3 From Vague Idea to Experimental Design

In Chapter 2, we described the competencies needed to build, evaluate, use and manage eye-
trackers, as well as the properties of different eye-tracking systems and the data exiting them.
In Chapter 3 we now focus on how to initially set up an eye-tracking study that can answer
a specific research question. This initial and important part of a study is generally known as
‘designing the experiment’.

Many of the recommendations in this chapter are based on two major assumptions. First,
that it is better to strive towards making the nature of the study experimental. Experimental
means studying the effect of an independent variable (that which, as researchers, we directly
manipulate—text type for instance) on a dependent variable (an outcome we can directly
measure—fixation durations or saccadic amplitude for instance) under tightly controlled con-
ditions. One or more such variables can be under the control of the researcher and the goal
of an experiment is to see how systematic changes in the independent variable(s) affect the
dependent variable(s). The second assumption is that many eye-tracking measures—or de-
pendent variables—can be used as indirect measures of cognitive processes that cannot be
directly accessed. We will discuss possible pitfalls in interpreting results from eye-tracking
research with regard to such cognitive processes. Throughout this chapter, we will use the
example of the influence of background music on reading (p. 5). We limit ourselves to issues
that are specific to eye-tracking studies. For more general textbooks on experimental design,
we recommend Gravetter and Forzano (2008); McBurney and White (2007). and Jackson
(2008).

This chapter is divided into five sections.

e In Section 3.1 (p. 66) we outline different considerations you should be aware of de-
pending on the rationale behind your experiment and its purpose. There is without
doubt huge variation in the initial starting point depending on the reason for doing the
study (scientific journal paper or commercial report, for instance). Moreover, the pre-
vious experience of the researcher will also determine where to begin. In this section
we describe different strategies that may be chosen during this preliminary stage of the
study.

In Section 3.2, we discuss how the investigation of an originally vague idea can be
developed into an experiment. A clear understanding is needed of the total situation in
which data will be recorded; you need to be aware of the potential causal relationships
between your variables, and any extraneous factors which could impact upon this. In
the subsections which follow we discuss the experimental task which the participants
complete (p. 77), the experimental stimuli (p. 79), the structure of the trials of which the
experiment is comprised (p. 81), the distinction between within-subject and between-
subject factors (p. 83), and the number of trials and participants you need to include in
your experiment (p. 85).

Section 3.3 (p. 87) expands on the statistical considerations needed in experimental
research with eye tracking. The design of an experiment is for a large part determined
by the statistical analysis, and thus the statistical analysis needs to be taken into con-
sideration during the planning stages of the experiment. In this section we describe
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how statistical analysis may proceed and which factors determine which statistical test
should be used. We conclude the section with an overview of some frequently used
statistical tests including for each test an example of a study for which the test was
used.

Section 3.4 (p. 95) discusses what is known as method triangulation, in particular how
auxiliary data can help disambiguate eye-tracking data and thereby tell us more about
the participants’ cognitive processes. Here, we will explore how other methodologies
can contribute with unique information and how well they complement eye tracking.
Using verbal data to disambiguate eye-movement data is the most well-used, yet con-
troversial, form of methodological triangulation with eye-movement data. Section 3.4.8
(p. 99) reviews the different forms of verbal data, their properties, and highlights the
importance of a strict method for acquiring verbal data.

3.1 The initial stage—explorative pilots, fishing trips,
operationalizations, and highway research

loosely formulatod quost:on, such as “How does listening to music or noise affect the reading
ability of students trying to study?”. Unfortunately, this question is not dlrectly answerable
without makin F_g_fgﬁ_rt_hg{ﬁ@eranonahzanons The operationalization of a research idea is the
process of making the idea so precise that data can be recorded, and valid, meaningful values
caleulated and evaluated. In the music study, you need to select different levels or types of
background noise (e.g. music, conversation), and you need to choose how to measure reading
ability (e.g. using a test, a qugsnonnmre or by looking at reading speed). In the following
subsections, we give a number of suggestions for how to proceed at this stage of the study.
The suggested options below are not necessarily exclusive, so you may find yourself trying
out more than one strategy before settling on a particular final form of the experiment.

3.1.1 The explorative pilot

One way to start is by doing a small-scale explorative pu’ot smdv This is the thing to do if
you do not feel confident about the differences you may expect, or the factors to include in the
real experiment. The aim is to get a general feeling for the task and to enable you to generate
plausible operationalized hypotheses. In our example case of cyo movements and reading,
“take one or two (exts, and have your friends read them while listening to music, noise, and”
silence, rospecuvely Record their eye movements while Ihey do this. Thcn, lnterwew them

texts under these condmons'? Explore the results by looking at data, for instance, look at heat
maps (Chapter 7), and scanpaths (Chapter 8). Are there differences in the data for those who
listened to music/noise compared to those who did not? A Why could that be? Are there other
measures you should use to complement the eye- trackmg data (retention, working memory
span, personality tests, number of books they read as children etc.). It is not essential to do
statistical tests during this pilot phase, since the goal of the pilot study is to generate testable
hypotheses and not a p-value (nevertheless you should keep in mind what statistics would
be appropriate, and to this end it might be useful to look for statistical trends in the data).
Do not forge! that the hypotheses you decide upon should be relevant to theory—they should
have some background and basis from which you generate your predictions. In our case of
~ “music ¢'and eye movements whilst reading, the appropriate literature revolves around readmg
~d reqearch and environmental psychology
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3.1.2 The fishing trip

You may decide boldly to run a larger pilot study with many participants and stimuli, even
though you do not really know what eye-tracking measures Lo use in your analyses. After all,
you may argue, there are many eye-tracking measures (fixation duration, dwell times, transi-
tions. fixation densities, etc.), and some of them will probably give you a result. This approach
is sometimes called the fishing trip, because it resembles throwing out a wide net in the water
and hoping that there will be fish (significant resuls) somewhere. A major danger of the fish-
ing tip approach is this: if youare funtingsignificance tests on many eye-tracking measures,
a number of measures will be significant just by chance, even on completely random data.
If yo‘ﬁhth;eh' choose to present such a selection of significant effects, you have merely shown
that at this particular time and spot there happened to be some fish in the water, but another
researcher who tries to replicate your findings is less likely to find the same results. More is
explained about this problem on p. 94.

While fishing trips cannot provide any definite conclusions, they can be an alternative to
a small-scale explorative study. In fact, the benefits of this approach are several. For example,
real effects are replicable, and therefore you can proceed to testan initial post-hoc explanation
{from your fishing trip more critically in a real experiment. After the fishing trip, you have
found some measures that are statistically significant, have seen the size of the effects, and
you have an indication of how many participants and items are needed in the real study.
There are also, however, several dra 'backs. Doing a fishing-trip study involves a considerable
amount of work in generating many stimulus items, recruiting many participants, computing
all the measures, and doing a statistical analysis on each and every one (and for this effort
you can not be certain that you will find anything interesting).

[t should be emphasized that it is not valid to selectively pick significant results from such
a study and present them as if you had performed a focused study using only those particular
measures. The reason is, you are misleading readers of your research into thinking that your
initial theoretical predictions were so accurate that you managed to find a significant effect
directly. while in fact you tested many measures, and then formulated a post-hoc explanation
for those that were significant. There is 2 substantial risk that these effects are spurious.

3.1.3 Theory-driven operationalizations

Ideally, you start from previous theories and results and then form corollary predictions. This
is generally true because you usually start with some knowledge grounded in previous re-
search. However, it is often the case that these predictions are 100 general, or not formulated
as testable concepts. Theories are usually well specified within the scope of interest of previ-
ous authors, but when you want to challenge them from a more unexpected angle, you will
probably find several key points unanswered. The predictions that follow from a theory can be
specified further by either referring to a complementary theory, or by making some plausible
assumptions in the spirit of the theory that are likely to be accepted by the original authors,
and which still enable you to test the theory empirically.

If you are really lucky, you may find a theory, model, statement, or even an interesting
folk—psychologic'al notion that directly predicts something in terms of cye-tracking measures,
such as “you re-read already read sentences 10 a larger'cxtem when you are listening to music
you like™. In that case..the conceptual work is largely done for you, and you may continue
with addi:?:isji]]g.glg_ _c;;perimcnlal parameters. If the theory is already established, it will also
be easier to publish results ased on this theory, assuming you have a sound experimental
design. =
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314 Operationalization through traditions and paradigms

One approach, similar to theory-driven operationalizations, is the case where the researcher
incrementally adapts and expands on previous research. Typically, you would start with a
published paper and minimally modify the reported experiment for your own needs, in order
to establish whether you-are able to replicate the main findings and expand upon them. Subse-
quently you can "add further manipulations which shed further light on the issue in hand. The
benefits are that you build upon an accepted experimental set-up and measures that have been
shown in the past to give significant results. This methodology is more likely to be accepted
than presenting your own measures that have not been used in this setting before. Further-
more, using an already established experimental procedure will save you time in not having
to run as many pilots, or plan and test different set-ups.

Certain topics become very influential and accumulate a lot of experimental results. After
some time these areas become research traditions in their own right and have well-specified
paradigms associated with them, along with pamcular techniques, effects, and measures. A
paradigm is a tight ooperationalization of an experimental task, and aims to pmpoml cause and
effect ruling out other extraneous factors, Once established, it is relatively easy to generate a
number of studies by making subtle adjustments to a known paradigm, and focus on discov-
ering and mapping out different effects. Because of its ease of use, this practice is sometimes
called ‘highway research’. Nevertheless, this approach has many merits, as long-term system-
aticity is often necessary to map out an important and complex research area. You simply need
many repetitions and slight variations to get a grasp of the involved effects, how they interact,
and their magnitudes. Also, working within an accepted research tradition, using a particular
paradigm, makes it more likely that your research will be picked up, incorporated with other
research in this field, and expanded upon. A possible drawback is that the researcher gets too
accustomed to the short times between idea and result, and consequently new and innova-
tive methods will be overlooked because researchers become reluctant of stepping outside a
known paradigm.

It should be noted that it is possible to get the benefits of an established paradigm, but still
address questions outside of it; this therefore differentiates p: paradigm-based research from
theory-driven operationalizations. Measures, analysis methods, and statistical practices, may
be well developed and mapped out within a certain paradigm designed for a specific re-
search tradition, but nothing prohibits you from using these methods to tackle other research
questions outside of this area. For example, psycholinguisl;ic paradigms can be adapted for
ma.rketmg research to test ‘top-of-the-mind’ associations (products that you first think of to
fulfil a gwen consumer need).

In this book, we aim for a general level of understanding and will not delve deeper into
concerns or measures that are very specific to a particular research tradition. The following
are very condensed descriptions of a few major research traditions in eye tracking:

o Visual search is perhaps the largest research tradition and offers an easily adaptable
and highly informative experimental procedure. The basic principles of visual search
experiments were - founded by Treisman and Gelade (1980) and rest on the idea that
effortful scanning for a target amongst distractors will show a linear increase in reac-
tion time the larger the set size, that is, the more distractors present. However, some
types of target are said to ‘pop out’ irrespective of set size; you can observe this for
instance if you are looking for something red surrounded by things that are blue. These
asymmetries in visual search times reflect the difference between serial and paral-
lel processing respectively—some items require focused attention and it takes time to
bind their properties together, other items can be located pre-attentively. Many manip-
ulations of the basic visual search paradigm have been conducted—indeed any experi-
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ment where you have to find a pre-defined target presented in stimulus space is a form
of visual search—and from this research tradition we have learned much about the tight
coupling between attention and eye movements. Varying the properties of targets and
distracters, their distribution in space, the size of the search array, the number of po-
tential items that can be retained in memory etc. reveals much about how we are able
to cope with the vast amount of visual information that our eyes receive every second
and. nevertheless, direct our eyes efficiently depending on the current task in hand. In
the real world this could be baggage screening at an airport, looking for your keys on a
cluttered desk, or trying to find a friend in a crowd. Although classically visual search
experiments are used to study attention independently of eye movements, visual search
manipulations are also common in studies of eye guidance. For an overview of visual
search see Wolfe (1998a, 1998b).
Reading research focuses on language processes involved in text comprehension. Com-
mon research questions involve the existence and extent of parallel processing and the
influence of lexical and syntactic factors on reading behaviour. This tradition com-
mohly adopts well-constrained text processing, such as presenting a single sentence
per screen. The text presented will conform to a clear design structure in order to pin-
point the exact mechanisms of oculomotor control during reading. Hence, ‘reading’ in
the higher-level sense, such as literary comprehension of a novel, is not the impetus
of the reading research tradition from an eye movement perspective. With higher-level
reading, factors such as genre, education level, and discourse structure are the main
predictors, as opposed to word frequency, word length, number of morphemes etc.
in reading research on eye-movement control. The well-constrained nature of reading
research, as well as consistent dedication within the field has generated a very well-
researched domain where the level of sophistication is high. Common measures of
interest to reading researchers are first fixation durations, first-pass durations and the
number of between- and within-word regressions. Unique to reading research is the
stimulus lay-out which has an inherent order of processing (word one comes before
word two, which comes before word three. .. ). This allows for measures which use
order as a component, regressions for instance, where participants re-fixate an already
fixated word from earlier in the sentence. Reading research has also spearheaded the
use of gaze-contingent display changes in eye-tracking research. Here, words can be
changed, replaced, or hidden from view depending on the current locus of fixation
(e.g. the next word in a sentence may be occluded by (x)s, just delimiting the number
of characters, until your eyes land on it, see page 50). Gaze-contingent eye tracking is
a powerful technique to investigate preview benefits in reading and has been employed
in other research areas to study attention independently from eye movements. Good
overview or milestone articles in reading research are Reder (1973); Rayner (1998);
Rayner and Pollatsek (1989); Inhoff and Radach (1998); Engbert, Longtin, and Kliegl
(2002).

tion is concerned with how we look at visual scenes, typically presented
on a computer monitor. Common research questions concern the extent to which vari-
ous bottom-up or top-down factors explain where we direct our gaze in a scene, as well
as how fast we can form a representation of the scene and recall it accurately. Since
scenes are presented on a computer screen, researchers can directly manipulate and
test low-level parameters such a luminance, colour, and contrast, as well as making de-
tailed quantitative predictions from models. Typical measures are number of fixations
and correlations between model-predicted and actual gaze locations. The scene may
also be divided into areas of interest (AOIs), from which AOI measures and other eye
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movement statistics can be calculated (see Chapter 6 and Part 11T of the book respec-
tively). Suggested entry articles for scene perception are Henderson and Hollingworth
(1999), Henderson (2003) and Itti and Koch (2001).

Usability is a very broad research tradition that does not yet have established eye-
tracking conventions as do the aforementioned traditions. However, usability research
is interesting because it operates at a higher analysis level than the other research tra-
ditions, and is typically focused on actual real-world use of different artefacts and uses
eye tracking as a means to get insight into higher-level cognitive processing. Stimulus
and task are often given and cannot be manipulated to any larger extent. For instance,
Fitts, Jones, and Milton (1950) recorded on military pilots during landing, which re-
stricted possibilities of varying the layout in the cockpit or introducing manipulations
that could cause failures. Usability is the most challenging eye-tracking research tradi-
tion as the error sources are numerous, and researchers still have to employ different
methods to overcome these problems. One way is using eye tracking as an explorative
measure, or as a way Lo record post-experiment cued retrospective verbalizations with
the participants. Possible introductory articles are Van Gog, Paas, Van Merriénboer,
and Witte (2005), Goldberg and Wichansky (2003), Jacob and Karn (2003), and Land
(2006).

As noted, broad research traditions like those outlined above are often accompanied by
specific experimental paradigms, set procedures which can be adapted and modified to tackle
the research question in hand. We have already mentioned gaze-contingent research in read-
ing, a technique that has become known as the the moving-window paradigm (McConkie &
Rayner, 1975). This has also been adapted to study scene perception leading to Castelhano
and Henderson (2007) developing the flash-preview moving-window paradigm. Here a scene
is very briefly presented to participants (too fast to make eye movements) before subse-
quent scanning; the eye movements that follow when the scene is inspected are restricted by
a fixation-dependent moving window. This paradigm allows researchers to unambiguously
gauge what information from an initial scene glimpse guides the eyes.

The Visual World Paradigm (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995) is
another experimental set-up focused on spoken-language processing. It constitutes a bridge
between language and eye movements in the ‘real world’. In this paradigm, auditory linguis-
tic information directs participants’ gaze. As the auditory information unfolds over time, it
is possible to establish at around which point in time enough information has been received
to move the eyes accordingly with the intended target. Using systematic manipulations, this
allows the researchers to understand the language processing system and explore the effects
of different lexical, semantic, visual, and many other factors. For an introduction to this re-
search tradition, please see Tanenhaus and Brown-Schmidt (2008) and Huettig, Rommers,
and Meyer (2011) for a detailed review.

There are also a whole range of experimental paradigms to study oculomotor and saccade
programming processes. The anti-saccadic paradigm (see Munoz and Everling (2004) and
Everling and Fischer (1998)) involves an exogeneous attentional cue—a dot which the eyes
are drawn to, but which must be inhibited and a saccade made in the opposite direction, known
as an anti-saccade. Typically anti-saccade studies include more than just anti-saccades, but
also pro-saccades (i.e. eye movements fowards the abrupt dot onset), and switching between
these tasks. This paradigm can therefore be used to test the ability of participants to assert
executive cognitive control over eye movements. A handful of other well-specified ‘off-the-
shelf” experimental paradigms also exist, like the anti-saccadic task, to study occulomotor and
saccade programming processes. These include but are not limited to: the gap task (Kingstone
& Klein, 1993), the remote distractor effect (Walker, Deubel, Schneider, & Findlay, 1997),
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saccadic mislocalization and compression (Ross, Morrone, & Burr, 1997). Full descriptions
of all of these approaches is not within the scope of this chapter; the intention is to acquaint
the reader with the idea that there are many predefined experimental paradigms which can be
utilized and modified according to the thrust of your research.

3.2 What caused the effect? The need to understand what
you are studying

A basic limitation in eye-tracking research is the following: it is impossible to tell from
eve-tracking data alone what people think. The following quote from Hyrskykari, Ovaska,
Majaranta, Riihd, and Lehtinen (2008) nicely exemplify how this limitation may affect the
interpretation of data:

For example, a prolonged gaze to some widget does not necessarily mean that the user

does not understand the meaning of the widget. The user may just be pondering some

aspect of the given task unrelated to the role of the widget on which the gaze happens to

dwell. ... Similarly, a distinctive area on a heat map is often interpreted as meaning that

the area was interesting. It attracted the user's attention, and therefore the information

in that area is assumed to be known to the user. However, the opposite may be true:

the ared may have attracted the user’s attention precisely because it was confusing and

problematic, and the user did not understand the information presented.

Similarly, Triesch, Ballard, Hayhoe, and Sullivan (2003) show that in some situations
participants can look straight at a task-relevant object, and still no working memory trace can
be registered. Not only fixations are ambiguous. Holsanova, Holmberg, and Holmgqvist (2008)
point out that frequent saccades between text and images may reflect an interest in integrating
the two modalities, but also difficulty in integrating them. That eye-movement data are non-
trivial to analyse is further emphasized by the remarks from Underwood, Chapman, Berger,
and Crundall (2003) which detail that about 20% of all non-fixated objects in their driving
scenes were recalled by participants, and from Griffin and Spieler (2006) that people often
speak about objects in a scene that were never fixated. Finally, Viviani (1990) provides an
in-depth discussion about links between eye movements and higher cognitive processes.

In the authors’ experience, it is very easy to get dazzled by eye-tracking visualizations
such as scanpaths and heat maps, and assume for instance that the hot-spot area on a webpage
was interesting to the participants, or that the words were difficult to understand, forgetting
the many other reasons participants could have had for looking there. Its negative effect on our
reasoning is known under the term ‘affirming the consequent’ or more colloquially ‘backward
reasoning’ or ‘reverse inference’.

We will exemplify the idea of backward reasoning using the music and reading study in-
troduced on page 5. This study was designed to determine whether musicdisturbs the reading
process or not. The reading process is measured using eye movements. These three compo-
nents are illustrated schematically in Figure 3.1. In this figure. all the (m)s signify properties
of the experimental set-up that were manipulated (e.g. the type of music, or the volume level).
The (cJs in the figure represent different cognitive processes that may be influenced by the
experimental manipulations. The (b)s, finally, are the different behavioural outcomes (the eye
movements) of the cognitive processes. Note that we cannot measure the cognitive processes
directly with eye tracking, but we try to ) capture them indirectly by making manipulations and

measuring changes in the behaviour (eye movement measures).!

115ee Paldrack, 2006 for an interesting discussion regarding reverse inference from the field of fMRIL.
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Fig. 3.1 Available reasoning paths: possible paths of influence that different variables can have. Our
goal is to correctly establish what variables influence what. Notice that there is a near-infinite number of
variables that influence, to a greater or lesser degree, any other given variable.

Each of the three components (the columns of Figure 3.1) introduce a risk of drawing an
erroneous conclusion from the experimental results.

1. During data collection, perhaps the experiment leader unknowingly introduced a con-
found, something that co-occurred at the same time as the music. Perhaps the experi-
ment leader tapped his finger to the rhythm of the music and disturbed the participant.
This would yield the path (m3) — (¢;) — (b;), with (m3) being the finger tapping. As
a consequence, we do get our result (b)), falsely believing this effect has taken the path
of (m;) — (¢;) — (by), while in fact it is was the finger tapping (m5) that drove the
entire effect.

. We hope that our manipulation in stage one affects the correct cognitive process, in our
case the reading comprehension system. However, it could well be that our manipula-
tion evokes some other cognitive processes. Perhaps something in the music influenced
the participant’s confidence in his comprehension abilities, (¢2), making the participant
less confident. This shows up as longer fixations and additional regressions to double-
check the meaning of the words and constructions. Again, we do get our (b;), but it has
taken the route (m;) — (c2) — (by), much like in the case with long dwell time on the
widget mentioned previously.

- Unfortunately, maybe there was an error when programming the analysis script. and
the eye-movement measures were calculated in the wrong way. Therefore, we think we
are geliing a proper estimation of our gaze measures (b)), but in reality we are getling
numbers representing entirely different measures (b;).

Erroneous conclusions can either be false positives or false negatives. A false positive is
to erroneously accept the null hypothesis to be false (or an alternative explanation as correct).
In Figure 3.1 above, the path (1) — (c2) — (b)) would be such a case. We make sure we
present the correct stimuli (m;), and we find a difference in measurable outcomes (b;), but
the path of influence never involved our cognitive process of interest (c;), but some other
function (¢2). We thus erroneously accepted that (¢)) is involved in this process (or more
correctly: falsely rejected that it had no effect). The other error is the false negative, where we
erroneously reject an effect even though it is present and genuine. For example, we believe
we test the path (m;) = (¢;) — (b1), but in fact we unknewingly measure the wrong eye-
movement variables (b2) due to a programming error. Since we cannot find any differences
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in what we believe our measures to be, we falsely conclude that either our manipulation
() had no effect, or our believed cognitive process (c¢j) was not involved at all, when in
fact if we had properly recorded and analysed the right eye-movement measures we would
have observed a significant result. False negatives are also highly likely when you have not
recorded enough data; maybe you have too few trials per condition, or there are not enough
participants included in your study. If this is the case your experiment does not have enough
statistical power (p. 85) to yield a significant result, even though such an effect is true and
would have been identified had more data been collected.

How can we deal with the complex situation of partly unknown factors and unpredicted
causal chains that almost any experiment necessarily involves? There is an old joke that a
good experimentalist needs to be a bit neurotic, looking for all the dangers to the experiment,
also those that lurk below the immediate realm of our consciousness, waiting there for a
chance to undermine the conclusion by introducing an alternative path to (b;). It is simply
necessary to constrain the number of possible paths, until only one inevitable conclusion
remains, namely that: “(m;) leads to (c;) because we got (by) and we checked all the other
possible paths to (by) and could exclude them”. Only then does backward reasoning, from
measurement to cognitive process, hold.

There is no definitive recipe for how to detect and constrain possible paths, but these are
some tips:

e As part of your experimental design work., list all the alternative paths that you can

think of. Brainsiorming and mind-mapping are good tools for this job.

Read previous-research-on the cognitive processes involved. Can studies already con-
ducted exclude some of the paths for you?

The simpler eye-movement measures belonging to fixations (pp. 377-389) and sac-
cades (pp. 302-336) are relatively well-investigated indicators of cognitive processes
(depending on the research field). The more complex measures used in usability and
design studies are largely unvalidated, independent of field of research. We must rec-
ognize that without a theoretical foundation and validation research, a recorded gaze
behaviour might indicate just about any cognitive process.

If your study requires you to use complex, unvalidated measures, do not despair. New
measures must be developed as new research frontiers open up (exemplified for in-
stance by Dempere-Marco, Hu, Ellis, Hansell, & Yang, 2006; Goldberg & Kotval,
1999; Ponsoda, Scott, & Findlay, 1995; Choi, Mosley, & Stark, 1995; Mannan, Rud-
dock, & Wooding, 1995). This is necessary exploratory work, and you will have to
argue convincingly that the new measure works for your specific case, and even then
accept that further validation studies are needed.

Select your stimuli and the task instructions so as to constrain the number of paths
to (b)). Reduce participant variation with respect to background knowledge, expecta-
tions, anxiety levels, etc. Start with a narrow and tightly controlled experiment with
excellent statistical power. After you have found an effect, you might have to worry
about whether it generalizes to all participant populations; is it likely to be true in all
situations?

Use method triangulation: simple additional measurements like retention tests, work-
ing'inc'lﬁ'ory tests, and reaction time tests can help reduce the number of paihs. Hyrskykari
et al. (2008), from whom the quotes above came, argue that retrospective gaze-path
stimulated think-aloud protocols add needed information on thought processes related
to scanpaths. If that is not enough, there is also the possibility to add other behavioural
measurements. We will come back to this option later in this chapter (p. 95).
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3.2.1 Correlation and causality: a matter of control

A fundamental tenet of any experimental study is the operationalization of the mental con-
struct you wish to study, using dependent and independent variables. Independent variables
are the causal requisites of an effect, the things we directly manipulate, (m;,i = 1,2,...,n)
in Figure 3.1. Dependent variables are the events that change as a direct consequence of our
manipulations—our independent variables are said to affect our dependent variables. This ter-
minology can be confusing, but you will see it used a lot as you read scientific eye-tracking
literature so it is important that you understand what it means, and the crucial difference be-
tween independent and dependent variables. In eye tracking your dependent variables are any
of the eye-movement measures you choose to take (as extensively outlined in Part III).
= Ell\%\“g)perff‘.-::t experiment is one in which no factors systematically influence the dependent
le (e.g. fixation duration) other than the ones you control. The factors you control are
typically controlled in groups, such as ‘listens to music’ versus ‘listens to cafeteria noise’ or
along a continuous scale such as introversion/extroversion (e.g. between 1 and 7). A perfectly
controlled experimental design is the ideal, because it is only with controlled _experimental
designs that we are able to make statements of causality. That means, if we maﬁ[}ﬁxlate one.
independent variable while keeping all other factorslconslam then any resuItmg chaﬂgc in
the dependent variable will be due to our manipulated factor, our independent vanable (as it
is the only one that has varied). KU &

In reality, however, all experiments are less than perfect, simply because it is impossible
to control for every single factor that could possibly influence the dependent variable. A
correlational study allows included variables to vary freely, e.g. a participant reading to music
could be influenced by the tempo of the songs, the genre, the lyrics, or simply the loudness
of the music. If all these variables correlate with each other, it is not possible to separate the
true influencing variable from the others. This results in the problem that we cannot know
anything about the causality involved in our experiment. Perhaps one factor influences the
dependent variable, ot it could be that our dependent variable is actually causing the value of
one of our ‘independent” variables. Or, both variables could be determined by a third, hidden,
variable. Lastly, they could be completely unrelated. Let us look at two examples from real
life.

A psycholinguist wants to investigate the effect of prosody on visual aitention. The ex-
periment consists of showing pictures of arrays of objects while a speaker describes an event
involving the objects. The auditory stimuli are systematically varied in such a way that one
half of the scenes involve an object that is mentioned with prosodic emphasis, while the other
half is not emphasized at all. A potentially confounding factor is the speaker making an audi-
ble inhale before any emphasis. This inhale is a signal to the participant to be on the alert for
the next object mentioned, but it is not considered a prosodic part of the emphasis (which in
this case includes only pitch and volume). In this example, the inhale systematically co-varies
with the manipulated, independent variable, and may lead to false conclusions. Confounding
factors may also co-vary in a random way with the independent variable. Such unsystematic
co-variation is cancelled out given enough trials.

As another example, consider an educational psychologist testing the readability of dif-
ficult and easy articles in a newspaper. The hypothesis is that easier articles have a larger
relative reading depth, because readers do not get tangled up with complex arguments and
difficult words. A rater panel has judged different articles as being more or less difficult, on
a 7-point scale. So we let the students read the real newspaper containing articles with both
degrees of difficulty. Our results show that the easier articles have a larger reading depth.
However, the readers are biased to spend more energy reading articles with interesting topics,
and read them with less effort. Therefore, interesting articles have a lower difficulty rating.
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This is our first hidden factor. Furthermore, the most interesting articles are placed early in
the newspaper, which the reader attends to when most motivated. As the reader reads on, he
skips more and more. Because of this, the least interesting articles (misjudged as difficult),
are skipped to a larger extent—nol because they are difficult, but because they correlate with
late placement order, our second hidden factor. The net result is that we end up with an ex-
periment purporting (o show an effect due to difficulty/ease of articles, while the real effect is
driven by interest and placement.

The bottom line is that it is impossible to control all factors, but with the most important
factors identified, controlled, and systematically varied, we can confidently claim to have a
sound experimental design. The first scenario is such, because the stimuli are directly ma-
nipulated to include almost all relevant factors. The second example is more tricky. We are
biased by the panel of raters and trust them to provide an objective measurement of a pre-
dictor variable, but the raters are only human. Experiments such as these are also typically
presented as experimental in their design, although they are much more sensitive to spurious
correlations than our first scenario. The key problem is that the stimuli are not directly con-
trolled. The newspaper has the design it has, and the articles are not presented in a random
and systematically varied manner. By allowing important factors to covary, we end up with a
design that is susceptible to correlations and is more likely to produce false conclusions.

It should nevertheless be remembered that increasing experimental control tends to de-
crease ecological validity and generalizability of the research. Land and Tatler (2009) in their
preface express concern over the “passion for removing all trace of the natural environment
from experiments” they see with many experimental psychologists. Accepting the loss of
some control may often be a reasonable price to pay to be able to make an ecologically valid
study. In the end, we do want to say something about performance in the real world. An ex-
ample of the difference between the real world and the laboratory is presented by Wang ef
al. (2010), who found a greater number of dwells to in-car instruments during field driving
compared to simulator driving.

3.2.2 What measures to sele_ct as dependent \_.fa_ri_a_bles

Designing a study from scratch often involves the very concrete procedure of drawing the
eye-movement behaviour you and your theories predict on print-outs of your stimuli, and
matching the lines you draw with candidate measures from Chapters 10-13. Some of these
measures are relatively simple, while others are complex. Often, you may inherit your mea-
<ures from the paradigm you are working in, or the journal paper you are trying to replicate.
Your study may also be so new that you need to employ rarely used, complex measures. After
vou have selected some measures, run a pilot recording and make a pilot analysis with those
measures. In either case, you should strive to select your measures during the designing phase
of the experiment, and make sure they work with your eye-tracker, the stimuli, your task, and
the statistics you plan to use.

Note that as a beginning PhD student, you may have to spend up to a whole year until the
experiment is successfully completed, but with enough experience the same process can be
=duced to as little as a month. It is seldom the data recording experience, nor the theoretical
experience that makes this difference. but the experience in how to design and analyse exper-
iments with complex eye-movement measures. Making sure appropriate measures are used
will certainly save you time during the analysis phase and possibly prevent you from having
10 redesign the experiment and record new data.

Frequently, the complex measures inherit properties of the simpler ones. For instance,
transition matrices, scanpath lengths, and heat map activations depend on how fixations and
s\a:ca!des were calculated, which in turn depend on filters in the velocity calculation. It is not
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straightforward to decide which measures to choose as dependent variables, as this choice
depends on many different considerations. im il

In addition, complex measures such as transition diagrams (p. 193), position dispersion
measures (p. 359), and scanpath similarity measures (p. 346) have not yet been subjected to
validation tests, or used over a number of studies to show to which cognitive process they
are linked. Active validation work exists only for a few simple measures from within scene
perception, reading, and parts of the neurological eye-tracking research, for instance smooth
pursuit gain (p. 450) and the anti-saccade measures (p. 305). These ‘measures have been used
extensively, and we have gathered considerable knowledge about what affects their values in
one or the other direction.

An initial factor concerns the possibilities and the limitations of the hardware that you
use. Animated stimuli, for instance, invalidate fixation data from all algorithms that do not
support smooth pursuit detection (p. 168). Second, the sampling frequency (p. 29) may limit
what measures you can confidently calculate. Third, the precision of the system and partici-
pants (p. 33) may exert a similar constraint. Fourth, relatively complex measures may require
extensive programming skills or excessive manual work (in particular with head-mounted
systems, p. 227), making them not a viable option for a study. Finally, some measures are
more suitable for standard statistical analysis than others.

Therefore, in any type of eye-tracking project, part of the experimental design consists
of selecting measures to be used for dependent variables; and to verify that the experimental
set-up and equipment make it possible to calculate the measures. It is definitely advisable, in
particular when using new experimental designs, to use the data collécted in the pilot study
(an essential check-point, described on p. 114) to verify that the method of analysis, including
calculation of measures, actually works.

If you are at the start of your eye-tracking career, the approach of already thinking about
the analysis stage when you are designing the experiment forces you to think through the
experiment carefully and to design it so it answers your research question faster, more accur-
ately, and with less effort. The eyes should always be on the research question, and eye-
tracking is just a tool for answering it.

Question the wd:'dig and reliability of your measures. Validity is whether the dependent
variable is measuriig what you thinK it 15 measuring, for instance you may assume longer

, ., dwell time is a good index of processing difficulty in your experiment, but in fact this reflects
p c,.'(l'\’:';:5,‘_}_f‘pn:ferenlial looking at incongruous elements of your stimulus display. Reliability ‘refers. to
rSF 4 replicable effects; your chosen measure may give the same value over-and-over, in which
! * case it i§ reliable, but note that a reliable measure is not-necessarily-a valid one (see page 463
for an extended discussion). You may find longer dwell times time and time again, which are
not a measure of processing difficulty, as you thought, but rather a measure of incongruity.
Below is a quick list on how to select your eye-tracking measures keeping the above issues

in mind:

‘l

e Obviously, select the measure which fits your hypothesis best. If you think that your
text manipulation will yield longer reading times, then first-pass duration or mean-
fixation duration are likely measures, but number of regressions only an indirect (but
likely correlated) measure. Unless of course your hypothesis is actually that reading
times will be longer due to more regressions.

e Are you working within an established paradigm? Use whatever is used in your field
to maximize the compatibility of your research.

e Identify other functionally equivalent measures for your research question. Are you
interested in mental workload for example? Then find out what other measures are
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used to investigate this, for instance using the index. Perhaps some of the alternative
measures are better and completely missed by you and others in your paradigm.
Prioritize measures that have been extensively tested, as there is better insight into
potential factors affecting them. For example, first fixation durations in reading have
been tested extensively and we know how they will react to changes in, for instance,
word frequency. It would be less problematic to do a reverse inference with this kind of
measure (using the first fixation durations to estimate the processing difficulty increase
of a manipulation) than with other less well-explored measures.

Select measures that are as fine-grained as possible, for example measures that focus
on particular points in time rather than prolonged gaze sequences. This allows you to
perform analyses where you identify points in time where the participant is engaged
in the particular behaviour in which you are interested, e.g. searching behaviour, and
then extract just the measures during just these points. This is more powerful than just
extracting all instances of this measure during the whole trial, where the particular be-
haviour of interest is mixed with many other forms of gaze behaviour (which essentially
just contribute noise to your results).

To minimize problems during the statistical analysis, select measures that are either cer-
tain to generate normally distributed data, or measures that generate several instances
per trial. In the latter case, if you cannot transform your data adequately or suffer from
zero/null data, then you can take the mean of the measures inside the trials.'? The im-
plications of the central limit theorem are that a distribution of means will be normally
distributed, regardless of the distribution of the underlying data. You will now have
sacrificed some statistical power in order to have a well-formed data distribution which
does not violate the criteria of your hypothesis tests. See Figure 3.2 for an example of
different means to which you can aggregate. In this example, there is only.one measure--
ment value per trial. but repeated measurements within each trial would have provided
even more data to either keep or over which to aggregate.

3.2.3 Thetask

Eve-tracking data is—as shown very early by Yarbus (1967, p. 174{f) and Buswell (1935,
. 136ff)—extremely sensitive to the task. so select it carefully. A good task should fulfil
three criteria:

I The task should be neutral with regard to the experimental and control conditions. The
task should not favour any particular condition (unless used as such).

. The task should be engaging. An engaging task distracts the participant from the fact
that they are sitting in, or wearing, an eye-tracker and that you are measuring their
behaviour.

3. The task should have a plausible cover story or be non-transparent to the participant.
This stops the participant from second-guessing the nature of the experiment and trying
to give the experimenter the answers that she wants. When the experiment itself causes
the effects expected it is said to have demand characteristics.

If you are afraid to bias them, then give participants a very neutral task, but remember that
weak and overly neutral tasks may also make each participant invent their own task. If you
present an experiment with 48 trials and you do not provide a task, you are not to be surprised

“Note that if a level of averaging is severely skewed by outlying data points, it might be more appropriate to take
& median at the trial or participant level.
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Condition Condition
X Y

X %

Participant 1 | 270 \ 198
196 297
295 Mean

316

Participant 2 | 320
232
226

146

Participant n
166
269

Fig. 3.2 A typical experimental design, and how means are calculated from it. Here we have two in-
dependent variables, X and Y, each with two factors, X 2 and Y ». The conditions could be preferred
and non-preferred music, each with high and low volume level, for instance. Each number represents an
eye-movement measure from one trial.

if you find that the participants have been looking outside of the monitor, daydreaming, or
falling asleep. Very general tasks such as “just look at the images™ may require some mock
questions to make the participants feel like they can provide answers/reactions to the stimuli.
If you show pictures and want to make it probable that participants indeed scan the picture, a
very neutral mock question could be “To what degree did you appreciate this image?”. This
question is neutral in the sense that it motivates participants to focus attention on the image
presented, but still does not bias their gaze towards some particular part or object in the scene.
Furthermore, if you add random elements, such as asking alternating questions and only at a
random 30% of the trials, it reduces tediousness and predictability.

Tasks can also be used very actively in the experimental design, which was what Yarbus
did, showing the same image to a participant but with differing instructions, thereby creat-
ing experimental conditions. In such a case the overt task starts and drives the experimental
condition. A motivating task can also be the instruction to solve a mathematical problem, or
to read so that the participants can answer questions afterwards. An engaging task can con-
sume the full interest of the participants and surplus cognitive resources are aimed at more
thoroughly solving the task. Additionally, an engaging task is not as exhausting for the par-
ticipant, thus he can do more trials and provide you with more data. An important property
of an engaging task is that it makes sense to the participant and allows him to contribute in a
meaningful way.

In a general sense, the task starts when you contact potential participants, and talk to
them about the experiment. When you recruit your participants, you must give them a good
idea about what they are going to do in your experiment, but you should only tell them
about the task you present to them. You should not reveal the scientific purpose of your
study, since prior knowledge of what you want to study may make them behave differently.
Suppose for instance that the researcher wants to show that people who listen to.a scene
description re-enact the scene with their eyes, as in Johansson, Holsanova, and Holmgqvist
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(2006). If a participant knows that the researcher wants to find this result, the participant is
likely to think about it and to want to help, consciously or not, in obtaining this result, thus
inflating the risk of a false positive. Such knowledge can be devastating to a study. For certain
sensitive experiments, it may be necessary to include many distractor trials to simply confuse
the participants about the hypotheses of the experiment. Additionally, our researcher should
give participants a cover story, (0 be revealed at debriefing, that goes well with the kind of
behaviour and performance she hopes participants will exhibit. For example:

Throughout, participants were told that the experiment concerned pupil dilation during
the retelling of descriptions held in memory. It was explained to them that we would be
filming their eyes, but nothing was said about our knowing in which directions they were
looking. They were asked to keep their eyes open so that we could film their pupils, and
to look only at the white board in front of them so that varying light conditions beyond
the board would not disturb the pupil dilation measurements (excerpt from Johansson ef
al. (2006), procedure section).

When you have settled on a task instruction that you feel fulfils the listed criteria suffi-
ciently, then it is a good idea to write down the instructions. Written instructions allow you
to give exactly the same task to all participants, rather than trying to remember the instruc-
tions by heart and possibly missing small but important parts of the task. Written instruction
also help negate any experimenter effects: subtle and unconscious cues from the experimenter
giving hints to the participant on how to perform.

32.4 Stimulus scene, and the areas of interest

Stimuli are of course selected according to the research question of the study in hand, and can
be anything from abstract arrays of shapes or text, (o scenes, web pages, movies, and even the

avents that unfold in real-world scenarios such as driving, sport, or supermarket shopping.
Scenes can roughly be divided up into two groups:

« Natural and unbalanced scenes, where objects are where they are and you do not control
for their position, colour, shape, luminance etc. An example would be the real-world
environment we interact with every day.

o Artificial and balanced scenes, which consist of objects selected and placed by the ex-
perimenter. For example, a scene constructed from clip arts, or a screen with collections
of patches with different spatial frequency.

The two types offer their own benefits and drawbacks. Natural scenes, on average, will
seneralize better to the real world, as they are often a part of it or mimic it closely. If you
Gnd that consumers have a certain gaze pattern in a cluttered supermarket scene, you do not
necessarily have to break down the scene into detailed features such as colour, shape, and
contrast, but rather you can just accept that the gaze pattern works in this environment and
not try to generalize outside of it. After all, the scene can be found naturally and this gaze
pattern will at least work for this situation.

On the other hand, if you want to generalize across different scenes, you need a tighter
control on all possible low-level features of the scene. This is where artificially constructed
<enes work best, because you can manipulate the features and arrange them as you see fit.

In vour efforts to control the scene, you should be aware of what attracts attention and
consequently eye movements. This is especially challenging when you want to compare two
tvpes of natural scenes. Artificial scenes can be controlled on the detail level, but natural
scenes usually cannot. If you want to compare two types of supermarket scenes to investigate
which supermarket has the best product layout strategy, with varying products, it is impossi-
5= 10 completely control every low-level feature of the scenes. You just have to accept that
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colour, luminance, contrast, etc. vary, and try to set up the task so the layout strategy will be
the larger effect which drives your results. Perhaps, you can add low-level features post-hoc
as covariates in the analysis, by extracting them from the scene video, to at least account for
their effect.

When selecting the precise stimuli, it is useful to consider what it is that generally draws
our attention, so the effect of primary interest is not blocked or completely dominated by
other larger effects. Below are a few examples of factors that are known to influence the
allocation of visual attention, more can be found on pages 394-398:

e People and faces invariably draw the eyes, so if you want to study what vegetation
elements in a park capture attention, you should perhaps not include people or evidence
of human activity in the stimulus photos.

If you use a monitor, the participants are likely to look more at the centre than towards
the edges. They are also more likely to make more horizontal than vertical saccades,
and very few oblique ones.

Motion is likely to bring about reflexive eye movements towards it, irrespective of what
is moving. Consider this if you want to conclude, for example, that bicycles capture
drivers’ attention more than pedestrians do; this may simply be because bicycles move
faster, and nothing more.

If you are looking at small differences in fixation duration, it matters whether you put
stimuli in the middle or close to the edges of the monitor, because precision of samples
will be lower at the extremities of the screen. The imprecision may force a premature
end of the fixation by the fixation detection algorithm, and consequently cause your
effect.

Keep the brightness of your stimuli at approximately the same level, and also simi-
lar to the brightness of the calibration screen, or you may reduce data quality, as the
calibration and measurement are performed on pupils with different sizes.

Stimulus images are often divided into AOIs, the ‘areas of interest’, which are sometimes
also called ‘regions of interest’. How to make this division is discussed in depth in Chapter
6. In short, the researcher chooses AOIs while inspecting potential stimulus pictures with
the precise hypothesis and measures of the study in mind. Selecting AOIs while reviewing
your already recorded data is methodologically dubious, because you may intentionally or
subconsciously select your AOIs so that your hypothesis is validated (or invalidated). If you
want to analyse what regions in your picture or film attracted participant gazes, but have the
regions defined by the recorded data, you should use heat/attention map analysis (Chapter 7)
rather than AOI analysis (Chapter 6).

As a very simple example of AOIs, you could show several pictures each with a matrix
of objects in them, as in Figure 3.3(a), and determine whether visually similar items have
more eye movements between them, than visually dissimilar objects. Simply construct an
AOI around each object, and compare how many movements across categories versus within
categories occur. Most eye-tracking analysis softwares allow for manual definition of AOIs as
rectangles, ellipses, or polygons. AOIs are typically given names like ‘SHEARS’ and "HAM-
MERS'’ to help keep track of the groups in the experimental conditions. This is also a perfect
example of a case where it is easy to define the AOIs before the data recording, which should
always be the preferred way.

When using film or animations as stimuli, as in Figure 3.3(b), where there are many
moving objects, static AOIs are often of little use. Dynamic AOISs instead follow the form,
size, and position of the objects as they move, which makes the data analysis easier. To the
authors’ knowledge, the first commercial implementation of dynamic areas of interest was




WHAT CAUSED THE EFFECT? | 81

(a) Large square areas of interests with clear (b) Elliptical, but cropped, area of inter-

margins to compensate for minor offsets in est around the squirrel and the bird in the

data samples. stimulus picture. Reproduced here with per-
mission from the Blender foundation www
.bigbuckbunny.org.

Fig. 3.3 Examples of AOls.

nade available in 2008, decades after the static AOIs began to be used. Dynamic AOIs come
with their own set of methodological issues, however (p. 209).

3.2.5 Trials and their durations

A trial is a small, and most often, self-repeating building block of an experiment. In a minimal
within-subjects design there may be as few as two trals in an experiment, for instance one
trial in which participants look at a picture while listening to music, and another trial where
they look at the picture in silence. The research question could be how music influences
viewing behaviour. Or there may be several hundreds of trials in an experiment, for instance
pictures of two men and two women, with varying facial expressions, hair colour, types of
clothes, eye contact, etc., to see if those properties influence participants’ eye movements.

In an experimental design, trials are commonly separated in time by a ce_pgglﬁx_g;iﬂqn
cross. For instance, you may have an experiment in which you first show a fixation cross in
52 middle of the screen, then remove the cross so as to have a blank screen while at the
<ame time playing the word ‘future’ auditorily. The crucial period of time for eye-movement
recording here is the blank screen, but it could equm‘ endogenous spatial cue to the
l=ft or right or some other manipulation.. The idea behind this experiment would be to see
i time-related words such as ‘future’ or ‘past’ make participants look in specific directions.
The trial sequence (fixation cross, stimulus presentation, and so on) will then iterate until
the specified number of trials corresponding to that condition of the experiment has been ful-
filled. Experimental trials are often more complex than this however, and may contain features
like varying stimulus onset asynchrony, where the flow of stimulus presentation during the
wial is varied according to specified time intervals. Taking the flash-preview moving-window
paradigm outlined above as an example, the brief length of time for which the first scene pic-
ture is displayed, before the following gazc-é?)’ﬁfiﬁgeﬁ't display, can be varied corresponding
o different durations. V6 and Henderson (2010) have implemented such a manipulation to
shed light on just how much of a glimpse is necessary to subsequently guidé the'eyes in scene
viewing, and they found that 50-75 ms is sufficient. \
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Thus, the ‘layout’ of a trial is usually decided as part of the design of the experiment.
In some cases, however, trials must be reconstructed afterwards. For instance, in a study of
natural speech production, a trial may start anytime a participant utters a certain word. Post-
recording trials are more difficult to create, and few eye-tracking analysis software packages
have good support for them.

Typically, an eye-tracking study involves many participants, and many trials in which
different stimuli are presented. It is not uncommon, to have say 40 participants looking at
25 pictures with a duration of 5 seconds each. Always design your experiment to extract the
maximum amount of data. Add as many trials as you can without making it tedious for the
participants.

Moreover, we do not want all participants to look at all stimuli in the same order, because
th_‘_:glhey may look differently at early stimuli compared to late ones; this could be dﬁ-e_"_ to.a
learning eﬁecr or an order effect. The former case refers to when participants have become
better at the task towards the end of the experiment, the latter case is when there is something
about the order of presentation which biases responses and eye-movement behaviour. To
avoid such confounds trial presentation is randomized for all 40 of your participants, no two
participants viewing the stimuli in the same order. Then, any effects of learning or order will
be evenly spread out across all stimulus i images, and \&?ﬁl_n_o_t interfere with the actual effect

t to_study. Presentation order can usually be randomized by the experimental
_software. This is easy and usually enough to eliminate learning/order effects. Otherwise, a
separate distinct stimulus order is prepared for each participant beforehand. This takes more
time, but is virtually foolproof as it can be counter-balanced and randomized with a higher
degree of control.

An old problem with scrambling stimulus presentation order, was that in your data files
the first 5 seconds of each participant were recorded from different trials. It is not possible
to place the first 5 seconds of data next to one another, participant by participant, as you
would typically want to do when you calculate the statistical results comparing 20 of your
participants to the other 20. Until very recently, eye-tracking researchers had to unscramble
the data files manually, or write their own piece of software to do it for them. This was a very
time-consuming and rather error-prone way to work with the data. Today, most eye movement
recording software communicates with the stimulus presentation program so as to record a
reference to the presented stimulus (such as the picture file name) into the correct position in
the eye movement data file. Thus, the information for how to derandomize is in the data file,
and can be used by the analysis software. Some eye-tracking analysis programs today allow
users to derandomize data files fairly automatically, immediately connecting the right portion
of eye-tracking data to the correct stimulus image, which simplifies the analysis process a
great deal.

When showing sequences of still images that are all presented at a constant duration,
participants may learn how much time they have for inspection and adopt search strategies
that are optimized for the constant presentation duration (represented by thoughts such as,
for instance I can look up here for a while, because I still have time to look at the bottom
later”). If such strategies undermine the study, randomized variable trial durations can be
used to reduce predictability and counteract the development of visual strategies (see also
Tatler, Baddeley, & Gilchrist, 2005).

Precise synchronization between stimulus onset and start of data recording for a trial
is very-important. Many facters may disturb synchronization and cause Tatencies that make
your data difficult to work with or your results incorrect (p. 43). One potential problem is the
loading time of stimulus pictures in your stimulus presentation program. If for some reason
you show large uncompressed images (e.g. large bitmaps) as stimuli, and send the start of
a recording signal just before presenting the picture, the load time of the picture until it is
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Number of dwells
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Fig. 3.4 Dotted line of one distribution of dwell times is outside of the fixed trial duration.

shown may be in the order of hundreds of milliseconds, which means that your participants
do the first saccades and fixations not on the picture (which you will think when looking at
data), but on the screen you showed before the picture was loaded. The solution to the loading
problem is to pre-load images into memory before they are shown. Playing videos for stimuli
requires an even more careful testing of synchronization. Additionally, synchronizing the
eve-tracker start signal with the screen refresh is important to avoid latencies due to screen
updates, especially when using newer but slower flat-screen monitors, which typically operate
at 60 Hz. Ideally, these issues should be taken care of by your particular stimulus presentation
package, and these low-level timing issues are beyond the scope of this book.

Fixed trial durations in combination with a small number of AOIs may complicate variance-
hased statistical analysis for a number of measures, for instance dwell time (p. 386), reading
depth (p. 390), and proportion over time analysis (p. 197). Figure 3.4 shows the distribution
of dwell time on a single AOI presented in two different conditions measured in trials of
3000 ms length. In one of the two conditions, the distribution nicely centres around 1500 ms,
nd both tails are within bounds. In the second condition, however, the top of the distribution
i< close to the 3000 ms limit that part of what would have been its right tail has been cut off
by the time limit of the trial.

3.26 How to deal with participant variation

In the planning stage, participants appear as abstract entities with very little or no individual
wariation or personal traits. Later, during recording, real people come to the laboratory and fill
the abstract entities with what they are and do. It is important to see participants as both. In
this section, ‘participants’ refers only to the abstract entities that provide us with data points,
while on pages 115-116 we discuss participants as people.

A4 large proportion of the eye-tracking measures that have been examined have proven to
b idiosyneratic, which means that every participant has his or her own basic setting for the
walue. Fixation duration, one of the most central eye-tracking measures, is idiosyncratic. In
Fzure 3.5, participants 2, 9, and 21 have long individual fixation durations, while participants
& and 12 have short individual fixation durations. This is like their baseline. The figure shows
2t the variation between participants is much larger than it is within the participants. The
& fference between trials completely drowns in these idiosyncratic durations, and it means
“=at we are actually trying to find a small effect within a much larger effect.

How can we deal with participant variability and idiosyncracy? Participants can be di-
=4 into groups and assigned tasks/stimuli in a variety of different ways. The two most
~ommmon, used here only for exemplification, are the within- and the between-subjects de-

1. Table 3.1 shows these two varieties in our example with the four sound conditions. In
+ metween-subjects design, the participants only read a text under one sound condition, either
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+ Preferred music
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Fig. 3.5 Idiosyncracy: every participant has his or her own individual average fixation duration and ex-
hibits it across different recordings. Individual participant variation is large, and the effect of the experi-
mental conditions is small.

Table 3.1 Between- and within-subjects design in a task with four conditions (different sounds being
played, or silence). S1 to $16 are the different participants. In the between-subjects design everyone reads
one text to one type of sound, and then leaves the lab. In the within-subjects design, every participant has
to read in all four sound conditions.

Condition Between Within

Preferred music S1 S5 89 SI13(S1 S2 S3 sS4
Non-preferred music S2 S6 S10 S14 |S1 S2 S3 S4
Cafeteria noise S3 S7 S11 S15(S1 82 S3 S4
Silence S4 S8 S12 S16|S1 S2 S3 S4

l]stemng to mustc llked musnc dlsllked nmse or sﬂcnce So when we compare preferred

subjects design, on lhc other h: hand, each participant reads texts in all four cond]tlons which
means that a comparison between sound conditions is made within the same participant. It
does require every participant to read four texts, which takes longer and may introduce learn-
ing effects (the last text is read differently than the first), which forces us to randomize. The
within-subjects design also means that we must find four comparable texts so the effects we
find are not driven by text differences rather than the investigated sound conditions.

laroer populauon of participants. In a within-subjects design, since we try to find the effect for

each individual, we can also see how many o ;magﬁgLsElay the sought-after effect.
If att p’a’:ﬁmpants dlsplay 1( then the eﬁ'ec 1§ hlghly gcnerahzab]e toa larger population.
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However, this does not mean that participant idiosyncracy is not a problem for your data.
Unexplained variance still shows up as noise in your models and your ultimate goal is often to
provide as full an explanation as possible of what is going on. This also means explaining or
at least reducing the impact of idiosyncratic factors so you can more clearly see the effect of
your manipulation and accurately estimate its size (data analysis programs | like SPSS give you
the option to output the effect size of a significant result you obtain). Statistical approaches
such as multilevel modelling are good for adding random factors (participants and items) and
modelling them in order to explain their effect and contribution to the variance, for example
by using random intercepts and slopes for every participant or item in the regression. Never-
theless. as a rule of thumb, it is a good idea to reduce the heterogeneity of your participants
if you want to establish that your manipulations have a statistically significant effect on their
performance. Both the task and the reception of the participants into the laboratory can be
used for this.

So are there any benefits to using a between-subjects design? Yes, but they depend on the
experiment in hand. Any within-subjects design has some problem of potentially allowing the
participants to guess the manipulation. Given enough trials, the participant notices the pattern,
c.g. the presentation of common words versus unusual words, and starts guessing the nature
of the experiment. Once he has figured out the aim of the experiment, the participant is very
likely to behave as expected to please the experimenter. This can be solved by introducing
fller trials to throw the participant off his hypotheses, but for very sensitive experiments it
will be best to use a between-subjects design.

Furthermore, consider an experiment where we test the impact of two different instruc-
tions on problem solving. We give participants a problem to solve and provide them with
one type of information. We cannot then present them with the same problem again and
supply them with another type of information, as they carry the experience from the first in-
stance with them. In other words, we only have one try per participant, and we have to use a
between-subjects design. Given enough participants, we will be able to tell whether one type
of information had a larger impact than the other type.

Naturally, if we use participants that are part of a fixed category, for instance dyslexics,
then we are forced to use a between-subjects design as we can never ‘switch-off” the dyxlexia
for a participant and use him as his own baseline. Pre-occuring variables like this, which exist
in vour participants and you cannot directly manipulate, are known as quasi independent
wariables.

3.2.7 Participant sample size

Omly when you know the experimental design can you estimate the number of participants
vou need for your study, but even then it requires an estimation of the variance in the data
wou have not yet collected.

It is often the case that the journal in which you plan to publish requires that each con-
Zition has a sufficient number of participants, for instance 10 contributing to each cell mean,
o maybe more. If you have a 2-by-2 design, as in Figure 3.2—two independent variables,
=ach with two levels—you have four basic cells. In this figure the design structure is en-
srely within-subjects, but could equally be between-subjects, with different people listening
w preferred or non-preferred music.'® If this is the case, as different individuals relate to dif-
ferent participant groups, we would need more participants in total to achieve the minimum
sequirement of a sample size of 10 for each cell mean. The reason for a minimum sample

“In this particular case, we would actually have a mixed design here, music type would be manipulated between
sweicimants, while volume level would be manipulated within subjects.




86 | FROM VAGUE IDEA TO EXPERIMENTAL DESIGN

size per cell is that we want to make sure that we have used enough data so that we do not
prematurely dismiss our results as null. More participants and trials prevents us from making
this mistake, giving us better statistical power. Failure to find a significant effect due to too
low power, even though an effect is present, is what statisticians call a Type II error—a false
negative.

It is also worth bearing in mind that you might lose participants along the way. It is
common practice to exclude participants from the analysis of eye-tracking data due to poor
data quality of the recording, or perhaps they simply did not do the task properly because
they struggled to fully understand the task instructions, in which case they should also be
removed, Insufficient data due to sample attrition is an issue which we will also address when
we come to data recording in the next chapter.

Conversely, there is such a thing as too much data, as well as too little. Consider an
experiment where we let participat"i"t‘s'"fead two types of text, one technical and one more
casual, and measure the average fixation duration, With 20 participants in each of the two
cells, we find significant differences at the p < 0.05 level. If we instead record 500 participant
in"each cell, we will very likely find that the sighal-to-noise ratio has been amplified so the
tesTis oW Significant at a p < 0.001 level. In other words, the probability that our observed

differences in fixation durations between the technical texts and casual texts are due to chance
is ['in 1000. More data has made our result stronger, but it was not necessary to record data
from so many participants.

Caution is needed with regard to large sample sizes, therefore, as it is potentially possible
to find positive effects in almost any experimental manipulation you do. With enough data,
any effect, however trivial, will cut through the random noise. Now, consider an alternative
experiment where we again use 20 participants per cell, but do not find the expected effect
of our manipulation. If we keep recording until we have 500 participants per cell, and we
then observe a significant effect at the p < 0.05 level, we now run the risk of a an error
similar to, but not quite, a Type I error—a false positive. Given enough data, small effects
will be amplified until they qualify as significant. For example, during our manipulation, we
happened to pick two texts which had slight and barely visible differences in the font type.
With enough data, we found significant effects, not in our intended manipulation of text genre,
but rather in the type of font used. We risk falsely assuming an effect of text genre when in
fact there is none (but an effect of font type).

The optimal number of participants to use varies, but there are various approaches to solve
this. One way would be to follow the canonical research in your particular research field and
journals, and just use the same number of participants and items. If you believe your effect
size will deviate from previous research, then take earlier studies and calculate their statistical
power (what is called the retrospective power). You can then use this power value together
with the expected magnitude of your effect to generate the required number of participants
needed for each cell. There is software for doing power calculations, but they still require an
educated guess of the effect of magnitude and its variance. When the result of our hypothesis
test is null, high statistical power allows us to conclude with greater confidence that this result
is genuine, and that it is very unlikely that an effect of the hypothesized magnitude or larger
was present.

Often, we “accept a risk of a type II error (known as B) which is larger than the risk of
a type L'error (). because the former can require large amounts of data to negate, which
is not feasible’in a standard eye-tracking experiment. The risk we take entails ending up
with results that falsely show no effect of our manipulation. This is deemed less problematic
than type 1 errors. This is not to say, however, that type I errors, i.e. spurious and invalid
effects, do not show up in eye-tracking data. This probably happens all the time, but they only
really pose a threat to the research tradition if they are not understood by the researcher, not
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questioned by the reviewer, or not replicated by the research community. The error can be one
or a combination of many aspects of the experiment: poor precision and accuracy of the eye-
tracking hardware, bad operationalizations of the mental construct and selection of dependent
and independent variables, questionable synchronization between stimulus presentation and
eye movement recordings. It is up to the researcher to decide whether it is more important to
be confident that the effect is present, or if it is more important to be confident that the effect
is not there. Statistical power is seldom reported as we are typically interested in positive
effects and there is a publication bias for these effects. We should keep in mind though, that
(failed) replications can be very interesting and then power becomes an important issue to
correctly falsify previous findings.

It is beyond the scope of this book to discuss detailed power calculations, but two simple
examples can be given to put power and sample size into perspective. These examples were
calculated using the formulae and tables in Howell (2007) for simple one-way ANOVAs.

e If we want an o of 0.05 (we correctly accept 95% of all true effects) and a power of
0.80 (we correctly reject 80% of all false effects), then we need a sample size of 72
participants per cell (i.e. per experimental condition).

“! e ° Given an o of 0.05 and a poww then we need a sample size of 119 per cell.

However, there is more to the discussion than just getting your results significant. For

cxample, earlier studies may have just very few participants (Noton & Stark, 1971a: two and
four participants; Gullberg & Holmgqvist, 1999: five participant pairs), and even though the
c=sults may be significant, there is also the problem of generalizability. With four participants,
it is likely that these people will deviate from the average person we want (o generalize to.
Typically, the hypothesis tests tell us how likely it is that a sample is drawn from a particular
sopulation or not. This assumes that the participants are randomly sampled from the popula-
tion at large. In practice, this is never the case. It is a fact that the vast majority of academic
c=<carch is carried out on university students; this is also true of eye tracking. Unfortunately,
w= cannot see that anybody will go through the challenge of doing completely randomized
sampling of the population during the recruitment of participants to an experiment. We can
omiy hope to be humble when drawing conclusions and making generalizations. However,
2 smudy with only four participants may still be interesting. Not because we can generalize
“om it (which we cannot), but because it may generate interesting hypotheses that we may
proceed later to test with a full experiment. The point is to not present a case study as a full
sencralizable experimcnt. or vice versa.

3.3 Planning for statistical success

e the data of your experiment have been collected, you will have one or several files with
5= raw data samples. At this point in the future, you should already have a clear idea what
% do with this data. Typically, the subsequent analysis consists of four main steps, each of
w#:ch is described in the following subsections.

331 Data exploration

Ditz exploration is not often discussed in textbooks, but is nevertheless.an.important part
" the analysis. The main purpose of data exploration is to get to know the data in order
B shie-toraccount for choices that are made in later stages of the analysis. A_secondary
swspose, which is nevertheless also vital, is to check for possible errors in the data. It happens

& o0 easily that data were coded erroneously or incorrectly measured when the experiment
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was carried out. Feeding the data into a data analysis without checking for errors may have
devastating effects, either producing significant effects that do not exist, or hiding them.

The first goal of data exploration is to check whether data quality is sufficient. This can
mostly be done in manufacturer software by inspecting the recorded data of individual partici-
pants. Position- and velocity-over-time diagrams, scanpath plots, and heat map visualizations
are excellent tools to quickly inspect and judge the quality of data. For participants and trials
who pass through this initial test, use event detection, AOI analysis, or the other methods in
Chapters 5-9 to calculate values to those eye-movement measures that you have selected as
so-called variables in your experiment.

Another main goal is to look at the distribution of these variables. A regular requirement
for statistical tests is that the data are normally distributed (i.e. symmetrically distributed
around the mean with values close to the mean being more frequent than values further away
from the mean, compare the left part of Figure 3.6). As will become apparent in Part III of
this book, many eye-tracking measures are not normally distributed. Eye-tracking measures,
including fixation duration and most saccade measures, tend to have skewed distributions
so that one tail of a histogram is thicker than the other tail, examplified in the right part
of Figure 3.6. Skewed variables may become normally distributed after transformation, for
instance, by computing the logarithm of the values, which may be the single most used trans-
formation available. This transformation makes a positively skewed (typically right-skewed)
distribution normal-looking by reducing higher values more than lower values. A distribution
commonly log-transformed is human reaction time values, where there is a physical limit to
how fast a human can respond to a stimulus, but no limit to how slow they can be. Therefore,
the distribution typically has a fat positive tail consisting of the trials where the participant
was fatigued, inattentive, or disrupted. A less common, but theoretically more powerful ap-
proach, is to analyse skewed distributions directly using methods developed for gamma dis-
tributions (if the untransformed values resemble this distribution). If the dependent variable
is a proportion, especially outside the 0.3-0.7 range, then a log odds (logit) transformation
is common. Navigating between transformations and methods for particular distributions be-
comes important during the analysis stage, especially so if you have limited data and cannot
afford to aggregate it to produce a Gaussian distribution.

A third goal of exploratory data analysis is to identify outliers, that is, values that fall
outside the normal range of measurements. These values need to be handled with care, as
they may exert a disproportionately large influence on the results of the final analysis. Outliers
may be the consequence of errors in the data recording or the event detection, or they may be
actual rare measurements. In case they are errors, they need to be corrected or excluded. In
case they are rare measurements, you may decide to leave them in or to exclude them. There
are no strict guidelines about what to do with outliers. In some cases, it may be possible to
predefine outliers. For instance based on previous experience and other research, one excludes
all values that fall outside the range that is normally to be expected. In other cases this might
not be possible and you need to decide which values are to be left out and which ones may
stay in. This decision should ideally be made before the analysis is done. One strategy is to
examine standardized values, and exclude values that are more than 3.29 standard deviations
above or below the mean (Tabachnick & Fidell, 2000). Such rare values are not outliers by
definition, however, since a few such extreme values are to be expected if the datafile is
sufficiently large. Outliers may, finally, disappear spontaneously as a consequence of data
transformation.

Plotting is also an indispensable tool in the later stages of data exploration, Particularly
useful are box-and-whiskers plots, which give simultaneous information about the distri-
bution as well as potential outliers (compare Figure 3.7). Additional plots that might be
helpful are histograms (as in Figure 3.6), scatterplots, stem-and-leaf plots. In this stage of




PLANNING FOR STATISTICAL SUCCESS | 89
0.4 -

i ;,II
III i

T d

5 10 15

(a) Normally distributed random vari- (b) Positively skewed random vari-
able. able.

Fig. 3.6 Histograms, symmetric and skewed, respectively.
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Fig. 3.7 Boxplots of the variables shown in Figure 3.6.

== analysis, it is wise to make a plot for each participant separately as well as for each item.
I= that way, it becomes possible to identify potentially deviant participants or items that need
20 be excluded from further analysis. i
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3.3.2 Data description

Data descrlpnon means using summary statistics (mean, mode vgnance etc.) to present in a
concise way the results of the study. In order to be able to present these statistics, the available
data usually need to be formatted so that they are readable by the software package with
which the analysis is carried out. Sometimes the manufacturer software can do part of this
job, but more often than not, you may need to do additional work in the form of transposing,
restructuring, or aggregating the raw data files. Since errors may steal into the data at this
stage as well, it is wise not to do these transformations by hand, but to leave them as much as
possible to the computer.

The choice of summary statistics depends on what is known as the measurement scale
of the variables of interest. An often-made distinction is between four types of measurement
scales. At the lowest level are categorical or nominal variabl bles. These take different values,
but the values are unordered. Examples are colours, pmfcsswns grammatical categones, and
s0 on. At the next level are ord:.;tgj: variables. The values that these can take may be ordered,
but the differences between adjacent values need not be the same. An example is the order
in which a participant looks at different AOIs in an image. The participant may, by way of
illustration, first look for a long while at one AOL, and then only briefly at the next before
going on to a third AOI These time differences are not visihle when only the order of the

interval variables have an arbitrarily chosen zero poml, 'I‘yplcai examples of interval vanables
are temperature and IQ. Finally, at the highest level are ratio variables which are similar to
interval vanables with the exception that they have a true zero point, i.e. zero means that the
variable is absent. Examples of ratio variables are dimension variables such as height, width,
and time. In eye-tracking research, interval and ratio variables are common, and iany-of the
measures to be described later in this book fall w1th1n one of these two categories.

The descriptive analysis often focuses on two aspects of the data, usually termed measures

of central tende eney. (the mean, median, or the mode) and measures of dispersion (the range,

the variance, or the standard deviation). The former summarize the value that i is in a way the
most representative of the sample, whereas the latter summarize the amount of variability in
the sample. An explanation of these measures can be found in any introductory textbook on
statistics.

Which measure to choose from depends largely on the measurement scale of the variables.
All measures may be used for interval and ratio variables; for ordinal variables, the median,
the mode, and thc range may be used; for nominal variables, only the mode may be used.

3.3.3 Data analysis

The choice of statistical analysis should be as much part of the planning of a study as any of
the other considerations given in this chapter. Statistical tests cannot be adapted so that they
fit any kind of experimental design. Rather, the design of ‘the study nieeds to be adapted so
that the data can be analysed by an existing statistical test. If the choice of the test is not taken
into account during the planning stages of the study, there is a risk that the results cannot be
analysed properly, and, consequently, that drastic data transformations severely reduce the
statistical power or, ultimately, that all the effort that was taken to run the study has been in
vain.

The principle behind statistical testing is the following. The participants (and the ma-
terials) constitute a sample that is taken from some population of interest; for example,
normal-réading adults, dyslecnc children, second-language learners, and s0.on.. A-popula-

e

tion is usually Iarge makmg 1t1mpos§1ble to measure all of its members. The sample, thus,
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is a non-perfect image.of realit and consequently there is some degree of unce i

the results. Note that this uncertainty is smaller for large samples than for small samples.
This umcertainty is also known as ‘sampling error’. Sampling error is the variability that is
for instance the consequence of measuring different participants, or the same participants on
different occasions, or the same participants with different stimulus material (see also page
£3). The purpose of inferential statistics is to distinguish sampling error from variability that
may be related to another variable of interest. The outcome of the test is the probability that
observed variability in the data is sampling error only. This probability is the p-value that is
reported as the result of the test. If this probability is very low, then the conclusion is drawn
that the variability in the data may be ascribed to variability in one or more variables.

During the past few decades, the possibilities for statistical analysis have greatly in-
creased, There is now a large variety of different types of analysis available, some of which
are simple, others more complex. The complex analyses are not necessarily better than the
simple ones. A well-defined research question may be simple, and the accompanying analysis
may be also. Perhaps the most important factor that determines the choice of the statistical
analysis, and with that the design of the study, is that you select a test that you are comfortable
with. As stated above, it is easier to adopt the design of an experiment to an existing statistical
analysis then the other way around.

Different types of statistical analysis exist, depending on the variables that are included in
the study. A rough two-way distinction can be made between parametric and non-parametric
tests. Non-parametric tests (such as Wilcoxon, Friedman, sign test) are appropriate when the
snderlying dependent variable is ordinal or nominal. In eye-tracking research, ordinal depen-
Sent variables are not as common as interval or ratio variables. Nominal dependent variables,
= the other hand, may occur frequently (for instance different AOIs). The distinction be-
sween an ordinal and an interval variable is not always clear. A three-point scale (e.g. cold-
warm-hot) is without doubt an ordinal variable, but as more points are added to the scale,

creasingly resembles an interval variable. Nominal dependent variables are notoriously

cult to analyse. Simple statistical tests for the association between two nominal variables
cuist (e.g. chi-square, Fisher’s exact test), but in practice the situation is usually more com-
i-ated. An overview of non-parametric tests is given in Siegel and Castellan (1988).

If the dependent variable is measured at an interval or a ratio scale, the statistical test is
2 parametric test. These tests rely on specific assumptions about the population from which
w5 sample is drawn. One such assumption is that the values in the population are normally
Sisributed, i.e. symmetrically distributed around the mean with values close to the mean be-
‘== more frequent than values further away from the mean. Whenever there is evidence that
- disiribution of the underlying population is not normal there is a risk that the outcome
F the test is unreliable. An option is to transform, using for instance a log or a square root
—=<formation, the data so that the distribution becomes normal. The decision whether or not
. sran<form the data may be a difficult one. There is a cost-benefit argument. The advan-
tizc is that the test results may be more reliable. The drawback is that the test results may
Secome difficult to interpret as well as a loss of power. We lose power because, &.g. a log-
—=<formation reduces large numbers more Tan smatl numbers, so we are less able to sepa-

he difference between two large numbers. An alternative solution, which unfortunately
. =t ideal cither, is to convert the measurement scale from interval/ratio to ordinal/nominal,
2= 0 do a non-parametric test. This solution 1s not ideal because this conversion involves
L= of information, and with that loss of statistical power. We lose power if we ignore the size
-+ = numbers and only focus on the sign (positive/negative). because we cannot distinguish
Sesween -1 and -100.

A different two-way distinction is whether there is one or several dependent variables.
The collected history of eye-movement research give you access to much more than a single
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measure for your study. When you have mulnple dggggdcm varlahles,,you may decide to anal-
yse THeRT Separately to see which of them yields significant differénces between experimental
groups. In doing so, the character of your study becomes exploratory rather than Qp!’_lﬁm‘l_l_l’lg.
or rejecting hypotheses. An alternative is to ‘reverse the roles’ of independent and depen-
dent variables, and tosee which of the dependent variables best predicts group membership.
Suppose, for instance, that two experimental groups Were involved in a study, for instance
dyslexic readers and normal readers. These two groups all read a text and several measures
are obtained from their reading: first fixation durations, number of inword regressions, gaze
duration, saccadic amplitudes, etc. These measures can then be used as predictors to evaluate
which of them predict whether a reader was a dyslexic or a normal reader. Finally, a num-
ber of multivariate statistical methods exist that may be used to see which variables ‘group’
together (for instance, factor analysis, principal component analysis, cluster analysis, corre-
spondence analysis). This approach is exploratory rather than confirmatory. For an overview
of different multivariate statistical analyses, we refer to Tabachnick and Fidell (2000).

Further factors that determine the choice of statistical analysis are the number and types
of independent variables. In the following, we briefly describe a few types of analyses that
are common within eye-tracking research. For each analysis, we provide a short example, and
one or two references for further reading.

Analysis of variance or ANOVA is the appvopnate analysis if the dependent variable is mea-
Gzt n i e it
sured at interval or ratm scale and there are ‘one or more independent nomma! variables
(often calT'a“ factors’ ) Analysis of variance Tiiay be the mos( common “method for

subject factors, within-subject factorv. or combinations of the two. As a general recom-
mendation, the number of factors should be kept low, preferably not more than three.
The main reason is that independent variables may interact with one another, and the
number of possible interactions increases rapidly whcn more l—cfégendent variables are

added to a study. Interactions are notoriously difficult to interpret, especially those that
involve more than two factors. Analysis of variance is discussed in many textbooks on
statistics. An exceptionally complete handbook is Winer, Brown, and Michels (1991).
There are numerous examples of eye-tracking studies in which the results were analy-
sed with an _analysis of variance. One example is a study by Camblin, Gordon, and
Swaab (2007), who looked at the influence of two factors on eye-movement measures.
These factc_r!‘_s__\la.fere Qgrd assomaﬁog}{wheﬂwr two words are ea:uIy associated with
each other or not), and H}’ﬁb‘ﬁhe cangmcncy\(whcther a word | ﬁls in the ¢ context or
nof) The main quesuon behind this investigation was whether read.mg processes are
more strongly influenced by local context (represented by the word association factor),
or by glgb_al context (r?ﬁfevemodbythc discourse congruency factor). Combining ERP
measurements with eye-tracking measurements, they found discourse congruency to be
a stronger factor than word association. In gther words, local reading processes may be
overru}cd by global reading. processes.

Logistic regress:on A special case of a nominal variable is a variable that takes only two
outcomes (e.g. yes—no, hit-miss, dead-alive). A seemingly attractive solution is to
convert the outcomes to proportions or percentages. This might be allowable for the
description of the data, but not for the statistical test. One risk with proportions is that
some participants contribute with many data points (e.g. 90 misses out of 100 trials),
whereas others contribute with only few data points (e.g. 2 out of 5). If the results from
these two participants were averaged, then the first proportion would be counted just
as heavily as the second, which is not appropriate since the second proportion is much
less reliable than the first. The solution for such dichotomous variables is to convert the
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proportional scale to a logarithmic scale (logit transformation) and to do the analysis
on the transformed values instead. This type of analysis is called a Jogistic regression.
An introduction to logistic regression can be found in Tabachnick and Fidell (2000).
An example of a logistic regression analysis within eye-tracking research is given in
Sporn et al. (2005). In that study, a number of eye-tracking variables were measured
in a clinical group of schizophrenic patients and a control group. Subsequently, the
results of the eye-tracking measures were used as predictors in a Jogistic regression
analysis, to establish whether the two groups could be differentiated on the basis of the
measurements.

Regression Regression is similar to analysis of variance in that there is a dependent variable
measured at an interval/ratio scale. In regression, however, the factors (predictors) may
be either categorical or continuous. The simplest example of regression contains one
continuous dependent variable (e.g. fixation duration) and one continuous predictor
(e.g. font size). A relationship between these variables implies that an increase in the
predictor is associated with an increase (or a decrease) in the dependent variable. The
most parsimonious representation of such a relationship is to suppose that it is linear,
i.e. the change in the dependent variable is constant across the whole range of the
predictor. If this is true, then the relationship between the variables can be modelled
using the equation for a straight line: Y' = b+aX. In this equation, b is the level of Y at
the lowest level of X, and a is the slope of the line, i.e. the change in ¥ per unit change
in X. Reality may be more complex than that, however. The relationship between two
variables need not be linear, and there may be more than one variable that influences
the dependent variable. We recommend Cohen, Cohen, West, and Aiken (2002) as a
textbook on regression.

Multilevel modelling A relatively recent development in statistical analysis is offered by so-
called multilevel analysis (also known as hierarchical models, mixed models). In this
type of analysis, random factors are included and parameters of the model (estimates of
the contributions of the different factors) are estimated by a process of maximum like-
lihood estimation or variants of it. These models may be applied when the dependent
variable is an interval/ratio variable, but also when the dependent variable is a nominal
variable. Multilevel models have the great advantage that they are flexible. The data
<et does not need to be perfectly balanced, as it should be for analysis of variance. For
an introduction to multilevel modelling, we refer to Singer and Willett (2003). An ex-
ample of multilevel analysis within eye-tracking research is given by Barr (2008). The
technique has been applied successfully to analyse results of studies with the visual
world paradigm (p. 68), but its range of applications is far wider than that.

Loglinear analysis Loglinear analysis is a technique for analysing the relationship between
nominal variables. If only two variables are involved, their relation can be represented
45 a two-dimensional contingency table. If there are three, the table becomes three-
dimensional. and so on. In loglinear analysis, as in analysis of variance, the model
for the expected cell frequencies consists of main effects and interaction effects. In a
two-way table, for instance, there are two main effects, and one two-way interaction.
In a three-dimensional table, there are three main effects, three two-way interactions,
and one three-way interaction, and so on. The goal of the analysis is to find the most
parsimonious model that produces expected cell frequencies that are not significantly
different from the observed frequencies. An example of the application of loglinear
analysis in eye-tracking research is given for transition matrices (p. 193). An introduc-
tory chapter on loglinear analysis can be found in Tabachnick and Fidell (2000).
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3.3.4 Data modelling

The fourth stage, which is optional to many, is the modelling stage. In some cases, there is no
noticeable difference between the analysis stage and the modelling stage. Many researchers
settle for just finding individual significant effects and this is perfectly fine. However, once
a particular domain has accumulated a number of significant predictors each targeting the
same variable, then it becomes fruitful to try to integrate these predictors into a complete
model. The aim of statistical modelling is to create an explicit model that can describe and
predict your data, and do this as well as possible. This is important for the scientific work,
because this output is something we can benchmark against, typically through some form of
goodness-of-fit statistic. If we have two different models that try to describe a particular set
of data, we can test both and see which model performs more accurately. We can also see
whether the inferior model can be incorporated to create an even better unified model, or if it
has no unique information value at all to contribute. The end result is a better understanding
of what factors are involved in a particular behaviour and/or cognitive process, and how these
factors interact to produce the outcome they do. Valuable outcomes from modelling include:

e Produce an explicit model that can be implemented in an application.

e Produce an explicit model that can be compared against other models to evaluate which
one is better.

e Identify redundant factors that do not contribute with unique explanatory power.

Model-building is performed, not in a single, correct way, but rather by a variety of ap-
proaches. A typical rule of thumb is to achieve a good tradeoff between model complexity
and explanatory power. Including many predictors that improve the model only minimally
results in a very large and complex model. In that case it would be better to exclude those
predictors and settle for a less powerful, but much simpler model. A simple model will be
much easier to communicate and for other researchers to adopt.

Other questions, which really are beyond the scope of this book, are whether models
should be built in a forward fashion, including predictors as they are identified as significant
predictors, or in a backward fashion, excluding factors as they fail to improve the model.
Different practices exist in different fields, and it is up to the reader to find her own way of
modelling confidently.

3.3.5 Further statistical considerations

A potential problem that may undermine your conclusions is the multiple comparisons prob-
lem (see also the terms family-wise error rate or experiment-wise errvor rate). We briefly
explained this before in the context of a fishing expedition, where we test many different
measures and settle with whatever is significant. A significant result is a probabilistic state-
ment about the likelihood that a given sample comes from the assumed population, or comes
from the same population as another sample. If this probability is sufficiently low, we can
reject our null hypothesis in exchange for our more interesting alternative hypothesis. How-
ever, this probability is only valid for a single test. If you test a hundred samples using this
test, you most likely get a few significant tests even though the data are completely randomly
generated with no real effect at all. In order for the hypothesis test to mean anything, the ex-
periment and the analysis should be set up to make a single test for every research question,
otherwise you are inflating the risk of a significant result where there is no true effect. There
are several ways where a multiple comparisons problem could arise in your experiment:

e You do not have a single clear measure to capture your hypothesized effect, so you use
several measures each tested with their own hypothesis test.
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e You do not have a clear prediction about where in the trial an effect will appear, so you
compute several time bins and test their significance separately.

o You test different layouts of the data, for example using time bins, then using the whole
trial, then collapsing trials into larger units (trial — block — participant). There is a
risk that you keep transforming and aggregating your data until your data becomes
significant, rather than arranging the most appropriate way determined prior to the
analysis.

One way to compensate for this problem, if indeed you want to investigate several mea-
sures, is to perform a Bonferroni correction (or related procedure, see €.g. Holm, 1979) on
vour significance level to compensate for the multiple comparisons. This means you lower
vour significance level () based on the number of hypothesis tests you perform. The stan-
dard Bonferroni correction is simply to calculate ¢ where o is the significance level and n is
the number of comparisons (hypothesis tests).

If you find effects that are only significant before the multiple-comparisons adjustment,
but you still believe in them, then you can at least report them as post-hoc findings. In them-
selves, they are not as useful as real results, but another researcher may have a good explana-
tion for them and proceed with her own replication of your results, if you do not do this
vourself.

3.4 Auxiliary data: planning

—

Eye tracking is useful, fascinating, and challenging in itself, but all of these positive properties
can be increased by adding further data channels. Common auxiliary data types include verbal
Jata reaction time data, motion tracking, galvanic skin response (GSR), and for a few years
~ow also electroencephalography (EEG) and function magnetic resonance imaging (IMRI)
4ata These are added for a variety of reasons.

Verbal data, for instance, are used for methodological triangulation as an information
<ource on cognitive processes in working memory in addition to eye tracking as informa-
sion source on perceptual/attentional processes (e.g. Antes & Kristjanson, 1991; Canham &
Hegarty, 2010; Charness, Reingold, Pomplun, & Stampe, 2001; Haider & Frensch, 1999;
arodzka, Scheiter, Gerjets, & Van Gog, 2010; Lowe, 1999; Reingold, Charness, Pomplun,
& Stampe, 2001; Underwood, Chapman. Brocklehurst, Underwood, & Crundall, 2003; Van
Gog, Paas, & Van Merriénboer, 2005; Vogt & Magnussen, 2007. Others add verbal data to
sve-movement data to study the speech processes in themselves (Tanenhaus et al., 1995;
Griffin, 2004; Holsanova, 2008).

All these types of data have their own possibilities, weaknesses, and pitfalls, and none
¢ them provide an infallible turnkey solution any more than eye tracking does. Rather, the
=% is 10 use them in combination so that the weakness of one system is complemented by
e strength of the other. This is sometimes called methodological triangulation and cross-
safidation. v ;

“w= will now describe the possibilities of using common auxiliary data in triangulation to
—<<validate eye-tracking data. Eye-tracking data, including pupil diameter data can also be
-4 10 disambiguate other data, but that’is outside the scope of this-beok.

341 Methodological triangulation of eye movement and auxiliary
data

%= spite of the great opportunities eye tracking provides to a researcher, it also has its short-
somings. As we noted on page 71, eye-tracking data only tell us where on the stimulus a
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cognitive process operated, and possibly for how long, but not by itself which cognitive pro-
cess is involved.

Methodological triangulation refers to the use of more than one methodological approach
in investigating a research question in order to enhance confidence in the ensuing findings
(Denzin, 1970). If research is founded on the use of a single research method it might
suffer from limitations associated with that method or from the specific application of it.
Thus, methodological triangulation offers the prospect of enhanced confidence, credibility,
and persuasiveness of a research account through verifying the validity of the findings by
cross-checking them with another method (Bryman, 1984). Webb, Campbell, Schwartz, and
Sechrest (1966) suggested, “Once a proposition has been confirmed by two or more inde-
pendent measurement processes, the uncertainty of its interpretation is greatly reduced. The
most persuasive evidence comes through a triangulation of measurement processes” (p. 3).
The consensus among the many reviewers of methodology, supported by empirical studies,
is that it is best to rely on a wide range of complementary methods (Ericsson & Lehmann,
1996).

In psychology several methods are in use to gain data on human knowledge (for an
overview see Kluwe, 1988): probing (i.e. interviewing a participant), questionnaires, sort-
ing tasks, free recall of knowledge, as well as several behavioural measures such as reacrion
times, electroencephalography, galvanic skin response, functional magnetic resonance imag-
ing, and thinking aloud. These additional data types vary both in how easy they are to record
in combination with eye-movement data, the potential they have in disambiguating them, and
in how well this potential is investigated.

Verbal data are easy to record and have a wide potential to disambiguate eye-tracking
data, because this method allows researchers to gain insight into participants’ experienced
cognitive processes while inspecting a stimulus or performing a task. It has become the largest
and most investigated complimentary data source to eye-tracking data, in particular in the
applied fields of eye-tracking research, where participants have free and naturalistic stimuli
and tasks.

3.4.2 AQuestionnaires and Likert scales

Both questionnaires and Likert scales can be seen as a form of elicitation where conscious
answers are given by the participant to highly structured questions. The structure can be more
or less rigid, where one extreme is open-ended questions (such as *How do you feel?”), and
another extreme would be forced-choice questions with few alternatives (“Do you prefer op-
tion A or option B?"). The rigidity has both benefits and drawbacks. A great benefit is the
ability to automatically have all the answers confined within an easily analysed answer space,
for example values ranging between 1 and 7. A drawback of rigid questions is the risk of low
validity due to wrong constructs or misinterpreted questions, such as participants not under-
standing what you are asking about or forced to provide an answer to a dimension they believe
is irrelevant to them. Questionnaires may be low-tech, but they are critical to operationaliz-
ing difficult constructs. Assuming you want to find an eye-tracking measure that predicts the
level of happiness of a participant, you will have no other easy access to such information be-
cause there exists no device that can measure the happiness of a participant. Fortunately, such
questions are easily arranged in a questionnaire, especially if they are standardized questions
used by psychologists. It is then easy to collect data about both the eye movements and the
happiness of a number of participants, and then find a correlation with some measure which
can then be further elaborated on and verified.

A typical psychological questionnaire often uses a Likert scale for easy analysability. Ad-
ditionally, there are often many questions asking the same thing but with slightly different
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wording in order to reduce any effect due to particular phrasing, including some reversed
questions that ask the complete opposite (with a correspondingly reversed scoring). An ex-
ample in line with our above example would be the Oxford Happiness Questionnaire (Hills
& Argyle, 2002).

3.4.3 Reaction time measures

Eve-tracking data offer a number of reaction time measures, for instance saccadic latency,
entry time, latency of the reflex blink, eye—voice latency, and others listed in Chapter 13. Even
the first fixation duration is in effect a form of latency measure. All of these are indicative of
orocessing, such that the reaction takes longer when processing is hampered or more difficult.
When latency is referred to in relation to auxiliary data in this chapter, discussions are limited
1o identifying cognitive processes in such a *brain sense’. Of course, there are a multitude of
complex issues to do with the latencies involved with the synchronization of machines and
squipment when recording auxiliary data. Chapter 4 (p. 134) and Chapter 9 (p. 286) tackle
= combinations of equipment for data recording more technically. Refer back to Chapter 2
p. 43) to remind yourself of the latency issues involved specifically with eye-trackers.

The traditional non-eye-tracking reaction time test is a measure from onset of a task until
the participant presses one of two or more buttons to mark a decision, typically between two
sptions, for instance “yes” or “no” to the question whether a series of letters constitute a
~ord or not. The latency of the decision is then taken as the dependent variable and used
2« an approximation of the ease of processing of the particular stimuli. In trials where the
processing leading up to the decision is easy the participant is faster, whereas hard trials have
Jomeer latencies.

As eye tracking provides the richer spectrum of latency measures, there is often little point
= =dding manual reaction time tests to eye tracking, other than for pure triangulation or to
sompare visual and manual modalities. However, time on task-data which measures the time
w=1il a participant has finished with a stimulus or subtask is often added to the analysis of
sye-movement data. This additional information comes at the cost of variable trial durations,
s ever. which requires us to think about scaling several of the other eye-tracking measures
we= might think about using.

344 Galvanic skin response (GSR)

alvanic skin response (GSR) measures the clectrical conductivity of the skin using elec-
— 4« which are usually put on one or two fingers of the participant. The variation in GSR
sic=al corresponds to the autonomic nerve response as a parameter of the sweat gland func-
e

When eve tracking has been supplemented by GSR, the motive has been to investigate
sopminive load and emotional reactions, for instance in usability tasks (Westerman, Suther-
Lt Robinson. Powell, & Tuck, 2007) and social anxiety research (Wieser, Pauli, Alpers, &
MSsilbereer. 2009).

Th= GSR latency is slow, reactions appear 1-2 seconds after stimulus onset. This means
s the eves could already have left the part of the stimulus that caused the GSR effect long
St ee the effect was registered in data. This latency is difficult to take into account, and could
e wme reason why there are so few combined studies.

Eve wacking offers some measures of its own that are sensitive to cognitive load and
metenal variations, for instance pupil dilation (p. 391) and saccadic amplitude (p. 312).
Simee these eye-tracking measures react to so many cognitive states (so many c:s in the terms
@ Fezere 3.1 on page 72), however, disambiguating them with GSR makes good sense.
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3.4.5 Motion tracking

Motion trackers can be magnetic or optic, and are used to measure the movements of all (ex-
ternal) body parts, but not eyes. Magnetic motion trackers are sometimes optional parts of
head-mounted eye-trackers. Optical motion tracking is based on infrared cameras and reflec-
tions just like eye tracking, and gives the same type of sample data stream, with comparable
sampling frequency and precision, albeit 3D, for a selected number of points across the par-
ticipant’s body or on artefacts manipulated by the participant. Even the analysis of general
movement data has similarities to fixation and saccade analysis. The obvious benefit of adding
motion tracking to your study is that you will be able to measure synchronized movements
of the eye, body, and objects.

The combination is not uncommon in applied research. For instance, Wurtz, Miiri, and
Wiesendanger (2009) investigated the eye—hand latency in violin players, as the interval from
the fixation of a note until the corresponding bow reversal, and Wilmut, Wann, and Brown
(2006) investigate the role of visual information for hand movements. Wengelin et al. (2009)
and Andersson et al. (2006) describe set-ups for studying how reading of one’s own emerging
text coincides with keyboard writing (keylogging), and Alamargot, Chesnet, Dansac, and Ros
(2006) have developed a set-up and software solution called Eye and Pen, which combines
graphomotor activities with eye movements. There are also many human factors, ergonomic,
and robotic applications of this combination.

3.4.6 Electroencephalography (EEG)

There are many similarities between electroencephalography (EEG) and eye tracking: sam-
pling frequencies are in the same range, and both signals can be analysed as process measures.
There are different EEG technologies (called high- and low-impedance) that require different
post-processing. And with both measurement techniques, it takes some time to gather enough
experience to be able to do publishable research.

EEG does not measure deep into the brain, only the surface, and there is high inter-
individual variance in the thickness of the skull and scalp. High amplification is needed as
the signals are often very weak. Because the noise levels are so high, many trials are needed to
filter out a significant effect, and participants may find this tedious. EEG artefacts stem from
alternating current but also eye blinks and saccadic and microsaccadic movements. Filters are
required to remove them, and high-impedance systems may require heavier filtering.

Sampled EEG data come in waves that correspond to continuous brain activity. It is
possible—with some training—to read state of arousal directly from wave plots, which is
extensively done in clinical settings (hospitals). When we are excited and alert, the signal is
high in frequency (Hz) and low in amplitude (V). When we are drowsy, the activity is much
slower but higher in amplitude. EEG can be analysed in the frequency domain in order to
extract information about the global brain activity of the participant.

When EEG is added to eye tracking, the continuous EEG signal is seldom used. Instead
analysis focuses on the EEG amplitude, direction (positive/negative), and latency of the sig-
nal with a particular scalp distribution as a response to external stimulus events or internal
cognitive processing. This is called event-related potentials or ERP (Luck, 2005).

In one line of research, the purpose has been to study the neurological system itself.
The saccadic eye-movement-related potentials (SERP) and the eye-fixation-related potential
(EFRP) are ERP paradigms that investigate the EEG signal next to saccades and fixations.
Early studies focused on the neural activity around saccades, and what that could tell us
about the human visual system. Becker, Hoehne, Iwase, and Kornhuber (1972) found that
around 1-3 seconds before the saccade onset, occipital and parietal posterior areas exhibit a
so-called pre-motion negativity, indicative of general readiness. A pre-motor positivity can
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e measured 100-150 ms before the saccade onset, possibly reflecting motor programming
(Jagla, Zikmund, & Kundrdt, 1994). Immediately after the saccade offset, there is a strong
positive response, called the Lambda response, in the posterior parietal area, and a concurrent
negativity in the frontal eye fields. The shape of the Lambda response depends on the general
visual background (Morton & Cobb, 1973), and is believed to correlate to the processing of
sew information in the visual cortex. The negativity in the frontal eye fields is probably a sign
f inhibition of further saccades while the processing of information continues in the visual
cortex (Jagla et al., 1994). For a recent review of research on saccadic eve-movement-related
potentials, see Jagla, Jergelovd, and Riecansky(2007).

In reading research, ERP data are used to support and strengthen interpretations made
from eye-tracking data. Dambacher and Kliegl (2007) found a correlation between N400
components and fixation durations. Takeda, Sugai, and Yagi (2001) found that the EFRP in
%= 100-200 ms block after fixation onset decreases in a way that would reflect decline of
—-neal concentration (i.e. carelessness) caused by visual fatigue. Using the same P200 EFRP,
Simola. Holmgvist, and Lindgren (2009) show a parafoveal preview benefit for distinguishing
tetween words and non-words in the right visual field that does not exist in the left visual

1

Seld.

247 Functional magnetic resonance imaging (fMR1)

Functional magnetic resonance imaging (fMRI) measures activity throughout the whole brain,
=t just surface activity like EEG. The remporal resolution differs very much between fMRI
==d eve tracking. Eye tracking involves measuring how the eyes move with a temporal resolu-
e of down to 0.5—1 ms. In contrast, fMRI involves measuring and aggregating over 1000 ms
time spans. This makes it more difficult to co-analyse fMRI and ET data than EEG and ET
4= where both systems have the same temporal resolution. The output from an fMRI mea-
—rerment is an activation visualization of the blood oxygenation level-dependent (BOLD)
wzmal, which in principle is identical to a heat map and the eye movement representations of
Chapter 7.

Although fMRI studies very often include looking at pictorial stimuli (and/or hearing
+50). the vast majority of studies that combine the two technologies only use eye tracking
+ owerol that the participant is awake, has his eyes open and looks in the general direction of
- wimulus. If researchers analyse the eye-tracking data, they usually only detect saccades,
2= only 1o make sure that the eye is not moving.

A< an example, Simola, Stenbacka, and Vanni (2009) measured activity in the visual cor-
%=+ (V1) as participants looked at a central cross on the stimulus monitor and simultaneously
wended 10 wedges in five concentric rings at 1.6°~10.2° from the centre. The authors showed
. the enhanced activity by attention in retinotopically organized V1 directly corresponds
= locus of covert attention, and that the attended responses spread over a signicantly
\erzer area than the sensory responses. It was important to show that the participant’s gaze
= =t deviate systematically from the central cross, because eye movements would move
= manning of the stimulus onto the visual cortex (V1). Hence eye tracking was used.

A rare exception where saccades were actually used to align the fMRI data is Ford, Goltz,
S-wwn. and Everling (2005). They used an antisaccade task with long intervals between sac-
.- which is compatible with the slow fMRI data.

3248 Verbal data

“%. «ection describes the most commonly used method for knowledge elicitation in combi-
setwm with eye tracking: verbal data. We use the term verbalization for the act of external-
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izing thoughts as speech and verbal data for the totality of data resulting from recordings of
verbalization, irrespective of their form (i.e. audio or transcribed). Combined recordings of
eye tracking and verbal data are made in several research areas as well as in applied usabil-
ity projects. There are three major purposes to record eye-tracking data in combination with
verbal data:

1. To investigate the minute relation between vision and speech over time (Holsanova,
2008).

2. For purposes of methodological triangulation, for instance to investigate working mem-
ory processes directly in addition to perceptual/attentional processes as shown by eye-
tracking data (Jarodzka, Scheiter, et al., 2010; Altmann & Kamide, 2007).

. In specific cases, eye-tracking data are recorded to help participants to elicit verbal data
by a method known as “cued retrospective reporting” (Hansen, 1991; Van Gog, Paas,
Van Merriénboer, & Witte, 2005).

Theoretical background: origin and idea of verbalizations as a valid data
source

Initially, the easiest and most common way to gather insight into cognitive processes ac-
companying task performance was to interview people who are skilled performers, that is
experts (Ericsson, 2006). It is questionable, however, whether experts are able to describe
their thoughts, behaviours, and strategies so that it is understandable to less skilled people
(Ericsson, 2006). In particular, since discrepancies have been found between reported and
observed behaviour (Watson, 1913). For this reason Watson (1920) and Duncker (1945) in-
troduced a new method of thought analysis: thinking aloud. This type of verbalization has
been shown not to change the underlying structure of the thoughts or cognitive processes,
and thus avoids the problem of reactivity, as long as the verbalizations are carefully elicited
and analysed (Ericsson & Simon, 1980, 1993).

The central assumption behind the use of thinking-aloud is that “it is possible to instruct
participants to verbalize their thoughts in a manner that does not alter the sequence and con-
tent of 1h0ughts medxa;mg the completlon of a task and lherefore sh{}uld reﬂect immediately
available information during thinking.” (Ericsson, 2006). Those verbalizations prowde data
on which knowledge is currently activated and how it changes. According to Ericsson and
Simon (1993) the information processing model assumes the following: (1) the verbalizable
cognitions can be described as states that correspond to the contents of working memory (that
is, to the information that is in the focus of attention); (2) the information vocalized is a verbal
encoding of the information in the working memory. That is, only this content can be found
in the data that was “on the participant’s mind”, respectively in the participant’s attention. It
is important to note that if thinking aloud is not completely free, it may interfere with task
performance itself. Providing the participant with appropriate instructions is therefore crucial
(p. 105).

Another crucial part in the use of verbal reports is coding (Chi, 2006 and page 290). The
data should be coded in the context of the task. Hence, a cognitive task analysis needs to be
done beforehand, so as to know the functional problem states required to be able to categorize
single utterances.

Thinking aloud tec ve been successfully used in a variety of domains, like de-
51&gmmﬁﬁ%ﬁ;nm & Schwarz, 1996), learning second- -language (Green,
1998), text comprehension (Ericsson, 1988; Pressley & Afflerbach, 1995), decision-making
studies (Reisen, Hoffrage, & Mast, 2008), studies of text translators (O’Brien, 2006), de-
veloping computer software (Henderson, Smith, Podd, & Varela-Alvarez, 1995; Hughes &
Parkes, 2003), or to investigate the relation between vision and speech (Holsanova, 2008).
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This method can provide information on, for instance, the forward-strategy-use in experts
(Smith & Good, 1984), or even in perceptual processes: for example it has been found that
cxperts note more relevant features of pictures in contrast to novices (Wineburg, 1991).

It has to be noted that the method of gathering verbal data from participants is known
under several other names, such as a refrospective think-aloud in the academic usability world
\Hansen, 1991; Hyrskykari et al., 2008) and as a post-experience eye-tracked protocol (PEEP)
i the commercial usability world (Petrie & Harrison., 2009; Ehmke & Wilson, 2007). We
decompose the term verbal reports (Ericsson & Simon, 1993) into:

 Thinking aloud approaches (like concurrent reporting, retrospective reporting, and cued
retrospective reporting (Van Gog, Paas, Van Merriénboer, & Witte, 2005).
Probed reporting, like self-explanations (i.e. the participant explains a stimulus or task
to himself; Renkl, 1997)
Structured interviews.
Free recall.
Task-driven verbalizations (i.e. providing verbalizations according to a specific task).

individual differences in verbal data

Already Claparéde (1934) and De Groot (1946/1978) had found large differences among
participants in their ability to think aloud. To give you an impression of what variation in par-
“ipant verbosity can be expected, we present here frequency distributions from real data.

sure 3.8 presents data from a study, where we used cued retrospective thinking aloud
Jerodzka. Scheiter, et al., 2010). Thus, participants are very likely to vary in how much
\=-halization they produce. Although this situation cannot be completely avoided, it helps to
i the thinking aloud and to prompt silent participants when they stop talking (see below).

Forms of verbal data

& s section, we will distinguish between different forms of verbal data according to the
seint in time when they have been produced: concurrently or retrospectively. Thinking aloud,
wif-explaining, and task-driven verbalizing are produced during stimulus inspection (concur-
et verbalizations). Retrospective reports (i.e. refl ecting what the person was thinking during
smulus inspection) can also be produced after stimulus inspection as well as free recall and
wwctured interviews (retrospective verbalizations). Table 3.2 provides an overview of their
gEoperties.

Concurrent verbalizations

Thnking aloud can be produced in two points in time: concurrently or retrospectively. If
e sarticipant speaks while performing a task or inspecting a stimulus, this set-up is called
o wrrent think-aloud. Meanwhile his eye movements can be recorded. Most eye-tracker
.~ facturers have support for synchronized concurrent recordings of speech, but the very
st of speaking may make the participant quiver or move enough that the recording of eye
—wmements will be less precise, in particular for tower-mounted eye-trackers (p. 137). More-
s it is very likely that participants thinking aloud perform slower (Karpf, 1973).

11 has long been suspected that concurrent verbalizations alter eye movements during the
L.t On the one hand, psycholinguistic research in the so-called “visual world paradigm”,
wrtine in the mid 1990s (Tanenhaus er al.. 1995) has thoroughly investigated the temporal
~wton of gaze to verbal expressions. Its main thesis, that “speech is timelocked to gaze”
. ~con shown for single-sentence trials, again and again. However, in the task of describing
semolex pictures with everyday scenes, speech planning is a process in itself, which in turn
seawres additional time and affects eye-movement behaviour (Holsanova, 2001, 2008).
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Fig. 3.8 Number of words that participants uttered during cued retrospective thinking aloud. Bin size is
100 words. Verbalization training and prompting was used in the way later described in this section. Data
from Jarodzka, Scheiter, et al. (2010).

Ericsson and Simon (1993) claim that, given that thinking aloud is implemented in the
manner they propose, thinking aloud should not alter task performance itself, besides slow-
ing it down. Nevertheless, some researchers found exactly this effect: the think-aloud pro-
cess takes resources from all parts of the cognitive system, and slows down not only eye
movements, but the general exploration and learning processes (Nielsen, Clemmensen, &
Yssing, 2002; Van Someren, Barnard, & Sandberg, 1994). Eger, Ball, Stevens, and Dodd
(2007) found that fewer participants finished their online search task when thinking aloud
compared to being undisturbed during the task. Davies (1995) even found that the order in
which the participant performs subprocesses changes when think-aloud is required of him in
a design task. The greater the cognitive load a task imposes, the more novices have problems
with concurrently thinking aloud compared to experts (Van Gog, 2006).

The advantages, on the other hand, are the following. Two data sources may be recorded
at one time. These data sources are very likely to be closely linked, since they have been
recorded simultaneously from a single participant. Concurrent verbalization also provides
the momentous perspective. This would be of particular importance in complex tasks, where
cued retrospection could be expected to provide a perspective that deviates from or even
ignores the momentous cognitive processcs and simply becomes a post-hoc construction.
This happened for Ryan and Haslegrave (2007) who showed videos (without gaze data) of
workers in a storage room, and collected retrospectives.

Concurrent verbalization is used frequently in psycholinguistics research, where the very
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Tahle 3.2 Overview of the different varieties of verbal reports that are combined with eye-movement data,
=~ their properties as methods. Note: Y —yes or possible, N — no or very unlikely.

Dual recording sessions necessary?

Verbal and eye-movement data synchronized?
Pre-structuring of verbal data possible?
Decreased eye-tracking data quality?

Effect on task performance?

Risk of memory loss on verbal data?

Task performance slower?
Biased verbal data?

Method

Concurrent recording

concurrent thinking aloud
self-explanation
task-driven speech by describing stimulus

DR
A

Retrospective recording

retrospective reporting

cued retrospective reporting

structured interviews

freely recalling the content of a stimulus

swsose s a detailed investigation of the temporal relation of visual attention to the contents
=l data. and an investigation of the implications for speech production and reception
. wi-t. Furthermore, this method is frequently used in educational psychology to investigate
sl of processing involved in studying certain learning materials as well as mental over-
\wmi The suspicion that the primary task may be affected has discouraged many other applied
“+easchers from using concurrent verbalization, however.

Beeides thinking aloud, at least two more types of verbal reports exist that may be linked
% =ve movements: self-explanations and task-driven verbalizations (in psycholinguistics).
S =xplanations are a specific variety of verbalizations which require the participant to ex-
Sie= the stimulus to himself. Whereas thinking aloud should not interfere with the primary
e s type of verbalization is meant to alter the task performance or the inspection of the
o This method is mainly used in educational psychology, where it has been shown
% smiance learning (Chi, De Leeuw, Chiu, & LaVancher, 1994; McNamara, 2004; Renkl,
= S.oce this kind of verbal data is recorded concurrently, it possesses similar advantages
= —w=hacks to the concurrent thinking-aloud method.

=4 -d-ven verbalizations are another specific form of concurrent verbalizations. This
=t sequires that the participant does not freely think aloud, but has a specific task in
s k= describing or recalling a stimulus. Again, this type of verbalization will change the
= =owement performance dramatically as compared to a silent stimulus inspection.
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Retrospective verbalizations

The alternative to concurrent recordings is to record the thinking aloud after the task is per-
formed. Separating the eye-movement recording during the primary task in time from the
verbal recordings could make the study liable to loss of detail from memory as well as fab-
ulation. The question of whether participants remember or fabulate when they explain their
own eye movements was elegantly answered by Hansen (1991) who showed participants bo-
gus recordings of someone else’s eye movements. The misled participants soon detected the
error, which Hansen took to indicate that they could remember their own eye movements.
Participants’ intact memory is further supported by Guan, Lee, Cuddihy, and Ramey (2006),
who find that participants look at objects in the same order as they later (even without sup-
port from eye movement data) say that they do. Moreover, several studies have shown that
retrospective think-aloud results in more detailed and qualitatively better verbalizations if
combined with showing the participant’s own eye-movement recordings compared to uncued
retrospective verbalizations (Hansen, 1991; Van Gog, Paas, Van Merriénboer, & Witte, 2005).
The verbalizations of the cued verbalizations were quantitatively better in terms of eliciting
more information on actions done, more descriptions of how a step was performed (Van Gog,
Paas, Van Merriénboer, & Witte, 2005).

This method exists in several varieties that go under names such as cued retrospective
reports (Eger et al., 2007; Hansen, 1991; Van Gog, Paas, Van Merriénboer, & Witte, 2005),
eve-movement supported verbal retrospection (Hansen, 1991), or post-experience eye-tracked
protocol (Petrie & Harrison, 2009; Ball, Eger, Stevens, & Dodd, 2006), reflecting the fact that
the method has been re-discovered more than once in different fields of research.

An important issue to consider is that a whole body of studies showed that cued retrospec-
tive verbalizations stimulate meta-cognitive reflection at the cost of action-related comments.
Hyrskykari et al. (2008), in a test of web usability, found that cued retrospection resulted in
more comments on the user’s cognitive processes, while think-aloud results in more com-
ments on user manipulation (of the software/web pages). Eger et al. (2007) found that more
usability problems were identified by participants who performed cued retrospection com-
pared to think-aloud or playback of screen without gaze data. Taylor and Dionne (2000);
Kuusela and Paul (2000) found that more action and outcome statements are produced in
concurrent think-aloud then in retrospective mode, which gives information about strategies
and reasons for actions. Hansen (1991), in an analysis of computer interfaces, found that ver-
bal retrospective protocols cued by an eye-movement video of the user’s work are superior
to retrospective protocols primed by a pure video recording. Hansen found more problem-
oriented comments and more comments on manipulation in the task, when recording cued
retrospection from participants that see their own eye movements compared to seeing just
a video recording. Kuusela and Paul (2000) also argue that retrospective reports often only
reveal those actions that led to a solution, and that attempts that led nowhere are not men-
tioned. Van Gog, Paas, and Van Merriénboer (2005) found that cued retrospectives result in
a larger number of metacognitive comments (on knowledge, actions, and strategies of the
participant), and that they elicit more information on actions done, more descriptions of how
a step was performed (Van Gog, Paas, Van Merriénboer, & Witte, 2005).

The drawbacks of the retrospective method are that recordings take at least twice as long
as with concurrent reporting and that the two data sources may not be as perfectly synchro-
nized as in concurrent reporting. Moreover, if the task is too long, participants may easily
forget what they have been thinking even when cued with their own eye movements. As a
rule of thumb reported by researchers using this technique, recordings should not exceed ten
minutes (Van Meeuwen, 2008). On the other hand, the main task performance is not dis-
turbed by a secondary task (thinking aloud), which in turn may result in a more naturalistic
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task performance or stimulus inspection.

Another version of verbal data is free recall (e.g. Jahnke, 1965). In this, a participant
simply recalls the stimulus in a free order and without cues. Free recall is used with eye
tracking as an experimental condition in mental imagery studies (Johansson et al., 2006).

Another possibility of recording verbalizations is that the researcher prepares questions
that she uses in a structured interview based on gaze replays with the participant (e.g. Per-
nice & Nielsen, 2009; Ehmke & Wilson, 2007). Questions should be designed as part of the
cxperimental design and the interview should have the same structure for participants. Some-
simes. however, the participant and the researcher look through the scanpath or gaze cursor
playback together, simply discussing whatever strikes them as interesting, with or without
prepared topics.

In usability, the joint discussion or interview is often done after the researcher previews
the participant’s data, before letting the participant see it, as a means of coding the scanpaths
<o the right questions can be asked in terms of the cognitive processes underlying the data

Pernice & Nielsen, 2009; Ehmke & Wilson, 2007). Before using this method, note that you
may easily run the risk of including three severe drawbacks to your data. First, the coding of
the scanpath plot is subjective. No algorithms exist as yet that would detect such patterns in
=2l time. This means that different measurements of the same scanpath would not lead to the
same questions. Thus, this measure is not reliable. Second, the time the participant has to wait
wmtil he can be questioned about his proceeding may easily be oo long to deliver a trustworthy
==call of the process. Since working memory is very limited in time, a long pause between
- +ion and recall (without memorizing) leads to forgetting the content. Since, participants are
= asked to memorize their thoughts, they will not be transferred to long-term memory. This
—~an< that the measured verbalizations are not about the intended content, instead they are
very likely to be made up. Under such circumstances this measure would be not valid. Third,
i the coding of the scanpath is conducted by only one rater under time pressure depending on
»=ich experimenter is conducting the study on a certain day, the results may differ, Therefore,
—<uctions for the coding have to be very strict and avoid subjectivity, otherwise, the measure
+ ot objective. Hence, this method violates all three quality factors that a measurement must
save (e.g. Lienert & Raatz, 1998).

smportance of instruction: how to elicit verbalizations from participants

= &nical issues on how to record verbal data have been described in Chapter 4. Here we
o on the main challenge in providing valid verbal data, namely on how to elicit valid
_——alizations from participants by the appropriate instruction. This issue is most crucial for
o forms of verbalization: thinking aloud and self-explanations.

When recording verbal data and eye movements (o retrieve current or remembered cogni-
= processes from the participant, the precise instruction to verbalize is of great importance.
To- instruction is done in three steps: instruction, training, and reminding. The three steps
& slightly depending on whether you record thinking aloud or self-explanations.

What both types of recordings have in common is that very sensitive data is recorded,
sa=ely speech without the ability to modify anything. Many people feel uncomfortable if
.o own voice is recorded. Even more important, telling ones own thoughts is quite intimate
st requires a degree of meta-cognitive awareness and self-confidence. Thus, it is important
s the participant feels secure and comfortable during recording. The training before a first
~=ocding helps to get them familiar with the situation. Moreover, it helps when as few people
4 sossible are in the recording room. so.the participant does not feel monitored.

“ 3% important to emphasize in the instructions to think aloud to express thoughts freely
st mot with any specific task in mind (like evaluating the stimulus). Only such instructions
ize the effects on task performance. Note that the instructions to think aloud are gen-
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eral instructions, thus they are suitable for both concurrent and retrospective reporting (e.g.
Ericsson & Simon, 1993).

Instruction

The instruction to think aloud is very important, since it tells the participant what to do.
Thereby, the emphasis should be on expressing the content of working memory with as little
filtering as possible. That is, effort in formulating grammatically correct sentences or mean-
ingful content should be forgone. Only such instructions can assure that the participant is not
too disturbed in his primary task performance. The following instruction has been proven
to elicit the desired behaviour (Van Gog, Paas, Van Merriénboer, & Witte, 2005, based on
Ericsson & Simon, 1993):

Thinking aloud means that you should really think aloud, that is, verbalize everything
that comes to mind, and not mind my presence in doing so, even when curse words come
to mind for example, these should also be verbalized. Act as if you were alone, with no
one listening, and just keep talking.

The instruction to self-explain could be as follows (adapted from Van Gog, Paas, Van Mer-
riénboer, & Witte, 2005).

Research has shown that learning is more effective when you self-explain the to-be-learnt
content to yourself. Verbalize your self-explanations always out loud as you would talk
to yourself and do not mind my presence in doing so. It is not important that the self-
explanation is well formulated, even when curse words come to mind for example, these
should also be verbalized. Act as if you were alone, with no one listening, and just keep
talking.

Training
The training, i.e. getting acquainted with thinking aloud gives the participant an impression of
what is meant by thinking aloud and enables him to get used to the recording situation. There

are at least two common training tasks that are suitable to train thinking aloud (Ericsson &
Simon, 1993):

Please think back to the home you were living in when you were a child, and count the
number of windows it had while thinking aloud, verbalising everything that comes to
mind.

Please, multiply the numbers 23 by 16 and tell me, what you are thinking during your
calculation.

For both tasks, the participant should count out loud stepwise (instead of giving the result
immediately) and think out loud all the while. If a participant does not manage to think aloud,
the other task should be tried.

The training is a central part of self-explanation. Research has shown that only a suc-
cessful self-explainer profits from this verbalization method. A direct intervention to foster
self-explanation is to train the verbalization itself (for indirect methods see e.g. Catrambone,
1998; Renkl & Atkinson, 2003; Renkl, Stark, Gruber, & Mandl, 1998). Although, several
extensive training types exist (e.g. McNamara, O'Reilly, Rowe, Boonthum, & Levinstein,
2007), we present here only a very simple version of self-explanation training (Renkl er al.,
1998):

o Before the actual recording the experimenter models a self-explanation behaviour on a
task that is comparable to the experimental task. The experimenter has to give hints on
how to self-explain the given problem and to elicit several aspects of self-explanation
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(e.g. elaborating the problem given, principle-based explanations, goal-operator com-
binations).

e On the basis of this warm-up, hints to sel f-explain the rationale of the presented solu-
tion steps have to be given. The hints should focus on the subgoal of each step and the
operator used to achieve it (i.e. explanation of goal-operator combinations).

o Afterwards, the participant has to self-explain on his own on another comparable task,
whereby he is coached by the experimenter. The coaching procedure consists of two
elements:

4 If important self-explanations are omitted, this is indicated and the participant is
asked to supplement the missing explanations:
« the experimenter answers the participant’s questions concerning the self-explanations.

Prompting

Both when answering questions and when narrating freely, participants will vary in how
much speech they produce (p. 102). If the participant stops verbalizing his thoughts, the
experimenter has to remind him after 3 seconds (Van Gog, Paas, Van Merriénboer, & Witte,
20%)5): other researchers use even longer time spans of 15 seconds (Renkl er al., 1998) by
saving: “Please try to keep talking.”

The difference in time until prompting reflects what you want to elicit from the partici-
pants. If you are intereseted in working memory content, each silent second is missing data.
Hence. you should prompt the participant to talk as soon as possible.

Prompting a participant may interfere with the task, in particular with eye movements,
ven when done neutrally (Kirk & Asheraft, 2001), and should therefore be used very care-
fully in concurrent.-verbalization mode. Ericsson and Simon (1993) recommend the use of
on directive prompts such as “keep talking” if the participants fall silent, but not to inter-
veme in any other way. In practice, many usability practitioners instead use interview-like
seompts such as “what do you think it means?”, which is likely to disrupt the flow of task
seocessing and change eye movement and other behaviour (Boren & Ramey, 2000).

During retrospective thinking aloud, we have two different cases: if the gaze path is shown
2= 2 dynamic eye-movement visualization, then time is running on the monitor used for cueing
st 25 much as it was during the original performance of the task. Prompting in such a case

+ interrupt the retrospection just as much as it interrupts concurrent thinking aloud. If the

wements are shown as a static visualization, then there is no time running. Prompting

s case can very well be made. In the case where the participant stops verbalizing his

Sshis, the experimenter has (o remin v fier thiee seconds by saying the same as above:
e & 1o keep talking.” (Ericsson & ST i il

De | really have to stick to those stiff instructions?

% —esimes studies recording verbal data reveal contradictory results. One important reason
&+ =t misht be the actual use of an instruction to think aloud. In the usability world it is
" ==on 10 use more directed instructions to elicit verbal data. That is, participants do not
“medy mention what comes into their minds, but rather they are instructed to “evaluate” a
-2 That kind of verbalization, however, requires a lot of cognitive resources from the
swcpent and thus is very likely to disturb the primary task and cause change to the content
' = worhalizations (compare level-3-verbalizations; Ericsson & Simon, 1993).

“ <udy by Gerjets, Kammerer, and Werner (2011) investigated this issue directly. The au-
S compared the verbal data of participants who either received an instruction to verbalize
Seety according to Ericsson and Simon (1993) or an explicit instruction to mention factors

*orce their evaluation as often used in web research (e.g. Crystal & Greenberg, 2006;
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Rieh, 2002; Savolainen & Kari, 2005; Tombros, Ruthven, & Jose, 2005. Results show that
both groups differed significantly from each other in terms of verbal reports, eye-tracking
data, and problem solving data. Obviously the natural behaviour was altered.

In the most applied eye-tracking fields, however, some practitioners do not place a high
emphasis on the instruction to the participants. For instance, Pernice and Nielsen (2009,
pp. 113-114) show examples of participants’ awe-struck comments on the gaze cursor (*1
can’t believe that’s my eye”). This may be an effect of poor instructions. The authors then
quote a usability analyst who argues in favour of previewing the data to decide questions that
participants can be asked, apparently oblivious of the danger of fabrication and biases. It is not
uncommon that applied users fail to apply a sufficient methodological standard to their use
of the retrospective method, and later mistakenly attribute their failures to the method rather
than to their own standards. As with all scientific methods, retrospective verbal protocols also
require methodological rigour.

Thus, dlff_ete,ntmstrucuons to verbalize thoughts lead to differences in verbalizations,
eye movements, behaviour, and level of disturbance of the e primary task. Slngg,,_@g very free
instructionof Ericsson and Simon is the most examined and elaborated one, its consequences
can be estimated. Whereas, if you make up your own instruction, you never know, what comes
with it. Thus, we recommend to use the free instruction, in particular, since it does not disturb
the primary task.

3.5 Summary

This chapter has introduced the most important parts before you proceed to record actual
data. There are good reasons for spending time at the design phase of your experiment:

e Selecting how you will approach your research in this experiment determines the work
you need to do, whether this is by an exploratory pilot, a fishing trip, a theory-driven
experiment, or a paradigm-bound experiment. These approaches all have strengths and
weaknesses.

Mapping out the logic behind the experiment saves you the moment of despair when
you realize that your study was built on false premises or a fallacious argument just as
you were getting ready to write up your results.

Selecting the correct measures is a decision best taken at the design stage. There has
to be a clear motivation for a measure, with a theory or at least a plausible explanation
linking the eye movement to the cognitive process being studied.

The statistics should be prepared and tested before you record the actual data. In many
cases, it is simply easier to design around a particular statistical method rather than
having to learn and implement some advanced statistical analysis to cope with non-
standard data.

If required, there is always the option to triangulate your construct of interest using
other data sources that complement the eye tracking. However, the price of this is in-
creased complexity to your experiment.

The experimental design is perhaps the most important stage of all, and it is difficult to
sum up briefly. It is all too easy to jump right in and start recording, thinking you can sort the
rest later. With experience, and a couple of poor experiments, however, the lesson is learnt.
A week spent properly thinking about the design saves four weeks of frustration during the
analysis stage and when writing up the paper.

There are many pitfalls. For example, do the data have a distribution that is easy to work
with and compatible with the statistical tests in mind? Is your selected eye-tracking measure
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1y measuring what you are interested in, or are there better candidates? When in doubt,
secord some pilot data and take it from there.




