Date: January 2011

W

.3

E SET THE STANDARD

mny Business Process Model and Notation
(BPMN)

Version 2.0

OMG Document Number: formal/2011-01-03
Standard document URL: http://www.omg.org/spec/BPMN/2.0
Associated Schema Files:
dtc/2010-05-04 -- http://www.omg.org/spec/BPMN/20100501
XMI: BPMN20.cmof
BPMNDI.cmof
DC.cmof
DI.cmof
XSD: BPMN20.xsd
BPMNDI.xsd
DC.xsd
Dl.xsd
Semantic.xsd
XSLT: BPMN20-FromXMI.xslt
BPMN20-ToXMI.xslt
dtc/2010-05-15 -- http://www.omg.org/spec/BPMN/20100502
Infrastructure.cmof
Semantic.cmof

Copyright © 2010, Axway

Copyright © 2010, BizAgi

Copyright © 2010, Bruce Silver Associates
Copyright © 2010, IDS Scheer

Copyright © 2010, IBM Corp.

Copyright © 2010, MEGA International
Copyright © 2010, Model Driven Solutions
Copyright © 2010, Object Management Group
Copyright © 2010, Oracle

Copyright © 2010, SAPAG

Copyright © 2010, Software AG

Copyright © 2010, TIBCO Software
Copyright © 2010, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patentsthat are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communi cations regul ations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS"' AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk asto the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XM
Logo™, CWM™ CWM Logo™, IIOP™ [IMM™ MOF™ | OMG Interface Definition Language (IDL)™ , and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software devel oped only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page http://

www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technol ogy/agree-
ment.htm).

Table of Contents

PrETACE e xxiil
S o] o 1P 1
2 CONFOIMANCE ..ottt e e e e e e e eeeaana s 1
2.1 Process Modeling ConformancCecoooiiiiiiiiiiiiiiiiiiee e 2

2.1.1 BPMN PrOCESS TYPES ..ottt s eeeaeeeaeebennnnnnnnanan 2

2.1.2 BPMN ProCess EIEMENESuoiiiiiiiiiiiiiiie et 2

2.1.3 ViSUAI APPEATANCE ...coeeiiiiiiiiitiie ittt e e e ettt e e e e e e e e e et bbbt et e e e e e e e e e saababbbeeaeeaaaaaaeas 8

2.1.4 Structural CONfOIMANCEuiiiiiiiiii e e e e e e 8

2.1.5 ProCESS SEMANTICS .eeieiiiiiiiiiiiieiiiet e e ettt e e e e s e e e e e e e e e e e s e bbeeeeaeaeas 8

2.1.6 Attributes and Model ASSOCIAtIONSccooiiiiiiiiiiiiie i 9

2.1.7 Extended and Optional EIEMENTSc.uuiiiiiiiiiiii e 9

2.1.8 Visual INtEICRANGEcooiiiiiiieee et e e e e e e as 9

2.2 Process Execution CONfOrMAaNCEcevviiiiiiiiiiiieiiiieeeeeeeeie e 9

2.2.1 EXECULION SEMANTICS ...cooiiiiiiiieiit ettt e e e e e e e e e e bbb eeeeeaaeaeas 10

2.2.2 Import Of ProCeSS DIAGIAIMScciiiiiiiiiiiiiiiie it e ettt e e e eeeeaa e 10

2.3 BPEL Process Execution Conformancecccccceeeviiiiiiiiiiciiiiiiiiiiieeee 10

2.4 Choreography Modeling Conformanceccccceeviiieeeieeiiiiiiieeeieiiiiiies 10

2.4.1 BPMN Choreography TYPES ...cciiiiaiiiiiiitiiet ittt e e e e e e eeeaaaaeas 10

2.4.2 BPMN Choreography EIEMENLScooiiiiiiiiiiiiiiie et 10

2.4.3 ViSUAI APPEATANCE ...coieeiiiiiiiitiee et e e e ettt et e e e e e e e e e e e eeaa e s e e e e annnbeaeaneeaaaaas 11

2.4.4 Choreography SEMANTICSueiiiiiiiiaiitiie e ee e e e e e 11

2. 4.5 Visual INtErChANGEcoiiiieiiieee et a e 11

2.5 Summary of BPMN Conformance TYPEScccceeviviieieiiieeeieeeeiene e 12

3 Normative RefErenCeScooviiiiiiiii e 12
3.1 NOIMALIVE ettt e e e e e e e e e e e e e e e e e e e 12

3.2 NON-NOIMALIVE ..coeiiiiiiiiiie i e s 13

4 Terms and DefinitioNSoouuveiiiiiiiiiiiii e 16
5 SYMDBOIS ... 16
6 Additional INformation ..o 16
6.1 CONVENLIONS ...oiiiiiiiiiieieeii et e e e 16

6.1.1 Typographical and Linguistic Conventions and Stylecccccciiiiiiiiiiiiiiieneennn, 16

6.1.2 ADDIEVIALIONSeeiiiiieiiii ettt e e e e a e e e e e 17

6.2 Structure of thiS DOCUMENTcuiiiiiiiiiiiiiieie e 17

6.3 ACKNOWIEAGEMENLSevuiiiiiiieiii e 17

T OVEIVIEW ..ottt e e e e ettt e e e e e e e et n e e e e e eeeannnns 21

Business Process Model and Notation, v2.0 i

7.1 BPMN SCOPE ..ociiiiiiiii ettt ettt e e e e e e e enan 22

2% 0 R O ==Y 0) = 22

A = o Y NI = 1= 41T o £ 27
7.2.1 Basic BPMN Modeling EIEMENLScccooiiiiiiiiiiiiieeee e e e 28
7.2.2 Extended BPMN Modeling EIEMENLSccccuvviiiiiiiieee e 30

7.3 BPMN Diagram TYPES ..cooeeeei ettt eee e 41
7.4 Use of Text, Color, Size, and Lines in a Diagramcoovvvvvvvenncennnn. 41
7.5 Flow Object Connection RUIESuvvviiiiiiiiiiiii e 42
7.5.1 Sequence Flow Connections RUIESccceviiiiiiiiii e 42
7.5.2 Message Flow Connection RUIEScoccviiiiiiiiiiee e 43

7.6 BPMN EXtENSIDIItY ...cooovviiiiiie e 44
A = NI 5= U 4T o] = 45
8 BPMN COre SIUCIUIEcoenieiii e 49
8.1 INFraSIUCIUIE ...oeeeeeeiiieeci e e e s 51
S 0 R B 1< {1 01 (o] £ TSP PPPTTP 51

S 700 2 1 4 T 53
8.1.3 Infrastructure Package XML SChemas........ccccuvuiiiiieeii i 54

8.2 FOUNALIONcoiiiiiii i e e 55
ST N = - 1Y =T 0 =1 o 56
LT B o To1 14 11T o] =1 1o] o IR 56
8.2.3 EXIENSIDIIILY ...t 57
8.2.4 External RelationShipscooiiiiiiieeee e 61
8.2.5 ROOLEIEMENT ... et e e et 64
8.2.6 Foundation Package XML SChemascccuuuiiiiiiiiiiiii i 64

8.3 ComMMON ElEMENTS.....uuiiiii i 66
S0 T Y 1] = Tt 66

IR T2 O o 11 =1 -1 1o o I 74

S J0C TR N =t 0 S SRR 81
8.3 4 ESCAIAtIONcooiiieee e e e e ————— 82

S TG RS T AY < o | £ U UUPP PR 83
8.3.6 EXPIESSIONSeteieiiiiiiie ettt et e e e e e e e e e e e e e areaaaaaas 84
S0 T A 1o 1A = =Y 0 1T o 86
8.3.8 FIOW ElemMents CONLAINETcvviiiiiiiiiiiiiis e s e e e e e e s 88
8.3.0 GaAlBWAYS ...iiiie e i e ettt e e e e e e e et et et et e et e e et babe e nbanan s 90
8.3.10 Item DEfiNItIONccooiiiiiiii e —————— 91

S TG T8t B 1Y (=7 o PP PP PP PP P TR PP PR 93
8.3.12 RESOUITES ...ciiiiiitiie ettt e ettt e e et e et e e e e e e aa b e e e e e e e e et ees e e e e e e aaat st eeeansannanes 95
8.3.13 SEQUENCE FIOW ...ttt et e e e e e e e e enb e e e eas 97
8.3.14 Common Package XML SChemascccccuuiiiiiiiiiiiiiiiiieeeee e 100

S YT Y o > PSS 104
S R 101 (] = T = TSP 104
S =y g T | = o | PRSP 105
S @] o T=T - 1 o SO 105
8.4.4 Service Package XML SChEMASccooveiiiiiiiiiiiiieeec e 106

S I @01 F=To o] =1 1 o] o 109
9.1 Basic Collaboration CONCEPLScceiviiviiiiiiiiiiiiiie e 111
9.1.1 Use of BPMN Common EIeMENtSccieiiiiiiiiiiiec e 112

Business Process Model and Notation, v2.0

9.2 P00l and PartiCIPANnteeeiiieeeieeeieeeeieeeeeeeeie e e e e e e e e e e e eeeeeaeaeennnnns 112

9.2.1 PAFLICIPANTS ...eeiiiiiiee ettt ettt e e e e e e e e s bbb e et e e e e e e e e e s e e ana bbb e e e eaaaa s 114

0. 2.2 AN et e e e e — et eeat e aaaa 120

9.3 MESSAQE FIOW ... e e e 120
9.3.1 INtEracCtion NOGEoiiiiiiiiiiii i eeeeeesbaranes 123
9.3.2 Message FIOW ASSOCIAtIONSuuiirieeiieiiiiiiiiiiie e e e e e e s s s e e e e e e e e e nnenneaees 123

9.4 CONVEISALIONS ...oovtiiiiiii et e e e e e e e s e e e eea e e e e aaaeeeeaanns 124
9.4.1 ConVErsation NOUEcoooiiiiiiiiiieeeee et e e e e e e e e e e e e e e e e e e e aeaeee b e e 128
9.4.2 CONVEISALION ..uuuiiiiieiiiiii e eee ettt e s et et e e e e e e e eeeeaeeeeeeeesseseeesrsrarararanes 130
9.4.3 SUD-CONVEISALION ..cooiiiiiiiiiiieeeeee e e r et e e e e e e e e e e e e e e e ee e e e sreseaeab e e b aanes 130
9.4.4 Call CONVEISALION ...cceeiiieiiieeeieeeeee et s et e e e e e e e e e e e e e e e eeeeesseseeesbrreraraaanes 131
9.4.5 Global CONVEISALIONccevviiiiieeeieee ettt e et e e e e e et e e e e e e bbb e eeseees 132
9.4.6 CoNVErSAtioN LINK ...ooiiiiiiiii ettt e e e e e e e e e ea s e e e eeerees 132
9.4.7 ConVversation ASSOCIALIONoevuuiiiieiieiiiiee e e e e e e e e e e e e e e e e eesbaeeeeeeesenes 135
9.4.8 COITEIALIONS ...ecieeiii ettt e e ettt e e e e e e et e e e e e e babeeeseees 136

9.5 Process within Collaborationccccooveiiiiieeiiiiiee e 137
9.6 Choreography within Collaborationccccceeviiiiiiiiieiieis 137
9.7 Collaboration Package XML Schemasccccceeeiiiiiiiniiiiiiiiiiiiieeiiiiees 139
L0 PrOCESS ..oviiiii et 145
10.1 BaSiC ProCess CONCEPLS ...uuuiiiiiiiieeeeeieiiiieeeeiitiises s e e e e e e e e e e eeaeeeeeennnnnns 149
10.1.1 Types Of BPIMN PrOCESSEScooiieiiiiiiiiiiiie ettt e e e e e 149
10.1.2 Use of BPMN Common EIEMENTSovviiiiiiiiiiiieeeeeee et 150
10.2 ACHIVILIES ovvriiiiiiiieiee e e s e e e e e e e e e ara e 151
10.2.1 RESOUICE ASSIGNMENT ...vviiiiiieeeie i iierieeereeeeeesesssstentreerereeeesessasnnrnnenereeeaeeeans 154
L10.2.2 PEITOMMIET ..ceeeeeititete et ee e e et et e e e e e e e et e e et e e et et e teaeee bbb e e e e aeeeeeaeseaaeaaaaeasaeseseeees 156
F0.2.3 TASKS iiiiiiiieieietetiteit e eiete s e s e e e e e e e e e e eteeeeeeeeeeesaraae bbb bbb s eseseseeeaaaeaeeeaeseaeaerraraees 156
10.2.4 HUMAN INEEIACLIONS .uvvvveiriiiiiiiiieieieieeeeeeeeeee e ettt ee e e e s e e e e e e e e eeeeaaeens 165
10.2.5 SUD-PIOCESSESoctvtititiiiiiiiiiiiiieieieie e e e e e et e e e e et et e e eeee e e e e e e e e e eeeeeeaaaeas 173
10.2.6 Call ACHVILY 1oeeeeeieiieie it r e e e e e e e s e e e e e e e e s se s snnbbn e e e e aeaeeeeaeannes 183
10.2.7 GIODAI TASK ..evvtiriiiiiiiiciiie et e s e e e e e e e e e e e eeeeeeeeeaeraees 187
10.2.8 LOOP CharacteriStICSuuieiiieeieiiiiiiiiiiiieir e et e e e ss e ssseere e e e e e e s e e s s s e e e e aeeeeeas 189
10.2.9 XML Schema for ACHVILIESoooiiiiiiiiieeeeeeee e e e e e e e e e e eeeeaaaaanes 195
10.3 HEMS @NA DAtauoeeiiiieiiieeece e e 203
10.3.1 Data MOAEIING ...cooiiiiiiiie ittt e e e st e e e e e e e e as 203
10.3.2 Execution Semantics for Datac.ccooeuiiiiiiiiiiiiiei e 225
10.3.3 Usage of Data in XPath EXPreSSIONSccueiiiiiiiiiiiiiiieeiiee e 226
10.3.4 XML SChema for DAtaccooeeiiiiiiiiieeeieie et eeeaba e e 229
J10.4 EVENLS oo e 233
F0.4.0 CONCEPLS .eeeeiieteteteuniuiit e e e e e e e e e e e e e e e teee et teeeeeaseeeeabbbebe s e aaaa e e e e aeaaaeaaaeeeeeeesennnnes 234
O S = T B AV =T o | U PPN 238
O B B o To I Y=Y o | AU 246
10.4.4 IntermMediate BVENToiiiiie e e e e 249
10.4.5 EVENt DEfiNIIONS .ouvuiiiiiiiiiiiie ettt e e e e e et e e e e e eebaa e e e e 260
10.4.6 HANAIING EVENLS ...ttt e e e e e e e e e 275
F0.4.7 SCOPES ..eeeeeeiieetetete e e e e a e e e e e e e e e e e e e etaeet e et et et tsbeeeababab s £ e e e e e e e e e e aeaaaaaaeaeeeeeennnnee 281
10.4.8 Events Package XML SChemMaS........cc.uuuiiiiiiiiiiiiiiiiiiiie et 282
L1O.5 GAEBWAYS ..evvuniiiiiiieeiiie et e et e et e et e e e e et e e et e e e e e e aaan 287
10.5.1 Sequence FIow CoNnSIderationsceveeeeeiiiiiiiiiniieireeeeeess s ssinrnnereeeeeeee e s 289

Business Process Model and Notation, v2.0 il

10.5.2 EXCIUSIVE GAIEBWAYccvveviiiiiieeieee e s e e ssiette e e e e e e e e e s s snnntanteee e s eaee e s e e snnsnntnenaeeeeeas 290

10.5.3 INCIUSIVE GAIEWAY ...cccioeieiiieiiiieeee e e e e e e se s r e et e e e s e e s st e e e e e e e e e s e e nnrnnanneeees 292
10.5.4 Parallel GatEWAYoocccuuviiiiiiiiee e e e see sttt e e e e e s s e s e e e e e e e e e s s e s rraneeeeees 293
10.5.5 COMPIEX GALEWAY ...coeieeeriiieieeeeee e e e ee s tttte e e e e e e e e e s ss st aeereaeeeeaesanannbrneneeeeeeeeas 295
10.5.6 EVENt-BASEA GAIEWAYvvvvviiiiiieieeieiiiiiiiieeieeeeeees s s s snsstsreneeeeeaesessssnsnsnnnneeeneeees 297
10.5.7 Gateway Package XML SChemasccccciiiiiieiie e 301
10.6 COMPENSALION eeeiieiieiiiiiiiies e e e e e e e e e e e e et et e e e e e e e e e e e aeeeeaeeaeeesnennes 302
10.6.1 Compensation HANAIEEcoiiiiiiiiiee et 303
10.6.2 ComMpPENSAtION THGOEMNG ...vvvetiiiaieaiaiiiiitiieeeee e e e e e e et bee e e e e e e e e e s s e anebbebeeeeeaaeeas 304
10.6.3 Relationship between Error Handling and Compensationcccccccvvvveeeeen. 305
O = T T PP 305
10.8 Process Instances, Unmodeled Activities, and Public Processes 309
OIS AN H o 1 1] o PSPPSR 311
10.10 MONITOFING ..ceeeeiieeeeieeeiee e e e e e e e e e e e e e e e e e e s e e e e eeeaeeeeeeesenrsnnnnns 311
10.11 Process Package XML Schemasccccceiiiiiiiiiiin, 312
3O To T =TT | =T o 1 | 315
11.1 Basic Choreography CONCEPLSccvvvvrrrriiiiiiiiiiiiiie e e e 316
O B I | = PP 319
11.3 Use of BPMN Common EIementsccccvevviiiiiiiiiiiiiiiiiie 319
11.3.1 SEQUENCE FIOW ..ottt e e e e e e eeae s 320
S 2 A\ g 1] = od £ TP PP 321
11.4 Choreography ACHVILIEScccceeiiieiieieiieeeeeeee e e e e e e e e ee e 321
11.4.1 Choreography TASKueeeeiiiieaaaia ittt e e e e e aeeeeaaaeeas 323
11.4.2 SUD-ChOreography ... 328
11.4.3 Call Choreography ... 333
11.4.4 Global Choreography TasK ... 335
11.4.5 LOOPING ACHIVITIES eeiiiiiiiiiete ettt e e e e e e e e e 335
11.4.6 The Sequencing Of ACHVITIEScuoiiiiiiiiiei it 335
115 BEVENLS e 339
L1151 SEAIMT EVENLS ..ooiiiiiiiiee ettt 339
11.5.2 Intermediate EVENTSc.coiiiiiiiiiieice e 341
L11.5.3 ENGA EVENLS ..ooiiiiieiiieeeie ettt nnne e 343
L11.6 GAEBWAYS ...uiiiiiiiiiiieeeieeti e e e e ettt e e e ettt e e e e e et e e e e e eeaa e e eaeernna e aeaens 344
11.6.1 EXCIUSIVE GAIEWAYccieeeiiiiiieieeee e ettt e e e e e e ettt e e e e e e e e e e e e enbaabseeaeeaaeas 345
11.6.2 EVENt-BASEA GAIEWAYeveeiiiiiiiiaaeaeaiia ittt e et e e e e e et e e e e e e e e e s e snbenbeeeeeas 350
11.6.3 INCIUSIVE GAIEWAYcoiiiiiiiieieiet ettt ettt et e e e e e e e e e e eebnnaeeeeeas 352
11.6.4 Parallel GAtEWAYcooeiiuiiiiiiie ettt a e e e e e s e eee s 359
11.6.5 COMPIEX GAIEWAY ...ceiiiiiiiiiiieiet e ettt e e e e e e et e e e e e e e e e e e e sannbeebeeeaeas 361
11.6.6 ChainNiNg GAEWAYSuueutiieiiiieaaaeai ettt e et e e e e e e e e aaaaabesbeeeeaaaaaeseeaanbnnbsenaeeeaaas 362
11.7 Choreography within Collaborationccccceeeiiiiiiiiiieiiiiiieeeeiiies 362
A R = g 1ol o= | £ U UUT TP 362
L11.7.2 SWIMIANES ..ottt et e e e e e e s b e et e e e e e e e e e e s s nbbbbaneeaaaaaaens 363
11.8 XML Schema for Choreographycccccceeeeiiiiiieeieeeeeeeeeeeeeeeeiin 364
12 BPMN Notation and Diagramsccceeeuuiiiiieeeieeiiiiiineneeeeeeenenns 367
12.1 BPMN Diagram Interchange (BPMN DI)ccoooiiiiiiiiiiiiiiiiiiiieiiiiiiiinne 367
D2.0.0 SCOPE ettt e e e e et ettt ettt a bt e e e e e e e e e e ee e e et e e eeetreaereabnbnnnnnnnas 367

Business Process Model and Notation, v2.0

12.1.2 Diagram Definition and INtErchangeccccoveeiciiiiiieieeee e 367

12.1.3 How to Read this Chapterccocciiiiiiiiiie e e e 368
12.2 BPMN Diagram Interchange (DI) Meta-modelcccccevvvivennnnnns 368
L12.2.0 OVEIVIEW ..eeeiieeieeeie ettt ettt ettt e e e e e e e e e s abb bbbt e e e et e e e e e e e e aannbebeaaeaaeaaaaaens 368
12.2.2 ADSEFACE SYNTAX ..ottt e et e e e e e e s e aeeaaaaaeeaas 368
12.2.3 Classifier DESCIPLIONSiiiiiiiiieiiiiee et e e e e e e 370
12.2.4 Complete BPMN DI XML SCREMAuuuiiiiiiiiiiiiiiiiiiiiieeiee e 378
12.3 Notational Depiction Library and Abstract Element Resolutions 380
12.3. L LADEIS oottt 381
12.3.2 BPMNSQNAPE ooiiiiiii ittt e e e a e e e s e s r e e e e e e 381
12.3.3 BPMNEUQEoiiiiiiieiiee ettt 410
12.4 EXAMPIE(S) iieeeiiiiiiieeeieeet e e 412
12.4.1 Depicting Content in & SUD-ProCESScccooiiiiiiiiiiiiiii e 412
12.4.2 Multiple Lanes and Nested LANEeSeeiiiiiiaiiiiiiiiiiiiieeee e 417
12.4.3 Vertical CollabOrationcooiiiiiiiiiiiiiiii e 418
12.4.4 CONVEISALION ..iiiiiiiiitiite ettt ettt e et e e e et e et e e e e e e e e e s nnbebesaeaaeaaaeaeas 420
SN O To] £=To o] £=T o] o |V PRSP PPPPRPT 422

13 BPMN Execution SEMANtICScvviieiiiiiiiiiiineeeeeeeeiiiian e e, 425
13.1 Process Instantiation and Terminationcccccceevvvviiiniiiiiiiiivninnennn 426
13,2 ACHVITIES eeiiiiiiiiiei ettt 426
13.2.1 Sequence FIow Considerationsccuuveiieiiieeeeciiiiie e e e e e e e 427

R T o 11 PSSR 428
L3.2.3 TASK iiieiiie et 430
13.2.4 SUb-Process/Call ACHVILYoceeeeiiiiiciiiieie e e e eer e e e e e e e 430
13.2.5 Ad-HOC SUD-PIOCESScoiiiiiiiiiiiiisiiiie ittt 431
R 2 G 3 o To o 1A o2 11/ | OSSR 432
13.2.7 Multiple INStANCES ACHIVILY ...coveeieiiiieiiieiieir e r e e e e e e e 432
13.3 GAEBWAYS .oeeuuiieiiiiii e ettt e e et e e e e e e e e e e e e e e eeaa s 434
13.3.1 Parallel Gateway (FOrk and JOiN)eeeieiiiiaiiiiiiiiiiiee e 434
13.3.2 Exclusive Gateway (Exclusive Decision (data-based) and Exclusive Merge) ... 435
13.3.3 Inclusive Gateway (Inclusive Decision and Inclusive Merge)ccccccceeeeeenn. 435
13.3.4 Event-based Gateway (Exclusive Decision (event-based))ccocoveeeeeeeennnn. 437
13.3.5 Complex Gateway (related to Complex Condition and Complex Merge) 437
13,4 EVENLS ..ot 439
13.4.1 SEAM EVENLS ..ottt ettt e s e s e e e e e e e e e e e aaaeeeeeeeennnnees 439
13.4.2 Intermediate EVENLSoiiiiiiiiiiiiie e 440
13.4.3 Intermediate Boundary EVENLSccccuuiiiiiiiiiiaai et 440
13.4.4 EVENE SUD-PIOCESSESteiiiiiiiiiie ittt ettt e e ee e e e e e e 440
13.4.5 COMPENSALION ..oiiiiiiiiiiitie ittt ettt e e e e e e et e et e e e e e e e s e bbb reaeeaaaaaeaans 441
13.4.6 ENU EVENLS ...ttt ettt e e e e e e e e e s bbb b e ae e e e aaaeeeeaaanes 443

14 Mapping BPMN Models to WS-BPELcocviiiiiiiiiiiiiiiiiin 445
14.1 Basic BPMN-BPEL Mappingcccoooviieeiiiiiiieeeeeeireis e e e 446
T4 L1 PIOCESS .ooeviiiiiiiiiii ittt e 447

L4, 1.2 ACHVILIES ..eeeeiiiie ettt ettt e e 448

LA LB EVENES .ot 455
14.1.4 Gateways and SeqUENCE FIOWSuuviiiiieeiiiiiiiiieie et e e 461
SR =Yg o [T To 0 - SRR 465

Business Process Model and Notation, v2.0 Vv

Vi

14.2 Extended BPMN-BPEL Mappingcoovvvviiiiiiiiiiiinieee e eeeeeeeeeeeeesiinnnns 469

I =t o I A= o | PPN 469

14.2.2 Loop/Switch Combinations From a Gatewayocccuuviirieiieeeeeniiniiiieieeeen 469

14.2.3 INterleaved LOOPScooiiiiiiiiiiiee ettt e e e e e e e e a s 470

14.2.4 INFINIEE LOOPS eeeeiieieeeiie ettt ettt e e et e et e e e e e e e e anb e e e eeaeas 473

14.2.5 BPMN Elements that Span Multiple WSBPEL Sub-Elementsccccvveeeee. 473

15 Exchange FOrMALScooviiiiiiiiiiiin e 475
15.1 Interchanging Incomplete Modelsviiiiiiiiiiiiieei, 475

15.2 Machine Readable FilesSo.oiiiiiiiiiiiiii e 475

L15.3 XS it 475

15.3.1 DOCUMENT STTUCTUIE ...iiiiiiiiiiei ettt e e e ettt e e e e e et e e e e e ae e e e aeeanen 475

15.3.2 References within the BPMN XSDuiiiiiiiiiiiiiiieecceeeeeee e 476

L15.4 XM oo 477

15.5 XSLT Transformation between XSD and XMIcccvvveiiiieiiiiinnennn. 477

Annex A: Changes from V1.2 ... 479
Annex B: Diagram Interchangeccccoooevveiiiiieiieiiie e 481
ANNEX C: GlOSSAIY ..cevviiiiieiie e e 499
INAEX e 505

Business Process Model and Notation, v2.0

List of Figures

Figure 7.1 - Example of a private Business Process 23

Figure 7.2 - Example of a public Process 24

Figure 7.3 - An example of a Collaborative Process 25

Figure 7.4 - An example of a Choreography 25

Figure 7.5 - An example of a Conversation diagram 26

Figure 7.6 - An example of a Collaboration diagram with black-box Pools 45
Figure 7.7 - An example of a stand-alone Choreography diagram 46
Figure 7.8 - An example of a stand-alone Process (Orchestration) diagram 47
Figure 8.1 - A representation of the BPMN Core and Layer Structure 49
Figure 8.2 - Class diagram showing the core packages 50

Figure 8.3 - Class diagram showing the organization of the core BPMN elements 51
Figure 8.4 - Definitions class diagram 52

Figure 8.5 - Classes in the Foundation package 55

Figure 8.6 - Extension class diagram 57

Figure 8.7 - External Relationship Metamodel 62

Figure 8.8 - Artifacts Metamodel 66

Figure 8.9 - An Association 67

Figure 8.10 - The Association Class Diagram 67

Figure 8.11 - A Directional Association 638

Figure 8.12 - An Association of Text Annotation 68

Figure 8.13 - A Group Artifact 69

Figure 8.14 - A Group around Activitiesin different Pools 69

Figure 8.15 - The Group class diagram 70

Figure 8.16 - A Text Annotation 71

Figure 8.17 - The Correlation Class Diagram 76

Figure 8.18 - Error class diagram 81

Figure 8.19 - Escalation class diagram 82

Figure 8.20 - Event class diagram 84

Figure 8.21 - Expression class diagram 85

Figure 8.22 - FlowElement class diagram 87

Figure 8.23 - FlowElementContainers class diagram 89

Figure 8.24 - Gateway class diagram 90

Figure 8.25 - ItemDefinition class diagram 92

Figure 8.26 - A Message 93

Figure 8.27 - A non-initiating Message 93

Figure 8.28 - Messages Association overlapping Message Flows 94
Figure 8.29 - Messages shown Associated with a Choreography Task 94
Figure 8.30 - The Message class diagram 95

Figure 8.31 - Resource class diagram 96

Figure 8.32 - A Sequence Flow 97

Figure 8.33 - A Conditional Sequence Flow 97

Figure 8.34 - A Default Sequence Flow 98

Figure 8.35 - SequenceFlow class diagram 98

Figure 8.36 - The Service class diagram 104

Business Process Model and Notation, v2.0

vii

Figure 9.1 - Classes in the Collaboration package 109

Figure 9.2 - A Pool 112

Figure 9.3 - Message Flows connecting to the boundaries of two Pools 113
Figure 9.4 - Message Flows connecting to Flow Objects within two Pools 113
Figure 9.5 - Main (Internal) Pool without boundaries 114

Figure 9.6 - Pools with a Multi-Instance Participant Markers 114

Figure 9.7 - The Participant Class Diagram 115

Figure 9.8 - A Pool with aMultiple Participant 117

Figure 9.9 - The Participant Multiplicity class diagram 117

Figure 9.10 - ParticipantAssociation class diagram 119

Figure 9.11 - A Message Flow 120

Figure 9.12 - A Message Flow with an Attached Message 121

Figure 9.13 - A Message Flow passing through a Choreography Task 121
Figure 9.14 - The Message Flow Class Diagram 122

Figure 9.15 - MessageFlowA ssociation class diagram 124

Figure 9.16 - A Conversation diagram 125

Figure 9.17 - A Conversation diagram where the Conversation is expanded into Message Flows 125
Figure 9.18 - Conversation diagram depicting several conversations between Participantsin arelated domain 126
Figure 9.19 - An example of a Sub-Conversation 127

Figure 9.20 - An example of a Sub-Conversation expanded to a Conversation and Message Flow 127
Figure 9.21 - An example of a Sub-Conversation that is fully expanded 128
Figure 9.22 - Metamodel of ConversationNode Related Elements 129
Figure 9.23 - A Communication element 130

Figure 9.24 - A compound Conversation e ement 131

Figure 9.25 - A Call Conversation calling a Global Conversation 131
Figure 9.26 - A Call Conversation calling a Collaboration 131

Figure 9.27 - A Conversation Link element 132

Figure 9.28 - Conversation links to Activities and Events 133

Figure 9.29 - Metamodel of Conversation Links related elements 134
Figure 9.30 - Call Conversation Links 135

Figure 9.31 - The ConversationAssociation class diagram 136

Figure 9.32 - An example of a Choreography within a Collaboration 138
Figure 9.33 - Choreography within Collaboration class diagram 139

Figure 10.1 - An Example of a Process 145

Figure 10.2 - Process class diagram 146

Figure 10.3 - Process Details class diagram 147

Figure 10.4 - Example of aprivate Business Process 150

Figure 10.5 - Example of apublic Process 150

Figure 10.6 - Activity class diagram 151

Figure 10.7 - The class diagram for assigning Resources 154

Figure 10.8 - A Task object 156

Figure 10.9 - Task markers 157

Figure 10.10 - The Task class diagram 157

Figure 10.11 - A Service Task Object 158

Figure 10.12 - The Service Task class diagram 159

Figure 10.13 - A Send Task Object 160

Figure 10.14 - The Send Task and Receive Task class diagram 160

Viii Business Process Model and Notation, v2.0

Figure 10.15 - A Receive Task Object 161

Figure 10.16 - A Receive Task Object that instantiates a Process 162
Figure 10.17 - A User Task Object 163

Figure 10.18 - A Manual Task Object 163

Figure 10.19 - A Business Rule Task Object 164

Figure 10.20 - A Script Task Object 164

Figure 10.21 - Manual Task class diagram 166

Figure 10.22 - User Task class diagram 166

Figure 10.23 - HumanPerformer class diagram 168

Figure 10.24 - Procurement Process Example 170

Figure 10.25 - A Sub-Process object (collapsed) 174

Figure 10.26 - A Sub-Process object (expanded) 174

Figure 10.27 - Expanded Sub-Process used as a“Parallel Box” 174
Figure 10.28 - Collapsed Sub-Process Markers 175

Figure 10.29- The Sub-Process class diagram 176

Figure 10.30 - An Event Sub-Process object (Collapsed) 177
Figure 10.31 - An Event Sub-Process object (expanded) 177
Figure 10.32 - An example that includes Event Sub-Processes 178
Figure 10.33 - A Transaction Sub-Process 179

Figure 10.34 - A Collapsed Transaction Sub-Process 179

Figure 10.35 - A collapsed Ad-Hoc Sub-Process 181

Figure 10.36 - An expanded Ad-Hoc Sub-Process 181

Figure 10.37 - An Ad-Hoc Sub-Process for writing a book chapter 182

Figure 10.38 - An Ad-Hoc Sub-Process with data and sequence dependencies 183

Figure 10.39 - A Call Activity object calling a Global Task 184

Figure 10.40 - A Call Activity object calling a Process (Collapsed) 184
Figure 10.41 - A Call Activity object calling a Process (Expanded) 184
Figure 10.42 - The Call Activity class diagram 185

Figure 10.43 - CallableElement class diagram 186

Figure 10.44 - Global Tasks class diagram 188

Figure 10.45 - LoopCharacteristics class diagram 189

Figure 10.46 - A Task object with a Standard Loop Marker 190

Figure 10.47 - A Sub-Process object with a Standard Loop Marker 190
Figure 10.48 - Activity Multi-Instance marker for parallel instances 191
Figure 10.49 - Activity Multi-Instance marker for sequential instances 191
Figure 10.50 - ItemAware class diagram 204

Figure 10.51 - DataObject class diagram 205

Figure 10.52 - A DataObject 207

Figure 10.53 - A DataObject that is a collection 207

Figure 10.54 - A Data Store 208

Figure 10.55 - DataStore class diagram 209

Figure 10.56 - Property class diagram 210

Figure 10.57 - InputOutputSpecification class diagram 212

Figure 10.58 - A Datalnput 214

Figure 10.59 - Data Input class diagram 214

Figure 10.60 - A Data Output 216

Figure 10.61 - Data Output class diagram 216

Business Process Model and Notation, v2.0

Figure 10.62 - InputSet class diagram 219

Figure 10.63 - OutputSet class diagram 220

Figure 10.64 - DataAssociation class diagram 222

Figure 10.65 - A Data Association 222

Figure 10.66 - A Data Association used for an Outputs and Inputsinto an Activities 222
Figure 10.67 - A Data Object shown as an output and an inputs 224

Figure 10.68 - A Data Object associated with a Sequence Flow 225

Figure 10.69 - The Event Class Diagram 234

Figure 10.70 - Start Event 238

Figure 10.71 - End Event 246

Figure 10.72 - Intermediate Event 250

Figure 10.73 - EventDefinition Class Diagram 262

Figure 10.74 - Cancel Events 263

Figure 10.75 - Compensation Events 263

Figure 10.76 - CompensationEventDefinition Class Diagram 264

Figure 10.77 - Conditional Events 265

Figure 10.78 - Conditional EventDefinition Class Diagram 265

Figure 10.79 - Error Events 265

Figure 10.80 - ErrorEventDefinition Class Diagram 266

Figure 10.81 - Escalation Events 266

Figure 10.82 - EscalationEventDefinition Class Diagram 267

Figure 10.83 - Link Events 267

Figure 10.84 - Link Events Used as Off-Page Connector 268

Figure 10.85 - A Process with along Sequence Flow 269

Figure 10.86 - A Process with Link Intermediate Events used as Go To Objects 269
Figure 10.87 - Link Events Used for looping 270

Figure 10.88 - Message Events 270

Figure 10.89 - MessageEventDefinition Class Diagram 271

Figure 10.90 - Multiple Events 272

Figure 10.91 - None Events 272

Figure 10.92 - Multiple Events 273

Figure 10.93 - Signal EventDefinition Class Diagram 273

Figure 10.94 - Signal Events 273

Figure 10.95 - Terminate Event 274

Figure 10.96 - Timer Events 274

Figure 10.97 - Exclusive start of a Process 275

Figure 10.98 - A Processinitiated by an Event-Based Gateway 276

Figure 10.99 - Event synchronization at Process start 276

Figure 10.100 - Example of inline Event Handling via Event Sub-Processes 278
Figure 10.101 - Example of boundary Event Handling 279

Figure 10.102 - A Gateway 287

Figure 10.103 - The Different types of Gateways 288

Figure 10.104 - Gateway class diagram 289

Figure 10.105 - An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator 290
Figure 10.106 - A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator 291
Figure 10.107 - Exclusive Gateway class diagram 291

Figure 10.108 - An example using an Inclusive Gateway 292

X Business Process Model and Notation, v2.0

Figure 10.109 - Inclusive Gateway class diagram 293

Figure 10.110 - An example using an Parallel Gateway 294

Figure 10.111 - An example of a synchronizing Parallel Gateway 294

Figure 10.112 - Parallel Gateway class diagram 295

Figure 10.113 - An example using a Complex Gateway 295

Figure 10.114 - Complex Gateway class diagram 296

Figure 10.115 — Event-Based Gateway 297

Figure 10.116 - An Event-Based Gateway example using Message Intermediate Events 298
Figure 10.117 - An Event-Based Gateway example using Receive Tasks 298
Figure 10.118 - Exclusive Event-Based Gateway to start a Process 299

Figure 10.119 - Parallel Event-Based Gateway to start a Process 299

Figure 10.120 - Event-Based Gateway class diagram 300

Figure 10.121- Compensation through a boundary Event 303

Figure 10.122 - Monitoring Class Diagram 304

Figure 10.123 - Two Lanesin aVertical Pool 306

Figure 10.124 - Two Lanesin ahorizontal Pool 306

Figure 10.125 - An Example of Nested Lanes 307

Figure 10.126 - The Lane class diagram 308

Figure 10.127 - One Process supporting to another 310

Figure 10.128 - Auditing Class Diagram 311

Figure 10.129 - Monitoring Class Diagram 312

Figure 11.1 - The Choreography metamodel 316

Figure 11.2 - An example of a Choreography 317

Figure 11.3 - A Collaboration diagram logistics example 318

Figure 11.4 - The corresponding Choreography diagram logistics example 319
Figure 11.5 - The use of Sequence Flowsin a Choreography 320

Figure 11.6 - The metamodel segment for a Choreography Activity 322

Figure 11.7 - A Collaboration view of Choreography Task elements 323

Figure 11.8 - A Choreography Task 323

Figure 11.9 - A Collaboration view of a Choreography Task 324

Figure 11.10 - A two-way Choreography Task 324

Figure 11.11 - A Collaboration view of atwo-way Choreography Task 325
Figure 11.12 - Choreography Task Markers 326

Figure 11.13 - The Collaboration view of alooping Choreography Task 326
Figure 11.14 - The Collaboration view of a Parallel Multi-1nstance Choreography Task 327
Figure 11.15 - A Choreography Task with a multiple Participant 327

Figure 11.16 - A Collaboration view of a Choreography Task with a multiple Participant 328
Figure 11.17- A Sub-Choreography 329

Figure 11.18 - A Collaboration view of a Sub-Choreography 329

Figure 11.19 - An expanded Sub-Choreography 330

Figure 11.20 - A Collaboration view of an expanded Sub-Choreography 330
Figure 11.21 - Sub-Choreography (Collapsed) with More than Two Participants 331
Figure 11.22 - Sub-Choreography Markers 332

Figure 11.23 - Sub-Choreography Markers with a multi-instance Participant 332
Figure 11.24 - A Call Choreography calling a Global Choreography Task 333
Figure 11.25 - A Call Choreography calling a Choreography (Collapsed) 333
Figure 11.26 - A Call Choreography calling a Choreography (expanded) 334

Business Process Model and Notation, v2.0 Xi

Figure 11.27- The Call Choreography class diagram 334

Figure 11.28 - A valid sequence of Choreography Activities 336

Figure 11.29 - The corresponding Collaboration for avalid Choreography sequence 337

Figure 11.30 - A valid sequence of Choreography Activities with atwo-way Activity 337

Figure 11.31 - The corresponding Collaboration for avalid Choreography sequence with atwo-way Activity 338
Figure 11.32 - Aninvalid sequence of Choreography Activities 338

Figure 11.33 - The corresponding Collaboration for an invalid Choreography sequence 339

Figure 11.34 - An example of the Exclusive Gateway 346

Figure 11.35 - The relationship of Choreography Activity Participants across the sides of the Exclusive Gateway
shown through a Collaboration 347

Figure 11.36 - Different Receiving Choreography Activity Participants on the output sides of the Exclusive Gateway
348

Figure 11.37 - The corresponding Collaboration view of the above Choreography Exclusive Gateway configuration
349

Figure 11.38 - An example of an Event Gateway 350

Figure 11.39 - The corresponding Collaboration view of the above Choreography Event Gateway configuration 351
Figure 11.40 - An example of a Choreography Inclusive Gateway configuration 353

Figure 11.41 - The corresponding Collaboration view of the above Choreography Inclusive Gateway configuration
354

Figure 11.42 - An example of a Choreography Inclusive Gateway configuration 355

Figure 11.43 - The corresponding Collaboration view of the above Choreography Inclusive Gateway configuration
356

Figure 11.44 - Another example of a Choreography Inclusive Gateway configuration 357

Figure 11.45 - The corresponding Collaboration view of the above Choreography Inclusive Gateway configuration
358

Figure 11.46 - The relationship of Choreography Activity Participants across the sides of the Parallel Gateway 359
Figure 11.47 - The corresponding Collaboration view of the above Choreography Parallel Gateway configuration
360

Figure 11.48 - An example of a Choreography Complex Gateway configuration 361

Figure 11.49 - The corresponding Collaboration view of the above Choreography Complex Gateway configuration
362

Figure 11.50 - An example of a Choreography Process combined with Black Box Pools 363

Figure 11.51 - An example of a Choreography Process combined with Pools that contain Processes 364

Figure 12.1 - BPMN Diagram 369

Figure 12.2 - BPMN Plane 369

Figure 12.3 - BPMN Shape 369

Figure 12.4 - BPMN Edge 370

Figure 12.5 - BPMN Label 370

Figure 12.6 - Depicting a Label for a DataObjectReference with its state 381

Figure 12.7 - Combined Compensation and L oop Characteristic Marker Example 384

Figure 12.8 - Expanded Sub-Process Example 413

Figure 12.9 - Start and End Events on the Border Example 414

Figure 12.10 - Collapsed Sub-Process 416

Figure 12.11 - Contents of Collapsed Sub-Process 416

Figure 12.12 - Nested Lanes Example 418

Figure 12.13 - Vertica Collaboration Example 419

Figure 12.14 - Conversation Example 420

Xii Business Process Model and Notation, v2.0

Figure 12.15 - Choreography Example 422

Figure 13.1 - Behavior of multiple outgoing Sequence Flows of an Activity 427

Figure 13.2 - The Lifecycle of aBPMN Activity 428

Figure 13.3 - Merging and Branching Sequence Flows for a Parallel Gateway 434

Figure 13.4 - Merging and Branching Sequence Flows for an Exclusive Gateway 435

Figure 13.5 - Merging and Branching Sequence Flows for an Inclusive Gateway 435

Figure 13.6 - Merging and branching Sequence Flows for an Event-Based Gateway 437
Figure 13.7 - Merging and branching Sequence Flows for a Complex Gateway 437

Figure 14.1 - A BPMN orchestration process and its block hierarchy 446

Figure 14.2 - An example of distributed token recombination 469

Figure 14.3 - An example of aloop from a decision with more than two alternative paths 470
Figure 14.4 - An example of interleaved loops 471

Figure 14.5 - An example of the WSBPEL pattern for substituting for the derived Process 472
Figure 14.6 - An example of a WSBPEL pattern for the derived Process 472

Figure 14.7 - An example — An infinite loop 473

Figure 14.8 - An example - Activity that spans two paths of a WSBPEL structured element 474
Figure B.1 - Diagram Definition Architecture 483

Figure B.2 - The Primitive Types 483

Figure B.3 - Diagram Definition Architecture 484

Figure B.4 - Diagram Definition Architecture 484

Figure B.5 - Dependencies of the DI package 488

Figure B.6 - Diagram Element 488

Figure B.7 - Node 488

Figure B.8 - Edge 489

Figure B.9 - Diagram 489

Figure B.10 - Plane 489

Figure B.11 - Labeled Edge 490

Figure B.12 - Labeled Shape 490

Figure B.13 - Shape 490

Business Process Model and Notation, v2.0

Xiii

Xiv Business Process Model and Notation, v2.0

List of Tables

Table 2.1 — Descriptive Conformance Sub-Class Elements and Attributes 3
Table 2.2 — Analytic Conformance Sub-Class Elements and Attributes 4
Table 2.3 — Common Executable Conformance Sub-Class Elements and Attributes 6
Table 2.4 — Common Executable Conformance Sub-Class Supporting Classes 7
Table 2.5 — Types of BPMN Conformance 12

Table 7.1 —Basic Modeling Elements 29

Table 7.2 —BPMN Extended Modeling Elements 31

Table 7.3 — Sequence Flow Connection Rules 42

Table 7.4 — Message Flow Connection Rules 44

Table 8.1 — Definitions attributes and model associations 53

Table 8.2 — Import attributes 54

Table 8.3 — Definitions XML schema 54

Table 8.4 — Import XML schema55

Table 8.5 — BaseElement attributes and model associations 56

Table 8.6 — Documentation attributes 56

Table 8.7 — Extension attributes and model associations 58

Table 8.8 — ExtensionDefinition attributes and model associations 59
Table 8.9 — ExtensionAttributeDefinition attributes 59

Table 8.10 — ExtensionAttributeV alue model associations 59

Table 8.11 — Extension XML schema 60

Table 8.12 — Example Core XML schema 60

Table 8.13 — Example Extension XML schema 61

Table 8.14 — Sample XML instance 61

Table 8.15 — Relationship attributes 63

Table 8.16 — Reengineer XML schema 63

Table 8.17 — BaseElement XML schema 64

Table 8.18 — RootElement XML schema 65

Table 8.19 — Relationship XML schema 65

Table 8.20 — Association attributes and model associations 68

Table 8.21 — Group model associations 70

Table 8.22 — Category model associations 71

Table 8.23 — CategoryV alue attributes and model associations 71

Table 8.24 — Text Annotation attributes 72

Table 8.25 — Artifact XML schema 72

Table 8.26 — Association XML schema 72

Table 8.27 — Category XML schema 72

Table 8.28 — CategoryVaue XML schema 73

Table 8.29 — Group XML schema 73

Table 8.30 — Text Annotation XML schema 73

Table 8.31 — CorrelationKey model associations 77

Table 8.32 — CorrelationProperty model associations 77

Table 8.33 — CorrelationPropertyRetrieval Expression model associations 78
Table 8.34 — CorrelationSubscription model associations 78

Business Process Model and Notation, v2.0

Table 8.35 — CorrelationPropertyBinding model associations 79
Table 8.36 — Correlation Key XML schema 79

Table 8.37 — Correlation Property XML schema 79

Table 8.38 — Correlation Property Binding XML schema 80
Table 8.39 — Correlation Property Retrieval Expression XML schema 80
Table 8.40 — Correlation Subscription XML schema 80

Table 8.41 — Error attributes and model associations 82

Table 8.42 — Esclation attributes and model associations 83
Table 8.43 — Formal Expression attributes and model associations 86
Table 8.44 — FlowElement attributes and model associations 88
Table 8.45 — FlowElementsContainer modd associations 89
Table 8.46 — Gateway attributes 91

Table 8.47 — ItemDefinition attributes & model associations 92
Table 8.48 — Message attributes and model associations 95

Table 8.49 — Resource attributes and model associations 96
Table 8.50 — ResourceParameter attributes and model associations 97
Table 8.51 — SequenceFlow attributes and model associations 99
Table 8.52 — FlowNode model associations 100

Table 8.53 — Error XML schema 100

Table 8.54 — Escalation XML schema 100

Table 8.55 — Expression XML schema 100

Table 8.56 — FlowElement XML schema 101

Table 8.57 — FlowNode XML schema 101

Table 8.58 — FormalExpression XML schema 101

Table 8.59 — InputOutputBinding XML schema 102

Table 8.60 — ItemDefinition XML schema 102

Table 8.61 —Message XML schema 102

Table 8.62 — Resources XML schema 102

Table 8.63 — ResourceParameter XML schema 103

Table 8.64 — SequenceFlow XML schema 103

Table 8.65 — Interface attributes and model associations 105
Table 8.66 — Operation attributes and model associations 106
Table 8.67 — Interface XML schema 106

Table 8.68 — Operation XML schema 106

Table 8.69 — EndPoint XML schema 107

Table 9.1 — Collaboration Attributes and Model Associations 110
Table 9.2 — Participant attributes and model associations 116
Table 9.3 — PartnerEntity attributes 116

Table 9.4 — PartnerRole attributes 117

Table 9.5 — ParticipantMultiplicity attributes 118

Table 9.6 — ParticipantMultiplicity Instance attributes 118

Table 9.7 — ParticipantAssociation model associations 120

Table 9.8 — Message Flow attributes and model associations 123
Table 9.9 — MessageFlowA ssociation attributes and model associations 124
Table 9.10 — ConversationNode Model Associations 130

Table 9.11 — Sub-Conversation Model Associations 131

Table 9.12 — Call Conversation Model Associations 132

XVi Business Process Model and Notation, v2.0

Table 9.13 — Conversation Link Attributes and Model Associations 134
Table 9.14 — ConversationAssociation Model Associations 136

Table 9.15 — Call Conversation XML schema 139

Table 9.16 — Collaboration XML schema 140

Table9.17 — Conversation XML schema 140

Table 9.18 — ConversationAssociation XML schema 140

Table 9.19 — ConversationAssociation XML schema 140

Table 9.20 — ConversationNode XML schema 141

Table 9.21 — Conversation Node XML schema 141

Table 9.22 — Global Conversation XML schema 141

Table 9.23 —MessageFlow XML schema 142

Table 9.24 —MessageFlowAssociation XML schema 142

Table 9.25 — Participant XML schema 142

Table 9.26 — ParticipantAssociation XML schema 143

Table 9.27 — ParticipantMultiplicity XML schema 143

Table 9.28 — PartnerEntity XML schema 143

Table 9.29 — PartnerRole XML schema 143

Table 9.30 — Sub-Conversation XML schema 144

Table 10.1 — Process Attributes & Model Associations 147

Table 10.2 — Process instance attributes 149

Table 10.3 — Activity attributes and model associations 152

Table 10.4 — Activity instance attributes 153

Table 10.5 — Resource Role model associations 155

Table 10.6 — ResourceAssignmentExpression model associations 155
Table 10.7 — ResourceParameterBinding model associations 156

Table 10.8 — Service Task model associations 159

Table 10.9 — Send Task model associations 161

Table 10.10 — Receive Task attributes and model associations 162
Table 10.11 —Business Rule Task attributes and model associations 164
Table 10.12 — Script Task attributes 165

Table 10.13 — User Task attributes and model associations 167

Table 10.14 — User Task instance attributes 167

Table 10.15 —Manua Task XML schema 168

Table 10.16 —UserTask XML schema 169

Table 10.17 — HumanPerformer XML schema 169

Table 10.18 — PotentialOwner XML schema 170

Table 10.19 — XML serialization of Buyer process 170

Table 10.20 — Sub-Process attributes 176

Table 10.21 — Transaction Sub-Process attributes and model associations 180
Table 10.22 — Ad-hoc Sub-Process model associations 181

Table 10.23 — CallActivity model associations 186

Table 10.24 — CadllableElement attributes and model associations 187
Table 10.25 — InputOutputBinding model associations 187

Table 10.26 — Global Task model associations 188

Table 10.27 — Loop Activity instance attributes 190

Table 10.28 — StandardL oopCharacteristics attributes and model associations 191
Table 10.29 — Multilnstancel oopCharacteristics attributes and model associations 192

Business Process Model and Notation, v2.0

XVil

Table 10.30 — Multi-instance Activity instance attributes 194

Table 10.31 — ComplexBehaviorDefinition attributes and model associations 195
Table 10.32 — Activity XML schema 195

Table 10.33 — AdHocSubProcess XML schema 196

Table 10.34 —BusinessRuleTask XML schema 196

Table 10.35 — CallableElement XML schema 197

Table 10.36 — CdlActivity XML schema 197

Table 10.37 — GlobalBusinessRuleTask XML schema 197

Table 10.38 — Globa ScriptTask XML schema 198

Table 10.39 — Globa Task XML schema 198

Table 10.40 — LoopCharacteristics XML schema 198

Table 10.41 — Multilnstancel oopCharacteristics XML schema 199
Table 10.42 — ReceiveTask XML schema 200

Table 10.43 — ResourceRole XML schema 200

Table 10.44 — ScriptTask XML schema 201

Table 10.45 — SendTask XML schema 201

Table 10.46 — ServiceTask XML schema 201

Table 10.47 — StandardL oopCharacteristics XML schema 202
Table 10.48 — SubProcess XML schema 202

Table 10.49 — Task XML schema 202

Table 10.50 — Transaction XML schema 203

Table 10.51 — ItemAwareElement model associations 204

Table 10.52 — DataObject attributes 206

Table 10.53 — DataObjectReference attributes and model associations 206
Table 10.54 — DataState attributes and model associations 206
Table 10.55 — Data Store attributes 209

Table 10.56 — Data Store attributes 210

Table 10.57 — Property attributes 211

Table 10.58 — InputOutputSpecification Attributes and Model Associations 213
Table 10.59 — Datalnput attributes and model associations 215
Table 10.60 — DataOutput attributes and associations 217

Table 10.61 — InputSet attributes and model associations 219
Table 10.62 — OutputSet attributes and model associations 221
Table 10.63 — DataA ssociation model associations 223

Table 10.64 — Assignment attributes 224

Table 10.65 — XPath Extension Function for Data Objects 227
Table 10.66 — XPath Extension Function for Data Inputs and Data Outputs 227
Table 10.67 — XPath Extension Functions for Properties 228

Table 10.68 — X Path extension functions for instance attributes 228
Table 10.69 — Assignment XML schema 229

Table 10.70 — DataAssociation XML schema 229

Table 10.71 — Datalnput XML schema 229

Table 10.72 — DatalnputAssociation XML schema 230

Table 10.73 — DataObject XML schema 230

Table 10.74 — DataState XML schema 230

Table 10.75 — DataOutput XML schema 231

Table 10.76 — DataOutputAssociation XML schema 231

XViii Business Process Model and Notation, v2.0

Table 10.77 — InputOutputSpecification XML schema 231

Table 10.78 — InputSet XML schema 232

Table 10.79 — OutputSet XML schema 232

Table 10.80 — Property XML schema 233

Table 10.81 — Event model associations 236

Table 10.82 — CatchEvent attributes and model associations 236

Table 10.83 — ThrowEvent attributes and model associations 237

Table 10.84 — Top-Level Process Start Event Types 240

Table 10.85 — Sub-Process Start Event Types 242

Table 10.86 — Event Sub-Process Start Event Types 242

Table 10.87 — Start Event attributes 245

Table 10.88 — End Event Types 247

Table 10.89 — Intermediate Event Typesin Normal Flow 251

Table 10.90 — Intermediate Event Types Attached to an Activity Boundary 254
Table 10.91 — Boundary Event attributes 258

Table 10.92 — Possible Values of the cancelActivity Attribute 258

Table 10.93 — Types of Events and their Markers 261

Table 10.94 — CompensationEventDefinition attributes and model associations 264
Table 10.95 — Conditional EventDefinition model associations 265
Table 10.96 — ErrorEventDefinition attributes and model associations 266
Table 10.97 — EscalationEventDefinition attributes and model associations 267
Table 10.98 — LinkEventDefinition attributes 270

Table 10.99 — MessageEventDefinition model associations 271

Table 10.100 — SignalEventDefinition model associations 273

Table 10.101 — TimerEventDefinition model associations 274

Table 10.102 — BoundaryEvent XML schema 282

Table 10.103 — CancelEventDefinition XML schema 282

Table 10.104 — CatchEvent XML schema 282

Table 10.105 — CancelEventDefinition XML schema 283

Table 10.106 — CompensateEventDefinition XML schema 283

Table 10.107 — ConditionalEventDefinition XML schema 283

Table 10.108 — ErrorEventDefinition XML schema 283

Table 10.109 — EscalationEventDefinition XML schema 283

Table 10.110 — Event XML schema 284

Table 10.111 — EventDefinition XML schema 284

Table 10.112 — ImplicitThrowEvent XML schema 284

Table 10.113 — IntermediateCatchEvent XML schema 284

Table 10.114 — IntermediateThrowEvent XML schema 284

Table 10.115 — LinkEventDefinition XML schema 285

Table 10.116 — MessageEventDefinition XML schema 285

Table 10.117 — Signal XML schema 285

Table 10.118 — Signal EventDefinition XML schema 286

Table 10.119 — StartEvent XML schema 286

Table 10.120 — TerminateEventDefinition XML schema 286

Table 10.121 — ThrowEvent XML schema 286

Table 10.122 — TimerEventDefinition XML schema 287

Table 10.123 — ExclusiveGateway Attributes & Model Associations 292

Business Process Model and Notation, v2.0

XixX

Table 10.124 — InclusiveGateway Attributes & Model Associations 293
Table 10.125 — Complex Gateway model associations 296

Table 10.126 — Instance attributes related to the Complex Gateway 297
Table 10.127 — EventBasedGateway Attributes & Model Associations 300
Table 10.128 — ComplexGateway XML schema 301

Table 10.129 — EventBasedGateway XML schema 301

Table 10.130 — ExclusiveGateway XML schema 301

Table 10.131 — Gateway XML schema 301

Table 10.132 — InclusiveGateway XML schema 302

Table 10.133 — ParalelGateway XML schema 302

Table 10.134 — LaneSet attributes and model associations 308

Table 10.135 — Lane attributes and model associations 309

Table 10.136 — Process XML schema 312

Table 10.137 — Auditing XML schema 313

Table 10.138 — GlobalTask XML schema 313

Table10.139 —Lane XML schema 313

Table 10.140 — LaneSet XML schema 313

Table 10.141 — Monitoring XML schema 314

Table 10.142 — Performer XML schema 314

Table 11.1 — Choreography Activity Model Associations 322

Table 11.2 — Choreography Task Model Associations 328

Table 11.3 — Sub-Choreography Model Associations 332

Table 11.4 — Call Choreography Model Associations 335

Table 11.5 — Global Choreography Task Model Associations 335
Table 11.6 — Use of Start Eventsin Choreography 340

Table 11.7 — Use of Intermediate Events in Choreography 341

Table 11.8 — Use of End Eventsin Choreography 343

Table 11.9 — Choreography XML schema 364

Table 11.10 — Global ChoreographyTask XML schema 365

Table 11.11 — ChoreographyActivity XML schema 365

Table 11.12 — ChoreographyTask XML schema 365

Table 11.13 — CdlChoreography XML schema 366

Table 11.14 — SubChoreography XML schema 366

Table 12.1 —BPMNDiagram XML schema 371

Table12.2 —BPMNPlane XML schema 372

Table 12.3 —BPMNShape XML schema 374

Table 12.4 — BPMNEdge XML schema 376

Table 12.5 —BPMNLabel XML schema 377

Table 12.6 — BPMNLabelStyle XML schema 378

Table 12.7 — Complete BPMN DI XML schema 378

Table 12.8 — Depiction Resolution for Loop Compensation Marker 382
Table 12.9 — Depiction Resolution for Tasks 385

Table 12.10 — Depiction Resolution for Collapsed Sub-Processes 386
Table 12.11 — Depiction Resolution for Expanded Sub-Processes 386
Table 12.12 — Depiction Resolution for Collapsed Ad Hoc Sub-Processes 387
Table 12.13 — Depiction Resolution for Expanded Ad Hoc Sub-Processes 387
Table 12.14 — Depiction Resolution for Collapsed Transactions 387

XX Business Process Model and Notation, v2.0

Table 12.15 — Depiction Resolution for Tasks 388

Table 12.16 — Depiction Resolution for Collapsed Event Sub-Processes 388

Table 12.17 — Depiction Resolution for Expanded Event Sub-Processes 391

Table 12.18 — Depiction Resolution for Call Activities (Calling a Global Task) 391
Table 12.19 — Depiction Resolution for Collapsed Call Activities (Calling a Process) 392
Table 12.20 — Depiction Resolution for Expanded Call Activities (Calling a Process) 392
Table 12.21 — Depiction Resolution for Data 393

Table 12.22 — Depiction Resolution for Events 394

Table 12.23 — Depiction Resolution for Gateways 400

Table 12.24 — Depiction Resolution for Artifacts 401

Table 12.25 — Depiction Resolution for Lanes 401

Table 12.26 — Depiction Resolution for Pools 402

Table 12.27 — Depiction Resolution for Choreography Tasks 403

Table 12.28 — Depiction Resolution for Sub-Choreographies (Collapsed) 404

Table 12.29 — Depiction Resolution for Sub-Choreographies (Expanded) 405

Table 12.30 — Depiction Resolution for Call Choreographies (Calling a Global Choreography Task) 405
Table 12.31 — Depiction Resolution for Collapsed Call Choreographies (Calling a Choreography) 406
Table 12.32 — Depiction Resolution for Expanded Call Choreographies (Calling a Choreography) 407
Table 12.33 — Depiction Resolution for Choreography Participant Bands 408

Table 12.34 — Depiction Resolution for Conversations 410

Table 12.35 — Depiction Resolution for Connecting Objects 411

Table 12.36 — Expanded Sub-Process BPMN DI instance 413

Table 12.37 — Start and End Events on the Border BPMN DI instance 414

Table 12.38 — Collapsed Sub-Process BPMN DI instance 416

Table 12.39 — Sub-Process Content BPMN DI instance 417

Table 12.40 — Multiple Lanes and Nested Lanes BPMN DI instance 418

Table 12.41 — Vertical Collaboration BPMN DI instance 419

Table 12.42 — Conversation BPMN DI instance 420

Table 12.43 — Choreography BPMN DI instance 422

Table 13.1 —Parallel Gateway Execution Semantics 434

Table 13.2 — Exclusive Gateway Execution Semantics 435

Table 13.3 —Inclusive Gateway Execution Semantics 436

Table 13.4 — Event-Based Gateway Execution Semantics 437

Table 13.5 — Semantics of the Complex Gateway 438

Table 14.1 — Common Activity Mappings to WS-BPEL 448

Table 14.2 — Expressions mapping to WS-BPEL 468

Business Process Model and Notation, v2.0

XXi

XXii Business Process Model and Notation, v2.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technol ogy/documents/spec_catal og.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
« UML
« MOF
« XMl
« CWM
» Profile specifications
OMG Middleware Specifications
- CORBA/IIOP
» |IDL/Language Mappings
» Specialized CORBA specifications
+ CORBA Component Model (CCM)

Business Process Model and Notation (BPMN), v2.0 XXiii

Platform Specific Model and Interface Specifications
+ CORBAservices
- CORBAfacilities
+ OMG Domain specifications
+ OMG Embedded Intelligence specifications
» OMG Security specifications

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Throughout the document, structural specifications will appear in paragraphs using a special shaped bullet: Example: ¢ A
TASK MAY be atarget for Sequence Flow; it can have multiple incoming Flows.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

XXiv Business Process Model and Notation (BPMN), v2.0

1 Scope

The Object Management Group (OMG) has developed a standard Business Process M odel and Notation (BPMN).
The primary goal of BPMN is to provide anotation that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical developers responsible for implementing the
technology that will perform those processes, and finally, to the business people who will manage and monitor those
processes. Thus, BPMN creates a standardized bridge for the gap between the business process design and process
implementation.

Another goal, but no less important, is to ensure that XML languages designed for the execution of business processes,
such as WSBPEL (Web Services Business Process Execution Language), can be visualized with a business-oriented
notation.

This specification represents the amalgamation of best practices within the business modeling community to define the
notation and semantics of Collaboration diagrams, Process diagrams, and Choreography diagrams. The intent of
BPMN is to standardize a business process model and notation in the face of many different modeling notations and
viewpoints. In doing so, BPMN will provide a simple means of communicating process information to other business
users, process implementers, customers, and suppliers.

The membership of the OMG has brought forth expertise and experience with many existing notations and has sought to
consolidate the best ideas from these divergent notations into a single standard notation. Examples of other notations or
methodologies that were reviewed are UML Activity Diagram, UML EDOC Business Processes, IDEF, ebXML BPSS,
Activity-Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains (EPCs).

2 Conformance

Software can claim compliance or conformance with BPMN 2.0 if and only if the software fully matches the applicable
compliance points as stated in the specification. Software developed only partially matching the applicable compliance
points can claim only that the software was based on this specification, but cannot claim compliance or conformance with
this specification. The specification defines four types of conformance namely Process M odeling Confor mance, Process
Execution Conformance, BPEL Process Execution Conformance, and Choreography M odeling Confor mance.

The implementation claiming conformance to Process M odeling Conformance type is NOT REQUIRED to support
Choreography M odeling Conformance type and vice-versa. Similarly, the implementation claiming Process Execution
Conformance type is NOT REQUIRED to be conformant to the Process M odeling and Choreography Conformance

types.

The implementation claiming conformance to the Process M odeling Confor mance type SHALL comply with all of the
requirements set forth in Section 2.1. The implementation claiming conformance to the Process Execution Confor mance
type SHALL comply with all of the requirements set forth in Section 2.2. The implementation claiming conformance to
the BPEL Process Execution Semantics Conformance type SHALL comply with all of the requirements set forth in
Section 2.3.The implementation claiming conformance to the Choreography Conformance type SHALL comply with
all of the requirements set forth in Section 2.4. The implementation is said to have BPMN Complete Conformance if it
complies with all of the requirements stated in Sections 2.1, 2.2, 2.3, and 2.4.

Business Process Model and Notation, v2.0 1

2.1 Process Modeling Conformance

The next eight sections describe Process M odeling Conformance.

2.1.1 BPMN Process Types

The implementations claiming Process M odeling Conformance MUST support the following BPMN packages:

¢ The BPMN core elements, which include those defined in the | nfrastructure, Foundation, Common, and Service
packages (see Chapter 8).

& Process diagrams, which include the elements defined in the Process, Activities, Data, and Human Interaction
packages (see Chapter 10).

4 Collaboration diagrams, which include Pools and Message Flow (see Chapter 9).

& Conversation diagrams, which include Pools, Conversations, and Conversation Links (see Chapter 9).

As an alternative to full Process M odeling Conformance, there are three conformance sub-classes defined:
& Descriptive
& Analytic

4 Common Executable

Descriptive is concerned with visible elements and attributes used in high-level modeling. It should be comfortable for
analysts who have used BPA flowcharting tools.

Analytic contains all of Descriptive and in total about half of the constructs in the full Process M odeling Confor mance
Class. It is based on experience gathered in BPMN training and an analysis of user-patterns in the Department of Defense
Architecture Framework and planned standardization for that framework.

Both Descriptive and Analytic focus on visible elements and a minimal subset of supporting attributes/elements.
Common Executable focuses on what is needed for executable process models.
Elements and attributes not in these sub-classes are contained in the full Process M odeling Conformance class.

The elements for each sub-class are defined in the next section.
2.1.2 BPMN Process Elements

The Process M odeling Confor mance type set consists of Collaboration and Process diagram elements, including all
Task types, embedded Sub-Processes, CallActivity, all Gateway types, all Event types (Start, Intermediate, and
End), Lane, Participants, Data Object (including Datalnput and DataOutput), Message, Group, Text
Annotation, Sequence Flow (including conditional and default flows), Message Flow, Conversations (limited to
grouping Message Flow, and associating correlations), Correlation, and Association (including Compensation
Association). The set also includes markers (Loop, Multi-Instance, Transaction, Compensation) for Tasks and
embedded Sub-Processes).

Note: Implementations are not expected to support Choreography modeling elements such as Choreography Task
and Sub-Choreography.

For atool to claim support for a sub-class the following criteria MUST be satisfied:

& All the elementsin the sub-class MUST be supported.

2 Business Process Model and Notation, v2.0

& For each element, al the listed attributes MUST be supported.

€ Ingenerd, if the sub-class doesn’t mention an attribute and it isNOT REQUIRED by the schema, then it isnot in the
subclass. Exceptionsto this rule are noted.

Descriptive Conformance Sub-Class

The Descriptive conformance sub-class elements are shown in Table 2.1.

Table 2.1 — Descriptive Conformance Sub-Class Elements and Attributes

Element Attributes

participant (pool) id, name, processRef

laneSet id, lane with name, childLaneSet, flowElementRef
sequenceFlow (unconditional) id, name, sourceRef, targetRef
messageFlow id, name, sourceRef, targetRef
exclusiveGateway id, name

parallelGateway id, name

task (None) id, name

userTask id, name

serviceTask id, name

subProcess (expanded) id, name, flowElement
subProcess (collapsed) id, name, flowElement

CallActivity id, name, calledElement
DataObject id, name

TextAnnotation id, text
association/dataAssociation? id, name, sourceRef, targetRef, associationDirection®?
dataStoreReference id, name, dataStoreRef
startEvent (None) id, name

endEvent (None) id, name

messageStartEvent id, name, messageEventDefinition
messageEndEvent id, name, messageEventDefinition
timerStartEvent id, name, timerEventDefinition

Business Process Model and Notation, v2.0 3

terminateEndEvent

id, name, terminateEventDefinition

documentation®

text

Group

id, categoryRef

a. Data Association iSABSTRACT: Data Input Association and Data Output Association will appear inthe
XML serialization. These both have REQUIRED attributes sourceRef and targetRef] which refer to
itemAwareElements. To be consistent with the metamodel, thiswill require the following additional elements:
ioSpecification, inputSet, outputSet, Data Input, Data Output. WhenaBPMN editor drawsaData
Association to an Activity or Event it should generate this supporting invisible substructure. Otherwise, the
metamodel would have to be changed to make sourceRef and targetRef optional or allow referenceto
non-itemAwareElements, €., Activity and Event.

b. associationDirection not specified for Data Association

Cc. Documentation isnotavisibleeement. It isan attribute of most elements.

Analytic Conformance Sub-Class

The Analytic conformance sub-class contains all the elements of the Descriptive conformance sub-class plus the

elements shown in Table 2.2.

Table 2.2 — Analytic Conformance Sub-Class Elements and Attributes

Element

Attributes

sequenceFlow (conditional)

id, name, sourceRef, targetRef, conditionExpression?

sequenceFlow (default)

id, name, sourceRef, targetRef, default”

sendTask

id, name

receiveTask

id, name

Looping Activity

standardLoopCharacteristics

Multilnstance Activity

multiinstanceLoopCharacteristics

exclusiveGateway

Add default attribute

inclusiveGateway

id, name, eventGatewayType

eventBasedGateway

id, name, eventGatewayType

Link catch/throw Intermediate Event

Id, name, linkEventDefinition

signalStartEvent

id, name, signalEventDefinition

signalEndEvent

id, name, signalEventDefinition

Catching message Intermediate
Event

id, name, messageEventDefinition

Business Process Model and Notation, v2.0

Throwing message Intermediate
Event

id, name, messageEventDefinition

Boundary message Intermediate
Event

id, name, attachedToRef, messageEventDefinition

Non-interrupting Boundary message
Intermediate Event

id, name, attachedToRef, cancelActivity=false,
messageEventDefinition

Catching timer Intermediate Event

id, name, timerEventDefinition

Boundary timer Intermediate Event

id, name, attachedToRef, timerEventDefinition

Non-interrupting Boundary timer
Intermediate Event

id, name, attachedToRef, cancelActivity=false, timerEventDefinition

Boundary error Intermediate Event

id, name, attachedToRef, errorEventDefinition

errorEndEvent

id, name, errorEventDefinition

Non-interrupting Boundary escalation
Intermediate Event

id, name, attachedToRef, cancelActivity=false,
escalationEventDefinition

Throwing escalation Intermediate
Event

id, name, escalationEventDefinition

escalationEndEvent

id, name, escalationEventDefinition

Catching signal Intermediate Event

id, name, signalEventDefinition

Throwing signal Intermediate Event

id, name, signalEventDefinition

Boundary signal Intermediate Event

id, name, attachedToRef, signalEventDefinition

Non-interrupting Boundary signal
Intermediate Event

id, name, attachedToRef, cancelActivity=false, signalEventDefinition

conditionalStartEvent

id, name, conditionalEventDefinition

Catching conditional Intermediate
Event

id, name, conditionalEventDefinition

Boundary conditional Intermediate
Event

id, name, conditionalEventDefinition

Non-interrupting Boundary condi-
tional Intermediate Event

id, name, cancelActivity=false, conditionalEventDefinition

message®

id, name, add messageRef attribute to messageFlow

a ConditionExpression, alowed only for Sequence Flow out of Gateways, MAY benull.
b. Default isan attribute of a sourceRef (exclusive or inclusive) Gateway.
c. Notethat messageRef, an attribute of various message Events, isoptional and not in the sub-class.

Business Process Model and Notation, v2.0

Common Executable Conformance Sub-Class

This conformance sub-class is intended for modeling tools that can emit executable models.
& Datatype definition language MUST be XML Schema.
& Service Interface definition language MUST be WSDL.
& Dataaccess|language MUST be XPath.

The Common Executable conformance sub-class elements are shown in Table 2.3 and its supporting classes in Table 2.4.

Table 2.3 — Common Executable Conformance Sub-Class Elements and Attributes

Element

Attributes

sequenceFlow (unconditional)

id, (name), sourceRef?, targetRefb

sequenceFlow (conditional)

id, name, sourceRef, targetRef, conditionExpression®

sequenceFlow (default)

id, name, sourceRef, targetRef, defaultd

subProcess (expanded)

id, name, flowElement, loopCharacteristics, boundaryEventRefs

exclusiveGateway

id, name, gatewayDirection (only converging and diverging), default

parallelGateway

id, name, gatewayDirection (only converging and diverging)

startEvent (None)

id, name

endEvent (None)

id, name

eventBasedGateway id, name, gatewayDirection, eventGatewayType

userTask id, name, renderings, implementation, resources, ioSpecification,
datalnputAssociations, dataOutputAssociations, loopCharacteristics,
boundaryEventRefs

serviceTask id, name, implementation, operationRef, ioSpecification,
datalnputAssociations, dataOutputAssociations, loopCharacteristics,
boundaryEventRefs

callActivity id, name, calledElement, ioSpecification, datalnputAssociations,
dataOutputAssociations, loopCharacteristics, boundaryEventRefs

dataObject id, name, isCollection, itemSubjectRef

textAnnotation id, text

dataAssociation

id, name, sourceRef, targetRef, assignment

messageStartEvent id, name, messageEventDefinition (either ref or contained),
dataOutput, dataOutputAssociations
messageEndEvent id, name, messageEventDefinition, (either ref or contained), datalnput,

datalnputAssociations

terminateEndEvent

(Terminating trigger in combination with one of the other end events)

Business Process Model and Notation, v2.0

Table 2.3 — Common Executable Conformance Sub-Class Elements and Attributes

Catching message Intermediate
Event

id, name, messageEventDefinition (either ref or contained),
dataOutput, dataOutputAssociations

Throwing message Intermediate
Event

id, name, messageEventDefinition (either ref or contained), datalnput,
datalnputAssociations

Catching timer Intermediate Event

id, name, timerEventDefinition (contained)

Boundary error Intermediate Event

id, name, attachedToRef, errorEventDefinition, (contained or
referenced), dataOutput, dataOutputAssociations

oooTo

Multiple outgoing connections are only allowed for converging Gateways.

Multiple outgoing connections are only allowed for diverging Gateways.
ConditionExpression, alowed only for Sequence Flow out of Gateways, MAY benull.
Default isan attribute of a sourceRef (exclusive or inclusive) Gateway.

Table 2.4 — Common Executable Conformance Sub-Class Supporting Classes

Element

Attributes

StandardLoopCharacteristics

id, loopCondition

MultiinstancelLoopCharacteristics

id, isSequential, loopDatalnput, inputDataltem

Rendering

Resource

id, name

ResourceRole

id, resourceRef, resourceAssignmentExpression

InputOutputSpecification id, datalnputs, dataOutputs
Datalnput id, name, isCollection, itemSubjectRef
DataOutput id, name, isCollection, itemSubjectRef

ItemDefinition

id, structure or import?

Operation id, name, inMessageRef, outMessageRef, errorRefs
Message id, name, structureRef

Error id, structureRef

Assignment id, from, toP

MessageEventDefinition

id, messageRef, operationRef

TerminateEventDefinition

id

TimerEventDefinition

id, timeDate

a. Structure MUST be defined by an XSD Complex Type
b. Structure MUST be defined by an XSD Complex Type

Business Process Model and Notation, v2.0

2.1.3 Visual Appearance

A key element of BPMN is the choice of shapes and icons used for the graphical elements identified in this specification.
The intent is to create a standard visual language that all process modelers will recognize and understand. An
implementation that creates and displays BPMN Process Diagrams SHALL use the graphical elements, shapes, and
markers illustrated in this specification.

Note — Thereisflexibility in the size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified (see page 41).

The following extensions to a BPMN Diagram are permitted:

¢ New markersor indicators MAY be added to the specified graphical elements. These markers or indicators could be
used to highlight a specific attribute of aBPMN element or to represent a new subtype of the corresponding concept.

& A new shaperepresenting akind of Artifact MAY be added to a Diagram, but the new Artifact shape SHALL NOT
conflict with the shape specified for any other BPMN element or marker.

& Graphical elements MAY be colored, and the coloring MAY have specified semantics that extend the information
conveyed by the element as specified in this standard.

& Theline style of agraphical element MAY be changed, but that change SHALL NOT conflict with any other line
style REQUIRED by this specification.

¢ Anextension SHALL NOT change the specified shape of adefined graphica element or marker (e.g., changing a
sguare into atriangle, or changing rounded cornersinto squared corners, €tc.).

2.1.4 Structural Conformance

An implementation that creates and displays BPMN diagrams SHALL conform to the specifications and restrictions with
respect to the connections and other diagrammatic relationships between graphical elements. Where permitted or
requested connections are specified as conditional and based on attributes of the corresponding concepts, the
implementation SHALL ensure the correspondence between the connections and the values of those attributes.

Note — In general, these connections and rel ationships have specified semantic interpretations, which specify interactions
among the process concepts represented by the graphical elements. Conditional relationships based on attributes represent
specific variationsin behavior. Structural conformance therefore guarantees the correct interpretation of the diagram as a
specification of process, in terms of flows of control and information. Throughout the document, structural specifications will
appear in paragraphs using a special shaped bullet: Example: ¢ A TASK MAY be atarget for Sequence Flow; it can have
multiple incoming Flows. An incoming Flow MAY be from an alternative path and/or parallel paths.

2.1.5 Process Semantics

This specification defines many semantic concepts used in defining Processes, and associates them with graphical
elements, markers, and connections. To the extent that an implementation provides an interpretation of the BPMN
diagram as a semantic specification of Process, the interpretation SHALL be consistent with the semantic interpretation
herein specified. In other words, the implementation claiming BPM N Process M odeling Confor mance has to support the
semantics surrounding the diagram elements expressed in Chapter 10.

Note — The implementations claiming Process M odeling Confor mance are not expected to support the BPMN execution
semantics described in Chapter 13.

8 Business Process Model and Notation, v2.0

2.1.6 Attributes and Model Associations

This specification defines a number of attributes and properties of the semantic elements represented by the graphical
elements, markers, and connections. Some of these attributes are purely representational and are so marked, and some
have mandated representations. Some attributes are specified as mandatory, but have no representation or only optional
representation. And some attributes are specified as optional. For every attribute or property that is specified as
mandatory, a conforming implementation SHALL provide some mechanism by which values of that attribute or property
can be created and displayed. This mechanism SHALL permit the user to create or view these values for each BPMN
element specified to have that attribute or property. Where a graphical representation for that attribute or property is
specified as REQUIRED, that graphical representation SHALL be used. Where a graphical representation for that
attribute or property is specified as optional, the implementation MAY use either a graphical representation or some other
mechanism. If a graphical representation is used, it SHALL be the representation specified. Where no graphical
representation for that attribute or property is specified, the implementation MAY use either a graphical representation or
some other mechanism. If a graphical representation is used, it SHALL NOT conflict with the specified graphical
representation of any other BPMN element.

2.1.7 Extended and Optional Elements

A conforming implementation is NOT REQUIRED to support any element or attribute that is specified herein to be non-
normative or informative. In each instance in which this specification defines a feature to be “optional,” it specifies
whether the option isin:

» how the feature will be displayed
» whether the feature will be displayed
 whether the feature will be supported

A conforming implementation is NOT REQUIRED to support any feature whose support is specified to be optional. If an
implementation supports an optional feature, it SHALL support it as specified. A conforming implementation SHALL
support any “optional” feature for which the option is only in whether or how it SHALL be displayed.

2.1.8 Visual Interchange

One of the main goals of this specification is to provide an interchange format that can be used to exchange BPMN
definitions (both domain model and diagram layout) between different tools. The implementation should support the
metamodel for Process types specified in Section 13.1 to enable portability of process diagrams so that users can take
business process definitions created in one vendor’s environment and use them is another vendor’s environment.

2.2 Process Execution Conformance

The next two sections describe Process Execution Conformance.

Business Process Model and Notation, v2.0 9

2.2.1 Execution Semantics

The BPMN execution semantics have been fully formalized in this version of the specification. The tool claiming BPMN
Execution Conformance type MUST fully support and interpret the operational semantics and Activity life-cycle
specified in Section 14.2.2. Non-operational elements listed in Chapter 14 MAY be ignored by implementations claiming
BPMN Execution Conformance type. Conformant implementations MUST fully support and interpret the underlying
metamodel .

Note — The tool claiming Process Execution Conformance typeis not expected to support and interpret Choreography
models. The tool claiming Process Execution Conformancetype is not expected to support Process M odeling
Conformance. More precisely, thetool is not required to support graphical syntax and semantics defined in this specification.
It MAY use different graphical elements, shapes and markers, than those defined in this specification.

2.2.2 Import of Process Diagrams

The tool claiming Process Execution Confor mance type MUST support import of BPMN Process diagram types
including its definitional Collaboration (see Table 10.1).

2.3 BPEL Process Execution Conformance

Special type of Process Execution Conformance that supports the BPMN mapping to WS-BPEL as specified in Section
15.1 can claim BPEL Process Execution Conformance.

Note — Thetool claiming BPEL Process Execution Conformance MUST fully support Process Execution Confor mance.
Thetool claiming BPEL Process Execution Confor mance is not expected to support and interpret Choreography models.
The tool claiming BPEL Process Execution Conformanceis not expected to support Process M odeling Confor mance.

2.4 Choreography Modeling Conformance

The next five sections describe Choreography Confor mance.

2.4.1 BPMN Choreography Types

The implementations claiming Choreography Confor mance type MUST support the following BPMN packages:

¢ The BPMN core elements, which include those defined in the Infrastructure, Foundation, Common, and Service
packages (see Chapter 8).

& Choreography diagrams, which includes the elements defined in the Choreography, and Choreography
packages (see Chapter 11).

& Collaboration diagrams, which include Pools and Message Flow (see Chapter 9).
2.4.2 BPMN Choreography Elements

The Choreography Conformance set includes Message, Choreography Task, Global Choreography Task,
Sub-Choreography (expanded and collapsed), certain types of Start Events (e.g., None, Timer, Conditional,
Signal, and Multiple), certain types of Intermediate Events (None, Message attached to Activity boundary,
Timer —normal as well as attached to Activity boundary, Timer used in Event Gateways, Cancel attached to an

10 Business Process Model and Notation, v2.0

Activity boundary, Conditional, Signal, Multiple, Link, etc.) and certain types of End Events (None and
Terminate), and Gateways. In addition, to enable Choreography within Collaboration it should support Pools and
Message Flow.

2.4.3 Visual Appearance

An implementation that creates and displays BPMN Choreography Diagrams SHALL use the graphical elements,
shapes and markers as specified in the BPMN specification. The use of text, color, size and lines for Choreography
diagram types are listed in Section 7.4.

2.4.4 Choreography Semantics

The tool claiming Choreography Confor mance should fully support and interpret the graphical and execution semantics
surrounding Choreography diagram elements and Choreography diagram types.

2.4.5 Visual Interchange

The implementation should support import/export of Choreography diagram types and Collaboration diagram types
that depict Choreography within collaboration as specified in Section 9.4 to enable portability of Choreography
definitions, so that users can take BPMN definitions created in one vendor’s environment and use them is another
vendor’s environment.

Business Process Model and Notation, v2.0 11

2.5

Summary of BPMN Conformance Types

Table 2.5 summarizes the reguirements for BPMN Conformance.

Table 2.5 - Types of BPMN Conformance

Elements that need to
be supported.

Sub-Process, Call Activity,
all Event types, all
Gateway types, Pool,
Lane, Data Object
(including Datalnput and
DataOutput), Message,
Group, Artifacts, markers
for Tasks and Sub-
Processes, Sequence
Flow, Associations, and
Message Flow.

Category Process Modeling Process BPEL Process | Choreography
Conformance Execution Execution Conformance
Conformance Conformance
Visual representation Process diagram types N/A N/A Choreography diagram
of BPMN Diagram and types
Types Collaboration diagram and
types depicting Collaboration diagram
collaborations among types depicting
Process diagram types. collaboration among
Choreography diagram
types.
BPMN Diagram All Task types, embedded | N/A N/A Message, Choreography

Task, Global Choreography
Task, Sub-Choreography
(expanded and collapsed),
certain types of Start,
Intermediate, and End
Events, Gateways, Pools
and Message Flow.

Import/Export of

Yes for Process and

Yes for Process

Yes for Process

Yes for Choreography and

syntax and semantics

diagrams that depict
Process within
Collaboration.

diagram types Collaboration diagrams diagrams diagrams Collaboration diagrams
that depict Process within depicting choreography
Collaboration. within Collaboration.

Support for Graphical Process and Collaboration | N/A N/A Choreography and

Collaboration diagrams
depicting Choreography
within Collaboration.

Support for Execution
Semantics

N/A

Yes for Process
diagrams

Yes for Process
diagrams

Choreography execution
semantics

3 Normative References

3.1

RFC-2119

Normative

» Key wordsfor usein RFCsto Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997
http://www.ietf.org/rfc/rfc2119.txt

12

Business Process Model and Notation, v2.0

3.2 Non-Normative

Activity Service

+ Additional Structuring Mechanism for the OTS specification, OMG, June 1999
http://www.omg.org

» J2EE Activity Service for Extended Transactions (JSR 95), JCP
http://www.jcp.org/jsr/detail /95.jsp

BPEL4People

» WS-BPEL Extension for People (BPEL4People) 1.0, June 2007
http://www.active-endpoints.com/active-bpel -for-people.htm

« http://www.active-endpoints.com/active-bpel -for-people.htm

« http://www.adobe.com/devnet/livecycle/arti cles/bpel 4people_overview.html

« http://dev2dev.bea.com/arch2arch/

« http://www-128.ibm.com/devel operworks/webservices/library/specification/ws-bpel 4people/
« http://www.oracle.com/technol ogy/tech/standards/bpel 4peopl e/

« https://www.sdn.sap.com/irj/sdn/bpel4people

Business Process Definition Metamodel

« OMG May 2008,
http://www.omg.org/docs/dtc/08-05-07. pdf

Business Process Modeling

» Jean-Jacques Dubray, “A Novel Approach for Modeling Business Process Definitions,” 2002
http://www.ebpml.org/ebpml 2.2.doc

Business Transaction Protocol

« OASISBTP Technica Committee, June, 2002
http://www.0asi s-open.org/committees/downl oad.php/1184/2002-06-03.BTP_cttee spec 1.0.pdf

Dublin Core Meta Data

« Dublin Core Metadata Element Set, Dublin Core Metadata Initiative
http://dublincore.org/documents/dces/

ebXML BPSS

» Jean-Jacques Dubray, “A new model for ebXML BPSS Multi-party Collaborations and Web Services Choreography,”
2002
http://www.ebpml.org/ebpml.doc

Business Process Model and Notation, v2.0 13

OMG UML

» Unified Modeling Language Specification V2.1.2: Superstructure, OMG, Nov 2007,
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF

Open Nested Transactions

» Concepts and Applications of Multilevel Transactions and Open Nested Transactions, Gerhard Weikum, Hans-J.
Schek, 1992
http://citeseer.nj.nec.com/weikum92concepts.html

RDF

» RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft
http://www.w3.org/TR/rdf-schema/

SOAP 1.2

» SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft
http://www.w3.0rg/TR/soapl2-partl/

» SOAP Version 1.2 Part21: Adjuncts, W3C Working Draft
http://www.w3.0rg/TR/soapl2-part2/

uDDI

 Universal Description, Discovery and Integration, Ariba, IBM and Microsoft, UDDI.org.
http://www.uddi.org

URI

» Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF RFC 2396,
August 1998
http://www.ietf.org/rfc/rfc2396.txt

WfMC Glossary

» Workflow Management Coalition Terminology and Glossary
http://www.wfmc.org/wfmc-standards-framework.html

Web Services Transaction

» (WS-Transaction) 1.1, OASIS, 12 July 2007,
http://www.0asi s-open.org/committees/ws-tx/

Workflow Patterns

» Russell, N., ter Hofstede, A.H.M., van der Aalst W.M.P, & Mulyar, N. (2006). Workflow Control-Flow Patterns: A
Revised View. BPM Center Report BPM-06-22, BPMcentre.org
http://www.workflowpatterns.com/

14 Business Process Model and Notation, v2.0

WSBPEL

» Web Services Business Process Execution Language (WSBPEL) 2.0, OASIS Standard, April 2007
http://docs.oasis-open.org/wsbpel /2.0/0S/wsbpel -v2.0-0S.html

WS-Coordination
» Web Services Coordination (WS-Coordination) 1.1, OASIS Standard, July 2007
http://www.0asi s-open.org/committees/ws-tx/
WSDL
» Web Services Description Language (WSDL) 2.0, W3C Proposed Recommendation, June 2007
http://www.w3.org/TR/wsdl 20/
WS-HumanTask

» Web Services Human Task (WS-HumanTask) 1.0, June 2007
http://www.active-endpoints.com/active-bpel -for-people.htm

- http://www.adobe.com/devnet/livecycle/articles/bpel 4people_overview.html

« http://dev2dev.bea.com/arch2arch/

« http://www-128.ibm.com/devel operworks/webservices/library/specification/ws-bpel 4peopl e/
« http://www.oracl e.com/technol ogy/tech/standards/bpel 4peopl e/

« https://www.sdn.sap.com/irj/sdn/bpel4people

XML 1.0 (Second Edition)

» Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et a., eds., W3C, 6 October 2000
http://mww.w3.org/ TR/REC-xml

XML-Namespaces

» Namespacesin XML, Tim Bray et a., eds., W3C, 14 January 1999
http://www.w3.0rg/ TR/REC-xml-names

XML-Schema

» XML SchemaPart 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendel sohn, W3C, 2 May
2001

http://www.w3.0org/ TR/xml schema-1//
« XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001
http://www.w3.0org/TR/xmlschema-2/

XPath

» XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, 16 November 1999
http://www.w3.0rg/ TR/xpath

Business Process Model and Notation, v2.0 15

XPDL

» Workflow Management Coalition XML Process Definition Language, version 2.0.
http: //www.wfmc.org/wfmc-standards-framework.html

4 Terms and Definitions

See Annex C - Glossary.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Conventions

The section introduces the conventions used in this document. This includes (text) notational conventions and notations
for schema components. Also included are designated namespace definitions.

6.1.1 Typographical and Linguistic Conventions and Style

This specification incorporates the following conventions:

+ Thekeywords“MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “MUST NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL" in this document are to be interpreted as described in RFC-2119.

« Atermisaword or phrase that has a special meaning. When aterm is defined, the term name is highlighted in bold
typeface.

A referenceto another definition, section, or specification is highlighted with underlined typeface and providesalink to
the relevant location in this specification.

» A referenceto agraphical element is highlighted with abold, capitalized word and will be presented with the Arial
font (e.g., Sub-Process).

A reference to anon-graphical element or BPMN concept is highlighted by being italicized and will be presented with
the Times New Roman font (e.g., token).

« A referenceto an attribute or model association will be presented with the Courier New font (e.g., Expression).

» A reference to a WSBPEL element, attribute, or construct is highlighted with an italic lower-case word, usually
preceded by the word “WSBPEL” and will be presented with the Courier New font (e.g., WSBPEL pick).

» Non-normative examples are set off in boxes and accompanied by a brief explanation.

16 Business Process Model and Notation, v2.0

» XML and pseudo codeis highlighted with mono - spaced typeface. Different font colors MAY be used to highlight
the different components of the XML code.

» Thecardinality of any content part is specified using the following operators:
¢ <none> — exactly once
e« [0.1]—O0or1
e [0.*] — 0or more
e [1.*]— 1lormore

« Attributes separated by | and grouped within { and } — aternative values
o <vaue> — default value
e <type>— thetype of the attribute

6.1.2 Abbreviations

The following abbreviations are used throughout this document:

This abbreviation Refers to

WSBPEL Web Services Business Process Execution Language (see WSBPEL). This abbreviation
refers specifically to version 2.0 of the specification.

WSDL Web Service Description Language (see WSDL). This abbreviation refers specifically to the
W3C Technical Note, 15 March 2001, but is intended to support future versions of the WSDL
specification.

6.2 Structure of this Document

Chapter 7 discusses the scope of the specification and provides a summary of the elements introduced in subsequent
sections of the document.

Chapter 8 introduces the BPMN Core that includes basic BPMN elements needed for constructing various Business
Processes, including collaborations, orchestration Processes and Choreographies.

Elements needed for modeling of Collaborations, orchestration Processes, Conversations, and Choreographies
are introduced in chapters 9, 10, 11 and 12, respectively.

Chapter 13 introduces the BPMN visual diagram model. Chapter 14 defines the execution semantics for Process
orchestrations in BPMN 2.0. Chapter 15 discusses a mapping of a BPMN model to WS-BPEL that is derived by
analyzing the BPMN objects and the relationships between these objects. Exchange formats and an XSLT transformation
between them are provided in Chapter 16.

6.3 Acknowledgements

Submitting Organizations (RFP Process)

The following companies are formal submitting members of OMG:

o Axway

Business Process Model and Notation, v2.0 17

Supporting Organizations (RFP Process)

International Business Machines

MEGA International
Oracle

SAPAG

Unisys

The following organizations support this specification but are not formal submitters:

Finalization Task Force Voting Members

Accenture

Adaptive

BizAgi

Bruce Silver Associates
Capgemini

Enterprise Agility
France Telecom

IDS Scheer

Intalio

Metastorm

Model Driven Solutions
Nortel

Red Hat Software
Software AG

TIBCO Software
Vangent

The following organizations have been Voting Members of the BPMN 2.0 Finalization Task Force:

18

Adaptive

Axway Software
BAE SYSTEMS
BizAgi Ltd.

CA Inc.

Camunda Services GmbH
Cordys

DICOM

France Telecom R&D
Fujitsu

Global 360, Inc.

Business Process Model and Notation, v2.0

« Hewlett-Packard

o iGrafx
« Inferware
« Intalio

« International Business Machines
« KnowGravity Inc.

» Lombardi Software

- MITRE

« U.S Nationa Institute of Standards and Technology
« NoMagic, Inc.

« oose Innovative Informatik GmbH
» Oracle

« PNA Group

* Red Hat

« SAPAG

» Softeam

- Software AG Inc.

- TIBCO

 Trisotech

» Visumpoint

Special Acknowledgements

The following persons were members of the core teams that contributed to the content of this specification: Anurag
Aggarwal, Mike Amend, Sylvain Astier, Alistair Barros, Rob Bartel, Mariano Benitez, Conrad Bock, Gary Brown, Justin
Brunt, John Bulles, Martin Chapman, Fred Cummins, Rouven Day, Maged Elaasar, David Frankel, Denis Gagné, John
Hall, Reiner Hille-Doering, Dave Ings, Pablo Irassar, Oliver Kieselbach, Matthias Kloppmann, Jana Koehler, Frank
Michael Kraft, Tammo van Lessen, Frank Leymann, Antoine Lonjon, Sumeet Malhotra, Falko Menge, Jeff Mischkinsky,
Dale Moberg, Alex Moffat, Ralf Mueller, Sjir Nijssen, Karsten Ploesser, Pete Rivett, Michael Rowley, Bernd Ruecker,
Tom Rutt, Suzette Samoojh, Robert Shapiro, Vishal Saxena, Scott Schanel, Axel Scheithauer, Bruce Silver, Meera
Srinivasan, Antoine Toulme, Ivana Trickovic, Hagen Voelzer, Franz Weber, Andrea Westerinen and Stephen A. White.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
this specification: im Amsden, Mariano Belaunde, Peter Carlson, Cory Casanave, Michele Chinosi, Manoj Das, Robert
Lario, Sumeet Malhotra, Henk de Man, David Marston, Neal McWhorter, Edita Mileviciene, Vadim Pevzner, Pete Rivett,
Jesus Sanchez, Markus Schacher, Sebastian Stein, and Prasad Yendluri.

Business Process Model and Notation, v2.0 19

20

Business Process Model and Notation, v2.0

7 Overview

There has been much activity in the past few years in developing web service-based XML execution languages for
Business Process Management (BPM) systems. Languages such as WSBPEL provide a forma mechanism for the
definition of business processes. The key element of such languages is that they are optimized for the operation and inter-
operation of BPM Systems. The optimization of these languages for software operations renders them less suited for
direct use by humans to design, manage, and monitor Business Processes. WSBPEL has both graph and block
structures and utilizes the principles of formal mathematical models, such as pi-calculus!. This technical underpinning
provides the foundation for business process execution to handle the complex nature of both internal and B2B interactions
and take advantage of the benefits of Web services. Given the nature of WSBPEL, a complex Business Process could
be organized in a potentially complex, disjointed, and unintuitive format that is handled very well by a software system
(or a computer programmer), but would be hard to understand by the business analysts and managers tasked to develop,
manage, and monitor the Process. Thus, there is a human level of “inter-operability” or “portability” that is not
addressed by these web service-based XML execution languages.

Business people are very comfortable with visualizing Business Processes in aflow-chart format. There are
thousands of business analysts studying the way companies work and defining Business Processes with simple flow
charts. This creates a technical gap between the format of the initial design of Business Processes and the format of
the languages, such as WSBPEL, that will execute these Business Processes. This gap needs to be bridged with a
formal mechanism that maps the appropriate visualization of the Business Processes (a notation) to the appropriate
execution format (a BPM execution language) for these Business Processes.

Inter-operation of Business Processes at the human level, rather than the software engine level, can be solved with
standardization of the Business Process Model and Notation (BPMN). BPMN provides a multiple diagrams, which are
designed for use by the people who design and manage Business Processes. BPMN also provides a mapping to an
execution language of BPM Systems (WSBPEL). Thus, BPMN would provide a standard visualization mechanism for
Business Processes defined in an execution optimized business process language.

BPMN provides businesses with the capability of understanding their internal business procedures in a graphical notation
and will give organizations the ability to communicate these procedures in a standard manner. Currently, there are scores
of Process modeling tools and methodologies. Given that individuals will move from one company to another and that
companies will merge and diverge, it is likely that business analysts need to understand multiple representations of
Business Processes—potentialy different representations of the same Process as it moves through its lifecycle of
development, implementation, execution, monitoring, and analysis. Therefore, a standard graphical notation will facilitate
the understanding of the performance Collaborations and business transactions within and between the organizations.
This will ensure that businesses will understand themselves and participants in their business and will enable
organizations to adjust to new internal and B2B business circumstances quickly. BPMN follows the tradition of
flowcharting notations for readability and flexibility. In addition, the BPMN execution semantics is fully formalized. The
OMG is using the experience of the business process notations that have preceded BPMN to create the next generation
notation that combines readability, flexibility, and expandability.

BPMN will also advance the capabilities of traditional business process notations by inherently handling B2B Business
Process concepts, such as public and private Processes and Choreographies, as well as advanced modeling
concepts, such as exception handling, transactions, and compensation.

1. SeeMilner, 1999, “Communicating and Mobile Systems: the—Calculus,” Cambridge University Press. ISBN 0521643201 (hc.) ISBN
0521 65869 1 (pbk.)

Business Process Model and Notation, v2.0 21

7.1 BPMN Scope

This specification provides a notation and model for Business Processes and an interchange format that can be used
to exchange BPMN Process definitions (both domain model and diagram layout) between different tools. The goal of
the specification is to enable portability of Process definitions, so that users can take Process definitions created in
one vendor’s environment and use them in another vendor’s environment.

The BPMN 2.0 specification extends the scope and capabilities of the BPMN 1.2 in several areas:

« Formalizes the execution semantics for all BPMN elements

» Defines an extensibility mechanism for both Process model extensions and graphical extensions
» Refines Event composition and correlation

 Extends the definition of human interactions

» DefinesaChoreography model

This specification also resolves known BPMN 1.2 inconsistencies and ambiguities.

BPMN is constrained to support only the concepts of modeling that are applicable to Business Processes. This means
that other types of modeling done by organizations for business purposes is out of scope for BPMN. Therefore, the
following are aspects that are out of the scope of this specification:

« Definition of organizational models and resources

» Modeling of functional breakdowns

 Data and information models

» Modeling of strategy

« Business rules models

Since these types of high-level modeling either directly or indirectly affects Business Processes, the relationships
between BPMN and other high-level business modeling can be defined more formally as BPMN and other specifications
are advanced.

While BPMN shows the flow of data (Messages), and the association of data artifacts to Activities, it is not a data
flow language. In addition, operational simulation, monitoring and deployment of Business Processes are out of
scope of this specification.

BPMN 2.0 can be mapped to more than one platform dependent process modeling language, e.g., WS-BPEL 2.0. This
document includes a mapping of a subset of BPMN to WS-BPEL 2.0. Mappings to other emerging standards are
considered to be separate efforts.

The specification utilizes other standards for defining data types, Expressions and service operations. These standards
are XML Schema, XPath, and WSDL, respectively.

7.1.1 Uses of BPMN

Business Process modeling is used to communicate a wide variety of information to a wide variety of audiences.
BPMN is designed to cover many types of modeling and allows the creation of end-to-end Business Processes. The
structural elements of BPMN allow the viewer to be able to easily differentiate between sections of a BPMN Diagram.
There are three basic types of sub-models within an end-to-end BPMN model:

22 Business Process Model and Notation, v2.0

1. Processes (Orchestration), including:
« Private non-executable (internal) Business Processes
* Private executable (internal) Business Processes

* Public Processes
2. Choreographies

3. Collaborations, which caninclude Processes and/or Choreographies

* A view of Conversations

Private (Internal) Business Processes

Private Business Processes are those internal to a specific organization. These Processes have been generally
called workflow or BPM Processes (see Figure 10.4). Another synonym typically used in the Web services area is the
Orchestration of services. There are two types of private Processes: executable and non-executable. An executable
Process isaProcess that has been modeled for the purpose of being executed according to the semantics defined in
Chapter 14. Of course, during the development cycle of the Process, there will be stages where the Process does not
have enough detail to be “executable.” A non-executable Process is a private Process that has been modeled for the
purpose of documenting Process behavior at a modeler-defined level of detail. Thus, information needed for execution,
such as formal condition Expressions are typically not included in a non-executable Process.

If a swimlanes-like notation is used (e.g., a Collaboration, see below) then a private Business Process will be
contained within a single Pool. The Process flow is therefore contained within the Pool and cannot cross the
boundaries of the Pool. The flow of Messages can cross the Pool boundary to show the interactions that exist between
separate private Business Processes.

Order is Record of Premium of or Reject Applicant of

Complete Applicant Policy Policy Asgjrg(\:/t?olr?r

&Determine e Check etermine 2 Approve Notify |

Figure 7.1 - Example of a private Business Process

Public Processes

A public Process represents the interactions between a private Business Process and another Process or
Participant (see Figure 7.2). Only those Activities that are used to communicate to the other Participant(s) are included
in the public Process. All other “internal” Activities of the private Business Process are not shown in the public
Process. Thus, the public Process shows to the outside world the Message Flows and the order of those Message
Flows that are needed to interact with that Process. Public Processes can be modeled separately or within a
Collaboration to show the flow of Messages between the public Process Activities and other Participants. Note
that the public type of Process was named “abstract” in BPMN 1.2.

Business Process Model and Notation, v2.0 23

Patient

o

T ? | feeTsick Pickup yo% medicine T Here is yo?r medicine

and you Can leave
| want to gee doctor -
1 doctor | | need my [medicine |

Go seel
Recelve e Receive Send Recelve Send
Doctor Send Appt. Symptoms Prescription Medicine Medicine
Request ymp Pickup Request

Figure 7.2 - Example of a public Process

Collaborations

A Collaboration depicts the interactions between two or more business entities. A Collaboration usually contains two
or more Pools, representing the Participants in the Collaboration. The Message exchange between the Participants
is shown by a Message Flow that connects two Pools (or the objects within the Pools). The Messages associated
with the Message Flows can also be shown. The Collaboration can be shown as two or more public Processes
communicating with each other (see Figure 7.3). With a public Process, the Activities for the Collaboration
participants can be considered the “touch-points’ between the participants. The corresponding internal (executable)
Processes are likely to have much more Activity and detail than what is shown in the public Processes. Or a Pool
MAY be empty, a“black box.” Choreographies MAY be shown “in between” the Pools as they bisect the Message
Flows between the Pools. All combinations of Pools, Processes, and a Choreography are allowed in a
Collaboration.

24 Business Process Model and Notation, v2.0

Receive

Send

=
2 Send Doctor Receive Send - L Receive
< Prescription Medicine S
a Request Appt. Symptoms Pick R t Medicine
lliness ickup eques
Occurs T A A T [AY
Iwal1t to I feel sick Pick LI dici | need m>J medicine I
see doctor Go see doctor | Ickup yodr medicine . -
and you gan leave Here is yoyr medicine
| | | | | |
B v l v v 1
[l . .
-2 % Receive Receive Ser'ld' Recglye Send
a8 Doctor Send Appt. Symptoms Prescription Medicine Medicine
A Request Pickup Request
o)
o

Figure 7.3 - An example of a Collaborative Process

Choreographies

A self-contained Choreography (no Pools or Orchestration) is a definition of the expected behavior, basically a
procedural contract, between interacting Participants. While a normal Process exists within a Pool, a Choreography
exists between Pools (or Participants).

The Choreography looks similar to a private Business Process since it consists of a network of Activities,
Events, and Gateways (see Figure 7.4). However, a Choreography is different in that the Activities are interactions
that represent a set (1 or more) of Message exchanges, which involves two or more Participants. In addition, unlike a
normal Process, thereis no central controller, responsible entity or observer of the Process.

| want to see . I need my
the Doctor | feel smkIZ] medicine
Patient Patient Patient Patient
C) Doctor Handle Handle Handle O
Request Symptoms Prescription Medicine
Dr. Office Dr. Office Dr. Office Dr. Office
Go see the Pickup your : Here is your :
Doctor medll(;'gsé then IZI medicine

Figure 7.4 - An example of a Choreography

Business Process Model and Notation, v2.0

25

Conversations

The Conversation diagram is a particular usage of and an informal description of a Collaboration diagram. However,
the Pools of a Conversation usually do not contain a Process and a Choreography is usually not placed in
between the Pools of a Conversation diagram. A Conversation is the logical relation of Message exchanges. The
logical relation, in practice, often concerns a business object(s) of interest, e.g., “Order,” “Shipment and Delivery,” or
“Invoice.”

Message exchanges are related to each other and reflect distinct business scenarios. For example, in logistics, stock
replenishments involve the following type scenarios. creation of sales orders; assignment of carriers for shipments
combining different sales orders; crossing customs/quarantine; processing payment and investigating exceptions. Thus, a
Conversation diagram, as shown in Figure 7.5, shows Conversations (as hexagons) between Participants (Pools).
This provides a“bird's eye” perspective of the different Conversations that relate to the domain.

. Delivery Supplier
Retailer Negotiations
Delivery / Dispatch Consignee Shipment Schedule
Plan —
__/ _/

AN O

R Delivery |/ Dispatch Carrier Planning Shi
Consolidator Plan - ipper
/\ Carrier /\
_/ (Land, Sea, Rail, or Air) _/
Clearance Pre- Coverage
Customs/ Notification Notification Insurance
uarantine {) {)
2 mn
Breakdown l ‘ Locative Service
Service
Truck Breakdown Arrival/Pickup Traffic Optimizatiory

Provision Confirmation Guidance

Figure 7.5 - An example of a Conversation diagram

Diagram Point of View

Since a BPMN Diagram MAY depict the Processes of different Participants, each Participant could view the Diagram
differently. That is, the Participants have different points of view regarding how the Processes will apply to them. Some
of the Activities will be internal to the Participant (meaning performed by or under control of the Participant) and other

26 Business Process Model and Notation, v2.0

Activities will be external to the Participant. Each Participant will have a different perspective as to which are internal
and external. At runtime, the difference between internal and external Activities is important in how a Participant can
view the status of the Activities or trouble-shoot any problems. However, the Diagram itself remains the same. Figure
7.3 displays a Business Process that has two points of view. One point of view is of a Patient, the other is of the
Doctor’s office. The Diagram shows the Activities of both participants in the Process, but when the Process is
actually being performed, each Participant will only have control over their own Activities. Although the Diagram point
of view is important for a viewer of the Diagram to understand how the behavior of the Process will relate to that
viewer, BPMN will not currently specify any graphical mechanisms to highlight the point of view. It is open to the
modeler or modeling tool vendor to provide any visual cues to emphasize this characteristic of a Diagram.

Understanding the Behavior of Diagrams

Throughout this document, we discuss how Sequence Flows are used within a Process. To facilitate this discussion,
we employ the concept of atoken that will traverse the Sequence Flows and pass through the elements in the
Process. A token is a theoretical concept that is used as an aid to define the behavior of a Process that is being
performed. The behavior of Process elements can be defined by describing how they interact with a token as it
“traverses’ the structure of the Process. However, modeling and execution tools that implement BPMN are NOT
REQUIRED to implement any form of token.

A Start Event generates a token that MUST eventually be consumed at an End Event (which MAY be implicit if not
graphically displayed). The path of tokens should be traceable through the network of Sequence Flows, Gateways,
and Activities within a Process.

Note — A token does not traverse aMessage Flow sinceitisaMessage that is passed down aMessage Flow (asthe
name implies).

7.2 BPMN Elements

It should be emphasized that one of the drivers for the development of BPMN is to create a simple and understandable
mechanism for creating Business Process models, while at the same time being able to handle the complexity inherent
to Business Processes. The approach taken to handle these two conflicting requirements was to organize the
graphical aspects of the notation into specific categories. This provides a small set of notation categories so that the reader
of a BPMN diagram can easily recognize the basic types of elements and understand the diagram. Within the basic
categories of elements, additional variation and information can be added to support the requirements for complexity
without dramatically changing the basic look and feel of the diagram. The five basic categories of elements are;

Flow Objects

Data

Connecting Objects
Swimlanes
Artifacts

o~ WD

Flow Objects are the main graphical elements to define the behavior of a Business Process. There are three Flow
Objects:

1. Events
2. Activities
3. Gateways

Business Process Model and Notation, v2.0 27

Data is represented with the four elements:

1. DataObjects

2. Datalnputs

3. DataOutputs

4. Data Stores
There are four ways of connecting the Flow Objects to each other or other information. There are four Connecting
Objects:

1. Sequence Flows

2. Message Flows

3. Associations

4. Data Associations

There are two ways of grouping the primary modeling elements through “ Swimlanes:”

1. Pools
2. Lanes

Artifactsare used to provide additional information about the Process. There are two standardized Artifacts, but
modelers or modeling tools are free to add as many Artifacts as necessary. There could be additional BPMN efforts
to standardize a larger set of Artifacts for general use or for vertical markets. The current set of Artifacts
includes:

« Group
« Text Annotation

7.2.1 Basic BPMN Modeling Elements

Table 7.1 displays alist of the basic modeling elements that are depicted by the notation.

28 Business Process Model and Notation, v2.0

Table 7.1 - Basic Modeling Elements

Element

Description

Notation

Event

An Event is something that “happens” during the
course of a Process (see page 238) or a
Choreography (see page 339). These Events
affect the flow of the model and usually have a
cause (trigger) or an impact (result). Events are
circles with open centers to allow internal markers
to differentiate different triggers or results. There
are three types of Events, based on when they
affect the flow: Start, Intermediate, and End.

Activity

An Activity is a generic term for work that company
performs (see page 151) in a Process. An Activity
can be atomic or non-atomic (compound). The
types of Activities that are a part of a Process
Model are: Sub-Process and Task, which are
rounded rectangles. Activities are used in both
standard Processes and in Choreographies.

Gateway

A Gateway is used to control the divergence and
convergence of Sequence Flows in a Process (see
page 145) and in a Choreography (see page 344).
Thus, it will determine branching, forking, merging,
and joining of paths. Internal markers will indicate
the type of behavior control.

Sequence Flow

A Sequence Flow is used to show the order that
Activities will be performed in a Process (see page
97) and in a Choreography (see page 320).

Message Flow

A Message Flow is used to show the flow of
Messages between two Participants that are
prepared to send and receive them (see page
120). In BPMN, two separate Pools in a
Collaboration Diagram will represent the two
Participants (e.g., PartnerEntities and/or
PartnerRoles).

Association

An Association is used to link information and
Artifacts with BPMN graphical elements (see page
67). Text Annotations (see page 71) and other
Artifacts (see page 66) can be Associated with the
graphical elements. An arrowhead on the
Association indicates a direction of flow (e.g.,
data), when appropriate.

Business Process Model and Notation, v2.0

29

Table 7.1 - Basic Modeling Elements

Pool

A Pool is the graphical representation of a
Participant in a Collaboration (see page 112). It
also acts as a “swimlane” and a graphical
container for partitioning a set of Activities from
other Pools, usually in the context of B2B
situations. A Pool MAY have internal details, in the
form of the Process that will be executed. Or a
Pool MAY have no internal details, i.e., it can be a
"black box."

Name

Lane

A Lane is a sub-partition within a Process,
sometimes within a Pool, and will extend the entire
length of the Process, either vertically or
horizontally (see on page 305). Lanes are used to
organize and categorize Activities.

Name
Name | Name

Data Object

Data Objects provide information about what
Activities require to be performed and/or what they
produce (see page 205), Data Objects can
represent a singular object or a collection of
objects. Data Input and Data Output provide the
same information for Processes.

Message

A Message is used to depict the contents of a
communication between two Participants (as
defined by a business PartnerRole or a business
PartnerEntity—see on page 93).

Group (a box around a
group of objects within
the same category)

A Group is a grouping of graphical elements that
are within the same Category (see page 70). This
type of grouping does not affect the Sequence
Flows within the Group. The Category name
appears on the diagram as the group label.
Categories can be used for documentation or
analysis purposes. Groups are one way in which
Categories of objects can be visually displayed on
the diagram.

Text Annotation
(attached with an
Association)

Text Annotations are a mechanism for a modeler to
provide additional text information for the reader of
a BPMN Diagram (see page 71).

.7Descriptive Text
- Here

7.2.2 Extended BPMN Modeling Elements

Table 7.2 displays a more extensive list of the Business Process concepts that could be depicted through a business
process modeling notation.

30

Business Process Model and Notation, v2.0

Table 7.2 - BPMN Extended Modeling Elements

Element

Description

Notation

Event

An Event is something that “happens” during
the course of a Process (see page 238) or a
Choreography (see page 339). These Events
affect the flow of the model and usually have
a cause (Trigger) or an impact (Result).
Events are circles with open centers to allow
internal markers to differentiate different
Triggers or Results. There are three types of
Events, based on when they affect the flow:
Start, Intermediate, and End.

Flow Dimension (e.g.,
Start, Intermediate, End)

Start

Intermediate

End

As the name implies, the Start Event indicates
where a particular Process (see page 238) or
Choreography (see page 339) will start.

Intermediate Events occur between a Start
Event and an End Event. They will affect the
flow of the Process (see page 249) or
Choreography (see page 341), but will not
start or (directly) terminate the Process.

As the name implies, the End Event indicates
where a Process (see page 246) or
Choreography (see page 343) will end.

Start

Intermediate

End

Business Process Model and Notation, v2.0

31

Table 7.2 - BPMN Extended Modeling Elements

Type Dimension (e.g.,
None, Message, Timer,
Error, Cancel,
Compensation,
Conditional, Link, Signal,
Multiple, Terminate.)

The Start and some Intermediate Events have
“triggers” that define the cause for the Event
(see section entitled “Start Event” on

page 238 and section entitled “Intermediate
Event” on page 249). There are multiple ways
that these events can be triggered. End
Events MAY define a “result” that is a
consequence of a Sequence Flow path
ending. Start Events can only react to
(“catch”) a trigger. End Events can only create
(“throw”) a result. Intermediate Events can
catch or throw triggers. For the Events,
triggers that catch, the markers are unfilled,
and for triggers and results that throw, the
markers are filled.

Additionally, some Events, which were used
to interrupt Activities in BPMN 1.1, can now
be used in a mode that does not interrupt. The
boundary of these Events is dashed (see
figure to the right).

“Catching” “Throwing” Non-Interrupting
27N =
e © O © @ © &
~ =
N 2=
Timer (65) l\‘@"’
N L%

Error @
Escalation @
Cancel

Compensation
Conditional

Link

Signal @

Terminate

CO0ORO®OO®
o® ® ©
P00

CJOIC,

e © 0 ® @ O O
Parallel A i
Multiple @ @ '5'}'_/' “5‘1':.’:

Activity

An Activity is a generic term for work that
company performs (see page 151) in a
Process. An Activity can be atomic or non-
atomic (compound). The types of Activities
that are a part of a Process Model are: Sub-
Process and Task, which are rounded
rectangles. Activities are used in both
standard Processes and in Choreographies.

Task (Atomic)

A Task is an atomic Activity that is included

within a Process (see page 156). A Task is —)
used when the work in the Process is not Task
broken down to a finer level of Process detail.
Name
) e —
Choreography Task A Choreography Task is an atomic Activity in —
a Choreography (see page 323). It represents Participant A
a set of one (1) or more Message exchanges. Choreography
Each Choreography Task involves two (2) Task Name
Participants. The name of the Choreography
Task and each of the Participants are all —
displayed in the different bands that make up SEGUENELT 2
the shape’s graphical notation. There are two
(2) or more Participant Bands and one Task
Name Band.
32 Business Process Model and Notation, v2.0

Table 7.2 - BPMN Extended Modeling Elements

Process/Sub-Process
(non-atomic)

A Sub-Process is a compound Activity that is
included within a Process (see page 173) or
Choreography (see page 328). It is compound
in that it can be broken down into a finer level
of detail (a Process or Choreography) through
a set of sub-Activities.

See Next Four Figures

Collapsed Sub-Process

The details of the Sub-Process are not visible
in the Diagram (see page 173). A “plus” sign
in the lower-center of the shape indicates that
the Activity is a Sub-Process and has a lower-
level of detail.

Sub-Process
Name

Expanded Sub-Process

The boundary of the Sub-Process is
expanded and the details (a Process) are
visible within its boundary (see page 173).
Note that Sequence Flows cannot cross the
boundary of a Sub-Process.

J
Collapsed Sub- The details of the Sub-Choreography are not
Choreography visible in the Diagram (see page 328). A Participant A
“plus” sign in the lower-center of the Task Sub-
Name Band of the shape indicates that the Choreography
Activity is a Sub-Process and has a lower- Name
level of detail.
Participant B
Expanded Sub- The boundary of the Sub-Choreography is —
Choreography expanded and the details (a Choreography) p;‘ﬁ:z:,‘i:z}c
are visible within its boundary (see page 328). | |Sub-Choreography Name
Note that Sequence Flows cannot cross the [Participant C) [Participant A)
boundary of a Sub-Choreography.
g I O atissanny | Fatee O
Participant B Participant C
™M ™M
L Participant B

Business Process Model and Notation, v2.0

33

Table 7.2 - BPMN Extended Modeling Elements

Gateway

A Gateway is used to control the divergence
and convergence of Sequence Flows in a
Process (see page 287) and in a
Choreography (see page 344). Thus, it will
determine branching, forking, merging, and
joining of paths. Internal markers will indicate
the type of behavior control (see below).

Gateway Control Types

Icons within the diamond shape of the
Gateway will indicate the type of flow control
behavior. The types of control include:

« Exclusive decision and merging. Both
Exclusive (see page 290) and Event-
Based (see page 297) perform
exclusive decisions and merging
Exclusive can be shown with or without
the “X” marker.

Event-Based and Parallel Event-based
gateways can start a new instance of
the Process.

Inclusive Gateway decision and
merging (see page 292).

Complex Gateway -- complex
conditions and situations (e.g., 3 out of
5; page 295).

« Parallel Gateway forking and joining
(see page 293).

Each type of control affects both the incoming
and outgoing flow.

Exclusive or

Event-Based

0> O
@ @

Parallel
Event-Based

Inclusive

Complex

Parallel

Sequence Flow

A Sequence Flow is used to show the order
that Activities will be performed in a Process
(see page 97) and in a Choreography (see
page 320).

See next seven figures

Normal Flow Normal flow refers to paths of Sequence Flow

that do not start from an Intermediate Event

attached to the boundary of an Activity. >
Uncontrolled flow Uncontrolled flow refers to flow that is not

affected by any conditions or does not pass >

through a Gateway. The simplest example of
this is a single Sequence Flow connecting two
Activities. This can also apply to multiple
Sequence Flows that converge to or diverge
from an Activity. For each uncontrolled
Sequence Flows a token will flow from the
source object through the Sequence Flows
to the target object.

34

Business Process Model and Notation, v2.0

Table 7.2 - BPMN Extended Modeling Elements

Conditional flow

A Sequence Flow can have a condition
Expression that are evaluated at runtime to
determine whether or not the Sequence Flow
will be used (i.e., will a token travel down the
Sequence Flow — see page 97). If the
conditional flow is outgoing from an Activity,
then the Sequence Flow will have a mini-
diamond at the beginning of the connector
(see figure to the right). If the conditional flow
is outgoing from a Gateway, then the line will
not have a mini-diamond (see figure in the
row above).

Default flow

For Data-Based Exclusive Gateways or
Inclusive Gateways, one type of flow is the
Default condition flow (see page 97). This flow
will be used only if all the other outgoing
conditional flow is not true at runtime. These
Sequence Flows will have a diagonal slash
will be added to the beginning of the
connector (see the figure to the right).

Exception Flow

Exception flow occurs outside the normal flow
of the Process and is based upon an
Intermediate Event attached to the boundary
of an Activity that occurs during the
performance of the Process (see page 287).

&

xception
Flow
Message Flow A Message Flow is used to show the flow of
Messages between two Participants that are
prepared to send and receive them (see page O o o o o o — [‘,::\-

120). In BPMN, two separate Pools in a
Collaboration Diagram will represent the two
Participants (e.g., PartnerEntities and/or
PartnerRoles).

Compensation
Association

Compensation Association occurs outside the
normal flow of the Process and is based upon
a Compensation Intermediate Event that is
triggered through the failure of a transaction
or a throw Compensation Event (see page
302). The target of the Association MUST be
marked as a Compensation Activity.

)

Association

Business Process Model and Notation, v2.0

35

Table 7.2 - BPMN Extended Modeling Elements

Data Object Data Objects provide information about what Data Object

Activities require to be performed and/or what

they produce (see page 205), Data Objects

can represent a singular object or a collection

of objects. Data Input and Data Output

provide the same information for Processes.

Data Objec (Collection)
Data Input Data Output

Message A Message is used to depict the contents of a

communication between two Participants (as

defined by a business PartnerRole oOr a

business PartnerEntity—see on page 93).
Fork BPMN uses the term “fork” to refer to the

dividing of a path into two or more parallel
paths (also known as an AND-Split). Itis a
place in the Process where activities can be
performed concurrently, rather than
sequentially.

There are two options:

< Multiple Outgoing Sequence Flows can
be used (see figure top-right). This
represents “uncontrolled” flow is the
preferred method for most situations.

< A Parallel Gateway can be used (see
figure bottom-right). This will be used
rarely, usually in combination with other
Gateways.

L
T

36

Business Process Model and Notation, v2.0

Table 7.2 - BPMN Extended Modeling Elements

Join

BPMN uses the term “join” to refer to the
combining of two or more parallel paths into
one path (also known as an AND-Join or
synchronization).

A Parallel Gateway is used to show the joining
of multiple Sequence Flows.

Decision, Branching
Point

Decisions are Gateways within a Process
(see page 287) or a Choreography (see page
344) where the flow of control can take one or
more alternative paths.

See next five rows.

Exclusive

This Decision represents a branching point
where Alternatives are based on conditional
Expressions contained within the
outgoing Sequence Flows (see page 290 or
page 345). Only one of the Alternatives will be
chosen.

Condition

Event-Based

This Decision represents a branching point
where Alternatives are based on an Event
that occurs at that point in the Process (see
page 297) or Choreography (see page 350).
The specific Event, usually the receipt of a
Message, determines which of the paths will
be taken. Other types of Events can be used,
such as Timer. Only one of the Alternatives
will be chosen.

There are two options for receiving
Messages:

» Tasks of Type Receive can be used
(see figure top-right).

« Intermediate Events of Type Message
can be used (see figure bottom-right).

©—

Business Process Model and Notation, v2.0

37

Table 7.2 - BPMN Extended Modeling Elements

Inclusive

This Decision represents a branching point
where Alternatives are based on conditional
Expressions contained within the
outgoing Sequence Flows (see page 292).

In some sense it is a grouping of related
independent Binary (Yes/No) Decisions.
Since each path is independent, all
combinations of the paths MAY be taken, from
zero to all. However, it should be designed so
that at least one path is taken. A Default
Condition could be used to ensure that at
least one path is taken.

There are two versions of this type of
Decision:

« The first uses a collection of conditional
Sequence Flows, marked with mini-
diamonds (see top-right figure).

* The second uses an Inclusive Gateway
(see bottom-right picture).

Condition 1

Condition 2

Condition 1

Condition 2

Merging

BPMN uses the term “merge” to refer to the
exclusive combining of two or more paths into
one path (also known as an OR-Join).

A Merging Exclusive Gateway is used to show
the merging of multiple Sequence Flows (see
upper figure to the right).

If all the incoming flow is alternative, then a
Gateway is not needed. That is, uncontrolled
flow provides the same behavior (see lower
figure to the right).

O]
e

Looping

BPMN provides two mechanisms for looping
within a Process.

See Next Two Figures

Activity Looping

The attributes of Tasks and Sub-Processes
will determine if they are repeated or
performed once (see page 190). There are
two types of loops: Standard and Multi-
Instance. A small looping indicator will be
displayed at the bottom-center of the activity.

.

38

Business Process Model and Notation, v2.0

Table 7.2 - BPMN Extended Modeling Elements

Sequence Flow Looping

Loops can be created by connecting a
Sequence Flow to an “upstream” object. An
object is considered to be upstream if that
object has an outgoing Sequence Flow that
leads to a series of other Sequence Flows,
the last of which is an incoming Sequence
Flow for the original object.

Multiple Instances

The attributes of Tasks and Sub-Processes
will determine if they are repeated or
performed once (see page 191). A set of three
horizontal lines will be displayed at the
bottom-center of the activity for sequential
Multi-Instances (see upper figure to the right).
A set of three vertical lines will be displayed at
the bottom-center of the activity for sequential
Multi-Instances (see lower figure to the right).

Sequential

Parallel

Process Break
(something out of the
control of the process
makes the process
pause)

A Process Break is a location in the Process
that shows where an expected delay will
occur within a Process (see page 249). An
Intermediate Event is used to show the actual
behavior (see top-right figure). In addition, a
Process Break Artifact, as designed by a
modeler or modeling tool, can be associated
with the Event to highlight the location of the
delay within the flow.

Announce

Issues for Vote

Increment
Tally

Voting
Response

Transaction

A transaction is a Sub-Process that is
supported by a special protocol that insures
that all parties involved have complete
agreement that the activity should be
completed or cancelled (see page 178). The
attributes of the activity will determine if the
activity is a transaction. A double-lined
boundary indicates that the Sub-Process is a
Transaction.

Business Process Model and Notation, v2.0

39

Table 7.2 - BPMN Extended Modeling Elements

Nested/Embedded Sub-
Process (Inline Block)

A nested (or embedded) Sub-Process is an
activity that shares the same set of data as its
parent process (see page 173). This is
opposed to a Sub-Process that is
independent, re-usable, and referenced from
the parent process. Data needs to be passed
to the referenced Sub-Process, but not to the
nested Sub-Process.

Thereis no specia indicator for nested Sub-
Processes

Group (a box around a
group of objects within
the same category)

A Group is a grouping of graphical
elements that are within the same Category
(see page 68). This type of grouping does not
affect the Sequence Flows within the Group.
The Category nhame appears on the diagram
as the group label. Categories can be used for
documentation or analysis purposes. Groups
are one way in which Categories of objects
can be visually displayed on the diagram.

Off-Page Connector

Generally used for printing, this object will
show where a Sequence Flow leaves one
page and then restarts on the next page. A
Link Intermediate Event can be used as an
Off-Page Connector.

Association

An Association is used to link information and
Artifacts with BPMN graphical elements (see
page 67). Text Annotations (see page 71) and
other Artifacts (see page 66) can be
Associated with the graphical elements. An
arrowhead on the Association indicates a
direction of flow (e.g., data), when
appropriate.

Text Annotation
(attached with an
Association)

Text Annotations are a mechanism for a
modeler to provide additional text information
for the reader of a BPMN Diagram (see page
71).

‘7Descriptive Text
: Here

Pool

A Pool is the graphical representation of a
Participant in a Collaboration (see page 112).
It also acts as a “swimlane” and a graphical
container for partitioning a set of Activities
from other Pools, usually in the context of B2B
situations. A Pool MAY have internal details,
in the form of the Process that will be
executed. Or a Pool MAY have no internal
details, i.e., it can be a "black box."

Name

40

Business Process Model and Notation, v2.0

Table 7.2 - BPMN Extended Modeling Elements

Lanes A Lane is a sub-partition within a Pool and will
extend the entire length of the Pool, either
vertically or horizontally (see on page 305).
Lanes are used to organize and categorize
Activities.

Name
Name | Name

7.3 BPMN Diagram Types

The BPMN 2.0 aims to cover three basic models of Processes: private Processes (both executable and non-
executable), public Processes, and Choreographies. Within and between these three BPMN sub-models, many types
of Diagrams can be created. The following are examples of Business Processes that can be modeled using BPMN
2.0:

» High-level non-executable Process Activities (not functional breakdown)

- Detailed executable Business Process

« AsisoroldBusiness Process

« To-beor new Business Process

A description of expected behavior between two (2) or more business Participants—a Choreography.

» Detailed private Business Process (either executable or non-executable) with interactions to one or more external
Entities (or “Black Box” Processes)

» Two or more detailed executable Processes interacting

» Detailed executable Business Process relationshipto aChoreography

» Two or more public Processes

» Public Process relationship to Choreography

» Two or more detailed executable Business Processes interacting through a Choreography

BPMN is designed to allow describing all above examples of Business Processes. However, the ways that different
sub-models are combined is left to tool vendors. A BPMN 2.0 compliant implementation could RECOMMEND that
modelers pick a focused purpose, such as a private Process, or Choreographies. However, the BPMN 2.0
specification makes no assumptions.

7.4 Use of Text, Color, Size, and Lines in a Diagram
Text Annotation objects can be used by the modeler to display additional information about a Process or attributes of
the objects within a BPMN Diagram.

¢ BPMN elements (e.g. Flow objects) MAY have labels (e.g., its name and/or other attributes) placed inside the shape,
or above or below the shape, in any direction or location, depending on the preference of the modeler or modeling
tool vendor.

€ Thefillsthat are used for the graphical elements MAY be white or clear.

€ Thenotation MAY be extended to use other fill colors to suit the purpose of the modeler or toal (e.g., to
highlight the value of an object attribute). However,

Business Process Model and Notation, v2.0 41

€ Themarkersfor “throwing” Events MUST have adark fill (see“End Event” on page 246 and “Intermediate
Event” on page 249 for more details).

€ Participant Bands for Choreography Tasks and Sub-Choreographies that are not the initiator of the Activity
MUST have alight fill (see “Choreography Task” on page 323 and “ Sub-Choreography” on page 328 for
more details).

€ Flow objects and markers MAY be of any size that suits the purposes of the modeler or modeling tool.
€ Thelinesthat are used to draw the graphical elements MAY be black.

€ Thenotation MAY be extended to use ather line colors to suit the purpose of the modeler or tool (e.g., to
highlight the value of an object attribute).

€ Thenotation MAY be extended to use ather line styles to suit the purpose of the modeler or tool (e.g., to
highlight the value of an object attribute) with the condition that the line style MUST NOT conflict with any
current BPMN defined line style. Thus, the line styles of Sequence Flows, Message Flows, and Text
Associations MUST NOT be modified or duplicated.

7.5 Flow Object Connection Rules

Anincoming Sequence Flow can connect to any location on a Flow Object (left, right, top, or bottom). Likewise, an
outgoing Sequence Flow can connect from any location on a Flow Object (left, right, top, or bottom). A Message
Flow also has this capability. BPMN allows this flexibility; however, we also RECOMMEND that modelers use
judgment or best practices in how Flow Objects should be connected so that readers of the Diagrams will find the
behavior clear and easy to follow. This is even more important when a Diagram contains Sequence Flows and
Message Flows. In these situations it is best to pick a direction of Sequence Flows, either left to right or top to
bottom, and then direct the Message Flows at a 90° angle to the Sequence Flows. The resulting Diagrams will be
much easier to understand.

7.5.1 Sequence Flow Connections Rules

Table 7.3 displays the BPMN Flow Objects and shows how these objects can connect to one another through Sequence
Flows. These rules apply to the connections within a Process Diagram and within a Choreography Diagram. The 7
symbol indicates that the object listed in the row can connect to the object listed in the column. The quantity of
connections into and out of an object is subject to various configuration dependencies are not specified here. Refer to the
sections in the next chapter for each individual object for more detailed information on the appropriate connection rules.
Note that if a Sub-Process has been expanded within a Diagram, the objects within the Sub-Process cannot be
connected to objects outside of the Sub-Process. Nor can Sequence Flows cross a Pool boundary.

Table 7.3 — Sequence Flow Connection Rules

O OO

From\To

O %o 2 2 2 2

42 Business Process Model and Notation, v2.0

—— %o 2 2 2 2
%o 2 2 2 2

|
C %o 2 2 2 2
@ %o 2 A A A

Only those objects that can have incoming and/or outgoing Sequence Flows are shown in the table. Thus, Pool, Lane,
Data Object, Group, and Text Annotation are not listed in the table. Also, the Activity shapesin the table represent
Activities and Sub-Processes for Processes, and Choreography Activities and Sub-Choreographies for
Choreography.

7.5.2 Message Flow Connection Rules

Table 7.4 displays the BPMN modeling objects and shows how these objects can connect to one another through
Message Flows. These rules apply to the connections within a Collaboration Diagram. The ¢! symbol indicates that
the object listed in the row can connect to the object listed in the column. The quantity of connections into and out of an
object is subject to various configuration dependencies that are not specified here. Refer to the sections in the next chapter
for each individual object for more detailed information on the appropriate connection rules. Note that Message Flows
cannot connect to objects that are within the same Pool.

Business Process Model and Notation, v2.0 43

Table 7.4 — Message Flow Connection Rules

Pool @

From\To

Pool

Name

[+
A A A
©®

Only those objects that can have incoming and/or outgoing Message Flows are shown in the table. Thus, Lane,
Gateway, Data Object, Group, and Text Annotation are not listed in the table.

7.6 BPMN Extensibility

BPMN 2.0 introduces an extensibility mechanism that allows extending standard BPMN elements with additional
attributes. It can be used by modelers and modeling tools to add non-standard elements or Artifacts to satisfy a
specific need, such as the unique requirements of a vertical domain, and still have valid BPMN Core. Extension attributes
MUST NOT contradict the semantics of any BPMN element. In addition, while extensible, BPMN Diagrams should still
have the basic look-and-feel so that a Diagram by any modeler should be easily understood by any viewer of the Diagram.
Thus the footprint of the basic flow elements (Events, Activities, and Gateways) MUST NOT be altered.

The specification differentiates between mandatory and optional extensions (Section 8.2.3 explains the syntax used to
declare extensions). If a mandatory extension is used, a compliant implementation MUST understand the extension. If an
optional extension is used, a compliant implementation MAY ignore the extension.

44 Business Process Model and Notation, v2.0

7.7 BPMN Example

The following is an example of a manufacturing process from different perspectives.

Customer

—0

T 7 7
Confirlnation ShipLent Reipion
| | |

o
— —=—

Manufacturer
i l
Pf!ns Open
Provisioning Au:Tion
| v
Supplier Bidder

Figure 7.6 - An example of a Collaboration diagram with black-box Pools

Business Process Model and Notation, v2.0

Order E

@ o Customer Customer
A Yes Order . .
— Confirmation =1 Deliver Order
Manufacturer Manufacturer
—
Confirmation E Shipme nt E

b
Customer

Can Fulfill

Order Request

Order ?

——<

Manufacturer

Part
Request

]
Capacity OK,
Parts Must

Manufacturer

Procure Parts
1]

be Ordered

Supplier

t
Part
Response

All Parts
Available %,

No

Part
Request

C ustomer
. Order
"1 Rejection
Ng
Manufacturer

Rejection E

Manufacturer

Part Auction

All Parts

Obtained?|

Bidder
LI

M

Part
Response

Figure 7.7 - An example of a stand-alone Choreography diagram

46

Business Process Model and Notation, v2.0

—C

ity &
ailable

()

Rtrigea Ordor

o)
Lul

Parts (1..m)

Create Order
Confiemation

Ordor
[Subemitied]

Retrieve

Manut. Capacity

Capacity nat

&Sﬂﬂd

Parts List

& Pans Available

Avallable

¥

Rejection bo
Custoemar

Arrives et
P Procure Parts
Heurs
=738
................. o .
Part Requisiion

{1.m)

o

Roset System Capacky OK,
Parts{Must

be Orpared

Pan Ragquisiion

{1.n}

Part Roquisition

1.n)

i Part Will Ba
Available on

Unavaiable

Procured
arts

Figure 7.8 - An example of a stand-alone Process (Orchestration) diagram

Business Process Model and Notation, v2.0

47

48

Business Process Model and Notation, v2.0

8 BPMN Core Structure

Note — The content of this chapter is REQUIRED for all BPMN conformance types. For more information about BPMN
conformance types, see page 2.

The technical structuring of BPMN is based on the concept of extensibility layers on top of a basic series of simple
elements identified as Core Elements of the specification. From this core set of constructs, layering is used to describe
additional elements of the specification that extend and add new constructs to the specification and relies on clear
dependency paths for resolution. The XML Schema model lends itself particularly well to the structuring model with

formalized import and resolution mechanics that remove ambiguities in the definitions of elements in the outer layers of
the specification.

Actji, fties

Figure 8.1 - A representation of the BPMN Core and Layer Structure

Figure 8.1 shows the basic principles of layering that can be composed in well defined ways. The approach uses
formalization constructs for extensibility that are applied consistently to the definition.

The additional effect of layering is that compatibility layers can be built, allowing for different levels of compliance
among vendors, and also enabling vendors to add their own layers in support of different vertical industries or target
audiences. In addition, it provides mechanism for the redefinition of previously existing concepts without affecting

backwards compatibility, but defining two or more non-composable layers, the level of compliance with the specification
and backwards compatibility can be achieved without compromising clarity.

The BPMN specification is structured in layers, where each layer builds on top of and extends lower layers. Included is a
Core or kernel that includes the most fundamental elements of BPMN, which are REQUIRED for constructing BPMN

diagrams: Process, Choreography, and Collaboration. The Core is intended to be simple, concise, and extendable
with well defined behavior.

Business Process Model and Notation, v2.0 49

The Core contains three sub-packages (see Figure 8.2):
1. Foundation: Thefundamental constructs needed for BPMN modeling.
2. Service: Thefundamental constructs needed for modeling services and interfaces.

3. Common: Those classes which are common to the layers of Process, Choreography, and Collaboration.

£ Core

£33 Foundation

£ Common

£ Service

Figure 8.2 - Class diagram showing the core packages

Figure 8.3 displays the organization of the main set of BPMN core model elements.

50 Business Process Model and Notation, v2.0

& Definitions
(From Infrastructure)

+ rootElements: *

+ definition

0.1

+ definition

1

+ definition

1

= RootElement
(from Foundation)

| Interface
(From Service)

+ supportedinterfaceRefs *

+ callableElements
| callableElement

{From Comman)

Collaboration
(From Collaboration)

» + collaboration

« + choreographyRef

= GlobalConversation Process

= choreography
(From Conversations) (From Process)

(From Choreography)
Q GlobalChoreographyTask
(From Choreography)

= Message
(From Common)

MessageFlow

-
0.1 (from Collaboration)

+ messageRef
» | +imports

=] mport

(from Infrastructure)

*| + relationships

| Relationship

(From Foundation)

.
+ interfaceRefs

"

=] Participant
(From Collaboration)

GlobalTask
(from Process)

= BaseElement

(From Foundation)

Figure 8.3 - Class diagram showing the organization of the core BPMN elements

8.1 Infrastructure

The BPMN Infrastructure package contains two elements that are used for both abstract syntax models and diagram

models.

8.1.1 Definitions

The Definitions class is the outermost containing object for all BPMN elements. It defines the scope of visibility and the
namespace for all contained elements. The interchange of BPMN files will always be through one or more Definitions.

Business Process Model and Notation, v2.0

51

=

| BaseElement
(From Foundation)
Egid : String
1
5| Jad|
+ documentation | *
7] Documentation
from Foundati
] Definitions N &] RootElement _ te(x:c o-mst:i:lnn ation)
{From InFrastructure) + definition + rootElements {From Foundation) B S g)
= g textFormat : String
[Eg name : 5tring

o - 0.1 *
[Eg targetNamespace : String

[Eg expressionLanguage ; String

g typelanguage : String

[Eg exporter ; 5tring m -

5§ exporterVersion : String + definitions + diagrams thz:ﬂgfnmg)am

=
1 *®
= tmport
+ definition + imports (From Infrastructure)
[Eg importType © String
1 * Eg location © String
[Eg namespace : String
- |] Relationship
+ definition + relationships {From Foundation)
1 * g type : Stiing

[Eg direction : RelationshipDirection

+ extensions [Q Extension
(From Foundation)
1 * [Eg mustUnderstand ; Boolean

Figure 8.4 - Definitions class diagram

The Definitions element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 8.1 presents
the additional attributes and model associations of the Definitions element.

52 Business Process Model and Notation, v2.0

Table 8.1 - Definitions attributes and model associations

Attribute Name

Description/Usage

name: string

The name of the Definition.

targetNamespace: string

This attribute identifies the namespace associated with the
Definition and follows the convention established by XML Schema.

expressionLanguage: string [0..1]

This attribute identifies the formal Expression language used in
Expressions within the elements of this Definition. The Default is
“http://www.w3.0rg/1999/XPath”. This value MAY be overridden on
each individual formal Expression. The language MUST be specified
in a URI format.

typeLanguage: string [0..1]

This attribute identifies the type system used by the elements of this
Definition. Defaults to http://www.w3.0rg/2001/XMLSchema. This
value can be overridden on each individual TtemDefinition. The
language MUST be specified in a URI format.

rootElements: RootElement [0..*]

This attribute lists the root elements that are at the root of this
Definitions. These elements can be referenced within this
Definitions and are visible to other Definitions.

diagrams: BPMNDiagram [0..*]

This attribute lists the BPMNDiagrams that are contained within this
Definitions (see page 367 for more information on
BPMNDiagrams).

imports: Import [0..*]

This attribute is used to import externally defined elements and make
them available for use by elements within this Definitions.

extensions: Extension [0..*]

This attribute identifies extensions beyond the attributes and model
associations in the base BPMN specification. See page 57 for
additional information on extensibility.

relationships: Relationship [0..*]

This attribute enables the extension and integration of BPMN models
into larger system/development Processes.

exporter: string [0..1]

This attribute identifies the tool that is exporting the bpmn model file.

exporterVersion: string [0..1]

This attribute identifies the version of the tool that is exporting the bpmn
model file.

8.1.2 Import

The Import classis used when referencing external element, either BPMN elements contained in other BPMN
Definitions or non-BPMN elements. Imports MUST be explicitly defined.

Table 8.2 presents the attributes of Import.

Business Process Model and Notation, v2.0

53

Table 8.2 — Import attributes

Attribute Name Description/Usage

importType: string Identifies the type of document being imported by providing an absolute URI that
identifies the encoding language used in the document.The value of the importType
attribute MUST be set to http://www.w3.0rg/2001/XMLSchema when importing XML
Schema 1.0 documents, to http://www.w3.org/TR/wsdI20/ when importing WSDL
2.0 documents, and http://www.omg.org/spec/BPMN/20100524/MODEL when
importing BPMN 2.0 documents. Other types of documents MAY be supported.
Importing Xml Schema 1.0, WSDL 2.0 and BPMN 2.0 types MUST be supported.

location: string [0..1] Identifies the location of the imported element.

namespace: string Identifies the namespace of the imported element.

8.1.3 Infrastructure Package XML Schemas

Table 8.3 — Definitions XML schema

<xsd:element name="definitions" type="tDefinitions"/>
<xsd:complexType name="tDefinitions">
<xsd:sequence>
<xsd:element ref="import" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extension" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="rootElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="bpmndi:BPMNDiagram" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="relationship" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attribute name="targetNamespace" type="xsd:anyURI" use="required"/>
<xsd:attribute name="expressionLanguage" type="xsd:anyURI" use="optional" default="http://
www.w3.0rg/1999/XPath"/>
<xsd:attribute name="typeLanguage" type="xsd:anyURI" use="optional" default="http://www.w3.org/
2001/XMLSchema"/>
<xsd:anyAttribute name="exporter" type="xsd:ID"/>
<xsd:anyAttribute name="exporterVersion" type="xsd:ID"/>

<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

54 Business Process Model and Notation, v2.0

Table 8.4 — Import XML schema

<xsd:element name="import" type="timport"/>
<xsd:complexType name="timport">

<xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>
<xsd:attribute name="location" type="xsd:string" use="required"/>
<xsd:attribute name="importType" type="xsd:anyURI" use="required"/>

</xsd:complexType>

8.2 Foundation

The Foundation package contains classes that are shared among other packages in the Core (see Figure 8.5) of an

abstract syntax model.

=] RootElement

(From Foundation)

+ rootElements |
=

+ definition 0.1
&] Definitions
(From Infrastructure)
[Eg name : String
[Eg targetMamespace © String
[Eg expressionLanguage : Sting
Eg typelanguage : String
[Eg exporter @ String
[Eg exporterersion : String

=] ExtensionAttributeValue

(From Foundation)

+ extensionValues | *

1
- 1 -
+ definition 1 + definition 1 = BaseFlement] Documentation
o = (From Foundation) (From Foundation)
Egid : String + documentation | Eg text : String
-elati i g textFormat : String
& * + relationships 1 . @
| Relationship "
(From Foundation)
W 't [Eg type : String
+ Imports [Eg direction : RelationshipDirection
& «enumeration»
= = Import =] RelationshipDirection
(from Infrastructure) * | 4 extensionDefinitions (From Foundation)
[importType : 5tiing - — = Mone
g location : String £ ExtensionDefinition = Forward
1 Sty from Foundation) = Backward
[Eg namespace : String o (ackwal
® + definition g name : String = Both
1
! 1
+ extensions
 Extensi *= | + extensionAttributeDefinitions
xtension

(From Foundation)
g mustUnderstand : Boolean

Figure 8.5 - Classes in the Foundation package

Business Process Model and Notation, v2.0

| ExtensionAttributeDefinition
(From Foundation)

[Eg name : 5tring

[Eg type @ String

g isReference : Boolean

55

8.2.1 Base Element

BaseElement is the abstract super class for most BPMN elements. It provides the attributes id and documentation, which

other elements will inherit.

Table 8.5 presents the attributes and model associations for the BaseElement.

Table 8.5 — BaseElement attributes and model associations

Attribute Name

Description/Usage

id: string

This attribute is used to uniquely identify BPMN elements. The id is
REQUIRED if this element is referenced or intended to be referenced by
something else. If the element is not currently referenced and is never intended
to be referenced, the id MAY be omitted.

documentation:
Documentation [0..*]

This attribute is used to annotate the BPMN element, such as descriptions and
other documentation.

extensionDefinitions:
ExtensionDefinition [0..*]

This attribute is used to attach additional attributes and associations to any
BaseElement. This association is not applicable when the XML schema
interchange is used, since the XSD mechanisms for supporting anyAttribute
and any element already satisfy this requirement. See page 57 for additional
information on extensibility.

extensionValues: Exten-
sionAttributeValue [0..*]

This attribute is used to provide values for extended attributes and model
associations. This association is not applicable when the XML schema
interchange is used, since the XSD mechanisms for supporting anyAttribute
and any element already satisfy this requirement. See page 57 for additional
information on extensibility.

8.2.2 Documentation

All BPMN elements that inherit from the BaseElement will have the capability, through the Documentation
element, to have one (1) or more text descriptions of that element.

The Documentation element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.6 presents the additional attributes of the Documentation element.

Table 8.6 — Documentation attributes

Attribute Name

Description/Usage

text: string

This attribute is used to capture the text descriptions of a BPMN element.

textFormat: string

This attribute identifies the format of the text. It MUST follow the mime-type
format. The default is "text/plain."

In the BPMN schema, the tDocumentation complexType does not contain a text attribute or element. Instead, the
documentation text is expected to appear in the body of the documentation element. For example:

56

Business Process Model and Notation, v2.0

<documentation>An example of how the documentation text is entered.</documentations

8.2.3 Extensibility

The BPMN metamodel is aimed to be extensible. This allows BPMN adopters to extend the specified metamodel in a
way that allows them to be still BPMN-compliant.

It provides a set of extension elements, which allows BPMN adopters to attach additional attributes and elements to
standard and existing BPMN elements.

This approach results in more interchangeable models, because the standard elements are still intact and can still be
understood by other BPMN adopters. It's only the additional attributes and elements that MAY be lost during interchange.

&] Definitions
(from Infrastructure)
[Eg name : String
[Eg targetNamespace © String
[Eg expressionlLanguage © String | 1
[Eg typelanguage @ String
[Eg exporter 1 String 1
[Eg exporterVersion : String

+ extensions | Extension
[=] (from Foundation)
g mustUnderstand : Boolean

9]
1 . + definition

Q.Baseaam.mt + extensionDefinitions =] ExtensionDefinition
(from Foundation) (From Foundation)
Egid : String *

[Eg name : 5tring
1

+ extensionAttributeDefinitions | *
| ExtensionAttributeDefinition
(From Foundation)
[Eg name : 5tring
[Eg type : Stiing
g isReference ; Boolean
+ extensionAttributeDefinition 1

+ extensionValues [pxtensionAttributevalue
(From Foundation)
1 -
* 1
* |+ documentation
| Documentation
(From Foundation) [
[text © String
[textFormat @ String

+valueRef| 0.1 0.1 4 yaue
=/ Element
(From CMOF)

Figure 8.6 - Extension class diagram

A BPMN Extension basically consists of four different elements:

1. Extension

2. ExtensionDefinition

3. ExtensionAttributeDefinition
4. ExtensionAttributeValue

Business Process Model and Notation, v2.0 57

The core elements of an Extension arethe ExtensionDefinition and ExtensionAttributeDefinition. The
latter defines a list of attributes that can be attached to any BPMN element. The attribute list defines the name and type
of the new attribute. This allows BPMN adopters to integrate any meta model into the BPMN meta model and reuse
already existing model elements.

The ExtensionDefinition itself can be created independent of any BPMN element or any BPMN definition.

In order to use an ExtensionDefinition within a BPMN model definition (Definitions element), the
ExtensionDefinition MUST be associated with an Extension element that binds the
ExtensionDefinition to aspecific BPMN model definition. The Extension element itself is contained within
the BPMN element Definitions and therefore available to be associated with any BPMN element making use of the
ExtensionDefinition.

Every BPMN element which subclasses the BPMN BaseElement can be extended by additional attributes. This works
by associating a BPMN element with an ExtensionDefinition, which was defined at the BPMN model definitions
level (element Definitions).

Additionally, every “extended” BPMN element contains the actual extension attribute value. The attribute value, defined
by the element ExtensionAttributeValue contains the value of type Element. It also has an association to the
corresponding attribute definition.

Extension

The Extension element binds/imports an ExtensionDefinition and its attributes to a BPMN model definition.

Table 8.7 presents the attributes and model associations for the Extension element.

Table 8.7 — Extension attributes and model associations

Attribute Name Description/Usage
mustUnderstand: boolean This flag defines if the semantics defined by the extension definition and its
[0..1] = False attribute definition MUST be understood by the BPMN adopter in order to

process the BPMN model correctly. Defaults to False.

definition: ExtensionDefinition | Defines the content of the extension.
Note that in the XML schema, this definition is provided by an external XML
schema file and is simply referenced by QName.

ExtensionDefinition

The ExtensionDefinition class defines and groups additional attributes. This type is not applicable when the XML
schema interchange is used, since XSD Complex Types aready satisfy this requirement.

Table 8.8 presents the attributes and model associations for the ExtensionDefinition element.

58 Business Process Model and Notation, v2.0

Table 8.8 — ExtensionDefinition attributes and model associations

Attribute Name

Description/Usage

name: string

The name of the extension. This is used as a nhamespace to
uniquely identify the extension content.

extensionAttributeDefinitions:
ExtensionAttributeDefinition [0..*]

The specific attributes that make up the extension.

ExtensionAttributeDefinition

The ExtensionAttributeDefinition defines new attributes. This type is not applicable when the XML schema
interchange is used; since the XSD mechanisms for supporting “AnyAttribute” and “Any” type already satisfy this

requirement.

Table 8.9 presents the attributes for the ExtensionAttributeDefinition element.

Table 8.9 - ExtensionAttributeDefinition attributes

Attribute Name

Description/Usage

name: string

The name of the extension attribute.

type: string

The type that is associated with the attribute.

isReference: boolean [0..1] = False

Indicates if the attribute value will be referenced or contained.

ExtensionAttributeValue

The ExtensionAttributeValue contains the attribute value. This type is not applicable when the XML schema

interchange is used; since the XSD mechanisms for supporting “AnyAttribute” and “Any” type aready satisfy this

requirement.

Table 8.10 presents the model associations for the ExtensionAttributevValue element.

Table 8.10 — ExtensionAttributeValue model associations

Attribute Name

Description/Usage

value: [Element [0..1]

The contained attribute value, used when the associated
ExtensionAttributeDefinition.isReference is false.

The type of this Element MUST conform to the type specified in the
associated ExtensionAttributeDefinition.

valueRef: [Element [0..1]

The referenced attribute value, used when the associated
ExtensionAttributeDefinition.isReference is true.
The type of this Element MUST conform to the type specified in the
associated ExtensionAttributeDefinition.

extensionAttributeDefinition:
ExtensionAttributeDefinition

Defines the extension attribute for which this value is being
provided.

Business Process Model and Notation, v2.0

59

Extensibility XML Schemas

Table 8.11 — Extension XML schema

<xsd:element name="extension" type="tExtension"/>
<xsd:complexType name="tExtension">
<xsd:sequence>

<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="definition" type="xsd:QName"/>

<xsd:attribute name="mustUnderstand" type="xsd:boolean" use="optional"/>

</xsd:complexType>

XML Example

This example shows a Task, defined the BPMN Core, being extended with Inputs and Outputs defined outside of the

Core.

Table 8.12 — Example Core XML schema

<xsd:schema ...>

<xsd:element name="task" type="tTask"/>
<xsd:complexType name="tTask">
<xsd:complexContent>
<xsd:extension base="tActivity"/>
</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

60

Business Process Model and Notation, v2.0

Table 8.13 — Example Extension XML schema

<xsd:schema ...>

<xsd:group name="dataRequirements">
<xsd:sequence>
<xsd:element ref="datalnput" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="inputSet" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="outputSet" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

</xsd:schema>

Table 8.14 — Sample XML instance

<bpmn:definitions id="ID_1" ...>

<bpmn:extension mustUnderstand="true" definition="bpmn:dataRequirements"/>

<bpmn:task name="Retrieve Customer Record" id="ID_2">
<bpmn:datalnput name="Order Input" id="ID_3">
<bpmn:typeDefinition typeRef="bo:Order" id="ID_4"/>
</bpmn:datalnput>
<bpmn:dataOutput name="Customer Record Output" id="ID_5">
<bpmn:typeDefinition typeRef="bo:CustomerRecord" id="ID_6"/>
</bpmn:dataOutput>
<bpmn:inputSet nhame="Inputs" id="ID_7" datalnputRefs="ID_3"/>
<bpmn:outputSet name="Outputs" id="ID_8" dataOutputRefs="ID_5"/>
</bpmn:task>

</bpmn:definitions>

8.2.4 External Relationships

It is the intention of this specification to cover the basic elements necessary for the construction of semantically rich and

syntactically valid Process models to be used in the description of Processes, Choreographies and business

operations in multiple levels of abstraction. As the specification indicates, extension capabilities enable the enrichment of

the information described in BPMN and supporting models to be augmented to fulfill particularities of a given usage

model. These extensions intention is to extend the semantics of a given BPMN Artifact to provide specialization of

intent or meaning.

Business Process Model and Notation, v2.0

61

Process models do not exist in isolation and generally participate in larger, more complex business and system
development Processes. The intention of the following specification element is to enable BPMN Artifacts to be
integrated in these development Processes via the specification of a non-intrusive identity/relationship model between
BPMN Artifacts and elements expressed in any other addressable domain model.

The *identity/relationship’ model it is reduced to the creation of families of typed relationships that enable BPMN and
non-BPMN Artifacts to be related in non intrusive manner. By simply defining ‘relationship types' that can be
associated with elements in the BPMN Artifacts and arbitrary elements in a given addressable domain model, it
enables the extension and integration of BPMN models into larger system/development Processes.

It is that these extensions will enable, for example, the linkage of ‘derivation’ or ‘definition’ relationships between UML
artifacts and BPMN Artifacts in novel ways. So, a UML use case could be related to a Process element in the
BPMN specification without affecting the nature of the Artifacts themselves, but enabling different integration
models that traverse specialized relationships.

Simply, the model enables the external specification of augmentation relationships between BPMN Artifacts and
arbitrary relationship classification models, these external models, via traversing relationships declared in the external
definition allow for linkages between BPMN elements and other structured or non-structured metadata definitions.

The UML model for this specification follow a simple extensible pattern as shown below; where named relationships can
be established by referencing objects that exist in their given namespaces.

] BaseFlement + documentation -
(from Foundation) | Documentation
[E& id : Strir 1 * (From Foundation)
=id st :
- ° [Eg text @ String

[Eg textFormat @ String

=] Relationship
(From Foundation)
g type : Stiing
55 direction : RelationshipDirection «enumeration»
[RelationshipDirection
(From Foundation)
=IMNone
=lForward
=1Backward
= Baoth
+ SOUMCEs 1.* 1.* | + targets
= £l Element
(from CMOF)

Figure 8.7 - External Relationship Metamodel

The Relationship element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.15 presents the additional attributes for the Relationship element.

62 Business Process Model and Notation, v2.0

Table 8.15 — Relationship attributes

Attribute Name Description/Usage

type: string The descriptive name of the element.

direction: RelationshipDirection This attribute specifies the direction of the relationship.

{None | Forward | Backward | Both}

sources: [Element [1..4] This association defines artifacts that are augmented by the
relationship.

targets: [Element[1..¥] This association defines artifacts used to extend the semantics of the

source element(s).

In this manner, you can, for example, create relationships between different artifacts that enable external annotations used

for (for example) traceability, derivation, arbitrary classifications, etc.

An example where the ‘reengineer’ relationship is shown between elements in a Visio ™ artifact and a BPMN
Artifact.

Table 8.16 — Reengineer XML schema

<?xml version="1.0" encoding="UTF-8"?>
<definitions targetNamespace=""
typeLanguage=""id="al123" expressionLanguage=""

xsi:schemal ocation="http://www.omg.org/spec/BPMN/20100524/MODEL Core-Common.xsd"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:src="http://www.example.org/Processes/OIld"
xmins:tgt="http://www.example.org/Processes/New">

<import importType="http://office.microsoft.com/visio" location="OrderConfirmationProcess.vsd"
namespace="http://www.example.org/Processes/Old"/>

<import importType="http://www.omg.org/spec/BPMN/20100524/MODEL"
location="OrderConfirmationProcess.xml"
namespace="http://www.example.org/Processes/New"/>

<relationship type="reengineered" id="a234" direction="both">
<documentation>An as-is and to-be relationship. The as-is model is expressed as a Visio dia-
gram. The re-engineered process has been split in two and is captured in BPMN 2.0 for-
mat.</documentation>
<source ref="src:OrderConfirmation"/>
<target ref="tgt:OrderConfirmation_Partl"/>
<target ref="tgt:OrderConfirmation_Partll"/>

</relationship>
</definitions>

Business Process Model and Notation, v2.0

63

8.2.5 Root Element

RootElement isthe abstract super class for all BPMN elements that are contained within Definitions. When
contained within Definitions, these elements have their own defined life-cycle and are not deleted with the deletion
of other elements. Examples of concrete RootElements include Collaboration, Process, and Choreography.
Depending on their use, RootElements can be referenced by multiple other elements (i.e., they can be reused). Some
RootElements MAY be contained within other elements instead of Definitions. Thisis done to avoid the
maintenance overhead of an independent life-cycle. For example, an EventDefinition would be contained in a
Process since it is used only there. In this case the EventDefinition would be dependent on the tool life-cycle of
the Process.

The RootElement element inherits the attributes and model associations of BaseElement (see Table 8.5), but does
not have any further attributes or model associations.

8.2.6 Foundation Package XML Schemas
Table 8.17 — BaseElement XML schema

<xsd:element name="baseElement" type="tBaseElement"/>
<xsd:complexType name="tBaseElement" abstract="true">
<xsd:sequence>
<xsd:element ref="documentation” minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extensionElements" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

<xsd:element name="baseElementWithMixedContent" type="tBaseElementWithMixedContent"/>
<xsd:complexType name="tBaseElementWithMixedContent" abstract="true" mixed="true">
<xsd:sequence>
<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extensionElements" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

<xsd:element name="extensionElements" type="tExtensionElements"/>
<xsd:complexType name="tExtensionElements">
<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="documentation" type="tDocumentation"/>

64 Business Process Model and Notation, v2.0

<xsd:complexType name="tDocumentation" mixed="true">
<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attribute name="textFormat" type="xsd:string" default="textplain"/>

</xsd:complexType>
Table 8.18 — RootElement XML schema

<xsd:element name="rootElement" type="tRootElement"/>
<xsd:complexType name="tRootElement" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType

Table 8.19 — Relationship XML schema

<xsd:element name="relationship" type="tRelationship"/>
<xsd:complexType name="tRelationship">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="source" type="xsd:QName" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="target" type="xsd:QName" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="type" type="xsd:string" use="required"/>
<xsd:attribute name="direction" type="tRelationshipDirection"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tRelationshipDirection">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="None"/>
<xsd:enumeration value="Forward"/>
<xsd:enumeration value="Backward"/>
<xsd:enumeration value="Both"/>
</xsd:restriction>
</xsd:simpleType>

Business Process Model and Notation, v2.0

8.3 Common Elements

The following sections define BPMN elements that MAY be used in more than one type of diagram (e.g., Process,
Collaboration, and Choreography).

8.3.1 Artifacts

BPMN provides modelers with the capability of showing additional information about a Process that is not directly
related to the Sequence Flows or Message Flows of the Process.

At this point, BPMN provides three standard Artifacts: Associations, Groups, and Text Annotations.
Additional Artifacts MAY be added to the BPMN specification in later versions. A modeler or modeling tool MAY
extend a BPMN diagram and add new types of Artifacts to a Diagram. Any new Artifact MUST follow the
Sequence Flow and Message Flow connection rules (listed below). Associations can beused to link Artifacts
to Flow Objects (see page 67).

Figure 8.8 showsthe Artifacts class diagram. When an Artifact isdefined it is contained within aCollaboration
or aFlowElementsContainer (aProcess or Choreography).

£ collaboration £ subChoreography £ SubProcess = Process
(from Collaboration) (From ChoreographyActivities) (From Activities) (From Process)
[Eg name : 5tring EjtriggeredByE\rent : Boolean [Eg processType : ProcessType
[Eg isClosed : Boolean [Eg isClosed : Boolean
[Eg isExecutable : Boolean
0.1 0.1 0.1 0.1
* |, 4 artifacts * .y artifacts w artifacts q..q. 7 artifact
] Artifact = BaseElement
(From Artifacts) (From Foundation)
Egid: String
1
+ documentation, *
] Association | Group | TextAnnotation | Documentation
(From Artifacts) (From Artifacts) (From Artifacts) (From Foundation)
[Eg, associationDirection © AssociationDirection [Eg, text : String [Eg, text : String

[Eg, textFormat : String [Eg, textFormat @ String

«enumeration»
[E] AssociationDirection
(From Artifacts)
= Morne
= One
=1 Bath

Figure 8.8 - Artifacts Metamodel

Common Artifact Definitions
The following sections provide definitions that are common to all Artifacts.

Artifact Sequence Flow Connections

See “ Sequence Flow Connections Rules’ on page 42 for the entire set of objects and how they MAY be source or targets
of aSequence Flow.

66 Business Process Model and Notation, v2.0

€ AnArtifact MUST NOT beatarget for aSequence Flow.
€ AnArtifact MUST NOT beasourcefor aSequence Flow.

Artifact Message Flow Connections
See “Message Flow Connection Rules’ on page 43 for the entire set of objects and how they MAY be source or targets of

aMessage Flow.
€ AnArtifact MUST NOT beatarget for aMessage Flow.
€ AnArtifact MUST NOT beasourcefor aMessage Flow.

Association

An Association is used to associate information and Artifacts with Flow Objects. Text and graphical non-Flow
Objects can be associated with the Flow Objects and Flow. An Association is also used to show the Activity used for
compensation. More information about compensation can be found on page 302.

€ AnAssociation islinethat MUST be drawn with a dotted single line (see Figure 8.9).

€ Theuseof text, color, size, and lines for an Association MUST follow therules defined in “Use of Text, Color, Size,
and Linesin a Diagram” on page 41.

Figure 8.9 - An Association

] BaseElement
(From Foundation)

g id : String
+ sourceRef 1 + targetRef 1
+ outgoing * + incoming | =
| Association «enumeration»
(From Artif acts) [=) AssouathnDlrectlon
tionDirection : AssociationDiracti (from Artifacts)
[5g associationDirection © AssociationDirection =Tore
= One
= Both
] Artifact

(From Artif acts)

Figure 8.10 - The Association Class Diagram

If there is a reason to put directionality on the Association then:
€ Alinearrowhead MAY be added to the Association line (see Figure 8.11).
€ Thedirectionality of the Association can bein one (1) direction or in both directions.

Business Process Model and Notation, v2.0 67

.............................. >

Figure 8.11 - A Directional Association

Note that directional Associations were used in BPMN 1.2 to show how Data Objects were inputs or outputs to
Activities. In BPMN 2.0, a Data Association connector is used to show inputs and outputs (see page 221). A Data
Association uses the same notation as a directed Association (asin Figure 8.11, above).

An Association is used to connect user-defined text (an Annotation) with a Flow Object (see Figure 8.12).

Announce

Issues for
Discussion

Allow 1 week for the

| discussion of the
Issues — through e-

mail or calls

Figure 8.12 - An Association of Text Annotation

The Association element inherits the attributes and model associations of BaseElement (See Table 8.5). Table 8.20
presents the additional attributes and model associations for an Association.

Table 8.20 — Association attributes and model associations

Attributes Description

associationDirection: associationDirection iS an attribute that defines whether or not the
AssociationDirection = None Association shows any directionality with an arrowhead. The default is
{None | One | Both} None (no arrowhead). A value of One means that the arrowhead SHALL

be at the Target Object. A value of Both means that there SHALL be an
arrowhead at both ends of the Association line.

sourceRef: BaseElement The BaseElement that the Association is connecting from.
targetRef: BaseElement The BaseElement that the Association is connecting to.
Group

The Group object isan Artifact that provides a visual mechanism to group elements of a diagram informally. The
grouping is tied to the CategoryVvalue supporting element. That is, a Group is avisua depiction of asingle
CategoryValue. The graphical elements within the Group will be assigned the CategoryVvalue of the Group.
(Note -- categoryValues can be highlighted through other mechanisms, such as color, as defined by a modeler or a
modeling tool).

€ A Group isarounded corner rectangle that MUST be drawn with a solid dashed line (as seen in Figure 8.13).

68 Business Process Model and Notation, v2.0

€ Theuseof text, color, size, and linesfor aGroup MUST follow the rules defined in “Use of Text, Color, Size,
and Linesin a Diagram” on page 41.

- EEE S e

.] . o — et

Figure 8.13 - A Group Artifact

Asan Artifact, aGroup isnot an Activity or any Flow Object, and, therefore, cannot connect to Sequence
Flows or Message Flows. In addition, Groups are not constrained by restrictions of Pools and Lanes. This means
that a Group can stretch across the boundaries of a Pool to surround Diagram elements (see Figure 8.14), often to
identify Activities that exist within a distributed business-to-business transaction.

= [[
.E Send Doctor Receive Mgc?ircl:?ne Receive
I Request Appt. Medicine
o | liness g PP Request
Occurs T PaY
| want to 1ee doctor Go seeIdoctor I I need mylmedicine Here is yo.lr medicine |
l l
. v It ' v)\ |
2 . N7 . N7
c Ehecewe (] I E]Recelve (] .
o Send
= Doctor Send Appt. Doctor S
=% Medicine
) Request I Request
o .
o)
o —_— s — s — s — s — s —

Figure 8.14 - A Group around Activities in different Pools

Groups are often used to highlight certain sections of a Diagram without adding additional constraints for performance-
-asa Sub-Process would. The highlighted (grouped) section of the Diagram can be separated for reporting and analysis
purposes. Groups do not affect the flow of the Process.

Figure 8.15 shows the Group class diagram.

Business Process Model and Notation, v2.0 69

= Artifact
(From Artifacts)

& Group = RootElement

(From ArtiFacts) (From Foundation)

+ categoryValueRef
| BaseElement

(From Foundation) Q CategoryValue * 1 Q Category
id @ Strin (From Artifacts) (From Artifacts)
=id : St . .
- : Egvalue : Sting + categoryValue (g name : String

* + categoryValueRef

* | + [categorizedFlowElements

=] FlowElement
(from Commaon)
[Eg name : 5tring

Figure 8.15 - The Group class diagram

The Group element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to Artifact. Table 8.21 presents the additional model associations for a Group.

Table 8.21 — Group model associations

Attributes Description
categoryValueRef: Category- The categoryValueRef attribute specifies the CategoryValue that
Value [0..1] the Group represents. (Further details about the definition of a Category

and CategoryValue can be found on page 70.) The name of the
Category and the value of the Categoryvalue separated by delineator

." provides the label for the Group. The graphical elements within the
boundaries of the Group will be assigned the CategoryValue.

Category

Categories, which have user-defined semantics, can be used for documentation or analysis purposes. For example,
FlowElements can be categorized as being customer oriented vs. support oriented. Furthermore, the cost and time of
Activities per Category can be calculated.

Groups are one way in which Categories of objects can be visually displayed on the diagram. That is, aGroup isa
visual depiction of a single CategoryValue. The graphical elements within the Group will be assigned the
CategoryValue of the Group. The value of the CategoryValue, optionally prepended by the Category name
and delineator ":", appears on the diagram as the Group label. (Note -- Categories can be highlighted through other
mechanisms, such as color, as defined by a modeler or a modeling tool). A single Category can be used for multiple
Groups in adiagram.

The category element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.22 displays the additional model associations of the Category element.

70 Business Process Model and Notation, v2.0

Table 8.22 —Category model associations

Attributes Description

name: string The descriptive name of the element.

categoryValue: CategoryValue The categoryValue attribute specifies one or more values of the
[0..4] Category. For example, the Category is “Region” then this Category
could specify values like “North,” “South,” “West,” and “East.”

The categoryValue element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.23 displays the attributes and model associations of the Categoryvalue element.

Table 8.23 —CategoryValue attributes and model associations

Attributes Description
value: string This attribute provides the value of the Categoryvalue element.
category: Category [0..1] The category attribute specifies the Category representing the

Category as such and contains the Categoryvalue (Further details
about the definition of a Category can be found on page 70).

categorizedFlowElements: The FlowElements attribute identifies all of the elements (e.g., Events,
Activities, Gateways, and Artifacts) that are within the

FlowElement [0..*
(0.1 boundaries of the Group.

Text Annotation
Text Annotations are a mechanism for a modeler to provide additional information for the reader of a BPMN Diagram.

€ A Text Annotation isan open rectangle that MUST be drawn with a solid single line (as seen in Figure 8.16).

€ Theuse of text, color, size, and lines for a Text Annotation MUST follow the rules defined in “Use of Text,
Color, Size, and Linesin aDiagram” on page 41.

The Text Annotation object can be connected to a specific object on the Diagram with an Association, but does not
affect the flow of the Process. Text associated with the Annotation can be placed within the bounds of the open
rectangle.

Text Annotation allows
a modeler to provide
additional information

Figure 8.16 - A Text Annotation

The Text Annotation element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.24 presents the additional attributes for a Text Annotation.

Business Process Model and Notation, v2.0 71

Table 8.24 —Text Annotation attributes

Attributes Description

text: string Text is an attribute that is text that the modeler wishes to communicate
to the reader of the Diagram.

textFormat: string This attribute identifies the format of the text. It MUST follow the mime-
type format. The default is "text/plain.”

XML Schemafor Artifacts

Table 8.25 — Artifact XML schema

<xsd:element name="artifact" type="tArtifact"/>
<xsd:complexType name="tArtifact" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType>

Table 8.26 — Association XML schema

<xsd:element name="association" type="tAssociation" substitutionGroup="artifact"/>
<xsd:complexType name="tAssociation">
<xsd:complexContent>
<xsd:extension base="tArtifact">
<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
<xsd:attribute name="associationDirection" type="tAssociationDirection" default="None"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tAssociationDirection">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="None"/>
<xsd:enumeration value="0One"/>
<xsd:enumeration value="Both"/>
</xsd:restriction>
</xsd:simpleType>

Table 8.27 — Category XML schema

<xsd:element name="category" type="tCategory" substitutionGroup="rootElement"/>
<xsd:complexType name="tCategory">

72 Business Process Model and Notation, v2.0

<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="categoryValue" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>\
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.28 — CategoryValue XML schema

<xsd:element name="categoryValue" type="tCategoryValue"/>
<xsd:complexType name="tCategoryValue">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="value" type="xsd:string" use="optional"/>\
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.29 — Group XML schema

<xsd:element name="group" type="tGroup" substitutionGroup="artifact"/>
<xsd:complexType name="tGroup">
<xsd:complexContent>
<xsd:extension base="tArtifact">
<xsd:attribute name="categoryValueRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.30 — Text Annotation XML schema

<xsd:element name="textAnnotation" type="tTextAnnotation" substitutionGroup="artifact"/>
<xsd:complexType name="tTextAnnotation">
<xsd:complexContent>
<xsd:extension base="tArtifact">
<xsd:sequence>
<xsd:element ref="text" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="textFormat" type="xsd:string" default="textplain"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation, v2.0

73

<xsd:element name="text" type="tText"/>
<xsd:complexType name="tText" mixed="true">
<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

8.3.2 Correlation

Business Processes typically can run for days or even months, requiring asynchronous communication via
Message. Also, many instances of a particular Process will typically run in parallel, e.g., many instances of an order
process, each representing a particular order. Correlation is used to associate a particular Message to an ongoing
Conversation between two particular Process instances. BPMN allows using existing Message data for correlation
purposes, e.g., for the order process, a particular instance can be identified by means of its orderID and/or
customerID, rather than requiring the introduction of technical correlation data.

The concept of Correlation facilitates the association of a Message to a Send Task or Receive Task? often in the
context of a Conversation, which is also known as instance routing. It is a particular useful concept where there is no
infrastructure support for instance routing. Note that this association can be viewed at multiple levels, namely the
Collaboration (Conversation), Choreography, and Process level. However, the actual correlation happens during
runtime (e.g., a the Process level). Correlations describe a set of predicates on a Message (generaly on the
application payload) that need to be satisfied in order for that Message to be associated to a distinct Send Task or
Receive Task. By the same token, each Send Task and each Receive Task participates in one or many
Conversations. Furthermore, it identifies the Message it sends or receives and thereby establishes the relationship to
one (or many) CorrelationKeys.

There are two, non-exclusive correlation mechanisms in place:

1. Inplain, key-based correlation, Messages that are exchanged withinaConversation arelogically correlated by
means of one or more common CorrelationKeys. That is, any Message that is sent or received within this
Conversation needsto carry the value of at least one of these CorrelationKey instanceswithin its payload. A
CorrelationKey basicaly definesa(composite) key. The first Message that isinitially sent or received initial-
izesone or more CorrelationKey instances associated with the Conversation, i.e, assignsvaluesto its
CorrelationProperty instances which are the fields (partial keys) of the CorrelationKey. A
CorrelationKey isonly considered valid for use, if the Message hasresultedinal CorrelationProp-
erty fields within the key being populated with avalue. If afollow-up Message derivesaCorrelationKey
instance, where that CorrelationKey had previously been initialized within the Conversation, then the
CorrelationKey vaueinthe Message and Conversation MUST match. If the follow-up Message derives
aCorrelationKey instance associated with the Conversation, that had not previously been initialized, then the
CorrelationKey value will become associated with the Conversation. AsaConversation can comprise dif-
ferent Messages that can be differently structured, each CorrelationProperty comeswith asmany extrac-
tionrules (CorrelationPropertyRetrievalExpression) for the respective partia key asthere are
different Messages.

2. Incontext-based correlation, the Process context (i.e., its Data Objects and Properties) can dynamicaly
influence the matching criterion. That is, aCorrelationKey can be complemented by a Process-specific

1. All referencesto Send or Receive Tasks in this section aso include message catch or throw Events -- they behaveidentically with
respect to correlation.

74 Business Process Model and Notation, v2.0

CorrelationSubscription. A CorrelationSubscription aggregatesas many
CorrelationPropertyBindings asthereare CorrelationPropertiesinthe CorrelationKey. A
CorrelationPropertyBinding relatesto aspecific CorrelationProperty and aso linksto a
FormalExpression that denotes adynamic extraction rule atop the Process context. At runtime, the
CorrelationKey instancefor aparticular Conversation is populated (and dynamically updated) from the
Process context using these FormalExpressions. Inthat sense, changesin the Process context can alter the
correlation condition.

Correlation can be applied to Message Flows in Collaboration and Choreography, as described in Chapters 9,
Collaboration and 11, Choreography. The keys applying to a Message Flow are the keys of containers or groupings of
the Message Flow, such as Collaborations, Choreographies, and Conversation Nodes, and Choreography
Activities. This might result in multiple CorrelationKeys applying to the same Message Flow, perhaps due to
multiple layers of containment. In particular, calls of Collaborations and Choreographies are specia kinds of
Conversation Nodes and Choreography Activities, respectively, and are considered a kind of containment for the
purposes of correlation. The CorrelationKeys specified in the caller apply to Message Flow in acalled
Collaboration or Choreography.

Business Process Model and Notation, v2.0 75

=] choreography =] GlobalChoreographyTask
(From Choreography) (From Choreography)

+ choreographyRef * *

+ collaboration| *

= collaboration] GlobalConversation
(From Collaboration) (From Conversations)
[Eg name : String
g isClosed : Boolean

+ collaboration + conversations | conversationNode
1 . (From Conversations)
1 [Eg name : String

+ collaboration
0.1+ collaboration

®

+ correlationkeys " 0.1
| CorrelationKey "
* (From Common) 4+ rorrelationkeys
[Eg name : Stiing + conversationNode *
1 | + correlationkeyRef + messageFlowRefs
+ messageFlows] MessageFlow
5 from Collaborati
= CorrelationSubscription I . * (from Cola m? ion)
g + correlationSubscriptions [5g name : 5tring
(From Common) +
* 1 + messageRef | 0..1
| Process |Message
(from Process) (From Common)
0.1 [Eg processType : ProcessType [Eg name ; 5tring
g isClosed ; Boolean + messageRef/ |\ 1
[Eg isExecutable ; Boolean
* + correlationPropertyRef -
1.* Q CorrelationPropertyRetrievalExpression
Q CorrelationProperty 1 (From Common)
(from Common) + correlationproperty . . : :
[5g name : 5tring + correlationPropertyRetrievalExpression + correlationset (0.1

+ coﬁ‘elatian&'opuaft;orreIationPropertngf_F correlationPropertyBinding

] correlationPropertyBinding + messagePath 1 -
(From Common) 0.1 + dataPath Q FormalExpression
(From Common)

[Eg language : String
= ttemDefinition 1 g body : Element
(From Common)
[Eg itemkind ; Itemkind
[structureRef : Element
[isCollection : Boolean

o1t type

Figure 8.17 - The Correlation Class Diagram

CorrelationKey

A CorrelationKey represents a composite key out of one or many CorrelationProperties that essentially
specify extraction Expressions atop Messages. As aresult, each CorrelationProperty acts as a partial key
for the correlation. For each Message that is exhanged as part of a particular Conversation, the
CorrelationProperties need to provide a CorrelationPropertyRetrievalExpression which
references a FormalExpression to the Message payload. That is, for each Message (that is used in a
Conversation) there is an Expression, which extracts portions of the respective Message’s payload.

The CorrelationKey element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.31 displays the additional model associations of the CorrelationKey element.

76 Business Process Model and Notation, v2.0

Table 8.31 — CorrelationKey model associations

Attribute Name Description/Usage

name: string [0..1] Specifies the name of the CorrelationKey.
correlationPropertyRef: The CorrelationProperties, representing the partial keys of this
CorrelationProperty [0..*] CorrelationkKey.

Key-based Correlation

Key-based correlation is a simple and efficient form of correlation, where one or more keys are used to identify a
Conversation. Any incoming Message can be matched against the CorrelationKey by extracting the
CorrelationProperties from the Message according to the corresponding
CorrelationPropertyRetrievalExpression and comparing the resulting composite key with the
CorrelationKey instance for this Conversation. The ideaisto use ajoint Conversation “token” which is used
(passed to and received from) and outgoing and incoming Message. Messages are associated to a particular
Conversation if the composite key extracted from their payload matches the CorrelationKey initiaized for this
Conversation.

At runtime the first Send Task or Receive Task in a Conversation MUST populate at |east one of the
CorrelationKey instances by extracting the values of the CorrelationProperties according to the
CorrelationPropertyRetrievalExpression from theinitially sent or received Message. Later in the
Conversation, the populated CorrelationKey instances are used for the described matching procedure where from
incoming Messages a composite key is extracted and used to identify the associated Conversation. Where these non-
initiating Messages derive values for CorrelationKeys, associated with the Conversation but not yet populated,
then the derived value will be associated with the Conversation instance.

The CorrelationProperty element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to RootElement. Table 8.32 displays the additional model associations of the
CorrelationProperty element.

Table 8.32 — CorrelationProperty model associations

Attribute Name Description/Usage

name: string [0..1] Specifies the name of the CorrelationProperty.

type: string [0..1] Specifies the type of the CorrelationProperty.

correlationPropertyRetrieval- The CorrelationPropertyRetrievalExpressions for

Expression: CorrelationPropertyRetrieval- this CorrelationProperty, representing the associations of

Expression [L..4] FormalExpressions (extraction paths) to specific Messages
h occurring in this Conversation.

The CorrelationPropertyRetrievalExpression element inherits the attributes and model associations of
BaseElement (see Table 8.5). Table 8.33 displays the additional model associations of the
CorrelationPropertyRetrievalExpression element.

Business Process Model and Notation, v2.0 77

Table 8.33 — CorrelationPropertyRetrievalExpression model associations

Attribute Name Description/Usage

messagepath: Forma]Expression The FormalExpression that defines how to extract a
CorrelationProperty from the Message payload.

messageRef: Message The specific Message the FormalExpression extracts the
CorrelationProperty from.

Context-based Correlation

Context-based correlation is a more expressive form of correlation on top of key-based correlation. In addition to
implicitly populating the CorrelationKey instance from the first sent or received Message, another mechanism
relates the CorrelationKey to the Process context. That is, a Process MAY provide a
CorrelationSubscription that acts asthe Process-specific counterpart to a specific CorrelationKey. In this
way, a Conversation MAY additionally refer to explicitly updateable Process context data to determine whether or
not a Message needs to be received. At runtime, the CorrelationKey instance holds a composite key that is
dynamically calculated from the Process context and automatically updated whenever the underlying Data Objects or
Properties change.

CorrelationPropertyBindings represent the partial keys of a CorrelationSubscription where each
relates to a specific CorrelationProperty inthe associated CorrelationKey. A FormalExpression defines
how that CorrelationProperty instanceis populated and updated at runtime from the Process context (i.e., its
Data Objects and Properties).

The CorrelationSubscription element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 8.34 displays the additional model associations of the CorrelationSubscription element.

Table 8.34 — CorrelationSubscription model associations

Attribute Name Description/Usage

correlationKeyRef: CorrelationKey The CorrelationKey this CorrelationSubscription refers
to.

Corre|ati0nPropertyBinding: The bindings to SpeCiﬁC CorrelationProperties and

CorrelationPropertyBinding [0..*] FormalExpressions (extraction rules atop the Process context).

The CorrelationPropertyBinding element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 8.35 displays the additional model associations of the CorrelationPropertyBinding element.

78 Business Process Model and Notation, v2.0

Table 8.35 — CorrelationPropertyBinding model associations

Attribute Name Description/Usage

dataPath: FormalExpression | The FormalExpression that defines the extraction rule atop the Process
context.

correlationPropertyRef: The specific CorrelationProperty, this

CorrelationProperty CorrelationPropertyBinding refers to.

At runtime, the correlation mechanism works as follows: When a Process instance is created the CorrelationKey
instances of all Conversations areinitialized with some initial values that specify to correlate any incoming Message
for these Conversations. A SubscriptionProperty is updated whenever any of the Data Objects or
Properties changesthat are referenced from the respective FormalExpression. Asaresult, incoming Messages
are matched against the now populated CorrelationKey instance. Later in the Process run, the
SubscriptionProperties can, again, change and implicitly change the correlation criterion. Alternatively, the
established mechanism of having the first Send Task or Receive Task populate the CorrelationKey instance

applies.
XML Schemafor Correlation

Table 8.36 — Correlation Key XML schema

<xsd:element name="correlationKey" type="tCorrelationKey"/>
<xsd:complexType name="tCorrelationKey">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="correlationPropertyRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:String" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.37 — Correlation Property XML schema

<xsd:element name="correlationProperty" type="tCorrelationProperty" substitutionGroup="rootElement"/>
<xsd:complexType name="tCorrelationProperty">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="correlationPropertyRetrievalExpression" minOccurs="1" maxOc-
curs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:String" use="optional"/>

<xsd:attribute name="type" type="xsd:QName"/>

Business Process Model and Notation, v2.0 79

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.38 — Correlation Property Binding XML schema

<xsd:element name="correlationPropertyBinding" type="tCorrelationPropertyBinding"/>
<xsd:complexType name="tCorrelationPropertyBinding">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="dataPath" type="tFormalExpression" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="correlationPropertyRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.39 — Correlation Property Retrieval Expression XML schema

<xsd:element name="correlationPropertyRetrievalExpression" type="tCorrelationPropertyRetrievalExpression"/>
<xsd:complexType name="tCorrelationPropertyRetrievalExpression">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="messagePath" type="tFormalExpression" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="messageRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.40 — Correlation Subscription XML schema

<xsd:element name="correlationSubscription" type="tCorrelationSubscription"/>
<xsd:complexType name="tCorrelationSubscription ">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="process" type="xsd:QName" use="required"/>
<xsd:element ref="correlationKeyRef" minOccurs="1" maxOccurs="1"/>
<xsd:element name="correlationPropertyBinding" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

80 Business Process Model and Notation, v2.0

8.3.3 Error

An Error represents the content of an Error Event or the Fault of afailled Operation. An ItemDefinition is
used to specify the structure of the Exrror. An Error is generated when there is a critical problem in the processing of
an Activity or when the execution of an Operation failed.

| RootElement

(From Foundation)

= Error
(from Common)
[Eg name : 5tring

0..1.+ structureRef

] temDefinition
(From Common)
[Eg itemkind ; Ttemkind
[Eg structureRef : Elernent
[isCollection @ Boclean

Figure 8.18 - Error class diagram

The Error element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to RootElement. Table 8.41 presents the additional attributes and model associations of the Error

element.

Business Process Model and Notation, v2.0 81

Table 8.41 — Error attributes and model associations

Attribute Name Description/Usage

structureRef : ItemDefinition [0..1] An ItemDefinition is used to define the “payload” of the Exrror.

name : string The descriptive name of the Error.

errorCode: string For an End Event:

If the result is an Error, then the errorCode MUST be supplied
(if the processType attribute of the Process is set to execut-
able) This “throws” the Error.

For an Intermediate Event within normal flow:

If the trigger is an Error, then the errorCode MUST be entered
(if the processType attribute of the Process is set to execut -
able). This “throws” the Error.

For an Intermediate Event attached to the boundary of an Activity:
If the trigger is an Error, then the errorCode MAY be entered.
This Event “catches” the Exrror. If there is no errorCode, then
any error SHALL trigger the Event. If there is an errorCode, then
only an Error that matches the errorCode SHALL trigger the
Event.

8.3.4 Escalation

An Escalation identifies a business situation that a Process might need to react to. An ITtemDefinition is used
to specify the structure of the Escalation.

= EscalationEventDefinition
(from Events)

®

0.1, + escalationRef
=] Escalation
(from Events)
[Eg name : String
[Eg escalationCode ; String
-

0.1+ structureRef
| temDefinition
(From Common)
g iternkind : Ttemkind
Eg structureRef : Element
g isCollection : Boolean

Figure 8.19 - Escalation class diagram

82 Business Process Model and Notation, v2.0

The Escalation element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to RootElement. Table 8.41 presents the additional model associations of the Error element.

Table 8.42 — Esclation attributes and model associations

Attribute Name

Description/Usage

structureRef : ItemDefinition [0..1]

An ItemDefinition is used to define the “payload” of the
Escalation.

name : string

The descriptive name of the Escalation.

escalationCode: string

For an End Event:

If the Result is an Escalation, then the escalationCode
MUST be supplied (if the processType attribute of the Process
is set to executable). This “throws” the Escalation.

For an Intermediate Event within normal flow:

If the trigger is an Escalation, then the escalationCode
MUST be entered (if the processType attribute of the Process is
set to executable). This “throws” the Escalation.

For an Intermediate Event attached to the boundary of an Activity:
If the trigger is an Escalation, then the escalationCode MAY
be entered. This Event “catches” the Escalation. If there is no
escalationCode, then any Escalation SHALL trigger the
Event. If there is an escalationCode, then only an Escala-
tion that matches the escalationCode SHALL trigger the
Event.

8.3.5 Events

An Event is something that “happens’ during the course of a Process. These Events affect the flow of the Process
and usually have a cause or an impact. The term “event” is general enough to cover many thingsin a Process. The start
of an Activity, the end of an Activity, the change of state of a document, a Message that arrives, etc., all could be
considered Events. However, BPMN has restricted the use of Events to include only those types of Events that will
affect the sequence or timing of Activities of a Process.

Business Process Model and Notation, v2.0

83

=] BaseElement
(From Foundation)
Egid : Stiing

=] FlowElement
(From Commaon)
[Eg name : String

=] FlowNode
(From Common)

= Event
(Fram Events)

] DataInputAssociation datalnputAssociation

(from Data)
-

0.1
=] ThrowEvent *
(from Events)

+ eventDefinitionRefs . *
0..1 | GginputSet ; InputSet *

] EventDefinition

* + datalnputs (From Events)

= pataInput
(from Data)
[Eg name : String
55 isCollection : Boolean

+ eventDefinitions

= EndEvent
(Fram Events)

| IntermediateThrowEvent
(From Events)

= ImplicitThrowEvent
(From Events)

Figure 8.20 - Event class diagram

+ eventDefinitionRefs

] startEvent
(From Events)
Eg isIntermupting : Boolean

| Documentation
(From Foundation)
[E3 text @ String

+ documentation

1 * | 53 textFormat : String
= Property
+ properties (From Data)

Eg name : String
"
+event 0.1

+ dataOutputAssociation] DataOutputAssociation

(from Data)
-

0.1
- =] catchEvent
(from Events)
I paralleMultiple : Boolean

* 0.1 =
[E3 outputSet : OutputSet

+ dataOutputs | *

+ eventDefinitions
] pataOutput

(from Data)
[Eg name : Stiing
55 isCollection : Boolean

=] BoundaryEvent
(from Events)
[Eg cancelActivity : Boolean

C IntermediateCatchEvent
(From Events)

+ boundaryEventRefs *

+ attachedToRef| 4
= Activity
(from Activities)
[Eg isForCompensation : Boolean
[Eg startQuantity : Integer
£ completionQuantity © Integer

The Event element inherits the attributes and model associations of FlowElement (see Table 8.44), but adds no

additional attributes or model associations.

The details for the types of Events (Start, Intermediate, and End) are defined in “Event Definitions” on page 260.

8.3.6 Expressions

The Expression classis used to specify an Expression using natural-language text. These Expressions are not
executable. The natural language text is captured using the documentation attribute, inherited from BaseElement.

Expression inherits the attributes and model associations of BaseElement (see Table 8.5), but adds no additional
attributes or model associations.

84 Business Process Model and Notation, v2.0

Expressions are used in many places within BPMN to extract information from the different elements, normally data
elements. The most common usage is when modeling decisions, where conditional Expressions are used to direct the
flow along specific paths based on some criteria.

BPMN supports underspecified Expressions, where the logic is captured as natural-language descriptive text. It also
supports formal Expressions, where the logic is captured in an executable form using a specified Expression
language.

| BaseElement =] Documentation
{from Foundation) . (from Foundation)
- - + documentation -
|_q-')ld 1 String [text © String
1 * | g textFormat @ String

] Expression
(from Common)

| FormalExpression £ 1temDefinition

(From Common) + evaluatesToTypeRef (from Commen)
g language : String [Eg itemkind © Ttemkind
it * 1 | EgstructureRef ; Element

[Eg body : Element
Doy [Eg isCollection : Boolean

Figure 8.21 - Expression class diagram

Expression

The Expression classis used to specify an Expression using natural-language text. These Expressions are not
executable and are considered underspecified.

The definition of an Expression can be donein two ways: it can be contained where it is used, or it can be defined at
the Process level and then referenced where it is used.

The Expression element inherits the attributes and model associations of BaseElement (See Table 8.5), but does not
have any additional attributes or model associations.

Formal Expression

The FormalExpression classis used to specify an executable Expression using a specified Expression
language. A natural-language description of the Expression can also be specified, in addition to the formal
specification.

The default Expression language for all Expressions is specified inthe Definitions element, using the
expressionLanguage attribute. It can also be overridden on each individual FormalExpression using the same
attribute.

The FormalExpression element inherits the attributes and model associations of BaseElement (see Table 8.5),
through the Expression element. Table 8.43 presents the additional attributes and model associations of the
FormalExpression.

Business Process Model and Notation, v2.0 85

Table 8.43 — FormalExpression attributes and model associations

Attribute Name Description/Usage

language: string [0..1] Overrides the Expression language specified in the Definitions. The language
MUST be specified in a URI format.

body: Element The body of the Expression.
Note that this attribute is not relevant when the XML Schema is used for
interchange. Instead, the FormalExpression complex type supports mixed
content. The body of the Expression would be specified as element content.
For example:
<formalExpression id=“ID 2">
count (../dataObject[id="CustomerRecord 1"]/emailAddress) > 0
<evaluatesToType id="ID 3" typeRef=“xsd:boolean"/>
</formalExpressions>

evaluatesToTypeRef: The type of object that this Expression returns when evaluated. For example,

ItemDefinition conditional Expressions evaluate to a boolean.

8.3.7 Flow Element

FlowElement is the abstract super class for all elements that can appear in a Process flow, which are FlowNodes
(see page 99, which consist of Activities (see page 151), Choreography Activities (see page 321) Gateways (see
page 287), and Events (see page 233), Data Objects (see page 205), Data Associations (see page 221), and
Sequence Flows (see page 97).

86 Business Process Model and Notation, v2.0

= Documentation = BaseElement
(From Foundation) (from Foundation)

g text & Stiing * 1 |_q5id 1 String
[textFormat @ Stiing '+ documentation

= FlowElementsContainer =] Auditing =] Monitoring [l categoryValue
(From Common) (From Process) (from Process) (From Artifacts)

g value © String

0.1 itori d.1
ti " + manitorin
14 4 container + auditing 9 + cafegoryvalueref
+ jcategorizedFlowElements
- + flowElements 0.1 0.1 *
= FowElement
(From Common)
Eghame : String
1 "
= Data0Object ! FlowNode + targetRef I sequenceFlow = DataStoreReference
{From Data) (From Common) g + incoming (From Common) (From Data)
g isCollection : Boolean g isImmediate : Boolean
1
+ sourceRef]
+ outgaing
0.1
0.1 + conditionExpression
H Activity = Event £ Gateway = Expression
(From Activities) (from Events) (From Gateways) (From Common)

[Eg isForCompensation : Boolean
[Eg startQuantity : Integer
[Eg completionQuantity : Integer

[Eg gatewayDirection : GatewayDirection

|| choreographyActivity
(From ChoreographyActivities)
55 loopType : ChoreographyLoopType

Figure 8.22 - FlowElement class diagram

The FlowElement element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 8.44
presents the additional attributes and model associations of the FlowElement element.

Business Process Model and Notation, v2.0 87

Table 8.44 — FlowElement attributes and model associations

Attribute Name Description/Usage

name: string [0..1] The descriptive name of the element.

categoryValueRef: Category- | A reference to the Category Values that are associated with this Flow
Value [0..%] Element.

auditing: Auditing [0..1] A hook for specifying audit related properties. Auditing can only be
defined for a Process.

monitoring: Monitoring [0..1] A hook for specifying monitoring related properties. Monitoring can only
be defined for a Process.

8.3.8 Flow Elements Container

FlowElementsContainer isan abstract super class for BPMN diagrams (or views) and defines the superset of
elements that are contained in those diagrams. Basically, a FlowElementsContainer contains FlowElements,
which are Events (see page 233), Gateways (see page 287), Sequence Flows (see page 97), Activities (see page
151), and Choreography Activities (see page 321).

There are four (4) types of FlowElementsContainers (see Figure 8.23): Process, Sub-Process,
Choreography, and Sub-Choreography.

88 Business Process Model and Notation, v2.0

] Documentation
(from Foundation)
[Eg text : Stiing
[Eg textFormat @ String
w
+ documentatior)
1
| BaseElement
(from Foundation)
g id : String

FowElement : FlowElementsContainer
Q(From Common) L2 + container Q (From Common) + laneSets Q LaneSet
g name : String (From Process)
+ flowElements 1 0.1 * g name : String
| Process | choreography
(From Process) (From Choreography)
Eg processType : ProcessType
g isClosed : Boolean
g isExecutable : Boolean
] subProcess | subChoreography
(From Activities) (from ChoreographyActivities)

g triggeredByEvent ; Boolean
Figure 8.23 - FlowElementContainers class diagram

The FlowElementsContainer element inherits the attributes and model associations of BaseElement (see Table
8.5). Table 8.45 presents the additional model associations of the FlowElementsContainer element.

Table 8.45 — FlowElementsContainer model associations

Attribute Name Description/Usage

flowElements: Flow This association specifies the particular flow elements contained in a

Element [0..*] FlowElementContainer. Flow elements are Events, Gateways, Sequence
Flows, Activities, Data Objects, Data Associations, and Choreography
Activities.
Note that:

e Choreography Activities MUST NOT be included as a f1owElement for a
Process.

e Activities, Data Associations, and Data Objects MUST NOT be included as
a flowElement for a Choreography.

laneSets: LaneSet [0..*] | This attribute defines the list of LaneSets used in the FlowElementsContainer
LaneSets are not used for Choreographies or Sub-Choreographies.

Business Process Model and Notation, v2.0 89

8.3.9 Gateways

Gateways are used to control how the Process flows (how Tokens flow) through Sequence Flows as they converge
and diverge within a Process. If the flow does not need to be controlled, then a Gateway is not needed. The term
“gateway” implies that there is a gating mechanism that either allows or disallows passage through the Gateway--that is,
as tokens arrive at a Gateway, they can be merged together on input and/or split apart on output as the Gateway
mechanisms are invoked.

Gateways, like Activities, are capable of consuming or generating additional control tokens, effectively controlling the
execution semantics of agiven Process. The main difference is that Gateways do not represent ‘work’ being done and
they are considered to have zero effect on the operational measures of the Process being executed (cost, time, etc.).

The Gateway controls the flow of both diverging and converging Sequence Flows. That is, asingle Gateway could
have multiple input and multiple output flows. Modelers and modeling tools might want to enforce a best practice of a
Gateway only performing one of these functions. Thus, it would take two sequential Gateways to first converge and
then to diverge the Sequence Flows.

BaseElement i
%‘om Foiroa = Documentation R
idl : St + docurnentation| ("o Foundation) =] EventBasedGatewayType
Egd : sting " g text : String (From Gakeways)
1 [Eg textFormat : String = Parallel
= Exclusive
Q HowElement enumeration
(from Common) [GatewayDirection

| EventBasedGateway
(From Gateways)
[Cg instantiate : Boolean
[Eg eventGatewayType : EventBasedGatewayType

[Eg name : String (from Gateways)

= Linspecified

= Converging
| FlowNode = Diverging
(From Common) =1 Mixed

L Gateway
(from Gateways)
[Eg gatewayDirection : GatewayDirection

| ExclusiveGateway = InclusiveGateway] parallelGateway | ComplexGateway
(From Gateways) (from Gakeways) (from Gateways) (From Gateways)
, T indusiveGateway + complexGateway| ™ 0.1

+ exclusiveGateway + complexGateway

0.1, 4 default 0.1/, 4+ default
| SequenceFlow 0.1
(From Common) + activationCondition | 0..1
. " + default
g isimmediate : Boolean -

») =] Expression

+ conditionExpression {from Common)
0.1 0.1

Figure 8.24 - Gateway class diagram

The details for the types of Gateways (Exclusive, Inclusive, Parallel, Event-Based, and Complex) is defined on
page 287 for Processes and on page 344 for Choreographies.

90 Business Process Model and Notation, v2.0

The Gateway class is an abstract type. Its concrete subclasses define the specific semantics of individual Gateway
types, defining how the Gateway behaves in different situations.

The Gateway element inherits the attributes and model associations of FlowElement (see Table 8.44). Table 8.46
presents the additional attributes of the Gateway element.

Table 8.46 — Gateway attributes

Attribute Name Description/Usage

gatewayDirection: GatewayDirection = | An attribute that adds constraints on how the Gateway MAY be
Unspecified used.

{ Unspecified | Converging | Diverging | * Unspecified: There are no constraints. The Gateway MAY
Mixed } have any number of incoming and outgoing Sequence Flows.

» Converging: This Gateway MAY have multiple incoming
Sequence Flows but MUST have no more than one (1)
outgoing Sequence Flow.

» Diverging: This Gateway MAY have multiple outgoing
Sequence Flows but MUST have no more than one (1)
incoming Sequence Flow.

» Mixed: This Gateway contains multiple outgoing and multiple
incoming Sequence Flows.

8.3.10 Item Definition

BPMN elements, such as DataObjects and Messages, represent items that are manipulated, transferred,
transformed, or stored during Process flows. These items can be either physical items, such as the mechanical part of a
vehicle, or information items such the catalog of the mechanical parts of a vehicle.

An important characteristics of items in Process is their structure. BPMN does not require a particular format for this
data structure, but it does designate XML Schema as its default. The structure attribute references the actual data
structure.

The default format of the data structure for all elements can be specified in the Definitions element using the
typeLanguage attribute. For example, a typeLanguage value of http://www.w3.0rg/2001/XMLSchema”
indicates that the data structures using by elements within that Definitions are in the form of XML Schema types. If
unspecified, the default is XML schema. An Import is used to further identify the location of the data structure (if
applicable). For example, in the case of data structures contributed by an XML schema, an Import would be used to
specify the file location of that schema.

Structure definitions are always defined as separate entities, so they cannot be inlined in one of their usages. You will see
that in every mention of structure definition there is a “reference” to the element. This is why this class inherits from
RootElement.

An ItemDefinition element can specify an import reference where the proper definition of the structure is defined.

Business Process Model and Notation, v2.0 91

In cases where the data structure represents a collection, the multiplicity can be projected into the attribute
isCollection. If this attributeis set to “true,” but the actual type is not a collection type, the model is considered as
invalid. BPMN compliant tools might support an automatic check for these inconsistencies and report this as an error.
The default value for this element is “false.”

The itemKind attribute specifies the nature of an item which can be a physical or an information item.

Figure 8.25 shows the ItemDefinition class diagram. When an ItemDefinition is defined it is contained in
Definitions.

| RootElement

(From Foundation)

B] import = ttemDefinition
0.1 " (From Common)
[Eg iterkind : Ttemkind
+ import g structureRef : Element
[Eg isCollection : Boolean

[importType : 5tring
[Eg location : String
[Eg namespace : String

«enumeration»
[=] ItemKind
(From Common)
=l Physical
=1 Information

Figure 8.25 - ItemDefinition class diagram
The ItemDefinition element inherits the attributes and model associations BaseElement (see Table 8.5) through

its relationship to RootElement. Table 8.47 presents the additional attributes and model associations for the
ItemDefinition element.

Table 8.47 — ItemDefinition attributes & model associations

Attribute Name Description/Usage

itemKind: ItemKind = Information This defines the nature of the Item. Possible values are physical or

{ Information | Physical } information. The default value is information.

structureRef: [Element [0..1] The concrete data structure to be used.

import: Import [0..1] Identifies the Iocqtion qf the data structure and its format. If the 3
importType attribute is left unspecified, the typeLanguage specified
in the Definitions that contains this ItemDefinition is assumed.

isCollection: boolean = False Setting this flag to true indicates that the actual data type is a
collection.

92 Business Process Model and Notation, v2.0

8.3.11 Message

A Message represents the content of a communication between two Participants. In BPMN 2.0, a Message isa
graphical decorator (it was a supporting element in BPMN 1.2). An TtemDefinition is used to specify the
Message structure.

When displayed in a diagram:

€ InaMessage isarectangle with converging diagonal linesin the upper half of the rectangle to give the appearance
of an envelope (see Figure 8.26). It MUST be drawn with asingle thin line.

€ Theuse of text, color, size, and linesfor aMessage MUST follow the rules defined in Section “ Use of Text,
Color, Size, and Linesin a Diagram” on page 41.

Figure 8.26 - A Message

In addition, when used in a Choreography Diagram more than one Message MAY be used for a single
Choreography Task. In this case, it is important to know the first (initiating) Message of the interaction. For return
(non-initiating) Messages the symbol of the Message is shaded with alight fill (see Figure 8.27).

Figure 8.27 - A non-initiating Message
€ Any Message sent by the non-initiating Participant or Sub-Choreography MUST be shaded with alight fill.
In aCollaboration, the communication itself is represented by a Message Flow (see “Message Flow” below for more

details). The Message can be optionally depicted as a graphical decorator on a Message Flow in a Collaboration
(see Figure 8.28 and Figure 8.29).

Business Process Model and Notation, v2.0 93

Customer

T
|
|
Order EZI
|
|
|
|
|
|
AV

A
|
|
|
|
|
|
|

Izl Confirmation
|

N

Supplier

Figure 8.28 - Messages Association overlapping Message Flows

In a Choreography, the communication is represented by a Choreography Task (see page 323). The Message can
be depicted as a decorator with a Choreography Task in a Choreography (see Figure 8.29).

Order

M

Customer

Place
Order

Supplier

Confirmation

Figure 8.29 - Messages shown Associated with a Choreography Task

Figure 8.30 displays the class diagram showing the attributes and model associations for the Message element.

94 Business Process Model and Notation, v2.0

= MessageFlow
(from Collaboration) *
[Eg name : 5tring

El RootElement £ TtemDefinition
(From Foundation) (From Common)
[Eg itemkind : Ttemkind
g structureRef : Element
g isCollection : Boolean

0.1 + itemRef

0..1 4 messageRef + message
] Message Ref
o ReceiveTask + messageRef {From Common) + messageRe
(From Activities) Egname : String 0.1
@implementation 1 String * 0.1

[instantiate : Boclean + messageRef /0.1 1

+ inMessageRef 0..1/'+ putMessageRef

-
Q MessageEventDefinition
(From Events)

= sendTask £ operation
(From Activities) (From Service) 0.1
[implementation : String * g name : String + operationRef

[Eg implementationRef : Element

0.1
+ operationfef
.

| serviceTask
(From Activities)

@implementation 1 String

Figure 8.30 - The Message class diagram

The Message element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.48 presents the additional attributes and model associations for the Message

element.

Table 8.48 — Message attributes and model associations

Attribute Name

Description/Usage

name: string

Name is a text description of the Message.

itemRef : ltemDefinition [0..1]

An ItemDefinition is used to define the “payload” of the

Message.

8.3.12 Resources

The Resource class is used to specify resources that can be referenced by Activities. These Resources can be
Human Resources as well as any other resource assigned to Activities during Process execution time.

The definition of a Resource is “abstract,” because it only defines the Resource, without detailing how e.g., actual
user 1Ds are associated at runtime. Multiple Activities can utilize the same Resource.

Business Process Model and Notation, v2.0

95

Every Resource can define a set of ResourceParameters. These parameters can be used at runtime to define

query e.g., into an Organizational Directory. Every Activity referencing a parameterized Resource can bind values
available in the scope of the Activity to these parameters.

= RootElement = BaseElement = Documentation
(From Foundation) (From Foundation) . (From Foundation)
: - + documentation -
== id : String [Eg text © String
1 * [Eg textFormat : String

| Resource + resourceParameterd | ResourceParameter -
(From Common) (From Common) oA | ItemDefinition

[Eg name : String [Eg name : String _ (fl'ém Ccmmon)_
1 * | EgisRequired : Boolean g itemhkind : Ttemkind

+ YPe g structureRef : Element
[Eg isCollection : Boolean

Figure 8.31 - Resource class diagram

The Resource element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.51 presents the additional model associations for the Resource element.

Table 8.49 — Resource attributes and model associations

Attribute Name Description/Usage

name: string This attribute specifies the name of the Resource.
resourceParameters: This model association specifies the definition of the parameters
ResourceParameter [0..4] needed at runtime to resolve the Resource.

As mentioned before, the Resource can define a set of parameters to define a query to resolve the actual resources
(e.g., user ids).

The ResourceParameter element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to RootElement. Table 8.51 presents the additional model associations for the
ResourceParameter element.

96 Business Process Model and Notation, v2.0

Table 8.50 — ResourceParameter attributes and model associations

Attribute Name Description/Usage

name: string Specifies the name of the query parameter.

type: ItemDefinition Specifies the type of the query parameter.
isRequired: boolean Specifies, if a parameter is optional or mandatory.

8.3.13 Sequence Flow

A Sequence Flow is used to show the order of Flow Elements in a Process or a Choreography. Each
Sequence Flow has only one source and only one target. The source and target MUST be from the set of the following
Flow Elements: Events (Start, Intermediate, and End), Activities (Task and Sub-Process; for Processes),
Choreography Activities (Choreography Task and Sub-Choreography; for Choreographies), and
Gateways.

€ A Sequence Flow islinewith asolid arrowhead that MUST be drawn with a solid single line (as seen in Figure
8.32).

€ Theuseof text, color, size, and lines for aSequence Flow MUST follow the rules defined in Section “Use of
Text, Color, Size, and Linesin aDiagram” on page 41.

>

Figure 8.32 - A Sequence Flow

A Sequence Flow can optionally define a condition Expression, indicating that the token will be passed down the
Sequence Flow only if the Expression evaluates to true. This Expression is typically used when the source of
the Sequence Flow is a Gateway or an Activity.

€ A conditional outgoing Sequence Flow from an Activity MUST be drawn with a mini-diamond marker at the
beginning of the connector (as seen in Figure 8.33).

€ |f aconditional Sequence Flow isused from asource Activity, then there MUST be at least one other
outgoing Sequence Flow from that Activity.

€ Conditional outgoing Sequence Flows from aGateway MUST NOT be drawn with a mini-diamond marker at
the beginning of the connector.

€ A source Gateway MUST NOT be of type Parallel or Event.

< >

Figure 8.33 - A Conditional Sequence Flow

Business Process Model and Notation, v2.0 97

A Sequence Flow that has an Exclusive, Inclusive, or Complex Gateway or an Activity as its source can also be
defined with as default. Such a Sequence Flow will have a marker to show that it is a default flow. The default
Sequence Flow istaken (atoken is passed) only if al the other outgoing Sequence Flows from the Activity or
Gateway are not valid (i.e., their condition Expressions are false).

€ A default outgoing Sequence Flow MUST be drawn with a dlash marker at the beginning of the connector (as
seen in Figure 8.34).

\\ »

Figure 8.34 - A Default Sequence Flow

| FlowElement
(from Commaon)
[Eg name : 5tring

] sequenceFlow
(from Commaon)
[Eg isimmediate : Boolean

* |+ outgoing * + incoming 0.1
+default | 0.1
1+ sourceRef 1t targetRef + conditionExpression| 0.1
| lowNode | Expression

(From Common) (From Common)

+ activity 1
| Gateway | Event =] choreographyActivity] Activity
(from Gateways) (from Events) (From ChoreographyActivities) (from Activities)
g datewayDirection | GatewayDirection @IoupType 1 ChoreographyLoopType [isForCompensation Boolean

[startQuantity : Integer
g completionQuantity : Integer

Figure 8.35 - SequenceFlow class diagram

The Sequence Flow element inherits the attributes and model associations of FlowElement (see Table 8.44). Table
8.51 presents the additional attributes and model associations of the Sequence Flow element.

98 Business Process Model and Notation, v2.0

Table 8.51 — SequenceFlow attributes and model associations

Attribute Name

Description/Usage

sourceRef: FlowNode

The FlowNode that the Sequence Flow is connecting from.

For a Process: Of the types of FlowNode, only Activities, Gateways, and Events
can be the source. However, Activities that are Event Sub-Processes are not
allowed to be a source.

For a Choreography: Of the types of FlowNode, only Choreography Activities,
Gateways, and Events can be the source.

targetRef: FlowNode

The FlowNode that the Sequence Flow is connecting to.

For a Process: Of the types of FlowNode, only Activities, Gateways, and Events
can be the target. However, Activities that are Event Sub-Processes are not
allowed to be a target.

For a Choreography: Of the types of FlowNode, only Choreography Activities,
Gateways, and Events can be the target.

conditionExpression:

Expression [0..1]

An optional boolean Expression that acts as a gating condition. A token will only
be placed on this Sequence Flow if this conditionExpression evaluates to
true.

isimmediate: boolean
[0..1]

An optional boolean value specifying whether Activities or Choreography
Activities not in the model containing the Sequence Flow can occur between the
elements connected by the Sequence Flow. If the value is true, they MAY NOT
occur. If the value is false, they MAY occur. Also see the isClosed attribute on
Process, Choreography, and Collaboration. When the attribute has no value, the
default semantics depends on the kind of model containing Sequence Flows:

» For non-executable Processes (public Processes and non-executable private
Processes) and Choreographies no value has the same semantics as if the
value were false.

» For an executable Processes no value has the same semantics as if the value
were true.

» For executable Processes, the attribute MUST NOT be false.

Flow Node

The FlowNode element is used to provide a single element as the source and target Sequence Flow associations (see
Figure 8.35) instead of the individual associations of the elements that can connect to Sequence Flows (see the section
above). Only the Gateway, Activity, Choreography Activity, and Event elements can connect to Sequence Flows
and thus, these elements are the only ones that are sub-classes of F1owNode.

Since Gateway, Activity, Choreography Activity, and Event have their own attributes, model associations, and
inheritances; the F1owNode element does not inherit from any other BPMN element. Table 8.52 presents the additional
model associations of the F1owNode element.

Business Process Model and Notation, v2.0

Table 8.52 — FlowNode model associations

Attribute Name Description/Usage

incoming: Sequence Flow [0..¥] | This attribute identifies the incoming Sequence Flow of the FlowNode.

outgoing: Sequence Flow [0..¥] | This attribute identifies the outgoing Sequence Flow of the FlowNode.
This is an ordered collection.

8.3.14 Common Package XML Schemas

Table 8.53 — Error XML schema

<xsd:element name="error" type="tError" substitutionGroup="rootElement"/>
<xsd:complexType name="tError">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="errorCode" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.54 — Escalation XML schema

<xsd:element name="escalation" type="tEscalation" substitutionGroup="rootElement"/>
<xsd:complexType name="tEscalation">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="escalationCode" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.55 — Expression XML schema

<xsd:element name="expression" type="tExpression"/>
<xsd:complexType name="tExpression">
<xsd:complexContent>
<xsd:extension base="tBaseElementWithMixedContent"/>
</xsd:complexContent>
</xsd:complexType>

100 Business Process Model and Notation, v2.0

Table 8.56 — FlowElement XML schema

<xsd:element name="flowElement" type="tFlowElement"/>
<xsd:complexType name="tFlowElement" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element ref="auditing" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="monitoring" minOccurs="0" maxOccurs="1"/>
<xsd:element name="categoryValueRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.57 — FlowNode XML schema

<xsd:element name="flowNode" type="tFlowNode"/>
<xsd:complexType name="tFlowNode" abstract="true">
<xsd:complexContent>
<xsd:extension base="tFlowElement">
<xsd:sequence>
<xsd:element name="incoming" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="outgoing" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.58 — FormalExpression XML schema

<xsd:element name="formalExpression" type="tFormalExpression" substitutionGroup="expression"/>
<xsd:complexType name="tFormalExpression">
<xsd:complexContent>
<xsd:extension base="tExpression">
<xsd:attribute name="language" type="xsd:anyURI" use="optional"/>
<xsd:attribute name="evaluatesToTypeRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation, v2.0 101

Table 8.59 — InputOutputBinding XML schema

<xsd:element name="ioBinding" type="tinputOutputBinding"/>
<xsd:complexType name="tinputOutputBinding">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="inputDataRef" type="xsd:IDREF"/>
<xsd:attribute name="outputDataRef" type="xsd:IDREF"/>
<xsd:attribute name="operationRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.60 — ItemDefinition XML schema

<xsd:element name="itemDefinition" type="tltemDefinition" substitutionGroup="rootElement"/>
<xsd:complexType name="tltemDefinition">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="structureRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
<xsd:attribute name="itemKind" type="tltemKind" default="Information"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tltemKind">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Information"/>
<xsd:enumeration value="Physical"/>
</xsd:restriction>
</xsd:simpleType>

Table 8.61 — Message XML schema

<xsd:element name="message" type="tMessage" substitutionGroup="rootElement"/>
<xsd:complexType name="tMessage">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="itemRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.62 — Resources XML schema

<xsd:element name="resource" type="tResource" substitutionGroup="rootElement"/>

102 Business Process Model and Notation, v2.0

<xsd:complexType name="tResource">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="resourceParameter" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
Table 8.63 — ResourceParameter XML schema

<xsd:element name="resourceParameter" type="tResourceParameter" />
<xsd:complexType name="tResourceParameter">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="type" type="xsd:QName"/>
<xsd:attribute name="isRequired" type="xsd:Boolean" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.64 — SequenceFlow XML schema

<xsd:element name="sequenceFlow" type="tSequenceFlow" substitutionGroup="flowElement"/>
<xsd:complexType name="tSequenceFlow">
<xsd:complexContent>
<xsd:extension base="tFlowElement">
<xsd:sequence>
<xsd:element name="conditionExpression" type="tExpression" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="sourceRef" type="xsd:IDREF" use="required"/>
<xsd:attribute name="targetRef" type="xsd:IDREF" use="required"/>
<xsd:attribute name="isimmediate" type="xsd:boolean" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation, v2.0 103

8.4 Services

The Service package contains constructs necessary for modeling services, interfaces, and operations.

= Operation = Message
(From Service) + iNMessageRef (from Common)
[Eg name ; String " 1 [Eg name : 5tring

5 implementationRef ; Element
Eeimp + putMessageRef

* 0.1
+ errorfefs EError
. " (From Common)
N . [Eg name © Sting
+ operations | 1.. [Eg errorCode : String
| BaseElement
(from Foundation)
[Egid : String
1

+ documentation
| Documentation
(From Foundation)
1 [text © String
[textFormat @ String

| RootElement
% In;erfac;: (from Foundation)
Tom 2ervice
[Eg name : String + supportedinterfaceRefs
[Eg implementationRef ; Element
-
N + callableElements | *
+ interfaceRefs
] callableElement
(From Common)
[5& name : 5tring
M
E participant + endPaintRefs Q ErCERi
(From Collaboration) (From Service)
[Eg name ; 5tring b *

Figure 8.36 - The Service class diagram
8.4.1 Interface

An Interface defines a set of operations that are implemented by Services.

The Interface inherits the attributes and model associations of BaseElement (see Table 8.5) through its relationship
to RootElement. Table 8.65 presents the additional attributes and model associations of the Interface.

104 Business Process Model and Notation, v2.0

Table 8.65 — Interface attributes and model associations

Attribute Name

Description/Usage

name: string

The descriptive name of the element.

operations: Operation [1..*]

This attribute specifies operations that are defined as part of the
Interface. An Interface has at least one Operation.

callableElements: CallableElement [0..*]

The callableElements that use this Interface.

implementationRef: Element [0..1]

This attribute allows to reference a concrete artifact in the underly-
ing implementation technology representing that interface, such
as a WSDL porttype.

8.4.2 EndPoint

The actual definition of the service address is out of scope of BPMN 2.0. The EndPoint element is an extension point
and extends from RootElement. The EndPoint element MAY be extended with endpoint reference definitions
introduced in other specifications (e.g., WS-Addressing).

EndPoints can be specified for Participants.

8.4.3 Operation

An Operation defines Messages that are consumed and, optionally, produced when the Operation iscalled. It can
also define zero or more errors that are returned when operation fails. The Operation inherits the attributes and model
associations of BaseElement (See Table 8.5). Table 8.66 below presents the additional attributes and model associations

of the Operation.

Business Process Model and Notation, v2.0

105

Table 8.66 — Operation attributes and model associations

Attribute Name Description/Usage
name: string The descriptive name of the element.
inMessageRef: Message This attribute specifies the input Message of the Operation. An Operation

has exactly one input Message.

outMessageRef: Message This attribute specifies the output Message of the Operation. An Operation
[0.1] has at most one input Message.

errorRef: Error [0..*] This attribute specifies errors that the Operation may return. An Operation
MAY refer to zero or more Error elements.

implementationRef: Ele- This attribute allows to reference a concrete artifact in the underlying implemen-
ment [0..1] tation technology representing that operation, such as a WSDL operation.

8.4.4 Service Package XML Schemas

Table 8.67 — Interface XML schema

<xsd:element name="interface" type="tinterface" substitutionGroup="rootElement"/>
<xsd:complexType name="tInterface">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="operation" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="implementationRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.68 — Operation XML schema

<xsd:element name="operation" type="tOperation"/>
<xsd:complexType name="tOperation">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="inMessageRef" type="xsd:QName" minOccurs="1" maxOccurs="1"/>
<xsd:element name="outMessageRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
<xsd:element name="errorRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="implementationRef" type="xsd:QName" use="optional"/>

106 Business Process Model and Notation, v2.0

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.69 — EndPoint XML schema

<xsd:element name="endPoint" type="tEndPoint"/>
<xsd:complexType name="tEndPoint">
<xsd:complexContent>
<xsd:extension base="tRootElement"/>
</xsd:complexContent>
</xsd:complexType>

Business Process Model and Notation, v2.0

107

108 Business Process Model and Notation, v2.0

9 Collaboration

Note — The contents of this chapter are REQUIRED for BPMN Chor eography M odeling Conformance, BPMN Process
M odeling Conformance, or for BPMN Complete Confor mance. However, this chapter isNOT REQUIRED for, BPMN
Process Execution Conformance or BPMN BPEL Process Execution Conformance. For more information about BPMN

conformance types, see page 2.

The Ccollaboration package contains classes that are used for modeling Collaborations, which is a collection of

Participants shown as Pools, their interactions as shown by Message Flows, and MAY include Processes within the
Pools and/or Choreographies between the Pools (see Figure 9.1). A Choreography is an extended type of
Collaboration. When a Collaboration is defined it is contained in Definitions.

= RootElement
(From Foundation)

+ messageFlowAssociations 1

= — + collaboration Z collaboration

=] MessageFlowAssociation {From Collaboration)
(From Collaboration) 52 name : String

| 3 isClosed : Boolean
* L messageFlowAssociation * + messageFlowAssociation

1 .+ innerMessageFlowRef 1+ outerMessageFlowRef

] MessageFlow
(From Collaboration)

[Eg name : Sting

* + messageFlow * | + messageFlows 1
0..1'{ messageRef + callaboration
=] Message

(From Common)
[Eg name : Stiing

] conversationAssociation

1 + converstaionAssociations

] choreography
(From Choreography)

+ choreographyRef
*
+ collaboration
] GlobalChoreographyTask
(From Choreography)

] GlobalConversation
(From Conversations)

= Artifact * 0.1
(From Artifacts)
+ artifacts

Figure 9.1 - Classes in the Collaboration package

Business Process Model and Notation, v2.0

- e Q ParticipantAssociation
0.1 + participantAssociations {from Collaboration)
*
+ collaboration + participantAssociation * + participantAssociation| *
+ innerParticipantRef + outerParticipantRef 1
] participant

(From Collaboration)

[Eg name : Stiing

-

1

+ processRef 0.1 + participantMultiplicity 0..1

= Process =] participantMultiplicity
(From Process) (From Collaboration)

+ collaboration

1 + conversationLinks !’ *

] conversationLink
(From Conversations)

[Eg name : String

Ll *
+ fincomingConversationLinks + JoutgoingConversationLinks

1t targetRef

1t sourceRef

] InteractionNode
(From Collaboration)

0..1 + colaboration + conversations

]

0.1

0
+ correlationkKeys « + corelationkeys

-
] correlationKey
(From Common)
[Eg name : String

+ calledCaollaborationRef
0.1
"

] callconversation
(From Conversations)

= ConversationNode

(From Conversations)
[Eg hame : String

+ subConversation

] conversation
(From Conversations)

=] subConversation
(From Conversations)

0.

+ participantRefs

1

109

The Collaboration element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 9.1 presents the additional attributes and model associations for the Collaboration

element.

Table 9.1 - Collaboration Attributes and Model Associations

Attribute Name

Description/Usage

name: string

Name is a text description of the Collaboration.

choreographyRef:
Choreography [0..*]

The choreographyRef model association defines the Choreographies that
can be shown between the Pools of the Collaboration. A Choreography
specifies a business contract (or the order in which messages will be
exchanged) between interacting Participants. See page 315 for more details
on Choreography.

The participantAssociations (see below) are used to map the
Participants of the Choreography to the Participants of the Collaboration.

The MessageFlowAssociations (see below) are used to map the
Message Flows of the Choreography to the Message Flows of the
Collaboration.

The conversationAssociations (see below) are used to map the
Conversations of the Choreography to the Conversations of the
Collaboration.

Note that this attribute is not applicable for Choreography or
GlobalConversation which are a subtypes of Collaboration. Thus, a
Choreography cannot reference another Choreography.

correlationKeys:
CorrelationKey [0..*]

This association specifies CorrelationKeys used to associate Messages
to a particular Collaboration.

conversationAssociations:
ConversationAssociation [0..*]

This attribute provides a list of mappings from the Conversations of a
referenced Collaboration to the Conversations of another Collaboration.
It is used when:

* When a Choreography is referenced by a Collaboration.

conversations:
ConversationNode [0..*]

The conversations model aggregation relationship allows a
Collaboration to contain Conversation elements, in order to group
Message Flows of the Collaboration and associate correlation information,
as is REQUIRED for the definitional Collaboration of a Process model. The
Conversation elements will be visualized if the Collaboration is a
Collaboration, but not for a Choreography.

conversationLinks:
ConversationLink [0..*]

This provides the Conversation Links that are used in the Collaboration.

artifacts: Artifact [0..*]

This attribute provides the list of Artifacts that are contained within the
Collaboration.

110

Business Process Model and Notation, v2.0

Table 9.1 - Collaboration Attributes and Model Associations

participants: Participant [0..*] This provides the list of Participants that are used in the Collaboration.
Participants are visualized as Pools in a Collaboration and as Participant
Bands in Choreography Activities in a Choreography.

participantAssociations: This attribute provides a list of mappings from the Participants of a
ParticipantAssociations [0..*] referenced Collaboration to the Participants of another Collaboration. It is
used in the following situations

« When a Choreography is referenced by the Collaboration.

* When a definitional Collaboration for a Process is referenced through
a Call Activity (and mapped to definitional Collaboration of the
calling Process).

messageFlow: Message Flow | This provides the list of Message Flows that are used in the Collaboration.
[0..4] Message Flows are visualized in Collaboration (as dashed line) and
hidden in Choreography.

messageFlowAssociations: This attribute provides a list of mappings for the Message Flows of the
Message Flow Association Collaboration to Message Flows of a referenced model. It is used in the
[0.4] following situation:

« When a Choreography is referenced by a Collaboration. This allows
the "wiring up" of the Collaboration Message Flows to the
appropriate Choreography Activities.

IsClosed: boolean = false A boolean value specifying whether Message Flows not modeled in the
Collaboration can occur when the Collaboration is carried out.

« If the value is true, they MAY NOT occur.
« If the value is false, they MAY occur.

A set of Messages Flow of a particular Collaboration MAY belong to a Conversation. A Conversation is a set of
Message Flows that share a particular purpose—i.e., they all relate to the handling of a single order (see page 124 for
more information about Conversations).

9.1 Basic Collaboration Concepts

A Collaboration usually contains two or more Pools, representing the Participants in the Collaboration. The
Message exchange between the Participants is shown by a Message Flow that connects two Pools (or the objects
within the Pools). The Messages associated with the Message Flows MAY also be shown. See Figure 9.3, Figure
9.4, and Figure 9.5 for examples of Collaborations.

A Pool MAY be empty, a “black box,” or MAY show a Process within. Choreographies MAY be shown “in
between” the Pools as they bisect the Message Flows between the Pools. All combinations of Pools, Processes,
and a Choreography are allowed in a Collaboration.

Business Process Model and Notation, v2.0 111

9.1.1 Use of BPMN Common Elements

Some BPMN elements are common to both Process and Choreography, as well as Collaboration; they are used in
these diagrams. The next few sections will describe the use of Messages, Message Flows, Participants, Sequence
Flows, Artifacts, Correlations, Expressions, and Services in Choreography.

9.2 Pool and Participant

A Pool isthe graphical representation of a Participant in aCollaboration. A Participant (see page 114) can be a
specific PartnerEntity (e.g., acompany) or can be a more general PartnerRole (e.g., a buyer, seller, or
manufacturer). A Pool MAY or MAY NOT reference a Process. A Pool is NOT REQUIRED to contain a Process,
i.e., it can be a “black box.”

€ A Pool isasguare-cornered rectangle that MUST be drawn with a solid single line (see Figure 9.2).

€ Thelabel for the Pool MAY be placed in any location and direction within the Pool, but MUST be separated
from the contents of the Pool by asingleline.

& |If thePool isablack box (i.e., does not contain a Process), then the label for the Pool MAY be placed
anywhere within the Pool without a single line separator.

€ One, and only one, Pool inadiagram MAY be presented without a boundary. If there is more than one Pool in
the diagram, then the remaining Pools MUST have a boundary.

The use of text, color, size, and lines for aPool MUST follow the rules defined in Section “Use of Text, Color, Size, and
Linesin a Diagram” on page 41.

Name

Figure 9.2 - A Pool

To help with the clarity of the Diagram, a Pool extends the entire length of the Diagram, either horizontally or vertically.
However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling tools can use
Pools in aflexible manner in the interest of conserving the “real estate” of a Diagram on a screen or a printed page.

A Pool acts as the container for the Sequence Flows between Activities (of a contained Process). The Sequence
Flows can cross the boundaries between Lanes of a Pool (see page 305 for more details on Lanes), but cannot cross
the boundaries of a Pool. That is, a Process is fully contained within the Pool. The interaction between Pools is
shown through Message Flows.

Another aspect of Pools is whether or not there is any Activity detailed within the Pool. Thus, a given Pool MAY be
shown as a “White Box,” with all details (e.g., a Process) exposed, or as a “Black Box,” with all details hidden. No
Sequence Flows are associated with a “Black Box” Pool, but Message Flows can attach to its boundaries (see
Figure 9.3).

112 Business Process Model and Notation, v2.0

Financial
Institution

Credit Request Credit Response

¢

Manufacturer

Figure 9.3 - Message Flows connecting to the boundaries of two Pools

For a “White Box” Pool, the Activities within are organized by Sequence Flows. Message Flows can cross the

Pool boundary to attach to the appropriate Activity (see Figure 9.4).

E: -5 Credit Card
% 2 Authori-
£8 zation
T <
A
1
| |
5 | |
a | |
3 I Pack Goods Ship Goods
(2]
g |0 | |
g |
a J\
4 Authorize Process
o Payment Order
’ 2|

Figure 9.4 - Message Flows connecting to Flow Objects within two Pools

A Collaboration can contain two (2) or more Pools (i.e., Participants). However, a Process that represents the work
performed from the point of view of the modeler or the modeler’s organization can be considered “internal” and is NOT

REQUIRED to be surrounded by the boundary of the Pool, while the other Pools in the Diagram MUST have their

boundary (see Figure 9.5).

Business Process Model and Notation, v2.0

113

Financial Institution

Authorlze Process 2 &
Payment Order Pack Goods Ship Goods

Figure 9.5 - Main (Internal) Pool without boundaries

BPMN specifies a marker for Pools: a multi-instance marker May be displayed for a Pool (see Figure 9.6). The marker
is used if the Participant defined for the Pool is a multi-instance Participant. See page 117 for more information on
Participant multiplicity.

€ Themarker for aPool that is amulti-instance MUST be a set of three vertical linesin parallel.
€ Themarker, if used, MUST be centered at the bottom of the shape.

Supplier Supplier

Figure 9.6 - Pools with a Multi-Instance Participant Markers

9.2.1 Participants

A Participant represents a specific PartnerEntity (e.g., a company) and/or a more general PartnerRole (e.g., a
buyer, seller, or manufacturer) that are Participants in a Collaboration. A Participant is often responsible for the
execution of the Process enclosed in a Pool; however, a Pool MAY be defined without a Process.

Figure 9.7 displays the class diagram of the Participant and its relationships to other BPMN elements. When Participants
are defined they are contained within a Collaboration, which includes the sub-types of Choreography,
GlobalConversation, or GlobalChoreographyTask.

114 Business Process Model and Notation, v2.0

=l EndPoint *

(From Service)
+ endPaintRefs

+ initiatingParticipantRef

=] choreographyActivity
(From Choreography Activities)
g loopType : Choreographylo...

-

= GlobalChoreographyTask

(From Choreography)
-

0.1 |+ participantMultiplicity

E ParticipantMultiplicity
(from Collaboration)
[Eg minimum : Integer
[Eg maximum : Integer

* o+ interfaceRefs
] Interface
(From Service)
[Egname : String
[Eg implementationfef : Element

+ participantRefs

M

=] BaseElement
(From Foundation)
Egid : String

I Participant
(from Collaboration)
1 [Egname : String

1

+ documentation

+ participants

1
+ innerParticipantRef

= Documentation
(From Foundation)

« | Egtext: String

[Eg textFormat : String

= InteractionNode
(From Collaboration)
* 1

+ collaboration

+ outerParticipantRef =+

+ initiatingParticipantRef

-
+ par

- -
+ participantRef + participantRef

"
Q ParticipantAssociation
(From Collaboration)

ticipant

« t [partnerRoleRef « f [partnerEntityRef

I PartnerRole
(From Common)
[Egname : String

] Partnerenti
(From Comman)
[Eg name : Stiing

= RootElement
(From Foundation)

Figure 9.7 - The Participant Class Diagram

The Participant element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 9.2

ty

0..1 + processRef

= Process

(From Process)
[Eg processType : ProcessType
g isClosed : Boolean
[Cg isExecutable ; Boolean

presents the additional attributes and model associations for the Participant element.

Business Process Model and Notation, v2.0

= collaboration
(from Collabor ation)

[Eg name : String
g isClosed : Boolean
+ collaboratiori. 9..1

.
+ collaboration

+ participantAssociations

+ choreographyRef| *

= choreography
(From Choreography)

115

Table 9.2 — Participant attributes and model associations

Attribute Name

Description/Usage

name: string [0..1]

Name is a text description of the Participant. The name of the
Participant can be displayed directly or it can be substituted by the
associated PartnerRole Or PartnerEntity. Potentially, both the
PartnerEntity name and PartnerRole name can be displayed for
the Participant.

processRef: Process [0..1]

The processRef attribute identifies the Process that the
Participant uses in the Collaboration. The Process will be
displayed within the Participant's Pool.

partnerRoleRef: PartnerRole [0..*]

The partnerRoleRef attribute identifies a PartnerRole that the
Participant plays in the Collaboration. Both a PartnerRole and a
PartnerEntity MAY be defined for the Participant. This attribute is
derived from the participantRefs of PartnerRole.

partnerEntityRef: PartnerEntity [0..*]

The partnerEntityRef attribute identifies a PartnerEntity that

the Participant plays in the Collaboration. Both a PartnerRole and a
PartnerEntity MAY be defined for the Participant.This attribute is

derived from the participantRefs of PartnerEntity.

interfaceRef: Interface [0..*]

This association defines Interfaces that a Participant supports. The
definition of Interfaces is provided on page 104.

participantMultiplicity: participant-
Multiplicity [0..1]

The participantMultiplicityRef model association is used to
define Participants that represent more than one (1) instance of the
Participant for a given interaction. See the next section for more details
on ParticipantMultiplicity.

endPointRefs: EndPoint [0..*]

This attribute is used to specify the address (or endpoint reference) of
concrete services realizing the Participant.

PartnerEntity

A PartnerEntity isone of the possible types of Participant (see the section above).

The PartnerEntity element inherits the attributes and model associations of BaseElement (see Figure 8.5). Table
9.3 presents the additional attributes and model associations for the PartnerEntity element.

Table 9.3 — PartnerEntity attributes

Attribute Name Description/Usage

name: string Name is a text description of the PartnerEntity.

participantRef: Participant [0..*] | Specifies how the PartnerEntity participates in Collaborations and
Choreographies.

116

Business Process Model and Notation, v2.0

PartnerRole

A PartnerRole isone of the possible types of Participant (see the section above).

The PartnerRole element inherits the attributes and model associations of BaseElement (see Figure 8.5). Table 9.4
presents the additional attributes and model associations for the PartnerRole element.

Table 9.4 — PartnerRole attributes

Attribute Name

Description/Usage

name: string

Name is a text description of the PartnerRole.

participantRef: Participant [0..*]

Specifies how the PartnerRole participates in Collaborations and
Choreographies.

Participant Multiplicity

ParticipantMultiplicity isused to define the multiplicity of a Participant.

For example, a manufacturer can request a quote from multiple suppliersin a Collaboration.

Manufacturer

O

P
R f
e ape

L

Supplier

Figure 9.8 - A Pool with a Multiple Participant

The following figure shows the Participant class diagram.

] participant
(from Collaboration)
[Eg name : 5tring

= ParticipantMultiplicity
(from Collaboration)
+ participantMultiplicity_| Eg minimum ; Integer
0.1 [Eg maximum : Integer

Figure 9.9 - The Participant Multiplicity class diagram

Business Process Model and Notation, v2.0

117

The multi-instance marker will be displayed in bottom center of the Pool (Participant - see Figure 9.9, above), or the
Participant Band of a Choreography Activity (see page 321), when the ParticipantMultiplicityis
associated with the Participant, and the maximum attribute is either not set, or has a value of two or more.

Table 9.5 presents the attributes for the ParticipantMultiplicity element.

Table 9.5 — ParticipantMultiplicity attributes

Attribute Name Description/Usage

minimum: integer =0 The minimum attribute defines minimum number of Participants that
MUST be involved in the Collaboration. If a value is specified in the
maximum attribute, it MUST be greater or equal to this minimum value.

maximum: integer [0..1] =1 The maximum attribute defines maximum number of Participants that MAY
be involved in the Collaboration. The value of maximum MUST be one or
greater, AND MUST be equal or greater than the minimum value.

Table 9.6 presents the Instance attributes of the ParticipantMultiplicity element.

Table 9.6 — ParticipantMultiplicity Instance attributes

Attribute Name Description/Usage

numParticipants: integer [0..1] The current number of the multiplicity of the Participant for this
Choreography or Collaboration Instance.

ParticipantAssociation

These elements are used to do mapping between two elements that both contain Participants. There are situations where
the Participants in different diagrams can be defined differently because they were developed independently, but
represent the same thing. The ParticipantAssociation provides the mechanism to match up the Participants.

A ParticipantAssociation isused when an (outer) diagram with Participants contains an (inner) diagram that
also has Participants. There are four usages of ParticipantAssociation. Itis used when:

1. ACollaboration referencesaChoreography for inclusion between the Collaboration’s Pools (Participants).
The Participants of the Choreography (the inner diagram) need to be mapped to the Participants of the
Collaboration (the outer diagram).

2. A Call Conversation referencesaCollaboration or GlobalConversation. Thus, the Participants of the
Collaboration or GlobalConversation (theinner diagram) need to be mapped to the Participants referenced
by the Call Conversation (the outer element). Each Call Conversation containsits own set of
ParticipantAssociations.

3. A Call Choreography referencesaChoreography or GlobalChoreographyTask. Thus, the Participants
of the Choreography or GlobalChoreographyTask (the inner diagram) need to be mapped to the
Participants referenced by the Call Choreography (the outer element). Each Call Choreography containsits
own set of ParticipantAssociations.

118 Business Process Model and Notation, v2.0

A Call Activity withinaProcess that has a definitional Collaboration references another Process that also
has a definitional Collaboration. The Participants of the definitional Collaboration of the called Process (the

inner diagram) need to be mapped to the Participants of the definitional Collaboration of the calling Process (the
outer diagram).

A ParticipantAssociation can be owned by the outer diagram or one its elements. Figure 9.10 shows the class

diagram for the ParticipantAssociation element.

| BaseElement
(From Foundation)
Egid : String

Q ParticipantAssociation
(from Collaboration)

* 4+ participantAssociations

+ outerParticipantRef |1

| participant
(From Collaboration)
[Eg hame : 5tring

0.1 + calChoreographyActivity

= callchoreography
(From Choreography Activities)

] Documentation
_ (from Foundation)
+ documentation g text : String

1 " [Eg textFormat © String

+ participantAssociations
* 0.1 L callconversation
(from Conversations)

+ callConversation

* + collaboration ElCollaboration
(From Collabor ation)

0.1 = e
+ participantAssociations _E\f name ' S.t”ng
. g isClosed ; Boolean

1 + collaboration *

+ callaboration
1 + innerParticipantRef

®

+ participants + choreographyRef| *

= choreography
(from Choreography)

Figure 9.10 - ParticipantAssociation class diagram

The ParticipantAssociation element inherits the attributes and model associations of BaseElement (see Table

8.5). Table 9.7 presents the additional model associations for the ParticipantAssociation element.

Business Process Model and Notation, v2.0

119

Table 9.7 — ParticipantAssociation model associations

Attribute Name Description/Usage

innerParticipantRef: Participant | This attribute defines the Participant of the referenced element (e.g., a
Choreography to be used in a Collaboration) that will be mapped to the
parent element (e.g., the Collaboration).

outerParticipantRef: Participant | This attribute defines the Participant of the parent element (e.g., a
Collaboration references a Choreography) that will be mapped to the
referenced element (e.g., the Choreography).

9.2.2 Lanes

A Lane isasub-partition within aProcess (often within aPool) and will extend the entire length of the Process level,
either vertically (see Figure 10.123) or horizontally (see Figure 10.124). See page 305 for more information on Lanes.

9.3 Message Flow

A Message Flow is used to show the flow of Messages between two Participants that are prepared to send and
receive them.

€ A Message Flow MUST connect two separate Pools. They connect either to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

€ A Message Flow isalinewith an open circle line start and an open arrowhead line end that MUST be drawn with
adashed singleline (see Figure 9.11).

€ Theuse of text, color, size, and lines for aMessage Flow MUST follow the rules defined in Section “ Use of
Text, Color, Size, and Linesin a Diagram” on page 41.

Figure 9.11 - A Message Flow
In Collaboration Diagrams (the view showing the Choreography Process Combined with Orchestration

Processes), aMessage Flow can be extended to show the Message that is passed from one Participant to
another (see Figure 9.12).

120 Business Process Model and Notation, v2.0

Customer

T
|
|
Order EZI
|
|
|
|
|
|
\Z

A
|
|
|
|
|
|
|

EI Confirmation
|

I\

Supplier

Figure 9.12 - A Message Flow with an Attached Message

If aChoreography isincluded in the Collaboration, then the Message Flow will “pass-through” aChoreography
Task as it connects from one Participant to another (see Figure 9.13).

Customer

T

| |

l |
Order g :

l |

|]

Eontinued...

O Place 3
-
Order

I
|
|
|
EI Confirmation
|

Supplier

Figure 9.13 - A Message Flow passing through a Choreography Task

Business Process Model and Notation, v2.0 121

Figure 9.14 displays the class diagram of a Message Flow and its relationships to other BPMN elements. When a
Message Flow is defined it is contained either within a Collaboration, a Choreography, or a
GlobalChoreographyTask.

| Documentation £ BaseElement £/ Message
(from Foundation) (from Foundation) (from Common)
[Eg text : String * 1 | Egid:Sting [Eg name : String

[textFormat @ String + documentation

+ messageRef '|0..1

+ collaboration + messageFlows
] collaboration = MessageFlow
(from Collaboration) 1 * (From Collaboration)
[Eg name : String [Eg name: : String

g isClosed © Boclean

+roiabaoration

* * i.2
* + participants + sourceRef |1 1 |+ targetRef
] Participant = InteractionNode
(from Collaboration) (From Collaboration)
[Eg name : 5tring
+ participantRefs
2. . -
+ initiatingParticipantRef
1 2..*+ participantRefs
"
] conversationNode = Task = Event
(From Conversations) (From Activities) (from Events)
[Eg name : 5tring
* *
L] ChoreographyActivity + choreographyTask 0.1
(From ChoreographyActivitizs)
3 loopType : ChoreographyLoopType K ChoreographyTask

(from ChoreographyActivities)

Figure 9.14 - The Message Flow Class Diagram

The Message Flow element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 9.8
presents the additional attributes and model associations for the Message Flow element.

122 Business Process Model and Notation, v2.0

Table 9.8 — Message Flow attributes and model associations

Attribute Name Description/Usage
name: string Name is a text description of the Message Flow.
sourceRef: InteractionNode The InteractionNode that the Message Flow is connecting from. Of

the types of InteractionNode, only Pools/Participants, Activities, and
Events can be the source of a Message Flow.

targetRef: InteractionNode The InteractionNode that the Message Flow is connecting to. Of the
types of InteractionNode, only Pools/Participants, Activities, and
Events can be the target of a Message Flow.

messageRef: Message [0..1] The messageRef model association defines the Message that is passed
via the Message Flow (see page 93 for more details).

9.3.1 Interaction Node

The InteractionNode element is used to provide a single element as the source and target Message Flow
associations (see Figure 9.14, above) instead of the individual associations of the elements that can connect to Message
Flows (see the section above). Only the Pool/Participant, Activity, and Event elements can connect to Message
Flows. The InteractionNode element is also used to provide a single element for source and target of
Conversation Links, see page 132.

The InteractionNode element does not have any attributes or model associations and does not inherit from any other
BPMN element. Since Pools/Participants, Activities, and Events have their own attributes, model associations, and
inheritances, additional attributes and model associations for the InteractionNode element are not necessary.

9.3.2 Message Flow Associations

These elements are used to do mapping between two elements that both contain Message Flows. The
MessageFlowAssociation provides the mechanism to match up the Message Flows.

A MessageFlowAssociation is used when an (outer) diagram with Message Flows contains an (inner) diagram
that also has Message Flows. It is used when:

» A Collaboration referencesaChoreography for inclusion between the Collaboration’s Pools (Participants).
TheMessage Flows of the Choreography (theinner diagram) need to be mapped to the Message Flows of the
Collaboration (the outer diagram).

» A Collaboration referencesaConversation that contains Message Flows. The Message Flows of the
Conversation can serve asa partial requirement for the Collaboration. Thus, the Message Flows of the
Conversation (the inner diagram) need to be mapped to the Message Flows of the Collaboration (the outer
diagram).

« A Choreography referencesa Conversation that contains Message Flows. The Message Flows of the
Conversation can serve asa partial requirement for the Choreography. Thus, the Message Flows of the
Conversation (the inner diagram) need to be mapped to the Message Flows of the Choreography (the outer
diagram).

Business Process Model and Notation, v2.0 123

Figure 9.15 shows the class diagram for the MessageFlowAssociation element.

] BaseElement | Documentation
(From Foundation) + documentation (From Foundation)
g id : String g text : String
1 * [Eg textFormat © String

Q MessageFlowAssociation

(From Collaboration) | choreography

(from Choreography)

+ choreographyRef . *

+ collaboration|

* 1 E collaboration
(from Collaboration)
+ messageFlowAssociations 5 name : 5tring
* * g isClosed : Boolean

+ innerMessageFlowRef ! + outerMessageFlowRef

| MessageFlow
(From Collaboration)
[5g name : 5tring

Figure 9.15 - MessageFlowAssociation class diagram

The MessageFlowAssociation element inherits the attributes and model associations of BaseElement (See Table
8.5). Table 9.9 presents the additional model associations for the MessageFlowAssociation element.

Table 9.9 — MessageFlowAssociation attributes and model associations

Attribute Name Description/Usage

innerMessageFlowRef: Message Flow This attribute defines the Message Flow of the referenced
element (e.g., a Choreography to be used in a Collaboration)
that will be mapped to the parent element (e.g., the
Collaboration).

outerMessageFlowRef: Message Flow This attribute defines the Message Flow of the parent element
(e.g., a Collaboration references a Choreography) that will be
mapped to the referenced element (e.g., the Choreography).

9.4 Conversations

The Conversation diagram is particular usage of and an informal description of a Collaboration diagram. In general,
it is asimplified version of Collaboration, but Conversation diagrams do maintain all the features of a
Collaboration. In particular, Processes can appear within the Participants (Pools) of Conversation diagrams, to
show how Conversation and Activities are related.

The view includes two additional graphical elements that do not exist in other BPMN views:
1. Conversation Node elements (Conversation, Sub-Conversation, and Call Conversation)

2. A Conversation Link

124 Business Process Model and Notation, v2.0

A Conversation isalogical grouping of Message exchanges (Message Flows) that can share a Correlation. A
Conversation isthelogical relation of Message exchanges. The logical relation, in practice, often concerns a business
object(s) of interest, e.g, “Order,” “Shipment and Delivery,” and “Invoice.” Hence, a Conversation is associated with a
set of name-value pairs, or aCorrelation Key (e.g., “Order Identifier,” “Delivery Identifier”), which is recorded in
the Messages that are exchanged. In this way, a Message can be routed to the specific Process instance responsible
for receiving and processing the Message.

Figure 9.16 shows a simple example of a Conversation diagram.

Participant A Participant B

Conversation

/N
__/

Figure 9.16 - A Conversation diagram

Figure 9.17 shows a variation of the example above where the Conversation node has been expanded into its
component Message Flows. Note that the diagram looks the same as a simple Collaboration diagram (asin Figure
9.3, above).

Participant A Participant B
¢ >
< 0]
< 0]
¢ >

Figure 9.17 - A Conversation diagram where the Conversation is expanded into Message Flows

Message exchanges are related to each other and reflect distinct business scenarios. The relation is sometimes simple,
e.g., arequest followed by a response (and can be described as part of a structural interface of a service, e.g., asaWSDL
operation definition). However for commercial business transactions managed through Business Processes, the
relation can be complex, involving long-running, reciprocal Message exchanges, and that could extend beyond bilateral
to complex, multilateral Collaborations. For example, in logistics, stock replenishments involve the following types
scenarios. creation of sales orders; assignment of carriers for shipments combining different sales orders; crossing
customs/quarantine; processing payment and investigating exceptions.

Business Process Model and Notation, v2.0 125

In addition to an orchestration Process, Conversations are relevant to a Choreography, but the Conversations
are not visualized in a Choreography. The difference is that a Choreography provides a multi-party perspective of a
Conversation. This is because the Message exchanges modeled using Choreography Activities concern multiple
Participants, unlike an orchestration Process where the Message sending and receiving elements relate to one
Participant only. Other than the difference in perspective, the notion of Conversation remains the same across
Choreography and orchestration - and the Message exchanges of a Conversation will ultimately to be executed
through an orchestration Process.

Since Collaboration provides a top-down, design-time modeling perspective for Message exchanges and their
Conversations, an abstracted view of the all Conversations pertaining to a domain being modeled is available
through a Conversation diagram. A Conversation diagram, as depicted in Figure 9.18, shows Conversations (as
hexagons) between Participants. This provides a “bird's eye” perspective of the different Conversations which relate
to the domain.

. Delivery Supplier
Retailer Negotiations
Delivery / Dispatch Consignee Shipment Schedule
Plan —
__/ _/
7

AN

Delivery /~
Monitoring ((

/
Detailed Shipment
Schedule

<: Delivery
Planning

R Delivery |/ Dispatch Carrier Planning Shi
Consolidator Plan - Ipper
/\ Carrier /\
_/ (Land, Sea, Rail, or Air) _/
Clearance :>
Monitoring
Clearance Pre- Coverage
Customs/ Notification Notification Insurance
uarantine {)
2 mn
Breakdown & ‘ Locative Service
Service
Truck Breakdown Arrival/Pickup Traffic Optimizatior|

Provision Confirmation

Guidance

Figure 9.18 - Conversation diagram depicting several conversations between Participants in a related domain

Figure 9.18, above, depicts 13 distinct Conversations between collaborating Participants in a logistics domain. As

examples, Retailer and Supplier are involved in a Delivery Negotiations Conversation, and Consignee converses with
Retailer and Supplier through Delivery/Dispatch Plan and Shipment Schedule Conversations respectively. More than
two participants MAY be involved in a Conversation, e.g., Consignee, Consolidator and Shipper in Detailed Shipment

126 Business Process Model and Notation, v2.0

Schedule. The association of Participants to a Conversation are constrained to indicate whether one or many of
Participants are involved. For example, one instance of Retailer converses with one instance of Supplier for Deliver

Negotiations. However, one instance of Shipper converses with multiple instances of Carrier (indicated by the multi-

instance symbol of the Pool for Carrier) for Carrier Planning. Note, multiplicity in constraints of Conversation

diagrams means one or more (not zero or more).

The behavior of different Conversations is modeled through separate Choreographies, detailing the Message
exchange sequences. In practice, Conversations which are closely related could be combined in the same

Choreography models — e.g., a Message exchange in the Delivery Negotiation leads to Shipment Schedule, Delivery
Planning and Delivery/Dispatch Conversations and these could be combined together in the same Choreography.
Alternatively, they could be separated in different models.

Figure 9.19 shows a subset of the larger Conversation diagram of Figure 9.18, above. Figure 9.20 and Figure 9.21 show

the drill down into the “Delivery Negotiations” Sub-Conversation. This expands the Conversation with the

Message Flows, providing a structural view of a Conversation without the “clutter” of sequencing detailsin the same
diagram. Figure 9.19 also indicates the CorrelationKey involved in the Message Flows of the Conversation. For
example, Order Id is necessary for in all Messages of Message Flows in Delivery Negotiation. In addition, some

Message Flows also require Variation Id (for dealing with shipment variations on a per line item basis).

Retailer

Delivery
Negotiations
(Order ID)

Supplier

Figure 9.19 - An example of a Sub-Conversation

Figure 9.20 shows how the Sub-Conversation of Figure 9.19, above, is expanded into a set of Message Flows and a
lower-level Conversation.

R etailer

V ariations
(Variation ID)

Supplier

Figure 9.20 - An example of a Sub-Conversation expanded to a Conversation and Message Flow

— =

Business Process Model and Notation, v2.0

j —

127

Figure 9.21 shows a how the Conversation of Figure 9.20, above, is also expanded into a set of Message Flows,
combined with the previous Message Flows. Note that the newly exposed Message Flows of the lower-level
Conversation will be correlated by the CorrelationKey of both the lower-level Conversation (Variation 1d) and
the higher-level Sub-Conversations (Order Id).

Retailer o Supplier
i _ _ _Planned Order Variations _ __ __
_ _ Planned Order Variations Ack_ _ _]
I: _Retailer Order and Delivery Variations _]

Figure 9.21 - An example of a Sub-Conversation that is fully expanded

In Figure 9.19, above, a hierarchical structure of Conversations can be seen with one set of Message Flows
occurring within another in a parent-child relationship. In particular, after Planned Order Variations (keyed on Order 1d)
at the parent, a number of Message Flows of the child follow till Retailer Order and Delivery Variations Ack (keyed on
Variation Id and Order 1d). The remaining Message Flows (keyed on Order Id) are at the parent level. The child
Conversation, as such, is part of the parent Conversation. Nesting is indicated graphically on a Conversation
symbol (by a“+"), indicating a Sub-Conversation or a Call Conversation calling a Collaboration. Nesting can go
to an arbitrary number of levels.

A common dependency between Conversations is overlap. Overlap occurs when two or more Conversations have
some Message exchanges in common but not others. As an example in Figure 9.18, above, a Message is sent as part
of Detailed Shipment Schedule (keyed on Carrier Schedule Id) to trigger Delivery Monitoring (keyed on Shipment Id).
During Delivery Monitoring, Message could be sent to Detailed Shipment Schedule (to request modifications when
transportation exceptions occur).

Solits and joins are special types of overlap scenarios. A Conversation split arises when, as part of a Conversation, a
message is exchanged between two or more Participants that at the same time spawns a new, distinct Conversation
(either between the same set of Participants or another set). Additionally, no further Message exchanges are shared by
the split Conversations as well as no subsequent merges of them occur. An example is Delivery Planning which leads
to Carrier Planning and Special Cover. A Conversation join occurs when several Conversations are merged into one
Conversation and no further Message exchanges occur in the original Conversations, i.e., these Conversations
are finalized. The generalization of a split and join is a Conversation refactor where Conversations are split into
parallel Conversations and then are merged at a later point in time.

9.4.1 Conversation Node
ConversationNode is the abstract super class for all elements that can comprise the Conversation elements of a
Collaboration diagram, which are Conversation (see page 130), Sub-Conversation (see page 130), and Call

Conversation (see page 131).

128 Business Process Model and Notation, v2.0

| choreography

(from Choreography) (From Conversations)

+ choreographyRef | *

+ collaboration|

= collaboration
(from Collaboration)
[Eg name : 5tring
g isClosed : Boolean

+ calledCollaborationRef

0.1
. 1 g.1 01
+ collaboratiof Collaboration Q Base.E.'ement
+ collaboration Egid : String

* + conversations

+ messageFlows

=] MessageFlow Eg name :

(from Collaboration) + messageFlowRefs

[Eg name : 5tring N *

* | + participants

] Participant 2.* "
(From Collaboration)

[Eg name : 5tring + participantRefs *

] GlobalConversation

Q ParticipantAssociation
(From Collaboration)

+ participantAssociations /*

0.1

] callconversation
N (From Conversations)

+ correlationkeys *

| CorrelationKey
(From Common)
[Eg name : 5tring

* 4 correlationkeys

0.1

| conversationNode
(From Conversations)
String

+ conversationModes

0.1 /. + subConversation

[subConversation
(From Conversations)

] conversation
(from Conversations)

Figure 9.22 - Metamodel of ConversationNode Related Elements

ConversationNodes are linked to and from Participants using Conversation Links (see page 132).

The ConversationNode element inherits the attributes and model associations of BaseElement (see Table 8.5).

Table 9.10 presents the additional attributes and model associations for the ConversationNode element.

Business Process Model and Notation, v2.0

129

Table 9.10 — ConversationNode Model Associations

Attribute Name Description/Usage

name: string [0..1] Name is a text description of the ConversationNode element.
participantRefs: Partici- This provides the list of Participants that are used in the ConversationNode
pant [2..%] from the list provided by the ConversationNode's parent Conversation. This

reference is visualized through aConversation Link (see page 132).

messageFlowRefs: A referenceto all Message Flows (and consequently Messages) grouped by a
MessageFlow [0..*] Conversation element.

correlationKeys: Thisisalist of the ConversationNode's CorrelationKeys, which are used to
CorrelationKey [0..*] group Message Flows for the ConversationNode.

9.4.2 Conversation

A Conversation is an atomic element for a Conversation (Collaboration) diagram. It represents a set of Message
Flows grouped together based on a concept and/or a CorrelationKey. A Conversation will involve two or more
Participants.

€ A Conversation isahexagon that MUST be drawn with a single thin line (see Figure 9.23).

O

Figure 9.23 — A Communication element

The Conversation element inherits the attributes and model associations of ConversationNode (see Table 9.10),
but does not contain any additional attributes or model associations.

9.4.3 Sub-Conversation

A Sub-Conversation isaConversationNode that is a hierarchical division within the parent Collaboration. A
Sub-Conversation is a graphical object within a Collaboration, but it also can be “opened up” to show the lower-
level details of the Conversation, which consist of Message Flows, Conversations, and/or other Sub-
Conversations. The Sub-Conversation shares the Participants of its parent Conversation.

€ A Sub-Conversation isahexagon that MUST be drawn with a single thin line (see Figure 9.24).

€ TheSub- Conversation marker MUST be asmall square with a plus sign (+) inside. The square MUST be
positioned at the bottom center of the shape.

130 Business Process Model and Notation, v2.0

Figure 9.24 — A compound Conversation element

The Sub-Conversation element inherits the attributes and model associations of ConversationNode (See Table
9.10). Table 9.11 presents the additional model associations for the Sub-Conversation element.

Table 9.11 — Sub-Conversation Model Associations

Attribute Name Description/Usage

conversationNodes: The ConversationNodes model aggregation relationship allows a Sub-

ConversationNode [0..*] Conversation to contain other ConversationNodes, in order to group
Message Flows of the Sub-Conversation and associate correlation
information.

9.4.4 Call Conversation

A Call Conversation identifies a place in the Conversation (Collaboration) where a global Conversation or a
GlobalConversation isused.

€ IftheCall Conversation calsaGlobalConversation, then the shape will be the same asaConversation,
but the boundary of the shape will MUST have athick line (see Figure 9.25).

€ IftheCall Conversation calsaCollaboration, then the shape will be the same asa Sub-Conversation, but
the boundary of the shape will MUST have athick line (see Figure 9.26).

Figure 9.25 — A Call Conversation calling a GlobalConversation

Figure 9.26 — A Call Conversation calling a Collaboration

The Call Conversation element inherits the attributes and model associations of ConversationNode (see Table
9.10). Table 9.12 presents the additional model associations for the Call Conversation element.

Business Process Model and Notation, v2.0 131

Table 9.12 — Call Conversation Model Associations

Attribute Name Description/Usage
calledCollaborationRef: The element to be called, which MAY be either a Collaboration or a
Collaboratioin [0..1] GlobalConversation. The called element MUST NOT be a

Choreography or a GlobalChoreographyTask (which are sub-
types of Collaboration)

participantAssociations: Participant | This attribute provides a list of mappings from the Participants of a
Association [0..*] referenced GlobalConversation or Conversation to the
Participants of the parent Conversation.

Note - The ConversationNode attribute messageFlowRef doesn't apply to Call Conversations.

9.45 Global Conversation

A GlobalConversation is areusable, atomic Conversation definition that can be called from within any
Collaboration by a Call Conversation.

The GlobalConversation element inherits the attributes and model associations and Collaboration (see Table 9.1),
but does not have any additional attributes or model associations.

A GlobalConversation isarestricted type of Collaboration, it is an “empty Collaboration.”
€ AclobalConversation MUST NOT contain any ConversationNodes.

Since aGlobalConversation does not have any Flow Elements, it does not require
MessageFlo