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Abstract

This paper introduces a compositional semantics of locative prepositional phrases
which is based on a vector space ontology. Modeltheoretic properties of prepositions
like monotonicity and conservativity are defined in this system in a straightforward
way. These notions are shown to describe central inferences with spatial expressions
and to account for the grammaticality of preposition modification. Modeltheoretic
constraints on the set of possible prepositions in natural language are specified, sim-
ilar to the semantic universals of Generalized Quantifier Theory.
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1 Introduction

The last two decades have seen remarkable development in compositional modeltheoretic
semantics of natural language. The idea that natural language expressions can be directly
interpreted in the model of discourse has gained significant support in various domains.
It led to a better understanding of inference in linguistics with close relation to syntax,
helped to characterize linguistically relevant classes of expressions, and revealed system-
atic constraints on their possible meanings. Quite independently of these developments,
much work in the fields of cognitive and conceptual semantics has acquired a significant
body of knowledge about the semantic behaviour of prepositional phrases (PPs). In the
modeltheoretic framework, however, the semantics of PPs has remained, to a large extent,
unexplored. Our aim in this paper is to contribute for bridging this gap.

We refine and extend the proposal in Zwarts (1997), who argues for a vector space as
the underlying ontology in the compositional analysis of locative PP structures. In section
2 we introduce a general semantic framework that uses such a model. Section 3 studies
some denotational properties of prepositions in the proposed system. Certain proper-
ties introduced in Zwarts (1997) will be placed here in a wider perspective of preposition
monotonicity. Two notions of monotonicity are defined and shown to be linguistically
relevant in restricting the set of possible preposition denotations, accounting for central
inferences and affecting grammaticality of modified PPs. An additional constraint, simi-
lar to the conservativity restriction on determiners, is shown to hold of natural language
locative prepositions. Section 4 discusses more problems of locative preposition seman-
tics and section 5 sketches a possible extension of the system to treat also directional
prepositions.
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Throughout this paper, we presuppose familiarity with basic Linear Algebra and sim-
ple notions from Topology.! Some useful definitions are summarized in an appendix.?

2 Locative PPs: Lexical Meanings and Compositional
Interpretation

Sentences with spatial uses of prepositions show inferential regularities that are compa-
rable with the much studied inferences with quantified expressions. For instance, like the
determiner every, the preposition inside is transitive, in the sense illustrated in (1). The
preposition near is symmetric similar to the determiner some, as exemplified in (2).?

A is inside B every A is B
(1) Bisinside C every B is C
A is inside C every A is C
() A is near B some A is B
B is near A some B is A

As far as determiners are concerned, this kind of observations about inferences is the em-
pirical basis for the generalized quantifier semantics of the noun phrase. That prepositions
show similar consistencies is a reason to develop also a modeltheoretic semantics of the
prepositional phrase, with a similar research agenda to the one of generalized quantifier
theory (see e.g. Keenan (1996)).

2.1 A preliminary typology of spatial prepositions

The preposition is the most useful syntactic category in natural languages for expressing
statements about space and movement.* Locative prepositions are used to locate an object
relative to another one, the reference object. For instance, in the predicative construction
in (3a/b) the house is the reference object and the tree is the located object. Directional
prepositions are more "dynamic” than the locative ones: they are usually connected to a
verb or a noun expressing movement or direction as in (4a). Unlike the locative ones, the
directional prepositions often resist predicative constructions, as exemplified below by the
unacceptability of (4b).

(3) a. The tree is outside the house.

Lang (1977) and Kelley (1961) are two of the many introductory textbooks in these fields.

2In the revision of this paper our attention was drawn to O’Keefe (1996), who develops a vector-based
semantics of English spatial prepositions similar to ours in some respects, but motivated by cognitive-
neurological considerations. A comparison must await future work.

3Symmetry with near is incomplete. For instance, reasonably due to pragmatic factors, the bicycle is
near the house is OK whereas the house is near the bicycle is a weird sentence. Similar asymmetries hold
for some. Compare for instance some people are politicians with some politicians are people.

40f course, in English there are non-spatial prepositions like for and despite. Most spatial prepositions
can also be used for expressing non-spatial statements (e.g. Mary arrived on Tuesday). Further, spatial
prepositions can be applied to abstract domains, as in the authorities above us or the events behind us. It
has been proposed that such usages are based on certain geometric structures underlying such abstract
domains. See for instance Jackendoff (1983), Gardenfors (1994) and O’Keefe (1996:306-312).

5This criterion is not clear-cut, as also directional prepositions can sometimes be used in such con-
structions (cf. John is across the street). On this phenomenon, see Cresswell (1978), Jackendoff (1983)
and Helmantel (1998), among others.



b. The tree is behind the house.

(4)  a. John walked to the park.
b. ?John is to the park.

In this paper we concentrate on the locative prepositions and PPs,® which can be further
classified into projective and non-projective. A non-projective preposition like outside in
(3a) requires only spatial knowledge on the location of the two objects. By contrast, the
projective preposition behind requires some further information about directions from the
reference object. For instance, to determine whether (3b) is true, the shape and location
of the tree and the house are not sufficient. The back side of the house should also be
determined. This can change with the position of the speaker or conventions of using
the house and hence it is not only a function of its intrinsic spatial properties. These
distinctions between prepositions are fairly standard (cf. Herskovits (1986)) and they are
further exemplified in table 1.7

Locative prepositions Directional prepositions
Projective Non-projective
above/over, below/under | in/inside, outside || to, from
in front of, behind on, at into, onto
beside near across, around
between through

Table 1: typology of prepositions

2.2 The modification problem

Many locative PPs can be modified by expressions that involve some measure of distance
or direction. For example, in addition to the "bare” PP structures of (3), there are also
modified structures as in (5). Some other cases of PP modification are exemplified in (6).

(5) a. The tree is ten meters [outside the house].

b. The tree is ten meters [behind the house].

(6) deep under the castle, diagonally above the door, far outside the city, right in front
of the car

The reason these structures are classified as PP modification is because the additional
expression syntactically applies to a PP (or a P-bar) to produce another PP (P-bar). The
PP structure we assume throughout this work is given in figure 1.

Wunderlich and Herweg (1991), and more recently Zwarts (1997), raise the problem
of how to give a compositional semantics to such structures. An a priori natural way to
treat prepositions is as relations between sets of points (regions). For instance, a region A

6See section 5 for a preliminary extension of our proposal for directional prepositions.

"This table is of course far from exhaustive. We do not mention here spatial prepositions like after,
against, alongside, amid(st), among(st), beneath, betwixt, beyond, by, down, nearby, past, throughout,
underneath, and upon. See Jackendoff and Landau (1991) for an extensive list and discussion.



P’
/\
Mod P’
/\
ten meters P NP
outside the house

Figure 1: PP structure in X-bar Theory

is outside a region B iff the two regions are disjoint: AN B = (). Compositionally, outside
may then be treated as a function mapping a region A to the set of regions disjoint to it:
outside(A) = {X : XN A = (}. This predicate over regions compositionally applies to B:
B € outside(A). Suppose now that in (3a) and in (5a) the house occupies a region A and
the tree occupies a region B consisting of a single point p. The compositional analysis
of (3a) is straightforward and tantamount to p ¢ A. In order to analyze compositionally
also (5a), the denotation of the modifier ten meters should apply to the denotation of
outside(A). To get the correct semantics, this function has to measure the distance
between p and A. This is problematic, however, as A is not directly specified in the set
outside(A). Of course, we can try to approach the problem by reproducing A from this
set, which here is a possible strategy since A is the complement of Uoutside(A). However,
the same ad hoc procedure would not correctly hold of (5b). A general compositional
treatment of PP modification is not forthcoming if locative prepositions are taken as
relations between sets of points.

Zwarts (1997) observes that since modifiers like ten meters and diagonally are predi-
cates over distance and direction (respectively), also the function that a locative prepo-
sition denotes should return entities with measurable distance and direction. Zwarts
proposes that these entities are vectors: directed line segments between points in space.
Assume that an expression like outside the house denotes a set of vectors: roughly, the ones
pointing outwards from the boundary of the house.® Cases of syntactic modification as in
(5)-(6) are naturally analyzed as (intersective) semantic modification: a modifier within
a PP denotes a set of vectors that is intersected with the P’ denotation. For instance, the
intersection of the denotation of the measure phrase ten meters with a set of vectors W is
the subset of W containing only vectors that are ten meters long: {v € W : |v| = 10m}.
Thus, the expression ten meters outside the house denotes the set of vectors pointing
outwards from the house that are also ten meters long. Along the same lines we can ob-
tain a correct treatment of many cases of PP modification.® A locative preposition then
denotes a function that applies to the set of points where the reference object is located
and returns a set of vectors. The next section substantiates this proposal.

8As will be explained below, such a set of vectors may be mapped during the compositional analysis
of the whole PP to an ordinary predicate over e type entities.
9See more on modification in section 4.



2.3 Vector space ontology

A natural way to implement the proposal in Zwarts (1997) is to assume that vectors are
the primitive spatial entity in models of natural language.'® Space ontology consists of
a vector space V over the real numbers R. The element 0 € V is the zero vector and
the functions + : (V x V) — V and - : (R X V) — V are vector addition and scalar
multiplication respectively. We assume a positive scalar product f : (V x V) — RT,
standardly defining a norm | | : V. — R*. It is further assumed that V is an Euclidean
n-space R™. Drawing on this ontology, we define the domain of points D, and the domain
of vectors D,. D, is simply identified with V. Intuitively, each vector in V' uniquely
determines its end-point and vice versa. The domain D, is defined as the cartesian
product V' x V. Each ”point” w in D, (= a vector in V') functions as ”the center” (= the
zero vector) of a vector space V,, C D,. This is done as in the following definition.

Definition 1 (the vector domain) Let (V,0,+,-) be a vector space over R with f a
positive scalar product and w € V. We define:

v, © {w,v) :v eV}

0w & (w,0)

For allu,v € V: (w,u) +, (w,v) et (w,u +v)
Forallse R, veV: s (w,v) wf (w, s -v)

For allu,v € V: f,((w,u),(w,v)) def f(u,v)

It is easy to verify that for every w € V: (Vy, 0y, +u, w) is a vector space over R with f,
a positive scalar product, which determines a norm denoted by | |,,. Trivially, the domain
D, is equal to the union of vector spaces Uyecy V. To avoid confusion, we sometimes
refer to vectors in D, as located vectors, to distinguish them from vectors ("points”) in
D,=V.

Notational conventions: p,q € D, for points; u,v,w € D, for located vectors; if

u = (w,v) € D, then s-point(u) “I e Vis the start-point of u, e-point(u) YwtveV

is its end-point. The vectors w and w4 v can be viewed as "points” p and q in D,. These
conventions are illustrated in figure 2. We sloppily use the symbols +, -, f and | | for
operators on members of V,,, without mentioning the subscript w as strictly required.
The domains D, and D, are treated as typed domains of types p and v respectively.

2.4 The compositional process

Reconsider the modified structures in (5). Given the assumptions above, the ”semantic
structure” of a modified PP with a modifier MOD, a preposition P and a reference object
region REF is as follows:

(7) MOthﬂ (P(pt)(vt) (REFpt) )

10This is a convenience rather than a necessity. A notational variant is to assume a point ontology
together with a metric and treat prepositions as functions from sets of points to sets of ordered pairs
of points, so vectors are indirectly represented. In our strategy the metric function is the one that is
implicitly supplied, by the given scalar product.



w+v

v

Figure 2: notation for vectors and points

In words: a locative preposition maps the set of points standing for the reference object
to a set of vectors that is intersected with the denotation of the modifier. This process of
intersective modification is the same as the one commonly assumed with other modifica-
tion constructions like the blue car, where the set of cars is intersected with the set of blue
objects. The assumed denotation of a measure phrase modifier MOD is straightforward.
For instance:

ten_meters’ < Av.|v| =10m

The constant m (for meter) is a positive real number with the familiar fixed relation to
other similar measure constants (e.g. for foot). In general, the denotation of any measure
phrase is a measure set of located vectors, defined as follows.

Definition 2 (measure set) A set of located vectors M C V x V is called a measure
set iff for all vy, wi,ve,we € V: if (v1,w1) € M and |w;| = |we| then (ve,we) € M.

That is, whether a located vector belongs to a measure set depends only on the norm of
its second coordinate. It is easy to verify that the denotation of ten meters defined above,
as well as the similar denotations of less than ten meters, more than ten meters, etc. are
measure sets.

The denotation of a locative preposition P in (7) maps the reference object REF to
a set of vectors. Such preposition denotations will be defined in the next section. The
region REF itself is determined by the denotation of the e-type reference object. This is
done using a location function loc,(,y), which assigns any physical entity in D, its location
in space, or eigenspace (Wunderlich (1991)). Since the whole PP basically denotes a set of
vectors, we have to translate it into an ”ordinary” et predicate that standardly applies to
the subject of predication (the located object). An ”anti-location” function loc™ returns
the objects located at the region determined by the set of vectors. This function is defined
using loc as follows:

loc— % My Az Vp € loc(x) Iv € Wle-point(v) = p]

In words: loc™ maps any set of vectors W to the set of entities whose eigenspace is
contained in the set of W’s end-points.
To exemplify the process, sentence (5a) ends up denoting the following proposition.

(8) loc™ (ten_meters' N (outside’(loc(the_house'))))(the_tree’) <
Vp € loc(the_tree') Iv € outside’(loc(the_house')) [p = e-point(v) A |v| = 10m]



Proposition (8) claims that every point in the tree is an end-point of a 10m long vector
starting on the house and pointing outside.!!
In general, the types assumed for the syntactic categories in figure 1 are as follows.

NP pt (by loc)
P (pt)(vt)

P’ vt

Mod vt

PP et (by loc™)

We assume that the location function is a type shifting principle that adjusts the e type
of the NP to its spatial use within the PP, specifying the pt eigenspace. In a similar way,
the anti-location function shifts a P’ denotation of type vt into the et denotation of the
PP, which has a predicational function in the sentence. To complete the picture, we have
to give the definition of preposition denotations.

2.5 Denotations of locative prepositions

Preposition meanings in natural language do not fully exploit the possibilities that math-
ematical theories of space allow. One example is converity.'? Although speakers may well
be aware that some object is not physically convex, there is a tendency to ignore this
fact in many natural uses of such objects, which are often conceptually ” convexized”. For
instance, although the bowl in figure 3a occupies a non-convex region, disjoint from the
space occupied by the ball, this situation can nevertheless be described by the sentence
the ball is inside the bowl. The bowl is conceived of as if it were a convex object, roughly
of the shape indicated by the dashed line, which does contain the ball. Similarly, it is
quite strange to say that in figure 3b the black circle is outside the grey ring. Rather,
inside is more appropriate here.

Treating such effects would lead us too far afield (see Herskovits (1986)). Instead, we
tentatively assume that the loc function maps entities only to convex eigenspaces. For
similar reasons we assume that eigenspaces of objects are closed and non-trivial (= non-
empty and properly contained in D,). Regions that have these three properties are referred
to as Topologically Simple. We assume that the [oc function returns only topologically
simple regions. Potential counter-examples like figure 3 often lead to hard puzzles. We
speculate that these should be handled by a general theory of functional cognition and not
necessarily by linguistic semantics. Such a theory should provide specific details about
the cognitive parameters in the determination of the loc function.

The semantic task we are facing is to define (pt)(vt) functions for locative prepositions
that respect basic inferences in natural language given the syntactic, compositional and
ontological assumptions above. Let us first define some general relations that will be
helpful in the semantic treatment of many prepositions.

11 Arguably, this condition is too strong because even one vector satisfying it would suffice for (5a) to
be true. We believe, however, that this is due to pragmatic effects in the determination of loc: speakers’
spatial conception of an object is often significantly different than its physical shape. Reasonably, even
large objects like trees and houses can be represented as volume-less points. In such cases universal
quantification as in (8) is indeed equivalent to existential quantification, as loc(the_tree') is a singleton.
Trying to generally change the definition of loc™ so that in (8) we get an existential quantifier instead of
the universal one would be more problematic. For instance, (3a) would become true even if only a tip of
one leaf of the tree is outside the house.

12For the exact definition of convex objects, as well as for the other topological notions used below, see
the appendix.



Figure 3: non-convex objects

Definition 3 (boundary vectors) Let v € D, be a vector and A C D, a set of points.
We call v a boundary vector of A, and denote boundary(v, A) iff s-point(v) is in b(A),
the boundary of A.

For example, in figure 4 v, and v, are boundary vectors of A whereas v, and vz are not.
Zero vectors starting (and ending) at the boundary of A are of course boundary vectors
of A.13

Figure 4: vy and v, are boundary vectors of A

Definition 4 (internally/externally closest vectors) Let v € D, be a boundary vec-
tor of a set of points A C D,. We say that v is a closest vector to A and denote
closest(v, A) iff for every vector w € D, that is a boundary vector of A s.t. e-point(v) =
e-point(w): |v| < |w/|. In case e-point(v) € A we call v internally closest to A and denote
int(v, A). Otherwise, we call v externally closest to A and denote ext(v, A).

Definition 4 imposes a condition of minimality: it classifies boundary vectors of a set of
points A that are the shortest boundary vectors of A with the same end-point. Such
a minimality condition is required because of the semantics of PP modification. For
example, a point p as in figure 5 can be said to be exactly three meters outside the boxr A

13Note that boundary vectors exist if and only if the boundary of A is not empty. Thus, we assume
that even ”vague objects” like fog or clouds have boundaries specified by the loc function. However, as
might be the case with all objects, there is no need to assume that the loc function is physically real in
any sense.



only if the shortest vector connecting it to the box, v, is three meters long. The existence
of longer connections that are three meters long (like w in the figure) does not falsify the
sentence. In a similar way, p cannot be said to be diagonally above the box although w is
a vector diagonal to the box. Only shortest connections that are diagonal to the box may
characterize their end point as diagonal to the box.

Figure 5: v is externally closest to A, w is not

Externally and internally closest vectors play a crucial role in our definition of locative
prepositions. It is important to observe the relation that exists under the topological sim-
plicity assumption between these notions and the intuitive definition of external/internal
points using set membership. The following topological property (see Wall (1972:18)) is
useful.

Proposition 1 If A and B are disjoint closed subsets of R™ and A is compact, then
dist(A, B), the distance between A and B, which is defined by the infimum inf({dist(a, b) :
a € A, be B}), is positive.

By this property, we can show the following correspondence.

Proposition 2 Let A C D, be a non-trivial closed set in D, (= R"). Then for every
point p € D, the following conditions are equivalent: (a) There is a vector v € D, that
is externally (internally) closest to A s.t. e-point(v) =p. (b)pg A (pe A)

Proof: (a) = (b) directly by the definition of externally/internally closest vectors. Let us
show (b) = (a).

1. Assume p ¢ A. {p} is bounded and closed in R"™, hence compact. Thus by
proposition 1, dist(p, A) > 0. Let C be a closed sphere around p of radius r = dist(p, A).
We will show C N A # (.

Assume by negation CNA = 0. By definition of dist(p, A): for every e > 0 there isq € A
s.t. v < dist(p,q) < r +¢€. The line segment [p, q| intersects b(C), the boundary of C, at
point p'. Thus, 0 < dist(p’,q) < €. C is closed, hence b(C) C C, so p' € C.

Conclusion: dist(C, A) = inf({dist(p’,q) : p' € C, q € A}) = 0. But C is bounded
and closed in R"™, hence compact. By our assumption C N A= (. Thus by proposition 1,
dist(C, A) > 0. Contradiction.

We conclude that CN A # 0. It is easy to show CN A C b(A). Thus, for anyq € CNA,
the vector v € D, from q to p satisfies r = |v| = dist(p, q) = dist(p, A). Therefore, v is
externally closest to A with e-point(v) = p.

2. Assume p € A. (b) = (a) trivially holds in case p € b(A): the zero vector from p
to p is internally closest to A. In case p is in the interior of A, i(A), repeat the above
proof for p and D, \ i(A) (a closed set) and note that b(D, \ i(A)) = b(A).

9



Consider first the prepositions in/inside and outside. In our proposal they map a set of
points to the set of its internally /externally closest vectors respectively. Thus, we simply
define:

in, inside:  in’ = inside’ & MAAv.int(v, A)

(9) . sy def
outside: outside’ = AA\v.ext(v, A)

The compositional procedure and proposition 2 guarantee that these definitions coincide
with the intuition that inside and outside correspond to set containment and disjointness,
respectively.

Corollary 3 Let the eigenspace loc(a) of an object a be a non-trivial closed set. Then
the following holds:

1. b is inside a is true iff loc(b) C loc(a)
2. b is outside a is true iff loc(b) N loc(a) =0

This seemingly trivial result shows that the vector semantics of prepositions like outside,
designed to deal with their allowing for PP modification, still preserves the basic set-
theoretical intuition of the point semantics. The achievement of both goals is not trivial.

It should be noted that (9) does not distinguish between in and inside although there
are some important differences in the distribution of these two prepositions (e.g. in the
air vs. *inside the air). We also ignore the many intricate meaning aspects of in discussed
in Herskovits (1986) and Vandeloise (1991). For example, why do we say in the field but
not wn the prairie? Why don’t we usually use the expression in the bowl when a bowl
is upside down? Henceforth we put these questions aside, focusing on the more general
semantic issues.

The other prepositions we define all give rise to regions that are outside the eigen-
space, so the relation ext(v, X) is a part of their definition and each preposition imposes
an additional condition on the vector v. This can be a condition on the length of the
vector, as in the definition of on and at and of near:

on, at.  on'=at' Y MAv.ext(v, A) AN |v| < rg
(10)  pear: near’ %/ AMAv.ext(v, A) N|v| < rq
where ry and r; two small positive numbers g ~ 0 and ry << r;

We interpret on and at as requiring almost zero distance between the objects. In the case
of near the vector’s length is said to be smaller that a pragmatically determined number
r1.'* The differences between on and at (like on the desk vs. at the desk) and many other
interesting meaning aspects are again ignored. We refer here to the literature mentioned
earlier.

The prepositions between and amid require a plural complement defining two or more
reference objects. We define between' as corresponding to a non-constituent expression
between...and.... This is because a more adequate treatment of such prepositions would
require an analysis of plurality (see section 4). The three-place predicate between’ relates
two regions A and B with a set of vectors using the region co(A U B), the convez hull of
A and B.

14 Again, we are only interested in the general idea here and ignore all sorts of questions concern-
ing the determination of this 7, its dependence on the size of the reference object, etcetera. See
Crangle and Suppes (1989) for discussion.

10



(11) between...and...:
between’ </ AAAB v [ext(v,A) V ext(v, B)| A e-point(v) € co(AUB)\ A\ B

For regions A and B as in figure 6, between’(A)(B) is the set of vectors that are externally
closest to A or to B whose end-point is in the shaded region.

()

Figure 6: between A and B

So far, we have defined only non-projective prepositions. As mentioned above, pro-
jective prepositions require knowledge about directions in space. We assume that this is
pragmatically determined using three orthogonal unit vectors in V' for up, right and front,
which are called azes. For every start-point w € V' of vectors in V,, C D,, an axis a € V'
determines an axis (w, a) € V,, that we denote a(w).

Consider the definition of the projective preposition above. The region that this prepo-
sition generates when the reference object is a single point z is illustrated in figure 7.

Figure 7: above x

In this diagram, the above-region consists of those vectors that make an acute angle
with the up(r) axis.'!® The way to define the preposition denotation so it derives this
region is to allow only vectors whose vertical component (on up) is larger than their
projection on the orthogonal component Lup (=the horizontal plane). This is defined
using the following fact from linear algebra (see e.g. Lang (1977:134)).

Proposition 4 For every v,a € V where a # 0 there is a unique scalar c¢(a,v) € R and
a unique vector vy, s.t. v = c(a,v)-a+vi,. The scalar c(a,v) is called v’s component
along a and the vectors v, = c¢(a,v) - a and v, are called v’s projection on a and on La
respectively.

15In this figure and henceforth the axis is represented only by its direction and not by the underlying
unit vector.

11



For a vector v € V,, and an axis a € V, we denote c(a,v) = c(a(w), V), Vo = V() and

Vie = Via(w)-
The denotation of above is defined as follows:

12) above: above & AAAv.ext(v, A) A c(up,v) > v
P

An illustration of this definition is given in figure 7, where v is in the above-region of x
given the axis up. The definition of below (and under) is symmetrically:

(13) below, under: below’ wf A Av.ext(v, A) Ac(—up,v) > |Vi_yl
Other projective prepositions work in a similar way but with other axes:

in front of.  in_front’ e AAAv.ext(v, A) A c(front,v) > |V 1 front]

14
14 behind: behind’' < AAXv.ext(v, A) A c(—front,v) > |Vi_front|

The last preposition denotation we define is for beside. Its typical region has the shape
as in figure 8. The definition of beside’ is in terms of the absolute value of the component
c(right, v):

15) beside: beside’ & NAAv.ext v, A) A |e(right, V)| > |V Lright
9

The vertical symmetry of the regions generated by this definition is due to the fact that
an equivalent definition is obtained when replacing right by —right.

right(x)

Figure 8: beside x

2.6 Example: transitivity of between

The compositional mechanism and the definitions of prepositions given above allow a
correct analysis of many simple inferences. Let us illustrate that using a central one — the
transitive behaviour of between:

A is between B and C
(16) D is between A and B
D is between B and C

The following proposition specifies the conditions under which (16) holds in the proposed
system. For convenience we refer to A instead of loc(A), etc.

12



Proposition 5 a. If A,B,C and D are singletons {a}, {b}, {c} and {d}, then the inference
(16) generally holds. b. Otherwise, (16) holds with the additional assumption D is outside
C.

Proof: a. By definition if A C co(BUC)\ B\ C then a € [b,c] \ {b} \ {c} = (b, ¢).
Similarly d € (a,b). Thus d € (b,c), or D C co(BUC)\ B\ C.

b. Assume A C co(BUC)\ B\ C. Thus A C co(BUC). By definition of co: AUB C
co(BUC) and therefore co(AU B) C co(BUC) (i).

Assume further D C co(AU B)\ A\ B (ii). By (i) and (ii): D C co(BUC). DNB =1
by (i1). DNC = by the proviso D is outside C. Concluding: D C co(BUC)\ B\ C as
required.

Note that without the assumption that D is outside C, the inference (16) does not nec-
essarily follow, both intuitively and in our system. Consider figure 9 below. Although
point A may be taken (for instance, by a spectator located on the line ) to be between
the rectangle C and the line B, and although D is between A and B, the conclusion D is
between B and C'is of course illegitimate.

Figure 9: inference (16) does not hold

3 Denotational Properties of Locative Prepositions

The study of various denotational properties of expressions in natural language is a promi-
nent issue in modeltheoretic semantics. This enterprise is linguistically important in at
least two different aspects: it helps to reveal constraints on possible meanings (”semantic
universals”) and it enables us to classify semantic properties of expressions that affect
grammaticality. In this section, we will show that the vector space semantics of locative
PPs has some non-trivial implications in both respects.

3.1 Point monotonicity

Let us call functions mapping sets of points to sets of vectors by the name prepositional
functions. Since we are interested in the ”pointal” behaviour of such functions let us con-
centrate on the end-points of vectors in the range of the function. For every prepositional
function P we denote the corresponding function P¢ from sets of points to sets of points
as follows:

Pe Y NAxp3ve P(A) [p = e-point(v)]
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The following definition characterizes the monotonicity of a prepositional function with
respect to the set of points argument.

Definition 5 (point monotonicity) Let P be a prepositional function and X C D,,.

1. P is upward point-monotone over X (PMONT) iff
VA,B € X [AC B — P¢(A) C P¢B)].

2. P is downward point-monotone over X (PMONJ]) iff
VA,B € X [AC B — P¢(B) C P¢(A)].

We specify point-monotonicity of prepositions according to the behaviour of their deno-
tation over the domain X of topologically simple regions. Intuitively, point-monotonicity
corresponds to truth preservation under enlargement/diminution of the reference object.
For instance, knowing that Paris is in France, we may conclude that both (17) and (18)
hold.

(17) The house is in Paris = The house is in France
(18) The house is outside France = The house is outside Paris

This intuitively suggests that in and outside are PMONT and PMON| prepositions respec-
tively. Indeed, the functions inside’ and outside’ defined above verify this expectation
over the domain of topologically simple regions. Correspondingly, entailments (17) and
(18) are established in the proposed system. More generally, the inference schemes below
characterize the point-monotonicity of a preposition P.

P € PMONT: P € PMON:
(19) A .is in/inside B A .is in/inside B

CisP A CisPB

CisPB CisPA

Other prepositions besides inside and outside are not point-monotone. Consider the
preposition above for example. In figure 10 the sentence the bird is above the house is
true, assuming that the bird is b and the house is H. However, the same sentence is
false when we consider a much smaller house h, horizontally far from the bird, or a much
larger house H’, extending to contain the position of the bird. Hence, above is neither
downward nor upward point-monotone. For similar considerations also the other locative

Figure 10: above is not point-monotone

prepositions are not point-monotone. We propose the following universal.
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Universal 1 Only inside’ and outside’ are possible PMON?T and PMON/ denotations,
respectively, for simple locative prepositions in natural language.

Consider the expression far from in English. Modeling it as a locative preposition in the
by now obvious way, we get a PMON| prepositional function different than the meaning of
outside. Universal 1 claims that this function is not a possible denotation for single word
locative prepositions in any natural language. Note that far from in English is neither
simple nor evidently locative. Rather, it is a compound (not necessarily constituent),
derived from the directional preposition from. Unlike far from, a preposition like near,
which is not point-monotone, is realized as a single lexical morpheme in many languages.

Another example for possible meanings of prepositions that are ruled out by universal
1 are the following functions, sensitive to the diameter of the reference object. Recall the
diameter of a set A is the "maximal” distance between two points in A. Formally it is
defined as the supremum of the set {dist(z,y) : =,y € A}.

outsidey;,,,.1o(A4)(v) iff outside’'(A4)(v) and diam(A) < 10
inside);,,,-10(4)(v) iff inside’(A)(v) and diam(A4) > 10

These functions are PMON| and PMON? respectively, but different than outside’ and
inside’.

The prepositions outside and inside are special in another respect. By proposition
2, over topologically simple objects the functions outside® and inside® coincide with
set complementation and identity respectively. That is, for every topologically simple
A C D,: outside’(A) = A and inside®(4) = A. For all other preposition meanings in
natural language, P¢ is not set-theoretically definable without further assumptions on D,
(e.g. the above vector space ontology). Moreover, we propose:

Universal 2 For every prepositional function P referred to by a locative preposition in
natural language, for every topologically simple region A: P¢(A) C A or P¢(A) = A.

In other words, for every preposition P one of the following must hold:
AisPB = A isoutside B
AisPB & Aisinside B

Both inside and outside are thus unique in the system of natural language prepositions,
one being the exception, the other the rule: the meaning of inside is the only preposition
meaning that does not entail outside. One consequence of this universal is the elimination
of prepositions that entail inside but are not entailed by it. For instance, an imaginable
preposition *nearin satisfies A is nearin B iff A is inside B and A is close to B’s edge.
However, this preposition does not satisfy universal 2 and is unexpected to occur in any
natural language. Another result is the elimination of prepositions that entail neither
inside nor outside. For instance, a preposition meaning equivalent to either near or else
inside is ruled out. These predictions are correct as far as we know.

As noted above, most prepositions are not point-monotone. However, there is a weaker
property that is common to all prepositions.

Definition 6 (point continuity) Let P be a prepositional function and X C Dy,. P is
point continuous over X (PCON) iff VA, B,C € X [AC BCC — P¢(A)NP¢(C) C
Pe(B)].
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Obviously, point monotonicity entails point continuity. We keep concentrating on the
domain X of topologically simple regions. Intuitively, a point continuity test is one that
can be called the ”Babushka inference”. Suppose that Babushka 1 is inside Babushka
2, which is inside Babushka 3. The following inference holds of the PCON preposition
beside:

(20) The ball is beside Babushka 1 and beside Babushka 3
= The ball is beside Babushka 2

We claim that the same holds of all prepositions.
Universal 3 All prepositions in natural language are point continuous.

This universal is similar to the continuity universal of Thijsse (1983) on ”simple” NPs
(universal U6 of Barwise and Cooper (1981)). Thus, continuity holds of determiners and
prepositions alike. Universal 3 rules out an imaginable preposition *aboven that satisfies
A is *aboven B iff A is an even number of meters above B. The prepositional function
denoting such a preposition would not be PCON. Another example for a non-PCON
prepositional function is the following:

outsidey,, ., jizm) (4)(v) iff outside’(4)(v) and diam(A) is an even natural number

3.2 Vector monotonicity

Prepositional functions can be viewed as relations between sets of points and vectors. In
order to examine monotonicity properties also with respect to the vector argument, we
propose the following order on D,,.

Definition 7 (vector order) For all viw € D,: v < w iff there is s > 1 in R s.t.
W = SV.

Intuitively, < is a relation of lengthening over non-zero vectors v, w that have the same
start point. For such vectors v < w iff v and w point in the same direction and |v| < |w].
It is easy to establish that this is a partial order on D,.'® This allows us to define
monotonicity with respect to the vector argument as well.

Definition 8 (vector monotonicity) Let P be a prepositional function and X C Dy.

1. P is upward vector-monotone over X (VMONT) iff
VAe X Vu,ve D, [u<sv— (P(A)(u) - P(A)(V))].

2. P is downward vector-monotone over X (VMONJ) iff
VAe X Vu,ve D, [u<v— (P(A)(v) = P(A)(n))].

Also with respect to this property we restrict our attention to the domain X of topolog-
ically simple objects. Intuitively, vector monotonicity corresponds to truth preservation
when the located object gets further from/closer to the reference object. For instance, the
following consideration suggests that the preposition behindis both VMON?T and VMON]J.
In a situation where Mary is between the tree and the house, both inferences (21) and
(22) hold.

16 e. it satisfies for all u, v,w € D,: u < u (reflexivity), if u < v and v < u then u = v (antisymmetry),
if u <vand v < w then u < w (transitivity).
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(21) Mary is behind the house =- The tree is behind the house

(22) The tree is behind the house = Mary is behind the house

More generally, the following inference schemes indicate vector monotonicity of a prepo-
sition P.17

P € VMON1: P € VMON/{:

(23) A is between B and C A is between B and C
AisPC BisP C
BisP C AisP C

An example for a non-VMON7Y preposition is near: if A is near B and gets further from

it, at a certain point it will no longer be near B. Some other examples are given in table
2.

VMON?T not VMONT
in front of - behind near, on, at
above, over - below, under inside, in
beside between
outside

Table 2: upward vector-monotonicity

Some remarks on this vector monotonicity classification of prepositions are in place.
The status of beside as VMONT is not completely clear. It may be that in English this
preposition carries an element of proximity, which would make it non-VMON? like the
preposition near. As for between, this preposition is special in taking a plural NP as
a complement. Therefore, we should test its vector monotonicity using a variation on
the inferences in (23), as illustrated in (24). These semantic relations show that between
should be classifed as downward, but not upward, vector monotone. This can formally
captured using a straightforward variation on definition 8.

(24)  a. The cat is between the house and the fence (the tree).
The cat is between the fence and the tree.
#> The house is between the fence and the tree.

b. The cat is between the house and the fence (the tree).
The house is between the fence and the tree.
= The cat is between the fence and the tree.

It is assumed that the prepositions in and inside are not VMON?Y. This assumption
follows from definition 8 and the (reasonable) definition of the denotation inside’ in our
system. Unfortunately, this classification cannot be supported by the test in (23): when
an object A is between B and C, it is normally the case that A is outside B and C, and
B is outside C as well. Thus the use of inside in (23) becomes contradictory.'®

7To be precise, when the objects are not points there are certain marginal cases where these inferences
are not very relevant for testing monotonicity. For instance, in figure 9 the point A may be considered
above the rectangle C and between C and line B. Nevertheless, B is not above C.

18 A JLLI reviewer points out to us that this case, although normal, is not the rule. For instance, we
may say that Babushka A is between Babushkas B and C even in cases where A is inside B and C is
inside A. We do not know how to deal with such effects.
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While table 2 gives examples for prepositions that are not VMONY, examples for
prepositions that are not VMON| are harder to find. The expression far from, mentioned
above, could be considered a possible candidate. However, for similar reasons to the
aforementioned, we do not take this as a counter-example to the following universal from
Zwarts (1997).

Universal 4 All simple locative prepositions in natural language are VMONJ.

Also the artificial preposition *not_close_to_and_not_far_from, with the obvious semantics,
is not VMONJ. Unlike far from it is not VMONTY either.

Vector monotonicity is relevant to the grammaticality of PP modification. Consider
the contrast between (25) and (26) vis-a-vis table 2.1

(25) a. two meters in front of/behind/above/below the car
b. 7two meters beside the car

c. two kilometers outside the village

(26) a. *two meters near/on/at the house
b. *two meters in/inside the house

c. *two meters between the two houses

Observing this compatibility, Zwarts (1997) proposes that modification of a PP using
a measure phrase modifier is legitimate if and only if the PP is headed by a VMON?
preposition. Consider, however, the following sentence in contrast to (26b):

(27) The nail is 10cm inside the wall.

Modification in (27) is allowed although inside is not VMON?.2° Nevertheless, there is a
possible contrast between the eigenspaces that are likely to correspond to the reference
objects in the the two cases. We speculate that a wall as in (27) can be conceived of
as an “unbounded” object: from the point of view of a person on one of its sides, a
wall might have been unbounded on the other side. This is unlikely to be the case with
the eigenspace of the house in (26b). Thus, we propose that the relevant property is not
vector monotonicity of the preposition, but rather monotonicity of the set of vectors being
modified. Vector monotonicity of sets of vectors is naturally defined as follows.

(28) Let W C V x V be a set of located vectors. We say that W is VMON?T (VMONJ)
iff forallu,veV xV:ifueW andu<v (v<u)thenvell.

Note that a preposition denotation is VMON1/VMONY iff it maps any set of points to a
VMON1T/VMON] set of vectors. We propose that modification of a PP is acceptable when
this set is VMON1 (=closed under lengthening of its memebers). This is the general case

19Part of this contrast is observed in Wunderlich and Herweg (1991:780). They suggest that mea-
sure phrases can only modify prepositions that have an extra ”directional” or ”dimensional” argument
(roughly, the axis of projective prepositions). Notice however, that outside (and inside in some uses
mentioned below) does not have an axis argument, but can still be modified by a measure phrase.

20A reviewer of this paper points out that 4n, unlike inside, cannot be modified by measure phrases,
and suggests that this fact should follow from the complex status of in-side. This may perhaps be the
source of some other important differences between the two prepositions, but as mentioned above, the
study of these must be deferred to another occassion. Note however that the empirical picture is quite
complicated because in can be modified by adjectives like deep (e.g. deep in the forest).

18



with VMONTY prepositions as in (25). The modified set of vectors can also be VMON?1
with inside, due to the unbounded denotation of the reference object as in (27). However,
when the preposition maps the reference object to a set of vectors that is not VMONT,
modification is ruled out as in (26).

Why does vector monotonicity affect the acceptability of measure phrase modification?
Our answer to this question is similar to Barwise and Cooper’s (1981:183) reasoning about
the relations between semantic properties of determiners and grammaticality of there
sentences. Like Barwise and Cooper, we assume that certain grammaticality phenomena
are affected by the motivation to avoid semantic trivialities like tautology or contradiction.
In the case of PP modification, the modified PP has to guarantee that any non-trivial
measure phrase modifying it would not lead to an empty set. Since the modified PP
denotes a set of vectors, this condition is formally stated as the following requirement on
such sets.?!

Definition 9 (modification condition) Let W C V x V be a set of located vectors.
We say that W satisfies the modification condition iff for every non-empty measure set
M CV xV, the intersection M N'W s also non-empty.

This condition takes care that an expression is modified by a measure phrase only when
its denotation can guarantee that every measure phrase denoting a non-empty set would
not lead to an empty set in the intersection process. By definition 2 of measure sets, we
can easily prove the following fact.

Proposition 6 A set of located vectors W C V' x V satisfies the modification condition
iff W is VMONT, VMONJ| and non-empty.

Since by universal 4, all prepositions are VMON/, the main factor affecting the accept-
ability of modified PP is whether the preposition is VMONT or not. A preposition like
outside, which guarantees that the P’ it gives rise to (outside the house) is VMONT, allows
measure phrase modification because it can guarantee that no trivial measure set could
lead to the empty set. A preposition like near, which is not VMONT, always gives rise
to non-VMONT7 sets. For instance, independently of the shape of the house, the P’ near
the house does not denote a VMONTY set, and consequently many measure phrases can
modify it into the empty set (e.g. *5000km near the house). With the preposition inside,
the possibility of modification depends on whether the reference object itself is VMON?
or not (cf. the contrast between *10cm inside the house and 10cm inside the wall).

3.3 Preposition conservativity

In the proposed system there is an important relation between the two arguments of
locative prepositions. Consider the following property.

Definition 10 (preposition conservativity) A prepositional function P is called con-
servative (CONSp) iff VAVv [P(A)(v) — s-point(v) € A].

A preposition is called conservative iff its denotation is conservative in every model. In a
way that is similar to determiner conservativity,?> when P is a conservative prepositional

2'Winter (1999) proposes to extend this condition using the analysis in Faller (2000) to modifica-
tion processes with dimensional adjectives (e.g. 1.5 meters tall/*short) and comparatives (e.g. 30cm
taller/shorter than John).

22Recall a determiner D is conservative iff B € D(A) <+ BN A € D(A) for all A and B.
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function the argument A restricts the set of possible elements in P(A): only vectors whose
start-point is in A can be in P(A). We propose the following universal.

Universal 5 All natural language locative prepositions are conservative.

This claim is related to the following inference.?

(29) A is n meters P B = The distance between A and B is n meters

All the prepositions discussed above are conservative. Correspondingly, (29) holds of all
these prepositions when modification is grammatical and non-projective, in the sense of
section 4 below.2* Consider, however, an artificial non-conservative preposition *behose,
whose denotation is defined as behind something close to in the following way:

behose'(A4)(v) iff 3B, [behind'(B)(v) AVp € B3w € near'(A)[p = e-point(w)]|

This is a non-conservative preposition, which is VMON1 and VMON| like behind. Thus,
modification by measure phrases should be syntactically possible. However, (29) does
not hold of this preposition. An object A can be 3 meters behind something close to B
without the distance between A and B being 3 meters. Universal 5 expects prepositions
equivalent to *behose to exist in no natural language. Below we mention another such
non-preposition *inose, similarly defined as equivalent to inside something close to.

Like conservativity in the determiner domain, also preposition conservativity imposes
a reduction in the number of possible denotations for lexical prepositions. To get an
impression of that, let us tentatively assume that D, C V is finite and |D,| = n, and that
D, = {(w,v) e VxV:we D,and w+ve€ D,}. Thatis, D, is the set of vectors over
the points in D,. Let us denote PREP = D) (yt)-

Proposition 7 |[PREP| = 22""" |CONSp| = 2"

Proof: |D,| = n? by definition.

PREP = (2P+)2% "Z" 92%7xDy

Thus, |PREP| = 22",

CONSp “”&m 9{(A,w)e2Ppx D, S-point(w)eA}

Let A € 2P» be of cardinality i. Thus, the set {w € D, : s-point(w) € A} (the vectors in
D, with start point in A) is of cardinality i - n. Therefore we get:

{(A,w) € 2P» x D, : s-point(w) € A}|

= > T: )-i-n (( ZL ) — the number of subsets of D, of cardinality 1)
i=0

- n n! . 2n—1 n—1 _ on-—-1 2

B =R R e A

Let us compare this result to the reduction D-conservativity imposes on possible de-
terminer denotations (van Benthem (1984)):

(30) For |D.| = n, |Deetyetyy| = |[DET| = 2*" whereas |[CONSp| = 2%"

23 As explained below, (29) is sufficient, but not necessary, for conservativity to hold.
24As to be pointed out there, when P is a projective preposition the sentence A is n meters P B is
ambiguous, where only one reading allows inference (29).
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P-conservativity is a weaker constraint than D-conservativity. It reduces the second ex-
ponent while the latter reduces the second base. The difference is clear from the following
table, calculating the number of (conservative) Ds and Ps for n = 2,3, 4:

n| |DET)| |CONSp| |PREP)| \CONSp|
2 65,536 512 65,536 256

3|1 ~1.84x10"Y ~1.34x10% ~4.72x 10" ~ 6.87 x 10'°
4| ~1.16x 1077 ~242x10* ~1.16x 1077 ~ 3.4 x10%8

Already in a domain with 4 elements, D-conservativity eliminates more denotations than
P-conservativity, although in this case the total number of preposition and determiner
denotations is the same.

Note, however, that CONSp is not the strongest restriction we can obtain when also
spatial properties are considered. On its own, it is not sufficient to guarantee the sound
inference (29). In fact, if P(A)(v) holds then s-point(v) is not just any point in A, but
rather a member of A’s boundary that is closest to e-point(v). Measuring the reduction
in possible prepositions that this spatial property imposes is much harder than with the
set-theoretical property CONSp, so we must leave this question aside for the time being.

Recapitulation Let us note that the universals 1-5 are provably independent of
each other. This can be shown by verifying that each of the artificial prepositions
outsidegiam<10/ MSidegiam>10, NEATIN, outsidecyen(diam), not-close_to_and_not_far_from, and
inose is ruled out only by the corresponding universal.

4 Further Problems of Locative PP Interpretation

This section briefly discusses some additional problems in the semantics of locative prepo-
sitions.

4.1 Projective and non-projective modification

So far we have considered modified PPs like far outside the city, or ten meters above the
house that involve a measure phrase modifier and license inference (29). Let us call such
cases of modification non-projective, as the composition of the modifier meaning with
the P’ meaning involves no reference to axes from the reference object. Modifiers like
diagonally and straight, by contrast, require a projective preposition and are sensitive to
the projective information it encodes. For instance, sentence (31a) entails (31b), but not
vice versa. It is natural to propose that this is because the meaning of (31a) requires, in
addition to (31b), that the bird is located on the up axis of the house. Thus, let us refer
to straight and diagonally as projective modifiers.

(31)  a. The bird is straight above the house.
b. The bird is above the house.

Also non-projective modifiers like ten meters can give rise to projective modification. For
example, sentence (32) can be true in a situation as illustrated in figure 11, where the
vertical projection of the vector connecting the bird to the house is ten meters long.

(32) The bird is ten meters above the house.
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Figure 11: projective modification by ten meters

Note that under this reading of sentence (32) it does not license inference (29): the
distance between the bird and the house in figure 11 is not ten meters.

Two questions that pose themselves are how to compositionally account for projective
modification and how to correctly characterize its distribution with various modifiers and
prepositions. As in the case of non-projective modification, we propose that the two
questions are strongly related. Projective modification of a set of vectors W is allowed
whenever W uniquely determines an axis according to the following definition.

Definition 11 (axis determination) A set of vectors W C D, uniquely determines an
aris a € V. iff a is the only member of {fup, £front, +right} s.t. there exists v.€ W
with v, = 0. In this case a is denoted a(W).

Thus, W uniquely determines a if a is the only axis parallel to a vector in W. We propose
that projective modification is possible iff the set of vectors denoted by the P’ uniquely
determines an axis. If it exists, this is the relevant axis for the modification process. For
instance, in (31a) and in (32) projective modification is possible because the set of vectors
denoting the P’ above the house uniquely determines the up axis. By contrast, consider
the sentences in (33) and (34). In (33) the region denoted by outside the house contains
vectors parallel to all six axes, so no axis is uniquely determined. Consequently, (33a)
is unacceptable and (33b) can only be understood non-projectively: as asserting that
the distance between the tree and the house is ten meters. Similarly, in (34) the region
denoted by beside the house contains vectors parallel to two axes (right and —right). As
a result, projective modification is unacceptable in this case as well.

(33) a. ?The tree is diagonally outside the house.

b. The tree is ten meters outside the house.

(34) ?The tree is straight beside the house.

More generally, all non-projective prepositions like outside give rise to regions that do not
uniquely determine an axis, and consequently disallow projective modification. Among
the projective prepositions, beside is the only one that does not uniquely determine an axis.
Therefore, this is the only projective preposition that disallows projective modification.
This generalization is the second factor that determines grammaticality of modified PPs
in our proposal.

(35) Modification Generalization 2: A structure [P NP] can be modified by a pro-
jective modifier and allows a projective reading for non-projective modifiers iff its
denotation uniquely determines an axis.
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This generalization is accounted for in a straightforward way by the semantics we propose
for projective modification. Consider first the lexically projective modifiers:

def
)(vt) = dAWAVW(V) A VJ_a(W) =0
diagonally: ~ diagonally/, 2 AWAVW (V) A |[Vaw)| = |V Law)]

straight: straight;

vt

(36)

These natural definitions make use of the axis a(W) uniquely determined by the P’ de-
notation W. When W does not uniquely determine an axis a, as in (33a) and (34), the
result of applying the modifier to W is undefined.

As for non-projective modifiers like far or ten meters, the projective reading is obtained
by mapping a measure set M, into a modifier function, of type (vt)(vt). This is obtained
using the operator proj, defined below.

(37) proj (M) < AWAVW (v) A M(vagw))

For instance, proj(ten_meters’) maps any set of vectors W that uniquely determines an
axis a to the set of vectors in W whose projection on «a is ten meters long. Thus, the P’
ten meters above the house denotes in its projective reading the set of vectors v above
the house s.t. ten_meters’(v,,), or |vy,| = 10m. This is what is required to get the
projective reading of sentences like (32). When W does not uniquely determine an axis,
as in sentence (33b), the projective reading is undefined.

4.2 Boolean operations

One of the important test cases for compositional semantics is its behaviour under boolean
conjunction, disjunction and negation. We should distinguish three compositional levels
where boolean operators may apply in the analysis of the PP.

The PP level Since the proposed type of PPs is the et type of predicates, boolean
operators at the PP level are treated standardly. For instance, an expression as in (38) is
traditionally analyzed using set complementation and intersection of et type predicates.

(38) not [pp ten meters above the mountain] but [pp four meters below the cloud]

The P’ level At this level matters are more complex. It is necessary to consider
negation, disjunction and conjunction separately. Negation of P’ structures is impossible
for some reason (probably a syntactic one). Consider for instance the ungrammatical
strings *ten meters not above the house or *diagonally neither behind the chair nor in
front of the table. To consider the implications of our proposal for the analysis such
structures would therefore be linguistically irrelevant. With P’ disjunction as in (39a)
below, our semantics derives the proposition in (40). This proposition, assuming that the
eigenspace for the bird in (39) is a singleton consisting of the point p, accounts for the
equivalence between (39a) and the sentential disjunction in (39b).%

(39) a. The bird is ten meters [above the house or below the cloud].

b. The bird is ten meters above the house or the bird is ten meters below the
cloud.

ZSUnfortunately, when loc(b') is not a singleton equivalence does not follow. However, as mentioned
in footnote 11, this is unlikely to happen when measure of distances as in (39) is involved.
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(40) loc™ (ten_meters’ N (above'(loc(h’)) U below’(loc(c'))))(the_bird))
& Jv € ten_meters’ N (above'(loc(h')) U below (loc(c'))) [e-point(v) = p]
& Jv € ten_meters’ N (above'(loc(h')))[e-point(v) = p]
V v € ten_meters’ N (below'(loc(c')))[e-point(v) = p|

Among the boolean operations at the P’ level, conjunction seems at first sight the most
problematic for our proposal. Consider for instance (41a), which is intuitively equivalent
to (41b).

(41)  a. The bird is ten meters [above the house and below the cloud].

b. The bird is ten meters above the house and the bird is ten meters below the
cloud.

In our proposal, compositional intersection of the denotations for above the house and
below the cloud normally leads to an empty set. This is because the vectors in these two
sets are different: their starting points are in disjoint objects. Obviously, (41a) is not
contradictory as this analysis implies. We would like to suggest that the origin for this
problem is a phenomenon that appears also at the N’ level of nominals and is known as
”wide scope” conjunction. Compare the sentences in (41) with the sentences in (42).

(42)  a. Every cat and dog slept.
b. Every cat slept and every dog slept.

Compositional intersection of the two N’ predicates cat and dog in (42a) would normally
lead to an empty set. However, the prominent reading of the sentence is non-contradictory
and equivalent to the sentential conjunction in (42b). Without getting into the analysis
of this phenomenon,?® note the syntactic similarity between the PP in (41a) and the NP
in (42a). In both cases the conjunction is at the X’ level, and in both cases compositional
intersection of two sets leads to insufficient results. We propose that the same mechanism
that is relevant for the ”wide scope” N’ coordination in (42a) is responsible for the ”wide
scope” reading of the P’ coordination in (41a).

The P level Consider the following sentence.
(43) The treasure is neither under nor beside the house. (Rather, it is inside the house).

The initial problem that such sentences evoke concerns the appropriate structure that
should be assumed for the PP. In X-bar theory, where prepositions (being heads) cannot
be coordinated, such cases can be analyzed as an instance of Right Node Raising, as
in sentences like John hugged and Bill kissed Mary (see Neijt (1979:1-7)). A deletion
analysis would assume that (43) is in fact a PP coordination where the noun phrase the
house is deleted from the first conjunct. A syntactic analysis along these lines allows a
straightforward semantic analysis of such cases in our framework.

For the sake of semantic generality, however, one may want a theory of prepositions to
treat any case of coordination within the PP as base generated. We are not sure that this is
a sound motivation, as the syntactic question seems here preliminary to the semantic one.
Moreover, any possible treatment of modified structures that does not involve application
of the modifier to the whole P’ as in our system would not provide a base generated account

26For two different proposals see Hendriks (1993:89-95) and Winter (1995).
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of the P’ coordinations discussed above. Thus, it is preferable to start the semantic
analysis of PP coordinations from a better syntactic understanding of these constructions
than what available at present. Despite these qualms, let us indicate how cases like (43)
might be treated if we wished to model P coordination as base generated. Note first that
that sentence (43) entails (44).

(44) Tt is not the case that the treasure is under the house.

A compositional analysis of the negative coordination neither under nor beside using our
vector based preposition denotations would not respect this entailment. The reason is that
the prepositional function under’ N beside’ maps any set of points A to a set of vectors
that includes vectors with end-points that are under A. This is because the denotation
under’ maps A to the set of vectors whose end-point is under A and which are also
externally closest to A. Consequently, any vector with an end-point that is under A but
which is not externally closest to A belongs to the set under’(A). Thus, this set includes
vectors with end-points under the house and the conclusion (44) is not guaranteed.

In order to overcome this problem let us first observe that all locative prepositions
can be modeled using points while lifting the preposition denotation to range over vectors
only when applying to the reference object. We can retain a former analysis and assume
that lexically, every preposition P denotes a function f from sets of points to set of points.
For instance, the ”pointal” denotation of outside is outside®, which as shown above is
simply the complement function. Now we can define a systematic mapping that shifts
such a (pt)(pt) function f into the corresponding prepositional function f” in terms of
vectors. This mapping is defined as follows:

(45) fv e Api. Av.closest(v, A) A f(A)(e-point(v))

Provably, (P¢)” = P for each of the prepositional functions P defined above. Thus, we
may assume that all the locative prepositions are lexically defined as ”pointal” functions
P¢, but can be optionally lifted to their ”vectorial” prepositional function P using the *
operator.

Now, let us note that the problem with preposition negation does not arise when the
boolean operators apply to the pointal functions. For instance, the coordination in (43)
can be analyzed using the pointal functions under® and beside® as in (46). Only after
all boolean operators apply at the P level can its denotation be shifted using the operator
Y into a prepositional function in terms of vectors.

(46) loc™ ((under® N beside®)”(loc(h)))(t')

This analysis leads to welcome results. Without reviewing the technical details in the
interpretation of this formula, note that the function under®Nbeside® is a pointal function
that maps any set of points A to the set of points that are neither in under®(A) nor in
beside®(A). The prepositional function derived from this function using the * operator
maps any set A to the set of A’s closest vectors whose end-point is in under®Nbeside®(A)
Thus, there is no vector in this set whose end-point is under A. This makes (46) entail
the proposition denoted by (44) (under our constant assumption the eigenspace of the
treasure is not empty).

A remaining question is what prevents application of the ¥ operator before all boolean
operations have applied at the P level. If application of this operator is free, then one
expects also the following function to be a reading for neither under nor beside.
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(47) (under®)” N (beside®)”

This would immediately lead back to the problems that the pointal analysis comes to
avoid. We would like to tentatively propose that analyses like (47) should be eliminated
in a grammar with type driven translation, as introduced in Klein and Sag (1985). In
Klein and Sag’s proposal, every syntactic category has a specified semantic type. This
specification drives the translation procedure so that each category ends up denoting
objects only of its specified type. Assume that the type specified for prepositions is
(pt)(pt). Given that the ¥ operator may shift this type into (pt)(vt), it cannot apply
in the translation of the P category in preposition negation or coordination. However,
since in our system the type specified for the P’ category is vt, the ¥ shifting of the
preposition must apply when translating the P’. Consequently, preposition meanings like
(47) are ruled out because prepositions must denote (pt)(pt) functions. On the other hand,
because the grammar requires that P’ is given the vt type, these pointal functions cannot
apply directly to the eigenspace of the reference object but rather in the translation of
the P’ they must be shifted first into (pt)(vt) functions to satisfy the requirement.

Let us emphasize again that the proposal above for applying boolean operators to
prepositions, which is admittedly too complicated, is irrelevant under many syntactic
analyses that do not assume that coordinations as in (43) are base generated.

4.3 Plural reference objects

Our treatment has ignored questions that are related to plurality in the interpretation of
PPs. However, all prepositions can take plural arguments (see (48)) and prepositions like
between, among or amid even require a plural reference object (cf. (49)).%

(48) The tree is beside/near the houses.

(49)  a. The tree is between/among/amid the houses.

b. *The tree is between/among/amid the house.

Cases like (49a) are of course evidence against the provisional denotation we have given
to the non-constituent between...and.... A more general denotation of between takes a set
of sets of points as argument, with the natural generalization of (11):

(50) between:
between( ), = AXpoye-Av.A € Xlext(v, A)] A e-point(v) € co(UX) \ UX

In order to use this definition, we should define the eigenspace of a plural object as the
set of its parts’ eigenspaces. Assume that part-of is a relation over the domain of entities,
determined by the plural ontology (e.g. as in Scha (1981) or Link (1983)), such that
part-of(x)(y) iff y is one of the atoms supporting z. The location function of pluralities
is defined by:

(51) loclgé wf Ax. AA Jy[part-of(x)(y) A loc(y) = A

(t)t)

For instance, if the entity denoting the houses stands for the collection {h’, hi, h;} then its
eigenspace is the set of eigenspaces: {loc(h)), loc(h}), loc(hj)}. The semantics of sentences
like (49a) is obtained in a natural way.

27In English, between prefers doubleton pluralities, a fact that we henceforth ignore.
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In order to deal with cases like (48), with singular-taking prepositions, we do not
need to change the semantics of the preposition itself. Rather, it is sufficient to define
what happens when it gets a plural eigenspace (=a set of sets of points). This can be
done by mapping a prepositional function Py to a function PP! that maps any plural
eigenspace to the set of vectors P assigns to its convex hull:

(52) PP AX (e Av.P(co(UX))(v)

This allows sentences like (48) to get their correct semantics with the ” pluralized” prepo-
sitional functions beside” and near?!.?®

As Herskovits (1986) and Faller (1997) point out, sentences like (53) have an interest-
ing reading: one that does not require that the worm is inside any strawberry.

(53) The worm is in the strawberries.

This is captured by the pluralized prepositional function in®': even if the worm is outside
each strawberry it may still be inside the convex hull of the strawberries’ eigenspaces.
This treatment also accounts for the lack of entailment in (54).%

(54) a. The worm is between the strawberries
b. # The worm is outside the strawberries

If the worm is in the convex hull of the strawberries, then it is not outside the strawberries,
at least not in the ”pluralized” sense of outside. Note that between does not entail in either,
as exemplified in (55).

(55) a. The child is between the houses
b. # ?The child is in the houses

The reason for that is plausibly the distributive/collective ambiguity of plurals. Under
the collective reading of (55b), the entailment might follow with the pluralized reading of
in. But (55b) also has a prominent distributive reading equivalent to the child is in each
house, with the singular reading of in, which of course does not follow from (55a). It is
not clear to us, however, why the in® reading that is observed in (53) does not appear in
(55b).

5 On Directional Prepositions

Although this paper is basically about locative prepositions, our proposal would not be
complete without some indication of how the framework presented here can be extended
to directional prepositions. Unlike locative prepositions, which describe a static position
of the located object, directional prepositions like to, from, and across are basically used
to describe a change in location with respect to the reference object. Some examples
follow.3¢

28This treatment resembles the ”geometric description function” called outline in Herskovits (1986).

29This lack of entailment may seem to stand in opposition to universal 2. This is not the case however,
as universal 2 officially refers only to singular prepositional functions, of the type (pt)(vt).

30There is a host of literature about the many different ways in which directional prepositions can
be used. See Bennett (1975), Cresswell (1978), Helmantel (1998), Jackendoff (1983), Lakoff (1987),
Nam (1995), Wunderlich (1991,1993) and references therein.
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(56) a. The car drove to the garage.
b. The letter was sent from the office.

c. The soldiers walked across the meadow.

At first glance, it may seem that we can use vectors directly in the semantics of
such directional constructions by representing the movement of an object with a vector
connecting the starting point and the end point of the movement. The interpretation
of (56a), for instance, would then involve a vector that starts at an arbitrary point and
ends at the garage, as roughly stated in (57b). Like locative PPs (cf. (57a)), a directional
PP would then denote a set of vectors, but the difference is in the way the theme of the
sentence relates to these vectors.

(57)  a. The car is standing behind the garage.
‘the car is located at the end point of a vector pointing backward from the
garage’

b. The car drove to the garage.
‘the car was first located at the beginning point and finally at the end point of
a vector pointing to the garage’

However, there are some indications that this is not the right approach. First, there are
prepositions that require movements that are not simply described by a linear entity like
a vector. The case of around is notable:

(58) The car drove around the garage.

A second objection is that using only one vector to describe movement would make us
lose the unified account of the role of the reference object in PPs. We saw that in locative
PPs the reference object is always the origin of the vectors in the P’ denotation. For
any locative preposition P, the vectors in P(A) have their starting point in the reference
object A. This cannot be maintained if we use an analysis as in (57b), where the vectors
have their end point at the reference object. The situation becomes even less systematic
with prepositions like through, where neither the end point nor the starting point of the
required vector is at the reference object.

In view of these considerations, we will restrict the use of vectors to represent locations
relative to a reference object, without letting the vectors indicate the route of the move-
ment itself. Rather, the denotation of directional prepositions involves a more complex
object that we will label a path, following the literature.3! A path will be modeled as
a function from the real interval [0,1] C R to vectors. Locative prepositions determine
static positions and therefore they map the reference object to a set of vectors pointing
at potential locations for the located object. Directional prepositions determine a change
in position and therefore they map the reference object to a set of sequences of vectors
(=paths). Each of these sequences determines a potential change in position of the lo-
cated object. For convenience, we identify the [0, 1] interval with a domain D; of type i.
Consequently, paths are functions of type v and directional prepositions are functions of
type (pt)((iv)t).

For instance, a path followed by the car in (58) could be the kind of function © that
is roughly given in figure 12 (for a few points of the domain [0,1]). The denotation of
the P’ for around the garage is a set of such paths. A full definition of the meaning of
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Figure 12: a typical path for around

around should specify the mapping from sets of points to their corresponding ”surrounding
paths”.

We follow Jackendoff (1983) (among others) in treating a path as a function from
a non-temporal interval into space. This is in view of atemporal usages of directional
prepositions as in the following sentences.

(59) a. The trees are standing along the river.
b. This road leads to the city.
c. John looked through the window.

In these examples the path is used not for movement, but for locating plural or elongated
objects or expressing the direction of someone’s line of sight. It is the verb that determines
what entity is related to the path and how it relates to the path. In (56) and (58) the
subject is located on subsequent positions of the path on subsequent moments of time.
In (59a) the trees are located on different positions of the path; in (59b) there is some
sort of order-preserving mapping from parts of the road to positions of the path; in (59c¢)
John and the object he is looking at are located at opposite ends of the path. We think
there are different ways in which the relation between the path and the verbal meaning
can be implemented, but we will leave that implementation to future work since in the
context of this paper we are more interested in the internal affairs of directional PPs.

The most important directional prepositions of English can be divided into three
classes (see Jackendoff (1983)):

(60) a. source prepositions: from, out of, off
b. goal prepositions: to, into, onto

c. route prepositions: through, across, along, around, over

The prepositions in (60a) specify where the path starts, that is they put a condition on
©(0). The prepositions in (60b) determine the last vector ©(1) of the path. The ”route”
prepositions of (60c) do not involve a particular vector in the path. Rather, they require
that the path contains some vector(s) ©(z) with certain properties with respect to the
reference object.

In order to define the meaning of directional prepositions, we note that many of
them are related in systematic ways to locative prepositions, as shown by the following
entailments.

31See Jackendoff (1983), Crow (1989) and Nam (1995), among others.
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(61) a. John went out of the house = John was in the house
b. Mary went into the room = Mary was in the room

c. The train went through the tunnel = The train was in the tunnel
(62) The bird flew over the field = The bird was above the field

In (61) we see that the directional prepositions out of, into and through are connected
to the locative preposition in: the relevant paths must overlap an internal point of the
reference object. In (61a-c) this condition applies to the initial vector, the final vector and
an intermediary vector in the path, respectively. Also (62) shows a connection between the
over path and an intermediary vector in it whose end point should be above the reference
object. More correspondences like these are summarized in table 3 (see also Leech (1969)

and Jackendoff (1983)).

Directional Locative
from, to, via at

off, onto, across on

out of, into, through | in

over above
along beside?

Table 3: relations between directional and locative prepositions

These connections allow us to define the denotation of many directional prepositions
using few systematic mappings on the meanings of locative prepositions. To do that, let
us extend the notion of closest vector from section 2.5 to a notion of closest path, defined
as follows.

Definition 12 (closest path) We say that a path © € D;, is a closest path to a set of
points A C D, and denote closest(©,A) iff for every x € D;: O(x) is a closest vector
to A.

The mapping between a locative preposition and the corresponding directional preposi-
tions is defined using an operator dir that for any locative prepositional function P and
a subset of the interval D; yields a directional prepositional function. This is defined as
follows.

(63) dir (L) (Pptywr)) wf AApAOjy.closest (0, A) ATz € I[P(A)(O(z))]

In words: dir(I)(P) maps any set of points A to the set of closest paths to A whose value
on some member of I is in P(A).

For deriving source, goal, and route directional prepositions from locative prepositions
we use the following abbreviations:

source: dir’ = dir({0})
(64) goal: dir' = dir({1})
route:  dir? = dir([0, 1))

These operators derive directional prepositional functions as follows:
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from’' = dir’(at’) off’ = dir’(on’) out_of’ = dir®(in’)
(65) to' = dir'(at’) onto’ = dir'(on')  into' = dir'(in’)
via' = dir’(at’)  across’ = dir’(on’) through’ = dir”(in’)

(66) over’' = dir’(above’) along’ = dir”(beside’)

For instance, out_of’ is the function that maps any set of points A to the paths ©
satisfying in'(A, ©(0)). Substantiating the compositional semantics of verb phrases, this
treatment should directly account for entailments as in (61)-(62). Note that since our
semantics of on and at is the same, also from and off, to and onto, and via and across get
the same meaning. The intricate differences between these prepositions are not accounted
for.

The directional prepositions defined in (65)-(66) are lexical items in English. We
would like to propose, following Jackendoff (1983) a.o., that the dir mapping applies also
compositionally to locative prepositions. For instance, a locative preposition like under
(cf. (67a)) can be ”directionalized” as in (67b).

(67) a. The duck is under the bridge.
b. The duck swam under the bridge.

The directional effect in (67b) can be achieved using the dir® operator.?? The locative
preposition under has no corresponding directional preposition. By contrast, over is a
lexically directionalized above. Which directional prepositions are lexically manifested
and which ones are not is subject to vast cross-linguistic variation. For instance, both
Hebrew locative prepositions mitazat ("under”) and me@al (" above”) have no correspond-
ing directional prepositions. Of course, this does not hurt the expressibility of directional
statements in Hebrew: Hebrew me@al can be used in directional constructions just like
English under in (67D).

Note that only the locative prepositions at, on, and in have a full pattern of source
and goal prepositions. This suggests that these prepositions have a special, more basic
status. We propose the following universal.

Universal 6 If PY" s a directional preposition whose meaning is either dirO(PIOC) or
dir' (P'°°), for some locative prepositional function P'°°, then P'° is at’, on’ or in’.

This universal rules out, for instance, a hypothetical directional preposition *from_over,
whose meaning would involve paths starting at points above the reference object.

The ”directionalized” locative prepositions in (65)-(66) do not exhaust the inventory
of directional prepositions. Some directional prepositions, like towards, away from and
around, are not definable in terms of the dir operator on locative prepositions. The reason
is that these prepositions do more than just put a restriction on a single vector in the
path: they require certain relations among vectors in the path. Maybe the simplest to
define are the relations imposed by towards and away from. These prepositions require
that the end-point of the final vector in the path is closer to/further from the reference
object than the end-point of the initial vector. Formally:

towards’

AANO.closest (O, A) A dist(e-point(©(1)), A) < dist(e-point(©(0)), A)

de
away_from' %

AANO.closest (O, A) A dist(e-point(©(1)), A) > dist(e-point(©(0)), A)

(68)

32Perhaps examples like he came from under the carpet and he went under the umbrella can be treated
using application of dir® and dir! respectively.
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This definition can account for entailments such as:

(69) a. John is walking towards the house = John is now closer to the house than he
was before

b. John is walking away from the house = John is now further from the house
than he was before

The relation between towards and away from can be further exemplified by the follow-
ing entailments:

(70)  a. The train moved back towards the station = The train had moved away from
the station

b. The train moved back away from the station = The train had moved towards
the station

This kind of relation is more general and it appears also between pairs of source and goal
prepositions from (60):

(71)  a. John moved back to Paris = John had moved from Paris
b. Mary moved back out of the room = Mary had moved into the room
¢. The car moved back onto the field = The car had moved off the field

In each of these entailments the two prepositions can be replaced, preserving the entail-
ment. The adverb back used in combination with a source/goal preposition implies an
earlier movement in the opposite direction, which can be expressed by the corresponding
goal/source preposition. These entailments can be explained as soon as we notice that
these pairs of prepositions are each other’s inverses in terms of path reversal. This is
defined as follows:

(72) "0 & A2;.0(1 - 2)
“Ponivy = AAAO.3O € P(A)[O = ~0)

Note that from’ = ~“to’, into’ = ~out_of’, off’ = “onto’, away_from’ = “towards’, and
conversely. This means that the semantics of back P can be formalized as PN~ P (ignoring
the temporal aspect of back): a path in back P(A) is a path which is both in P(A4) and
in (“P)(A).>* Notice that the route prepositions in (65)-(66) are their own reverse. For
instance, through’ = “through’. Correspondingly, entailments like the following hold
for all route prepositions:

(73) The car moved back through the forest = The car had moved through the forest

There are many interesting questions about directional prepositions which have not
been discussed here. A full characterization of their denotational properties (e.g. mono-
tonicity and conservativity) is yet to be given. We have also not discussed the composition
of directional and locative PPs with verb phrases. This is important in order to formally
account for inferences with verb phrase modification, which is one of the central ways to
use prepositional phrases. We believe, however, that the ideas introduced in this section
can form a basis for a more comprehensive study of directional prepositions in vector
space semantics.

331f one considers the entailments in (71) to be presupposition relations rather than truth-conditional
effects, it would be possible of course to replace this definition by a suitable presupposition, which would
as well involve the reverse preposition of P.
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6 Conclusions

Our investigation of the semantics of prepositions has drawn on some general princi-
ples that may be of importance for a more comprehensive semantic theory of spatial
expressions. The ontological primitives in the proposed system are taken to be standard
structures from mathematical theories of space. This step has the advantage of unifor-
mity: all spatial expressions of a certain linguistic category (e.g. locative prepositions) are
treated as having the same type of functions over the underlying space ontology. Unlike
previous modeltheoretic approaches, notably Nam (1995), notions like spatial inclusion,
betweenness or relative distance are not hard-coded in the ontology. These notions play an
important role in our treatment as well, mainly in the monotonicity properties of prepo-
sitions. Inclusion is the boolean order on the power-set of the point domain; betweenness
arises naturally from the ordering of the vector domain. However, no special axiomatic
status is given to prepositions like inside or between. Their importance lies only in their
appearance in central monotonicity inferences. We believe this is a welcome aspect of
the proposed system, since it is hard to see what linguistic centrality these prepositions
bear, when compared for instance with prepositions like outside or beside. A similar
step of "modeltheoretic equality” had taken place before in the semantic theory of noun
phrases, which gradually shifted from traditional logical views that emphasize existential
and universal quantification, into the present uniform treatment of all NPs as generalized
quantifiers.

The compositional process we have proposed is based on the motivation to let preposi-
tions be the main locus for spatial reasoning. Prepositions denote purely spatial functions.
The compositional interpretation of the PP ultimately treats the preposition as a relation
between e type entities: the reference object and the located object. This is obtained
indirectly, however, with the location function as the mediating ”semantic glue” between
non-spatial entities and the spatial preposition.

This shift between spatial and non-spatial domains may also be a point of relation
between the semantic component and a cognitive component, responsible for the spatial
conceptualization of physical objects. This process, although crucial for many objectives,
has not been discussed at all in this paper. One reason for that (except for the authors’
incompetence) is that under the topological simplicity assumption, the computation of
many entailments can go on without putting any other restrictions on the loc function.
Thus, full specification of the cognitive factors that affect it was not required, and one
may even refuse to admit that this function has any ”psychological reality” whatsoever.
The theory can easily be tested against much solid linguistic data without addressing
this question. This neutral, not to say agnostic, attitude towards psychological aspects of
language use is shared by many contemporary studies in modeltheoretical semantics, but
it was adopted here more as a practical route than as a matter of principle. We do believe
that the rich linguistic mechanisms that are used for conveying spatial information can
form an empirical basis for fruitful collaboration between logical semanticists and cognitive
psychologists interested in natural language. We hope the present work might prove useful
for such an exciting project.

A Appendix: some useful definitions

A wector space over the field of real numbers R is a quadruple (V;0,+,-) s.t. V is a
set, 0 € V (the zero vector) and the functions + : (V x V) — V (vector addition) and
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: (R x V) = V (scalar multiplication) satisfy for all u,v,w € V and s,r € R:
L (u+v)+w=u+ (v+w)
2.0+v=v+0=v
3. There is an element —v € V s.t. v+ (—v) =0
4. u+v=v+u
5. s(u+v) = su—+ sv
6. (s+r)v=sv+rv
7. (sr)v = s(rv)
8. lv =wv (1 is the unit element of R)

A scalar product over a vector space V is a function f : (V x V) — R that satisfies for
allu,v,weV , 6 seR:

1. f(v,w) = f(w,v)
2. fu,v+w) = f(u,v) + f(u,w)
3. f(sv,w) =sf(v,w) = f(v,sw)

A scalar product is called positive iff for every v € V: f(v,v) > 0 and for every v € V'\ {0}:
f(v,v) > 0. For a positive scalar product f the norm of a vector v € V is denoted

lv| = 1/f(v,v). We say that two vectors v,w € V are orthogonal (perpendicular) and

denote vLw iff f(v,w)=0. For any vector w € V we call Lw wf {veV:vlw} the

orthogonal complement of w.

For v, w in a space V, the line segment [v, w] is the set {sv+ (1 —s)w: 0 <s <1} A
set A CV is conver iff for all v,w € A: [v,w] C A. The convex hull of A, denoted co(A),
is the smallest convex subset of V' containing A.

For any set X a metric for X is a non-negative function d : (X x X) — R™ that
satisfies for all z,y, z € X:

1. d(z,y) = d(y, z)
2. d(z,y) +d(y, z) > d(z, 2)
3. d(z,y)=0iffx =y

Note that the function dist(v, w) = |v — w| is a metric for V. A neighborhood in X of a
point € X is defined by Ux(z,0) = {y € X : d(z,y) < 6}. Aset A C X is open in
X iff for every x € A there is 0 > 0 s.t. Ux(z,0) C A. A C X is closedin X iff X \ A
is open in X. The interior of A C X is the union of all open subsets in X contained
in A. The boundary of A is the set of points in X interior neither to A nor to X \ A.
The diameter of A is the supremum of the set {(z,y) : z € A and y € A}. A set A is

bounded iff its diameter is finite. We do not define compact sets, rather only mention the
Heine-Borel-Lesbegue theorem (see Kelley (1961:144)): a subset of an Euclidean n-space
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R"™ is compact iff it is closed and bounded.

Acknowledgements

This paper extends a shorter version that appeared in proceedings of Semantics and
Linguistic Theory 1997. It was written when the authors were affiliated to the Utrecht In-
stitute of Linguistics at the Utrecht University. The part of the first author was supported
by the Foundation for Language, Speech and Logic, which is funded by the Netherlands
Organization for Scientific Research, NWO (grant 300-171-033). We are grateful to Johan
van Benthem and Ed Keenan for their remarks on this work.

References

Barwise, J. and Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Phi-
losophy, 4:159-219.

Bennett, D. C. (1975). Spatial and Temporal Uses of English Prepositions: an essay in stratificational
semantics. Longman, London.

Crangle, C. and Suppes, P. (1989). Geometrical semantics for spatial prepositions. Midwest Studies in
Philosophy, 14:399-422.

Cresswell, M. (1978). Prepositions and points of view. Linguistics and Philosophy, 2:1-41.

Crow, J. S. M. (1989). Towards a Semantics for English Spatial Expressions. PhD thesis, University of
Texas at Austin.

Faller, M. (1997). Geometric description functions in a vector space semantics for locative PPs. Unpub-
lished ms., Stanford University.

Faller, M. (2000). Dimensional adjectives and measure phrases in vector space semantics. In Faller, M.,
Kaufmann, S., and Pauly, M., editors, Formalizing the Dynamics of Information. CSLI Publications,
Stanford.

Gardenfors, P. (1994). Frameworks for properties: possible worlds vs. conceptual spaces. Sémiotiques,
6:99-120.

Helmantel, M. (1998). Simplex adpositions and vector theory. The Linguistic Review, 15:361-388.

Hendriks, H. (1993). Studied Flexibility: categories and types in syntax and semantics. PhD thesis,
University of Amsterdam.

Herskovits, A. (1986). Language and Spatial Cognition: an interdisciplinary study of the prepositions in
English. Cambridge University Press, Cambridge.

Jackendoff, R. (1983). Semantics and Cognition. MIT Press, Cambridge, Massachusetts.

Jackendoff, R. and Landau, B. (1991). Spatial language and spatial cognition. In Napoli, D. J. and Kegl,
J. A., editors, Bridges between Psychology and Linguistics. Lawrence Erlbaum Associates, Hillsdale, NJ.

Keenan, E. (1996). The semantics of determiners. In Lappin, S., editor, The Handbook of Contemporary
Semantic Theory. Blackwell.

Kelley, J. L. (1961). General Topology. Van Nostrand, Princeton, New Jersey.
Klein, E. and Sag, I. (1985). Type driven translation. Linguistics and Philosophy, 8:163-201.

Lakoff, G. (1987). Women, Fire, and Dangerous Things: what categories reveal about the mind. Chicago
University Press, Chicago.

Lang, S. (1977). Linear Algebra. Addison-Wesley, Reading, Massachusetts, second edition.
Leech, G. N. (1969). Towards a Semantic Description of English. Longman, London.

35



Link, G. (1983). The logical analysis of plurals and mass terms: a lattice theoretical approach. In
Bauerle, R., Schwarze, C., and von Stechow, A., editors, Meaning, Use and Interpretation of Language.
De Gruyter, Berlin.

Nam, S. (1995). The Semantics of Locative Prepositional Phrases in English. PhD thesis, University of
California Los Angeles.

Neijt, A. H. (1979). Gapping: a contribution to sentence grammar. PhD thesis, Utrecht University.

O’Keefe, J. (1996). The spatial prepositions in English, vector grammar, and the cognitive map theory.
In Bloom, P., Peterson, M. A., Nadel, L., and Garrett, M. F., editors, Language and Space. MIT Press,
Cambridge, Massachusetts.

Scha, R. (1981). Distributive, collective and cumulative quantification. In Groenendijk, J., Stokhof, M.,
and Janssen, T. M. V., editors, Formal Methods in the Study of Language. Mathematisch Centrum,
Amsterdam.

Thijsse, E. (1983). On some proposed universals of natural language. In ter Meulen, A., editor, Studies
in Modeltheoretic Semantics. Foris, Dordrecht.

van Benthem, J. (1984). Questions about quantifiers. Journal of Symbolic Logic, 49:443-466.
Vandeloise, C. (1991). Spatial Prepositions. Chicago University Press, Chicago.
Wall, C. T. C. (1972). A Geometric Introduction to Topology. Addison-Wesley, Reading, Massachusetts.

Winter, Y. (1995). Syncategorematic conjunction and structured meanings. In Proceedings of Semantics
and Linguistic Theory, SALTS5.

Winter, Y. (1999). Modification of prepositions and degree adjectives in vector space semantics: extend-
ing the analogy. Unpublished ms., Utrecht University.

Wunderlich, D. (1991). How do prepositional phrases fit into compositional syntax and semantics. Lin-
guistics, 29:591-621.

Wunderlich, D. (1993). On German um: semantic and conceptual aspects. Linguistics, 31:111-133.

Wunderlich, D. and Herweg, M. (1991). Lokale und direktionale. In von Stechow, A. and Wunderlich,
D., editors, Semantik: ein internationales Handbuch der zeitgendsischen Forschung. De Gruyter, Berlin.

Zwarts, J. (1997). Vectors as relative positions: a compositional semantics of modified PPs. Journal of
Semantics, 14:57-86.

36



Contents

1

2

5

6

Introduction

Locative PPs: Lexical Meanings and Compositional Interpretation

2.1 A preliminary typology of spatial prepositions . . . . . . . ... ... oL oL
2.2 The modification problem . . . . . . . . .. L L e
2.3 Vector space ontology . . . . . . ... e e
2.4 The compositional process . . . . . . . . . .. e e e e e e e
2.5 Denotations of locative prepositions . . . . . . .. ... oL o Lo
2.6 Example: transitivity of between . . . . . . ... oL L

Denotational Properties of Locative Prepositions

3.1 Point monotonicity . . . . .. ...
3.2 Vector monotonicity . . . . . . . ...
3.3 Preposition conservativity . . . . . .. .. L L

Further Problems of Locative PP Interpretation

4.1 Projective and non-projective modification . . . . . . ... ..o oo
4.2 Boolean operations . . . . . . . . ... oL e e e
4.3 Plural reference objects . . . . . . . ...

On Directional Prepositions

Conclusions

A Appendix: some useful definitions

List of Figures

PP structure in X-bar Theory . . . . . . . . . . . . . . . e
notation for vectors and points . . . . . . . . ... L. e
non-convex objects . . . .. ... e e
vy and v4 are boundary vectors of A . . ... Lo
v is externally closest to A, wisnot . . . . . . .. .. Lo o
between A and B . . . . ... e
above T . .. L L e e e e e
beside & . . . . . oL e
inference (16) does not hold . . . . . . ... L Lo
10 a@bove is not point-mmonotone . . . . . ... Lo Lo Lo
11  projective modification by ten meters. . . . . . . . ... L Lo
12 atypical path for around . . . . . . . ..o

© 00O Uik WN -

List of Tables

1 typology of prepositions . . . . . . . . ... e e
2 upward vector-monotonicity . . . . . ... oL e
3 relations between directional and locative prepositions . . . . . . . .. ... ... ...

37

21
21
23
26

27

33

33



