How a cell gets energy

Assoc. Prof. RNDr. Milan Bartoš, Ph.D

Biology, 2024

- 1) Chemical processes in live systems
- 2) Enzymes
- 3) Control of metabolism
- 4) Cell respiration
- 5) Photosynthesis

Chemical processes in live systems

Chemical processes in live systems

Living things are different from nonliving matter

- create and maintain order
- perform never-ending stream of chemical reactions
- small organic molecules (AA, sugars, nucleotides, lipids) are modified to supply many other small molecules
- their are used to construct macromolecules that endow living systems with all of their most distinctive properties

Cell is tiny chemical factory performs many millions of reactions every second

Metabolic pathway

Never-ending stream of chemical reactions

Created by enzyme-catalysed reactions

4

Interconnections of the pathways

Long linear reaction of metabolic pathways are in turn linked to one another forming a maze of interconnected reactions that enable the cell to survive, grow, and reproduce

The individual metabolic pathways

G

Two opposing streams

Catabolic pathways

- break down foodstuffs into smaller molecules
- produce energy and building blocks

Anabolic pathways

- drive the synthesis of many other molecules that form the cell
- biosynthetic

The second law of thermodynamics

The degree of disorder only decrease

Only for any isolated system !

A simple thermodynamic in cell

- a cell surrounded by a sea (rest of the universe)
- > as the cell lives and grows, it creates internal order
- it constantly release heat energy (most disordered form) = increasing the intensity of molecular motion

Interconversions of energy

 all energy forms are, in principle, convertible
total amount of energy is conserved

They use sunlight to synthesize organic molecules = photosynthesis

Performed in plants, algae, and photosynthetic bacteria

Photosynthesis

Two stages

- <u>capturing energy</u> from sunlight and storing as chemical bond energy (<u>waste product</u> = oxygen)
- manufacturing of sugar from CO₂ + water

Oxidation

Cell obtain energy by oxidation of organic molecules

Enzymes lower barriers ...

... the barriers that block chemical reactions

A barrier dam (activation energy) is lowered to represent enzyme catalysis

The four walls of the box represent the activation energy barriers

A branching river with a set of barrier dams (yellow boxes) = series of enzyme-catalyzed reactions determines the exact reaction pathway

- each enzyme has an active site to which substrate binds
- > an enzyme-substrate complex is formed
- reaction in the active site producing enzyme-product complex
- the product is then released, allowing the enzyme to bind further substrate molecules

Free-energy change

The free-energy change for a reaction determines whether it can occur

The free energy of Y is greater than the free energy of X. Therefore $\Delta G < 0$, and the disorder of the universe increases during the reaction $Y \rightarrow X$.

this reaction can occur spontaneously

ENERGETICALLY UNFAVORABLE REACTION If the reaction X→Y occurred, ∆G would be > 0, and the universe would become more ordered.

this reaction can occur only if it is coupled to a second, energetically favorable reaction Free energy is marked G
Change of G must be negative = negative ΔG

Reaction with a positive ΔG are energetically unfavourable,

BUT !

Reaction coupling

They are possible,if coupled with asecondreactionwith a negative ΔG

The entire process must be negative

Example

Joining of two AAs create order in the universe

Enjoy "molecular biology" lecture for explanation

Activated carrier molecules

 energy released by oxidation of food must be stored – as a chemical bond energy in activated "carriers"
the carriers difuse rapidly to the biosynthesis site
energy in carriers is easily exchangeable

4

Carrier molecules

Activated carrier molecules <u>are money to pay</u> for reactions that otherwise could not take place

Adenosine triphosphate = ATP

Nicotinamide adenine dinucleotide (reduced) = NADH

Nicotinamide adenine dinucleotide phosphate (reduced) = NADPH

Principle of coupled chem. reaction

- A = direct oxidation of glucose to CO₂ and water
- **B** = coupled reaction is analogue of carrier molecule
- C = carrier molecule is used in a variety of otherwise energetically unfavourable reactions

ATP is most widely used

The large negative ΔG

hydrolysis of the terminal phosphate of ATP yields 11 and 13 kcal/mole of usable energy

Example of a phosphate transfer reaction

Glutamine biosynthesis

Catalysed by glutamine synthetase

NADPH, a carrier of electrons

- produced in reactions of the general type (left) = two hydrogen atoms are removed from a substrate
- the oxidised form NADP+ receives one hydrogen plus one electron
- second proton is released into solution
- hydride ion has high energy, it can be easily transferred to other molecules (right)

The structures of NADP+ and NADPH

NAD+ and NADH are identical in structure to NADP+ and NADPH, respectively, except phosphate group

Nicotinamide ring accepts two electrons together with a proton forming NADPH

- carries an acetyl group
- in the activated form is known as "acetyl CoA"
- add two carbon units in the biosynthesis of larger molecules

Carboxyl group transfer

transfer a carboxyl group in the production of oxaloacetate, a molecule needed for the citric acid cycle

- the acceptor molecule is pyruvate
- synthesis of carboxylated biotin requires ATP !

Other activated carriers

Activated carrier	Group carried in high- energy linkage
ATP	Phosphate
NADH, NADPH, FADH ₂	Electrons and hydrogen
Acetyl CoA	Acetyl group
Carboxylated biotin	Carboxyl group
S-Adenosylmethionine	Methyl group
Uridin diphosphate glucose	Glucose
The synthesis of polymers is driven by ATP hydrolysis

Condensation and hydrolysis

- The macromolecules of the cell are polymers formed from monomers by a condensation
- The macromolecules are broken down by hydrolysis

The condensation reactions are all energetically unfavourable

Synthesis of macromolecules

The condensation step depends on energy from NTP hydrolysis

The nucleic acids, proteins, and polysaccharides are produced by the repeated addition of a monomer onto one end of growing chain

Alternative pathway of ATP hydrolysis

Pyrophosphate is first formed and then hydrolysed

this route release about twice as much free energy
 it forms AMP instead of ADP

multistep process driven by ATP hydrolysis

Control of metabolism

Types of control mechanisms

Allosteric regulation Feedback loop Cooperation Enzyme localisation

allosteric activation
 allosteric inhibition

http://www.mindcreators.com/DevelopmentalSim/ProteinRegulators.htm

Allosteric activation

An enzyme subject to allosteric activation is inactive in its uncomplexed form, which has a low affinity to its substrate

Binding of an allosteric activator (green) stabilizes the enzyme in its high-affinity form, resulting in enzyme activity

Allosteric inhibition

An enzyme subject to allosteric inhibition is active in its uncomplexed form, which has a high affinity to its substrate (S)

Binding of an allosteric inhibitor (red) stabilizes the enzyme in its low-affinity form, resulting in little or no activity

Feedback loop

The metabolic pathway is inhibited by its own product

ATP inhibition in katabolic metabolic pathways

Anabolic metabolic pathways – aminoacids synthesis

Feedback loop

A

Feedback loop

Feedback Inhibition of Biological Pathways.wmv

Cooperation

Similar to allosteric activation

Substrate molecules can stimulate enzyme

Substrate activate conformational changes in all subunits of nonactive enzyme

nonactive enzyme active enzyme A

Enzyme localisation

- Internal cellular structure is responsible for metabolic pathways separation
- Multienzyme complexes guarantee the correct order of individual reactions
- Some enzymes and enzyme complexes are build in membranes
- Other are in solutions inside organelles

The typical example – respiratory enzymes in mitochondria

Cell respiration

Prokaryotic cells produce energy (ATP) in their plasma membrane

So, what the eukaryotic plasma membrane does?

Plasma membrane in eukaryotic cells is reserved for the transport processes

Eukaryotes instead use the specialized membranes inside *energy-converting organelles* to produce most of their ATP

Energy-converting organelles Biochondria

present in the cells of virtually all eukaryotic organisms

plastids

most notably chloroplasts which occur only in plants and algae

Internal membranes for ATP

Mitochondria and chloroplasts contain large amount of internal membrane

This internal membrane provides the framework for an elaborate set of <u>electron-</u> <u>transport processes</u> that produce most of the cell's ATP

Chemiosmotic coupling

Common pathway used by mitochondria, chloroplast, and prokaryotes to harness energy for biological purposes

The term "chemiosmotic coupling" reflect a <u>link</u> <u>between</u> the <u>chemical bond-forming reaction</u> that generate ATP ("chemi") and <u>membrane-transport</u> processes ("osmotic")

The coupling process

electrochemical proton gradient

ATP synthase

Other protein machine

The electrochemical proton gradient also drive other membrane-embedded protein machines

in eukaryotes special proteins couple H⁺ flow to transport metabolites in and out of the organelles

in bacteria besides ATP synthesis and transport also drives rapid rotation of the bacterial flagellum

Electron transport chain

Is formed by the entire <u>set of proteins in membrane</u>, together with the small molecules involved in the orderly sequence of electron transfers

Electrons are transferred between one site and another by <u>diffusible molecules that can pick up</u> <u>electrons</u> at one location and deliver them to another

For mitochondria, the first of these electron carriers is NAD⁺

Electron-transport process

Mitochondria convert energy from chemical fuels

Chloroplasts convert energy from sunlight

G

Mitochondria-chloroplast differences

Mitochondria

- convert energy from chemical fuels
- drive electron transfer from carbohydrate to CO₂ and water

Chloroplast

- convert energy from sunlight
- drive electron transfer from H₂O to carbohydrate

Inputs for mitochondrion are products of the chloroplasts

The mitochondrion membrane double inner membran membran

Bounded by double membrane

Cristae – infoldings of inner membrane that encloses matrix

Matrix – inner semifluid containing respiratory enzymes

Localization of mitochondria

in some cells form long moving filaments
 in others they remain fixed in one position

Near sites of high ATP utilization
packed between myofibrils in a cardiac muscle cell
wrapped tightly around the flagellum in a sperm

Citric acid cycle

G

Citric acid cycle

Molecular Biology of the Cell/Media/Animation/2.5 Citric Acid Cycle

The general mechanism

- high energy electron pass along the electron-transport chain
- three respiration enzyme complexes pump H⁺ out
- the resulting electrochemical proton gradient across the inner membrane drives H⁺ back through <u>ATP synthase</u>
- the enzyme complex synthesize ATP in matrix

Molecular Biology of the Cell/Media/animation/14.4 ATP Synthase

Photosynthesis

$6 \text{ CO}_2 + 6 \text{ H}_2 \text{ O} \longrightarrow \text{ C}_6 \text{ H}_{12} \text{ O}_6 + 6 \text{ O}_2$

The chloroplast

Chloroplasts are organelles in which photosynthesis occur

- They perform photosynthesis during the <u>daylight</u> hours
- The <u>products</u> of photosynthesis, <u>NADPH</u> and <u>ATP</u> are used to production of many organic molecules
- Based on biochemical and genetic evidence the chloroplasts are suggested as <u>descendant of</u> <u>oxygen-producing photosynthetic bacteria</u> that were endocytosed and lived in symbiosis with primitive eukaryotic cells

The chloroplast structure

Green due to chlorophyll

- Green
 photosynthetic
 pigment
- Found ONLY in inner membranes of chloroplast

Bounded by double membrane

Inner membrane infolded

- Forms disc-like thylakoids, which are stacked to form grana
- Suspended in semi-fluid stroma

Electron micrographs 1/3

Wheat leaf cell containing chloroplasts, the nucleus, and mitochondria surrounded by a large vacuole

1 μm

Electron micrographs 3/3

A high-magnification view of two grana (a stack of thylakoids)

Capturing energy in chloroplasts

Two categories of reactions in plant

- 1) photosynthetic electron-transfer reactions (light)
- energy from sunlight energizes an electron in chlorophyll
- electron is transported along respiratory chain
- \succ producing H+, ATP, NADPH and as waste product O₂
- 2) carbon-fixation reaction (dark)
- ATP and NADPH serve as a source of energy and reducing power – to drive the conversion of CO₂ to carbohydrate
- begins in chloroplast stroma and continue in cytosol 8

Photosynthesis in a chloroplast

Formation of ATP, NADPH and O_2 and conversion of CO_2 to carbohydrates are <u>separate</u> processes although elaborate feedback mechanisms

Several chloroplast <u>enzymes</u> required for carbon fixation <u>are inactivated in the dark</u> and <u>reactivated by light</u>-stimulated electron-transport processes

Carbon fixation

Is catalysed by ribulose bisphophate carboxylase (Rubisco)

Calvin cycle

3 molecules of CO₂ are fixed by Rubisco to 6 molecules of 3-P-glycerate

- cycle of reactions that regenerates the 3 molecules of ribulose-1,5-bis-P
- this leaves 1 molecule of glyceraldehyde 3-P

Calvin cycle - results

Each CO₂ molecule converted into carbohydrate consumes a total of 3 molecules of ATP and 2 molecules of NADPH

3CO₂ + 9ATP + 6NADPH + water

glyceraldehyde-3-phosphate + 8Pi + 9ADP + 6NADP+

Central role of gly-3-P

Glyceraldehyde-3-phosphate serves as a central intermediate in glycolysis

It is exported to the <u>cytosol</u> where is converted into <u>fructose-6-P</u> or <u>glucose-1-P</u>

 these sugars are converted to another carbohydrates, especially to <u>sucrose</u>

glyceraldehyde-3-phosphate that remains in the chloroplast is converted to <u>starch</u> in the stroma

C3 and C4 plants

Compartmentalisation at low CO₂ concentrations

Electron transfer

Restoration of the photosynthetic centre

G

The structure of chlorophyll

- a <u>magnesium</u> atom is held in a <u>porphyrin ring</u>, which is related to the porphyrin ring that binds iron in heme
- process of energy conversion begins when a photon excites a chlorophyll molecule causing an electron in the chlorophyll to move from one orbital to another

excited molecules return back by photochemical reaction

Photosynthetic Electron Transport and ATP Synthesis.avi