

In vitro Toxicity Evaluation

Toxicology Seminar Autumn 2022

Position of *in vitro* methods among the processes of toxicity testing

Prediction of the effect – based on known characteristics, similarities etc.

Simplified live models – Effect assesment, dose determination etc.

Example of testing strategy – e.g. skin sensitization test

- a. in silico (structure characteristics, pKa, log P etc.)
- b. in vitro human skin models
- c. in vivo animal model usually albino rabitt

In vitro models

= living system simplified as compared with the in vivo model

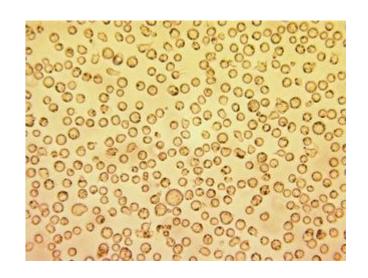
Types of *in vitro* models

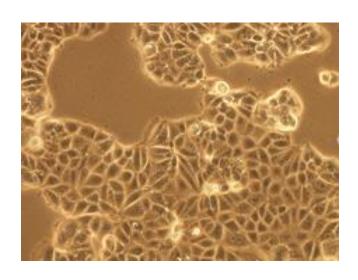
- Subcelular models (e.g. isolated mitochondria)
- Cell cultures
- Tissue cultures
- Isolated organs
- 2D vs. 3D modely

In vivo x in vitro models

	++	
In vivo	Possible toxicokinetic testing	Financial aspects, time-consuming
	Monitoring of the effect of systemic regulation	Ethical aspects
	In vivo models can not be fully eliminated !!	Interindividual differences
In vitro	Testing a larger number of compounds in a short time-period	No information about systemic regulation
	Plenty of biological material as a model	For the replacement of in vivo model validation techniques are required
	Reproducibility	The problem with the extrapolation of data
	Possibility of using human cell cultures	Not all cell types can be cultured in vitro
	Determination of organ-specific toxicity (eg. hepatotoxicity, nephrotoxicity etc.)	Culturing under non-physiological conditions (culture media, cell lines in the absence of tissue context)

Cell line


- Permanent cell lines
 (immortalized they will proliferate "indefinitely")
- Single cell type
- Fully adapted to in vitro conditions
- They are derived from tumor cells or transformed from normal cells by physical or chemical mutagens
- Sources cell lines:
 - ATCC (American Tissue and Cultures Collection)
 - ECACC (European Collection of Cell Cultures)



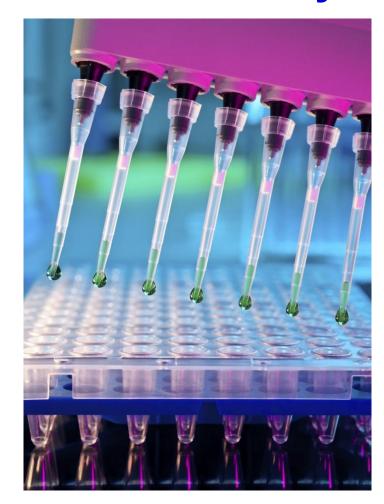
In suspension

Adherent

Culture conditions

- !! Sterile conditions !! Risk of contamination
- Laboratory equipment
 - incubator, flowbox etc.

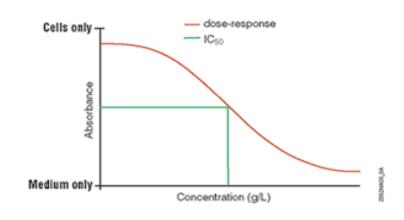
Culture conditions

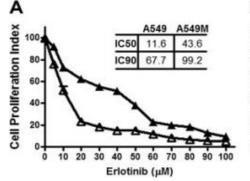


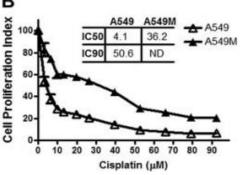
In vitro cell culture model for the evaluation of toxicity

One cell type – homogenous properties e.g
 expression of specific receptors, overexpression of cell cycle regulators etc.

Enable us to study the molecular basis of the toxic
 effect – how the potential toxic substances affect their biological targets


The results correspond to the effect of the substances without any interactions with other cell types or tissues




Resulting parameters

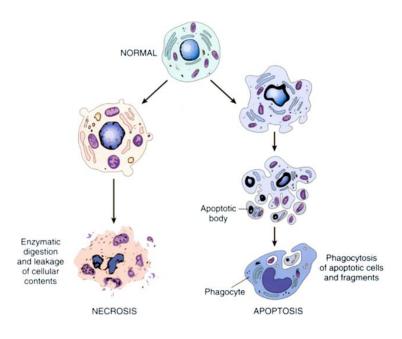
Inhibitory concentration	Lethal concentration	Effective concentration	Toxic concentration
IC ₁₀	LC ₁₀	EC ₁₀	TC ₁₀
IC ₅₀	LC ₅₀	EC ₅₀	TC ₅₀
IC ₉₀	LC ₉₀	EC ₉₀	TC ₉₀

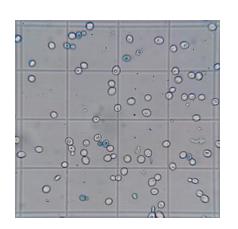
- Enable us to compare the effect of different substances
- Depend on the time of exposition, selected model etc.
- Dose-response curve

Cytotoxicity

 It means the response of cells to the effect of toxic substance

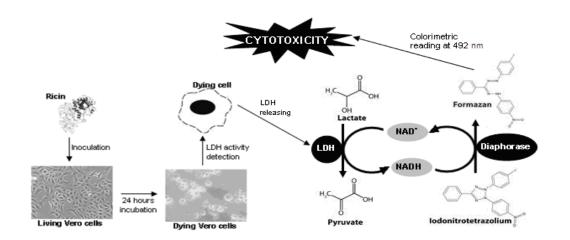
Cytotoxic effect:


- Changes of cell morphology (augmentation, multinuclear cells, granularity of cell surface etc.)
- Changes in cell metabolism
- Inhibiton of proliferation (changes in cell cycle progression etc.)
- Cell death (apoptosis, necrosis, autophagy etc.)



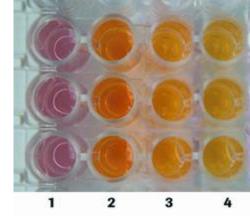
- Evaluating of the cell viability using intracellular cell dyes e.g. erythrosin B, trypan blue, neutral red
- Viable (live) cells stay unstained x dead cells are stained

 —→ because of the penetration of the dye through impaired cell
 membrane
- Hemocytometer (e.g. Bürker chamber) + microscope





Cell viability


- Another method:
 - Lactate dehydrogenase (LDH) analysis impaired membrane integrity, then we can detect LDH extracellularly

Cell viability and proliferation

Tetrazolium salts

- Enzymatic reduction of TS (changes of the color) changes of the color correlate with the intensity of cell metabolic activity
- MTT; XTT; WST-1 analysis

In vitro toxicity tests – validated methods

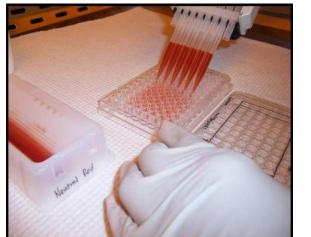
Validated by **OECD**

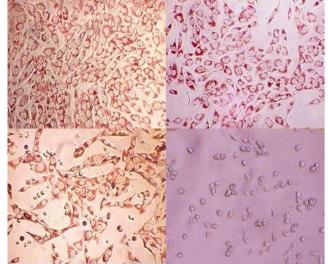
(Organisation for Economic

Co-operation and

Development)

- Cytotoxicity
- Genotoxicity
- Eye irritation
- Phototoxicity


- Cardiotoxicity
- Nephrotoxicity
- Hepatotoxicity
- Reproductive toxicity
- Ecotoxicity



Cytotoxicity

- E.g. Biological evaluation of medical devices
 - = Tests for *in vitro* cytotoxicity
- Fibroblast cell line 3T3 Neutral Red Uptake Test (NRU)
- Incorporation of NR into the lysosomes of live cells spectrofotometrical determination of

changes in color intensity

Genotoxicity

Principle: detection of mutation – DNA damage (changes in genetic information)

Standard testing series:

- The bacterial reverse mutation test (Ames Test)
- In Vitro Mammalian Chromosome Aberration Test (changes in cell ploidy, detection of polyploidy)
- In vitro mammalian cell gene mutation test
- Etc.

Ames test

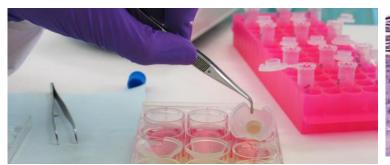
Ames Test The Salmonella is added Many colonies produced to test plate with medium by salmonella that has containing a small amount mutated to restore Possible of histidine along with the histidine gene. mutagen mutagen to be tested. 12 hour incubation Specific strain of salmonella that can't produce histidine. 12 hour incubation A few colonies result The Salmonella is added to control from natural back-mutation. plate with medium containing a small amount of histidine.

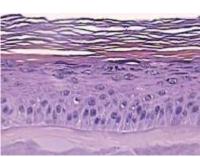
Eye Irritation/Corrosion

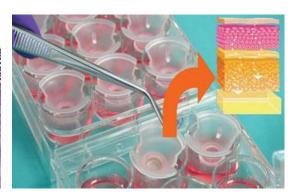
Methods for testing the effect of potential ocular corrosive or irritant substances

Examples of *in vitro* **test methods:**

- BCOP (Bovine Corneal Opacity and Permeability)
- ICE (isolated chicken eye) test
- HET-CAM (Hen's Egg Test Chorioallantoic Membrane)
 - Fertilized eggs substances are applied on the membrane changes are detected
 - e.g. hemorrage, koagulation, lysis ...




In vitro Skin Corrosion Test: human skin model


- Episkin, Epiderm, SkinEthic....
- (reconstructed human epidermis human keratinocytes with functional stratum corneum)

Principle:

Application of tested substance on the surface of human skin model - MTT analysis –
 detection of changes in cell viability

Reproductive toxicity

Embryonic Stem Cell test (EST test)

= evaluation of embryotoxic potencial of tested substances

Principle of the test: determination of inhibited differentiation of embryonic stem cells (ESC) and inhibition of cell proliferation (ESC and 3T3 fibroblasts)

Thank you for your attention