotton seeds	Domestic oven	Three cycles of irradiation (30 s) with cooling steps in between	Ganzler <i>et al.</i> (1986a); Ganzler and Salgò (1987)
Sparteine (alkaloid)	Lupine seeds	Domestic oven	Four cycles (30 s) with cooling steps in between	Ganzler <i>et al.</i> (1986b, 1990)
Terpenes (linalool, terpineol, citronellol, nerol and geraniol)	Must (<i>Vitis vinifera</i>)	Closed vessels	10 mL dichloromethane; 475 W; 10 min; 90°C	Carro <i>et al</i> . (1997)
Essential oils	Monarda fistulosa, Allium sp.	Modified domestic	Hexane	Paré (1990)
Volatile oils	Mentha piperita, Thuja occidentalis	Modified domestic	Hexane, alkanes (transparent solvents)	Paré (1994)
Essential oils	Rosemary and peppermint leaves	Domestic oven	Hexane, carbon tetrachloride, toluene; 750 W; <60 s	Chen and Spiro (1994)
Essential oils	Plant leaves	Domestic oven	Hexane; <60 s	Collin et al. (1991)
Essential oils	Fresh leaves of <i>Lippia</i> sidoides	Domestic oven	"High cooking level"; 5 min	Craveiro <i>et al</i> . (1989)
Carotenoids	Paprika powder	Closed vessels	50 W; 120 s;<60°C	Csiktunadi Kiss <i>et al.</i> (2000)
Taxanes (paclitaxel)	Needles of <i>Taxus</i> sp.	Closed vessels	5 g fresh needles pre- soaked with 5 mL water prior to extraction with 10 mL of 95% ethanol; 100% power; 54 s; 85°C	Incorvia Mattina <i>et al.</i> (1997)
Ergosterol Withanolides	Fungal contaminations lochroma gesnerioides leaves	Domestic oven Open cell, focused	375 W; 35 s 100 mg material pre- soaked with 0.6 mL water prior to extraction with 5 mL methanol; 25 W; 40 s	Young (1995) Kaufmann <i>et al</i> . (2001a
Cocaine and benzoylecgonine	Erythroxylum coca leaves	Open cell, focused	Methanol; 125 W; 30 s	Brachet et al. (2002)
Alkaloids	Senecio sp.	Closed vessels	65–100°C	Bicchi et al. (1992)

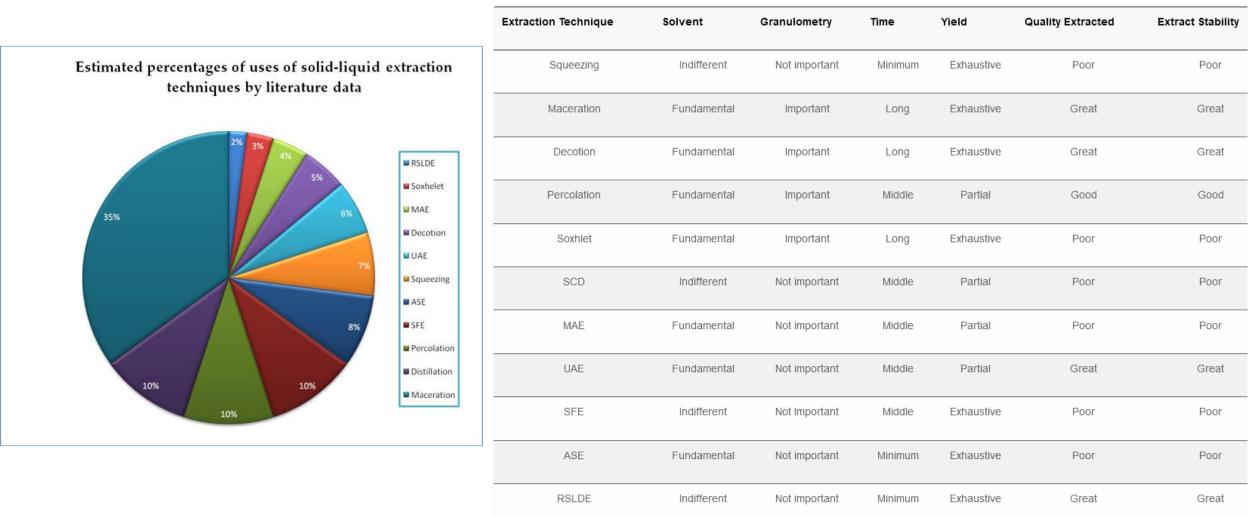
Rapid Solid-Liquid Dynamic Extraction (RSLDE)

- a negative gradient of pressure between the inner material and the outside of the solid matrix (high pressure inside and low pressure outside; Naviglio's principle).
- when the gradient of pressure is removed, the liquid flows out of the solid in a very fast manner and carries out all substances not chemically bonded to the main structure of the solid.

an "active" process \rightarrow the gradient of pressure forces out the molecules


https://doi.org/10.3390/foods8070245

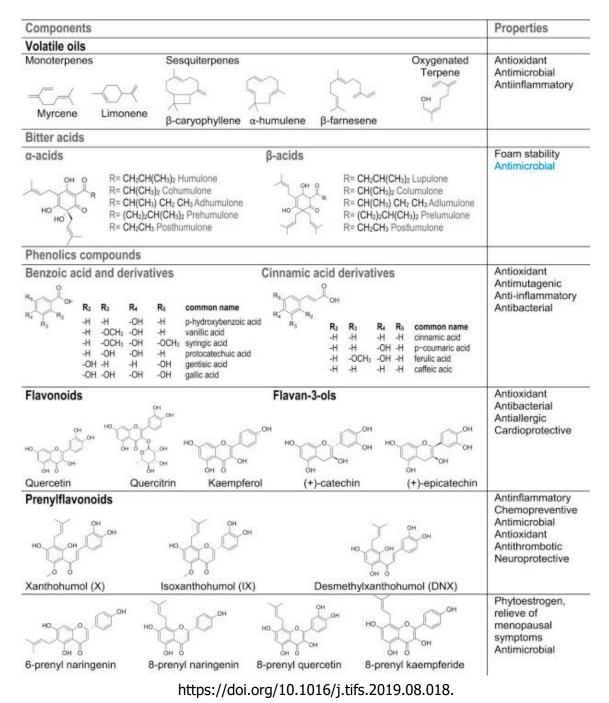
Rapid Solid-Liquid Dynamic Extraction (RSLDE)


- An extractive cycle consists of both static and dynamic phases
- The static phase
 - \rightarrow the liquid is maintained under pressure at about 10 bar on the solid to be extracted
 - left long enough to let the liquid penetrate inside the solid and to balance the pressure between the inside and the outside of the solid (about 1–3 min)
- The dynamic phase
 - the pressure immediately drops to atmospheric pressure
 - a rapid flowing of liquid from the inside to the outlet of the solid matrix
 - a suction effect of the liquid from the inside towards the outside of the solid.
 - Extractable material transported by solvent
- The cycles can be repeated until the solid runs out, about 30 extractive cycles (two-minute static

phase; two-minute dynamic phase)

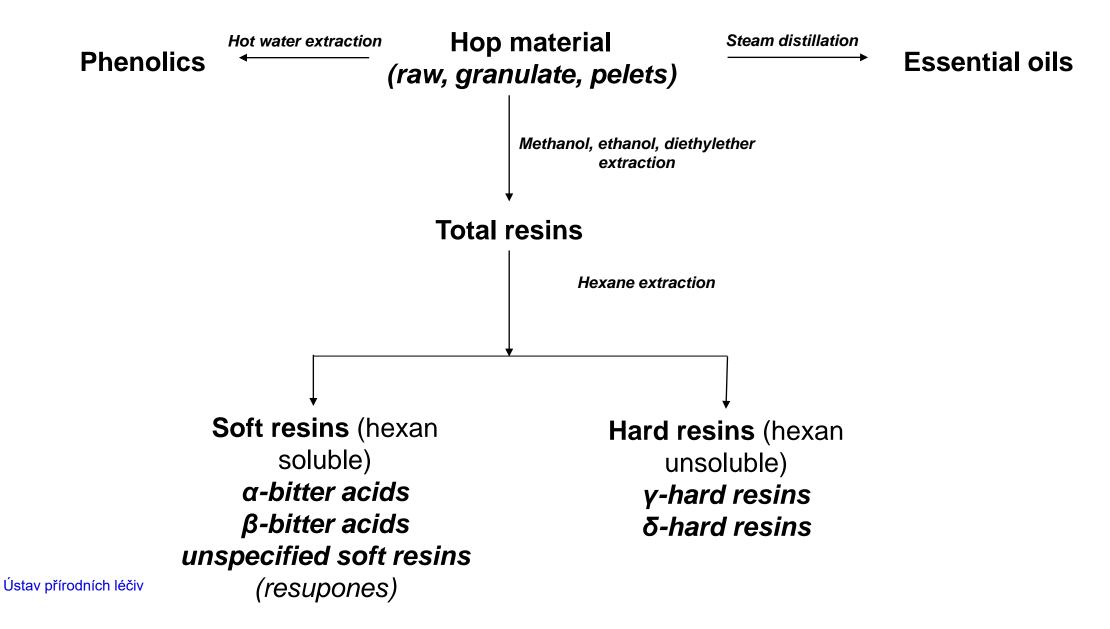
Figure 1. Schematic representation of the Naviglio extractor consisting of two extraction chambers connected via a conduit: the first two images show the dynamic phase, while the third image the static phase.

Comparison of different extraction techniques



LUPULI FLOS – Hop flowers (ČL 2017)

Humulus lupulus L. – Hop, Chmel otáčivý (Cannabaceae)


- a dioecious, right-handed winding climbing plant
- cultivated in US, Europe and northern Asia
- only female plants are grown, they reproduce vegetatively

Hop processing

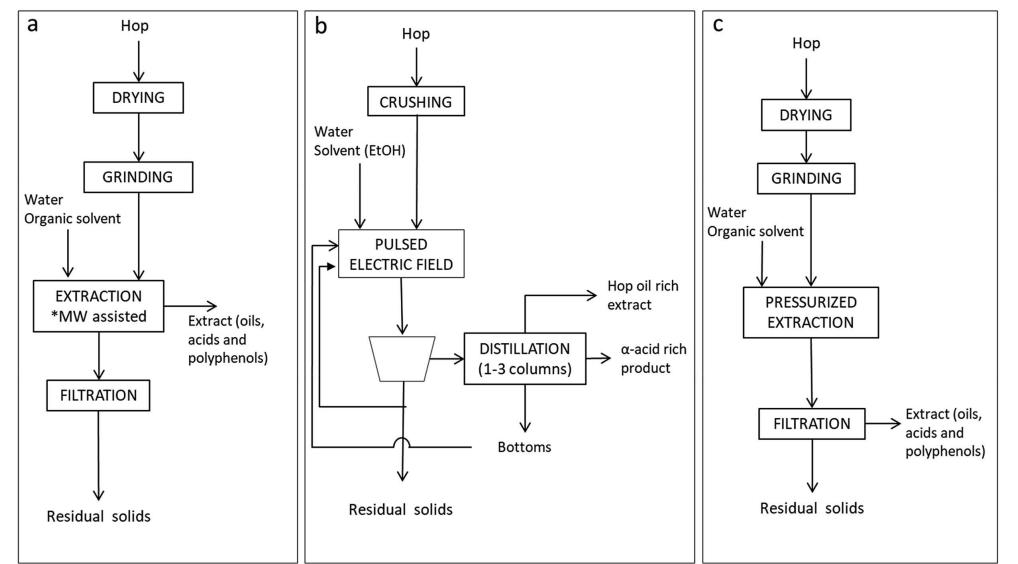
44

Hop products and extracts

Products

- Mechanical products - compressed hop, granulates

Extracts


- Ethanol (MW assisted, Rapid Solid-Liquid Dynamic Extraction (RSLDE) -

Naviglio's principles)

- Extract containg besides α -acids, β -acids and hop essential oils also phenolics and tannins
- 90% ethanol, possible fractionation to get hop tannins (water soluble)

$-CO_2$

- Supercritical or subcritical effectivity/yield/conditions
- pure hop resin extract containing α -acids, β -acids and hop essential oils.
- Steam distillation (MW assisted)
 - pure extract hop essential oils
- Vaccum distillation and chromatographic purification of CO₂ extracts

Extraction of hop components conventionally or assisted by intensified technologies, a) solvent extraction optionally assisted by microwave (Jeliazkova et al., 2018; Tyśkiewicz et al., 2018), b) extraction assisted by pulsed electric field (Held & Stanis, 2018), and c) pressurized extraction

https://doi.org/10.1016/j.tifs.2019.08.018.

 $T_{a}ble$ 2. Examples of the influence of the operational conditions with dense CO_{2} on the extraction of hop components.

oı	perational conditions	Composition of the extract	Reference				
Li	Liquid CO ₂						
5-	6.1 MPa, 16–25 °C	Oils, α-acids (>40%), β-acids	Laws et al., 1977				
01	ne stage supercritical CO2						
s-:	11 MPa, 40–60 °C, pure CO2	Essential oil	Van Opstaele et al., 2012a; Katono et al., 2018				
		Essential oil, α acids, β acids	Del Valle et al., 2003; Zanoli & Zavatti, 2008; Formato et al., 2013; Kupski et al., 2017				
Tν	vo stages supercritical CO ₂						
1	8–9 MPa, 50 °C	Essential oil (floral)	Goiris et al., 2002; Van Opstaele et				
2	11 MPa, 50 °C	Essential oils (spicy, sesquiterpenoids)	al., 2012b				
1	15 MPa, 40 °C. Sep: 1.5 MPa, 20 °C	Essential oil	Zeković et al., 2007; Byelashov et al.,				
2	25–30 MPa, 40–48 °C. Sep. 1.5 MPa, 20 °C	Acids, α-acids (41%)	2018				
1	28–30 MPa, 50 °C	Essential oils and bitter	Forster et al., 2003; Jakowski et al.,				
2	85–90 MPa, 75–90 °C, pure CO ₂ or EtOH-mod. (20 wt%). Sep.: 6–7 MPa, 40–60 °C	acids Xanthohumol	2015				
1	20 MPa, 40 °C	Essential oils and bitter	He et al., 2005				
2	25 MPa, 50 °C, EtOH-mod.	acids Flavonoids					
1	alcohol, acetone or mixtures, soaking in CO_2 (2.5–6 MPa)	Xanthohumol	Rój and Kozlowski, 2016				

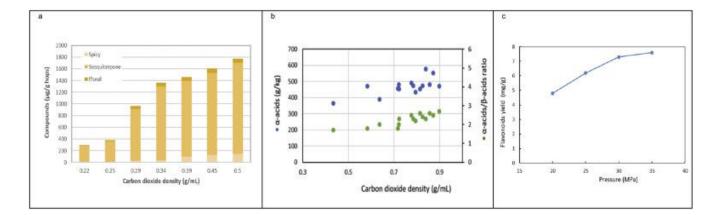


Fig. 2. Effect of solvent density during supercritical CO₂ extraction of a) essential oils (Van Opstaele et al., 2012a), b) bittering compounds (Del Valle et al., 2003) from hop pellets and c) effect of pressure during sc-CO₂ extraction using ethanol (70%) as cosolvent, on the phenolic yield from waste hops (He et al., 2005).

MUNI

47

2 sc-CO₂ (25–55 MPa, 40–85 °C). Sep.: 5–7 Mpa, 17–40 °C