
Nanosyntax: some key features

Pavel Caha∗

Masarykova univerzita Brno

January 31, 2019

1 Introduction

Nanosyntax (Nano, Starke 2002, 2009; Caha 2009) is a theory of morphosyntax whose central

tenets overlap to some extent with those proposed in Distributed Morphology (DM, Halle and

Marantz 1993, 1994). For instance, DM’s famous dictum of ‘syntax all the way down’ is

something that Nanosyntax would subscribe to just as much as DM. Similarly, both theories

converge on a ‘late insertion’ approach to morphology, where syntactic computation, consisting

minimally of Merge and Move, applies before spell out. The shared features are given in (1).1

(1) Nanosyntax and DM, shared features:

a. Late Insertion: All syntactic nodes systematically lack all phonological features.

The phonological features are supplied – after the syntax – by consulting the Vo-

cabulary Items (lexical entries) in the postsyntactic lexicon.

b. Syntax all the way down: Terminal nodes are organized into hierarchical structures

determined by the principles and operations of the syntax. Since terminal nodes

correspond to units smaller than words, it follows that syntactic principles govern

∗My work on this paper has been supported by the Czech Science Foundation, Grant no. GA17-10144S. I want
to thank Karen De Clercq, Michal Starke and Guido Vanden Wyngaerd for their helpful comments on a previous
version of this paper.

1However, I have to add that the shared features are somewhat compromised by the fact that I had to change the
definitions compared to the wording used in Halle and Marantz (1994) (their literal rendering would make such an
agreement impossible). Nevertheless, I hope to have extracted the spirit correctly in an attempt to show what both
frameworks share, compared to other approaches, such as, e.g., A-morphous Morphology (see Anderson 1992) or
Lexicalist approaches (e.g., Di Sciullo and Williams 1987).

1

the internal structure of words. There is no sharp boundary between the traditional

syntax and morphology.

At the same time, there are also differences. The first major difference is that in Nanosyn-

tax, each morphosyntactic feature corresponds to its own syntactic terminal (cf. Kayne 2005,

Cinque and Rizzi 2010). I will refer to this as “No Bundling.” The second important differ-

ence is that there are no post-syntactic operations in Nanosyntax (“No Morphology,” see, e.g.,

Koopman 2005, Kayne 2010)). In this article, I shall begin from No Bundling, and explain the

idea behind “No Morphology” later on.

Let me start by noting that as a consequence of No Bundling, it follows that any com-

plex object like, e.g., the set of features [1st PLURAL], must be created by (binary) Merge,

and therefore, correspond to a syntactic phrase. This position reflects a more fundamental hy-

pothesis about language, namely that any complex grouping of more primitive building blocks

should be dealt with within a single generative system.

DM does not share this view. Ever since its early days until the most recent incarnations, the

input to syntactic computation in DM are not only terminals with single features, but also com-

plex sets of features, called feature bundles. As Bobaljik (2017) puts it in his recent overview

of the theory, the input to the syntactic computation in DM is “a list of the syntactic atoms

[...]. Items on this list would include [...] (possibly language-particular) bundles of features

that constitute a single node: for example English (plausibly) groups both tense and agreement

(person and number) under a single INFL node in the syntax.” The reliance on ‘syntactically

atomic’ feature bundles is characteristic for the work done in DM despite the fact that a lot of

its home-grown research has been devoted to uncovering the rich structure of these bundles (cf.

Harley and Ritter 2002). In fact, this type of work lays bare a fundamental tension inside the

DM model: on the one hand, it is becoming increasingly clear that feature bundles have a rich

internal structure. On the other hand, this structure cannot be generated by syntax, because it

is already in place when syntax starts assembling such bundles together.

Feature bundles are a point of concern for Nano. As Starke (2014a) puts it, “a ‘feature

bundle’ is equivalent to a constituent,” because “enclosing elements inside square brackets is a

notational variant of linking those elements under a single mother node.” From this perspective,

feature bundles are equivalent to n-ary trees, with n typically greater than 2. Starke further

points out that this is equivalent to having a “second syntax” with “a new type of Merge for

2

the purpose of lexical storage.” Crucially, the issue of what generative system lies behind the

formation of these bundles remains a largely unaddressed question within DM.

Nanosyntax, as already mentioned, entirely dispenses with feature bundles. The framework

(as a core hypothesis about the architecture of grammar) simply rejects the possibility that

feature bundles may be generated outside of the core syntactic computation:

(2) No Bundling (a property of Nanosyntax, but not DM):

The atoms (terminal nodes) of syntactic trees are single features. All combinations of

morphosyntactic features arise as the result of (binary) Merge. Pre-syntactic feature

bundles do not exist, they correspond to phrases assembled by syntax.

The elimination of feature bundles eradicates the residue of Lexicalism in the theory of gram-

mar. To see that, consider the fact that feature bundles are language specific (recall the quote

from Bobaljik’s 2017 introduction to DM). If that is so, then the list of “pre-syntactic building

blocks” from which syntactic structures are constructed in DM is also necessarily language

specific, as used to be the case in Lexicalist theories. DM of course differs from Lexicalist

theories in many important respects, but the idea that syntax begins from language-particular

objects is shared between DM and Lexicalism.

In Nanosyntax, this residue of a language-particular presyntactic lexicon is eliminated.

What we are left with as the building blocks are universal features. Concerning the inven-

tory of such features, Nanosyntax in line with Cartography (Cinque and Rizzi 2010, 55) adopts

“the strongest position one could take; one which implies that if some language provides ev-

idence for the existence of a particular functional head (and projection), then that head (and

projection) must be present in every other language.” As a result, there is no trace left of “a

language particular list that feeds syntax with building blocks,” which completes the shift from

a presyntactic Lexicon to a postsyntacic lexicon.

The goal of this chapter is to further elaborate on the technical consequences of the dif-

ferences highlighted above. I will introduce phrasal spellout and spellout-driven movement as

the essential theoretical tools which allow the theory to capture a range of data while adhering

to the principles introduced above. I will then briefly go through three case studies (on case

marking, comparatives and root suppletion), which, I think, provide a good illustration of how

the shared features and differences play out in the analysis of particular pieces of data.

3

2 Constituent spellout

Once feature bundles are dispensed with, it follows that markers like we, which corresponds to

multiple features ([1 PL]), spell out multiple terminals of the syntactic tree (cf. Vanden Wyn-

gaerd 2018). The first question is how to delimit the sets of terminals that may be spelled out by

a single marker. This question arises because it is not the case that just about any two terminals

may be pronounced together regardless of their position in the tree. To give an example: a

morpheme like we cannot lexicalise the person of the subject and the number of a fronted XP,

so that a sentence like In god we trust would be the spellout of a meaning corresponding to In

god[-s I] trust. Here the bracket in the second sentence encloses two elements that jointly pro-

vide both the feature of the first person and that of a plural, yet their adjacency is not sufficient

for joint spellout. So clearly, some restrictions on which features may be lexicalised together

must be a part of the spellout mechanism: the sheer reduction of the number of morphemes in

a string cannot be the right criterion.2

Starke (2002; 2009; 2014b; 2018) as well as much current work in Nanosyntax propose that

the theoretically simplest way to define sets of terminals eligible for joint spellout is to rely on a

grouping mechanism that is already needed for independent reasons. The sets of terminals that

syntax provides for free are (by definition) constituents, and hence, the zero theory is one where

morphemes spell out constituents (cf. McCawley 1968, Weerman and Evers-Vermeul 2002,

Neeleman and Szendrői 2007, Radkevich 2010 for similar approaches outside of Nanosyntax).

Constructing theories along these lines has been the golden standard of work in genera-

tive grammar. Consider, for instance, the work done on ellipsis or movement. Here, we also

encounter situations where ellipsis/movement targets multiple terminals. The standard way

of explaining why several terminals undergo ellipsis/movement jointly is to say that they are

all contained in a single constituent, and it is this constituent that actually undergoes ellip-

sis/movement. Nanosyntax adopts the same methodology (just applying it to spellout) and

adheres to the view that when multiple terminals are joined inside a single morpheme, this is

so because the morpheme spells out a constituent containing these terminals. All observable

restrictions on joint lexicalisation should follow from this (in the same way as restrictions on

‘joint movement’ or ‘joint ellipsis’).

In following this logic, Nanosyntax not only adheres to a standard theory-building proce-
2Note incidentally that phenomena like these are not completely out of this world; see Blix (2016, sec.6.2) for

a discussion of a morpheme of Pazar Laz, which is able to spell out the number of the object alongside the person
of the subject, provided they form a unit available for spellout.

4

dure, but also increases our model of grammar incrementally (rather than changing it complete-

ly). To see that, consider the fact that where DM has feature bundles located under a terminal,

Nanosyntax has a run-of-the-mill syntactic phrase. However, all terminal nodes of standard

DM (where markers are inserted) are still syntactic nodes in Nano—just phrasal.

This is not so in sequence-based approaches to spellout. These approaches are close to

Nano in that a single morpheme may correspond to several terminals. The difference is that in

this theory, spellout targets multiple terminals that form “a functional/linear sequence” (Abels

and Muriungi 2008, Dékány 2012, Svenonius 2012, Merchant 2015, Haugen and Siddiqi 2016).

These approaches thus lead to a much more radical departure from feature constituency used

in DM. In such approaches, the feature bundles of DM (targeted by insertion) are no longer

constituents at all: they have been replaced by a new type of object, a “sequence.”

2.1 Underspecification

Let me now move on to the observation that if we want to have a theory where morphemes

target phrasal nodes, we must define our insertion principles differently from what is usually

assumed in DM. The reason is that non-terminal insertion clashes with one of DM’s key features

(as defined in Halle and Marantz 1994), namely Underspecification, see (3).

(3) Underspecification (a feature specific to DM). In order for a Vocabulary Item to be

inserted in a terminal node, the identifying features of the Vocabulary Item must be a

subset of the features at the terminal node.

Underspecification is embodied in the well-known insertion principle used in DM, the Subset

Principle, given in an abbreviated form below. Notice that this principle explicitly states that it

governs insertion only at terminal nodes.

(4) The Subset Principle (abbreviated, Halle 1997)

The phonological exponent of a Vocabulary Item is inserted into a morpheme of the

terminal string if the item matches all or only a subset of the grammatical features

specified in the terminal morpheme.

Can this insertion principle be broadened in a way that the Subset Principle could also govern

insertion at phrasal nodes? It turns out it cannot. Consider, for instance, the suppletive com-

5

parative worse. Bobaljik (2012) proposes that it spells out a non-terminal composed of the root
√

BAD and an associated CMPR head. Its lexical entry is as shown in (5):

(5) worse↔ CMPRP

CMPR
√

BAD

To allow for insertion of such lexical items, one could simply drop the restriction on terminal

nodes from the Subset Principle. This would preserve the spirit of Underspecification and, at

the same time, allow insertion into all nodes in general. To reflect the more general nature of

insertion sites in such a reformulation of the Subset Principle, given in (6), I will call it the

‘Generalised’ Subset Principle. The boldfaced parts highlight the modifications introduced in

(6) compared to the standard formulation in (4).

(6) The Generalised Subset Principle (a made-up principle that would fail, if proposed)

The phonological exponent of a Vocabulary Item is inserted into a node if the item

matches all or only a subset of the grammatical features specified in the node.

This principle would allow the insertion of worse (5) into a non-terminal built by syntax, as

shown in (7). The tree here depicts the structure built by syntax, and the bracket indicates that

the spellout of CMPRP is successful, since worse in (6) matches a (trivial) subset of the features

specified inside the CMPRP, namely the root
√

BAD and the CMPR feature.

(7) CMPRP (worse)

CMPR
√

BAD

However, the Generalised Subset Principle would also allow for the CMPRP in (8-a) to be

pronounced by a regular (non-suppletive) root like fast, with an entry as given in (8-b). The

spell out of the CMPRP in (8-a) is allowed because fast is specified for a (proper) subset of the

features contained in the CMPRP node, specifically for the root
√

FAST. This is obviously a

wrong result, since fast does not have a comparative meaning, and so insertion at CMPRP must

be blocked in this case. In fact, taking this logic to its extreme, a whole sentence containing the

root
√

FAST at the bottom could be spelled out as fast.

(8) a. CMPRP (fast)

CMPR
√

FAST

b. fast↔
√

FAST

6

There are various ways in which theories based on Underspecification may block fast in spelling

out the whole CMPRP in (8-a). The main strategy is to augment the Subset Principle by addi-

tional principles that restrict Underspecification at non-terminals. For instance, Bobaljik adopts

the Vocabulary Insertion Principle proposed by Radkevich (2010) for the case at hand; cf. Fea-

ture Portaging in Newell and Noonan (2018) or negative features in Siddiqi (2006). I shall

not discuss these theories in any detail here (see Caha 2018a for the discussion of some po-

tential problems), since the general point is exactly this: in order to allow for non-terminal

spell out, one needs to re-think how insertion works: Underspecification on its own is not

enough. Nanosyntax—rather than proposing additional principles on top of Underspecifica-

tion—replaces Underspecification by a similar (but inverted) condition, namely Overspecifi-

cation. Once Overspecification is adopted, phrasal lexicalisation works with no need for any

additional principles.

2.2 Fusion and the architecture of grammar

In mainstream DM, however, insertion is proposed to target only terminals. Trivially, this move

eliminates the need to augment Underspecification by any additional principles to deal phrasal

spell out. However, the need to associate worse to multiple terminals then requires something

special.3 One possible approach within DM is to introduce a post-syntactic operation called

Fusion. What Fusion does is that it takes the relevant non-terminal as an input, and turns it into

a terminal, see (9).

(9) Fusion: CMPRP

CMPR
√

BAD

→ [CMPR
√

BAD]

The availability of such a proposal rests on a particular architecture of the grammar. In partic-

ular, because of the fact that Fusion does not affect the interpretation of CMPR, Fusion (along

with other similar operations) is assumed to take place on a separate branch of the deriva-

tion that only affects PF. Still, Fusion happens before the insertion of Vocabulary items, which

means that Vocabulary Items must also be inserted at the PF branch, following Fusion (and, as

we shall see, other postsyntactic operations). The overall model is thus as shown in (10) on the

left-hand side, which is a picture taken from Harley and Noyer 1999, slightly simplified).

3It is of course also possibe to deny that worse realises multiple terminals, in which case the CMPR marker
would be silent. See Caha (2018a) for a discussion of the issues that interact with this decision, specifically, what
kind of consequences this has for the so-called *ABA property of paradigms that we will turn to shortly.

7

(10) The architecture of Distributed Morphology (left) and Nanosyntax (right)
Distributed Morphology

Feature bundles

Fusion,
Feature
insertion,
Merger

Lexicon

PF CF

Nanosyntax

Single features

Lexicon

PF CF

The point of Vocabulary-Item insertion is labelled as ‘Lexicon.’ The label is used because it is

here where syntactic features are paired with their pronunciation. (In contrast, I will not use

the term Lexicon for the pre-syntactic list of features or feature bundles, since the pre-syntactic

list does not contain such pairs, at least in Harley and Noyer 1999.) In DM, the Lexicon is

pushed down the PF branch, because, as said, it needs to follow Fusion, which does not feed

interpretation. This, however, leads to a paradox. To see that, consider the fact that the CF needs

to know whether dog or cat has been inserted into the root node. But since the nodes of the

syntactic tree are devoid of phonological and conceptual features (recall (1-a)), this information

is only present in the derivation after Vocabulary Insertion, i.e., after the ‘Lexicon’ box. So in

order for the CF to know which Vocabulary Item has been inserted, it needs to have access to

the stage of the derivation that follows Vocabulary Insertion. This is paradoxical, because the

PF—CF split actually precedes Vocabulary Insertion, so if one sticks to the strict Y-model, CF

should not be able to see which Vocabulary Item has been inserted. The tension is resolved (in

Harley and Noyer 1999) by enriching the model by a direct communication line between the

CF and the PF. This is indicated by the dashed line, which by-passes the syntactic derivation.4

Nano rejects post-syntactic operations, replacing Fusion by phrasal spellout. Therefore, the

Lexicon is not located down on the PF branch, but appears at the juncture of the three systems

(syntax, PF and CF). When a lexical item is inserted at a node, its phonology (e.g., good) is

sent to PF, while the corresponding concept (good’) is simultaneously sent to CF. No additional

direct communication line between the PF branch and the CF is needed. (The meaning of the

4Harley (2014) or Embick and Noyer (2007) provide a different solution to the issue of how conceptual infor-
mation is passed on to CF (without the need for a direct communication line), which I discuss in section 4.2.

8

dashed arrow leading from the Lexicon back to syntax will become clear in section 4.1.)

Even though the existence of Fusion and similar operations complicates the architecture,

mainstream DM has fully embraced the model with Lexicon on the PF branch, preceded by

a number of operations, some of which are listed in (10). As Bobaljik (2017) puts it, in DM,

“the investigation of mismatches between syntactically-motivated representations, and those

observed in the morphophonological string” assumes “a central role,” and “a variety of devices

[=postsyntactic operations] serve together to constitute a theory of possible mismatches.”

In Nano, the theoretical goal is different, namely to develop a unified theory of syntax

and morphology based on No Bundling. On this approach, all such ‘mismatches’ must be

accommodated by updating our syntax. Reference to post-syntactic operations represents a

type of solution that would not be considered satisfactory in Nano.

Note that deciding whether we do—or don’t—need a Morphological Component of the sort

envisaged in DM is not a matter of simple empirical observation (as researchers working in DM

sometimes tend to suggest). This is not to say that facts play no role, but it is an indisputable fact

that for as long as the theory of syntax is not ready and finished once and for all (accounting for

all the facts there are), mismatches between surface forms and syntactic structures are bound to

occur: their very existence does not constitute evidence for anything. The question is rather how

we proceed when mismatches are uncovered: do we treat them as illusions, which disappear

once syntax is properly set up, or do we accommodate the facts by adding ‘mismatch-removing

operations’ on top of an existing theory? Nanosyntax (along with other approaches) rejects

the latter and opts for the former. To express the programmatic resistance of Nanosyntax to a

post-syntactic component through a slogan, Caha (2007) suggested that one should not only

avoid morphological analysis in the privacy of one’s own Lexicon (as Marantz 1997 proposed),

but also in the privacy of one’s own Morphology.

(11) No Morphology (a feature of Nanosyntax). There is no component of grammar other

than syntax that has the power to manipulate syntactic structures. No nodes or features

may be added or deleted outside of syntax, no displacement operations take place

outside of the syntactic computation.

As the chapter unfolds, I would like to give the reader a sense of the technology that Nano uses

to deal with the scenarios that DM covers by the post-syntactic operations given in (10).

9

2.3 Overspecification

As the frst step towards a model without post-syntactic operations, Nanosyntax replaces all

analyses with Fusion by phrasal lexicalisation. To avoid the problems caused by Underspecifi-

cation, Starke (2009) replaces it by Overspecification, see (12).

(12) Overspecification (a feature specific to Nanosyntax). In order for a lexical item to be

inserted in a node, the lexical entry must fully contain the syntactic node, including all

its daughters, granddaughters, etc., all the way down to every single feature dominated

by the node to be spelled out, and in exactly the right geometrical shape.

Technically, overspecification is implemented by the so-called Superset Principle:

(13) The Superset Principle, Starke (2009):

A lexically stored tree L matches a syntactic node S iff L contains the syntactic tree

dominated by S as a subtree.

Once The Superset Principle is in place, non-terminal spell out works as needed (and without

the need to add additional principles). Specifically, worse (recall (5)) can still spell out the

structure [CMPR
√

BAD] in (7), because the syntactic tree is contained in the lexically stored

tree in (5). However, fast (with the entry as in (8-b)) can no longer spell out [CMPR
√

FAST],

because such a syntactic tree is not contained in the entry of fast in (8-b). So all is well.

This is an important result. It shows that once Overspecification is adopted, we no longer

need to search for additional principles that counteract the effects of Underspecification, and

we have a fairly simple insertion rule that in principle applies to all nodes (both phrasal and

terminal), an important achievement in the pursuit of No Bundling.

2.4 Elsewhere

The Superset Principle (just like the Subset Principle) leads sometimes to the result that several

candidate morphemes qualify for insertion at a particular phrasal node. Consider, for instance,

the phrases given in (14) and the lexical entries as in (15).

10

(14) a. F2P

F2 F1

b. F3P

F3 F2P

F2 F1

c. F4P

F4 F3P

F3 F2P

F2 F1

(15) a. α ↔ F3P

F3 F2P

F2 F1

b. β ↔ F4P

F4 F3P

F3 F2P

F2 F1

What we see here is that the lexical entry for β matches all the structures in (14), because it

contains every single one. α matches only (14-a,b), but it does not match (14-c). This means

that for (14-a,b), both α and β are candidates for insertion. In such cases, the entries compete,

and the so-called Elsewhere Condition (Kiparsky 1973) determines the winner. The Elsewhere

Condition says that when two entries compete, the more specific entry wins. In our case, this

is α , because it spells out proper subset of structures compared to β . As a rule of thumb, the

more specific entry is the one that contains fewer superfluous features:

(16) The Elsewhere Condition:

When two entries can spell out a given node, the more specific entry wins. Under the

Superset Principle governed insertion, the more specific entry is the one which has

fewer unused features.

3 Features, Paradigms and the *ABA

With the basics of insertion in place, let me now turn to how the theory is put to use in modelling

morphological paradigms. In a tradition going back at least to Jakobson (1936 [1962]), it has

become customary to characterise the cells of paradigms in terms of more primitive units of

analysis, namely features, where each cell of the paradigm is defined by a unique set of features.

This approach is also widely adopted in DM, where the relevant features usually form a bundle

at the relevant terminal. In Nanosyntax, feature bundles are dispensed with, and so each cell in

a paradigm corresponds to a constituent containing the relevant features.

Consider, for instance, the trees in (14). These trees can be taken to define a paradigm like

the one in (17). Specifically, the tree (14-a) contains the features F1 and F2; these corresponds

11

to the features that characterise the cell on the first row (Cell 1). The tree (14-b) corresponds to

Cell 2 (it contains the same features as Cell 2), and (14-c) corresponds to Cell 3.

(17) An example paradigm

features α matches β matches insertion

Cell 1 F1, F2 yes yes α

Cell 2 F1, F2, F3 yes yes α

Cell 3 F1, F2, F3, F4 no yes β

Consider now in addition that these cells (each cell representing a particular constituent) can be

spelled out by lexical items which contain them. In (15), I have given two lexical entries such

that α contains the features of Cell 2 and Cell 1, and β contains the features of all the cells.

Such lexical entries therefore match the cells of the paradigms as depicted in the table (17).

Where both match, competition arises with a winner determined by the Elsewhere Condition.

The winners are recorded in the final column, and they correspond to the surface paradigm

generated by the system introduced in the previous section.

The interest of “translating” the abstract structures in (14) onto a paradigm like (17) is that

once we realise the possibility of such a “translation,” we can start doing it also the other way

round. If we succeed, we ultimately reduce surface paradigms (the sequences of αs and β s) to

surface manifestations of syntactic structures of a rather familiar kind. A fundamental question

in this enterprise is how we come to know—given a set of forms—what order they come in, so

that we can then decide what structure they correspond to.

An important stepping stone on this path was the investigation of the so-called *ABA pat-

terns. ABA (without the asterisk) refers to a pattern where in a particular arrangement of cells,

the first cell and the last cell are the same, while the middle cell is different. When ABA is pre-

ceded by an asterisk, this means that such a syncretism is not found. As in any area of science,

the goal is to explain why we observe some patterns of behaviour, but never other patterns; so

if *ABA is observed in a paradigm, we want the theory to be able to explain this.

It can be shown that when the cells in a paradigm are ordered in terms of growing complex-

ity (as in (17)), then the *ABA restriction falls out from the theory. Consider the reasoning:

In order for Cell 3 in (17) to be spelled out as β , the entry of β must be as in (15-b) (it must

contain all the features of Cell 3). Now by virtue of containing all the features of Cell 3, and

because we are dealing with a paradigm of growing complexity (by assumption), β necessarily

also contains all the features of Cell 2 and of Cell 1. If that is so, then β also automatically

12

applies in those cells (in virtue of the Superset Principle).

Now since β is in principle applicable in all the cells, the only way how β may fail to

spell out the middle cell is that there is a more specific competitor—α in our case—which

outcompetes β due to the fact that it has fewer superfluous features. Crucially, once we have

β in the most complex cell and α in the middle cell, we realize that the least complex cell

(C1) can never be spelled out by β (which would yield an ABA type of pattern). To see that,

consider the fact that in the setup we have created, both α and β can spell out Cell 1. Further,

since α has fewer features than β , α it will always win when they compete, including Cell 1.

The conclusion to be drawn here is therefore the following: if it is true that surface paradigms

derive from syntactic structures of the sort in (14), we expect such paradigms to exhibit rather

stringent restrictions on syncretism. For this reason, the study of *ABA patterns has been an

important empirical domain to look at within Nanosyntax.5

In one of the first approaches along these lines, Caha (2009) has addressed this issue for case

morphology, and found a number of languages where such constraints have been independently

observed in the existing literature. Moreover, he argued that the results of such studies can be

generalised into a universal linear restriction on syncretism in case, such that in the sequence

NOM—ACC—GEN—DAT—INS—COM, only adjacent functions can be syncretic. Leaving the

subsequent ramifications of this ordering aside (see Hardarson 2016, Starke 2017, Zompı̀ 2017,

Van Baal and Don 2018, Caha 2018b), Caha (2009) proposed that such a constraint can be ex-

plained by organising the cells of case paradigms in a cumulative fashion, as depicted abstractly

in table (17), so that ultimately, the full case structure looks as given in (18).

5See, e.g., McCreight and Chvany (1991), Plank (1991) or Johnston (1996) for the investigation of *ABA
patterns outside of both DM or Nanosyntax. See Bobaljik (2012) for an important discussion of *ABA within
DM, which has provided much inspiration for this kind of work.

13

(18) COMP

F6 INSP

F5 DATP

F4 GENP

F3 ACCP

F2 NOMP

F1 NP

...

The proposal embodied in this structure is that the nominative case (corresponding to NOMP

in (18)) is characterised by the feature F1, the accusative (corresponding to ACCP in (18)) is

derived from the nominative by yet another feature, etc. The proposal has the effect that the

cases NOM—ACC—GEN etc. stand in a containment relation, exactly as the abstract structures

in (14). The labels of the phrasal constituents are apparently exocentric, but this is only for

clarity: the ‘true’ label of the nominative is F1P, but this would be a rather opaque label, so

the non-terminal nodes carry the name of the case, which is defined by the collection of Fs it

dominates (e.g., ACC = [F1, F2]). I am leaving the content of the features aside, see Caha

(2013) for some remarks.

The novel part of this proposal is not so much the idea that case decomposes into various

features; this has been a common stance ever since Jakobson’s (1936 [1962]) pioneering work.

The novel part is rather that each case feature corresponds to a head of its own, which, recall,

is one of the core features of Nano. What is also different from Jakobson is that the features

are privative. In sum, the proposal derives the morphological patterns found in case paradigms

from a type of architecture that is characteristic for syntactic derivations.

By now, a number of researchers working within Nanosyntax have looked at various phe-

nomena through a similar lens, and used *ABA patterns as a tool for uncovering the underlying

features and their hierarchical organisation into ‘nesting’ structures of the type in (18) (see in

particular Starke 2009; Pantcheva 2010; De Clercq 2013; Baunaz and Lander 2018a,c; Lander

and Haegeman 2018; Taraldsen Medová and Wiland 2018). And even though some more re-

cent contributions point out that *ABA patterns can also be derived with non-nesting types of

structures (e.g., Caha 2017a or Bobaljik and Sauerland 2018), this changes nothing to the fact

that for a number of domains, the existence of *ABA patterns has led to the confirmation of an

14

architecture where the atoms of syntax are not feature bundles, but single features.

In DM, the standard treatment of case morphology is different in a way that I think is symp-

tomatic for the larger architectural differences between the frameworks (see Halle 1997; Halle

and Vaux 1998; McFadden 2004; Embick and Noyer 2007; Calabrese 2008). Consider, for

instance, one specific proposal taken from Embick and Noyer (2007), a state-of-the-art paper

on DM. Their feature decomposition, intended to capture the facts of the Latin declension, is

given in (19). I have taken the freedom to re-label their ablative as instrumental, since in Latin,

the ablative marks also instruments.

(19) Case decomposition in DM

NOM ACC GEN DAT INS

Oblique - - + + +

Structural + + + + -

Superior + - - + +

To see the generative power of such a decomposition, consider, for instance, the triplet NOM—

ACC—GEN. In this sequence, no ABA pattern is attested in Latin, which is in line with the fact

that this would be very rare crosslinguistically. In particular, Baerman et al. (2005) report that

if one of NOM/ACC is the same as an oblique case (frequently a genitive), this is going to be the

accusative and not the nominative.6

However, the decomposition in (19) cannot rule out such ABA patterns, and so it does not

allow us to capture the asymmetry reported by Baerman et al. (2005) (cf. McFadden 2017,

Smith et al. 2018). Consider the reasoning: In the proposal (19), the three cases under discus-

sion share the feature [+structural], and so any exponent marked for [+structural] can appear in

all the cases, yielding an AAA pattern (recall that DM uses Underspecification). When such

a ‘default’ AAA pattern interacts with competing entries, ABA patterns emerge. Specifically,

because of the decomposition into equipollent features, it is possible to devise tailor-made com-

petitors for each individual case. Suppose, for instance, that NOM has a dedicated case marker,

B, specified as [-Oblique, +Structural, +Superior]. Its competition with the underspecified

marker A would yield a BAA pattern. However, if B were tailor-made for ACC, competition

would yield ABA, and if B were tailor-made for GEN, we would get AAB. This shows that

within this particular triplet, any pair of cases can be syncretic, which goes against the general-

6Baerman et al. (2005) phrase this as a tendency, see Caha (2018b) for a discussion of some counterexamples.

15

isation observed in the typological literature. Hence, as Caha (2009) argues, the Nanosyntactic

proposal that features are privative, and assembled by Merge, is not only theoretically attractive

(consistent with No Bundling), it allows one to capture important generalisations.

The standard DM account (as described in Embick and Noyer 2007) has an additional

feature that is worth mentioning in this context. Following Marantz (1991) and McFadden

(2004), Embick and Noyer (2007) report that in DM, case features are not a part of the syntactic

derivation at all. They note: “At PF, case features are added to DPs [...], based on the syntactic

structure that the DP appears in. [...] These features are added at PF, and are not present in

the syntactic derivation.” I will refer to such features introduced post syntax as morphological

features, ‘M-features’ for short.

The important point is that the postulation of M-features amounts to the introduction of yet

another generative component (this time post-syntax), where complex feature bundles can be

assembled. In addition, when case is expressed independently of other categories (as in ag-

glutinative languages), such case features would be introduced in a separate node, also created

post-syntax, as Embick and Noyer (2007) make clear in their footnote 25. I find it difficult

to reconcile such an array of structure-building operations with the explicit statement that in

DM, “all complex objects, whether words and phrases, are treated as the output of the same

generative system (the syntax)” (Embick and Noyer 2007). One can of course always back-

track from specific proposals about case features, but the fact remains that from the perspective

of Nanosyntax, the multitude of mechanisms that DM’s architecture makes available is “an

embarassment of the riches,” as Bobaljik (2017) points out.

To make explicit the implications of these findings for the general architecture assumed in

Nano and DM, I will start by quoting a passage from Embick and Noyer (2007), originally

meant as a guideline for comparing Lexicalist and non-Lexicalist approaches. They say: “It

is often objected in discussions of non-Lexicalist versus Lexicalist analyses that the patterns

analyzed syntactically in the former type of approach could potentially be stated in a theory

with a Lexicon. This point is almost certainly correct, but at the same time never at issue. [...]

The Lexicalist position, which posits two distinct generative systems in the grammar, can be

supported only to the extent that there is clear evidence that Lexical derivations and syntactic

derivations must be distinct.”

DM (compared to Nano) has exactly the same issue of multiple systems that can generate (or

minimally provide) complex objects: (i) pre-syntactic feature bundles, (ii) syntax, (iii) feature

16

bundles constructed at ‘PF,’ (iv) nodes inserted at PF. So if the reasoning quoted above is

followed consistently, it must be concluded that Nano has an architectural advantage of exactly

the same sort that differentiates between lexicalist and non-Lexicalist approaches. In particular,

to the extent that feature bundles can be generated by syntax (corresponding to vanilla-flavour

syntactic constituents), they should not be drawn from a pre-syntactic list or created at PF.

4 Cyclic spellout

Another important feature of current work in Nanosyntax is Cyclic spellout (cf. Starke 2018,

Baunaz and Lander 2018b, Caha et al. 2019a).

(20) Cyclic spellout. Spell out must successfully apply to the output of every Merge F op-

eration. After successful spellout, the derivation may terminate, or proceed to another

round of Merge F, in which case a new round of spellout is initiated, and so on.

Cyclic spellout plays a central role in current Nanosyntactic thinking, providing the basis of

an account for a number of phenomena including idioms, root suppletion and affix ordering.

To see how cyclic spellout works, let us assume the very same toy scenario that we have been

working with in (14), only enriched by the idea of cyclic spellout. Suppose then that syntax

merges F1 and F2, forming F2P:

(21) [F2P F2 F1]

After Merge F has applied, spellout applies. Spellout means that the lexicon is searched for

an item matching the phrase in (21). In our toy scenario, F2P is contained in the lexical entry

for both α , recall (15-a), and β , recall (15-b). Recall also that α wins against β due to The

Elsewhere Condition. Spellout is therefore successful.

After the successful application of spellout at F2P, the lexicalisation procedure remembers

minimally that F2P can be lexicalised by α . If no more features are added (we are finished

constructing the intended meaning), the derivation terminates and F2P will ultimately be pro-

nounced as α . However, if we want to add more meaning, the derivation continues—without

being immediately pronounced. Suppose it continues, and that F2P is fed back to syntax for

an additional Merge F operation. The result is that F3 is added, and spellout applies to the

F3P depicted in (22). In (22), the tree contains the information (accessible to the lexicalisation

17

procedure, not to syntax) that F2P has been matched by α at the previous round of spellout.

(22) F3P

F3 F2P (α)

F2 F1

When a tree like (22) is fed to spellout, we again find two possible matches for F3P, namely

α and β , with α again as the winner. The match of α at F3P is remembered, and all previous

matches inside F3P are forgotten (over-ridden). Should no more features be added, F3P would

be pronounced the same as F2P, namely by α .

If we want to add more meaning, (22) is fed back to syntax again, and F4 is added, producing

F4P as shown in (23).

(23) F4P

F4 F3P (α)

F3 F2P

F2 F1

Once again, at spellout, the product of Merge F (namely F4P) must be matched against a lexical

entry. This time, only the lexical entry for β is a match. It is thus remembered as the spellout

of F4P, and α is over-ridden. If no more features are added, F4P is pronounced as β .

Note that lexical entries containing trees do not duplicate syntax in any way (which is sim-

ilar to saying that lexical entries containing phonology do not “duplicate” phonology). The

purpose of the lexicon in Nanosyntax is to link syntactic representations (trees) to representa-

tions legible by phonology (sound) and by the conceptual system (meaning).

Note finally that cyclicity here is neither the same as the notion of a phase as currently

entertained in the syntactic literature (e.g., Chomsky 2001), nor is it meant as its replacement.

The core of Chomsky’s proposal is that some phrasal nodes are special and correspond to

phases, other phrasal nodes are ordinary, and do not correspond to phases. Cyclic spellout

treats all phrasal nodes alike. Phases in Chomsky’s sense are not a part of the standard Nano

toolbox, but they could be easily added; there is no logical incompatibility between cyclic

spellout (cyclic lexical look up) and the idea that some phrasal nodes are special (for instance,

where actual shipping to PF/CF occurs).

There are two empirical domains where cyclic spellout plays an important role. I now visit

18

them in turn.

4.1 Spellout-driven movement

When spellout at a newly formed FP fails, spellout-driven movements take place. The goal of

these movements is to create a configuration where the spellout of FP succeeds.

(24) Spellout-driven movement. When Merge F produces an FP that cannot be spelled

out (no lexical item matches the FP), the FP is rejected at the interface. Syntax then

tries to rescue the structure by performing one in a predefined hierarchy of movement

operations, before it sends the structure for spellout again. A variety of spellout-driven-

movement operations may apply until spellout at FP succeeds. Once lexicalisation

succeeds, the derivation either terminates or continues by Merge F.

Spellout movements are different from standard feature driven movements in that they have

no effect on interpretation, they are strictly local (inverting the order of two adjacent phrases),

and show no reconstruction effects (there is no evidence for two interpretation sites). Within

Nanosyntax, spellout-driven movement is used as a replacement for the traditional head move-

ment as well as for DM’s Merger. The machinery is also related to the U20 type of movements

proposed in Cinque (2005). However, wh-movement, focus movement, etc. are of a differ-

ent kind and contrast with spellout-driven movement on all three properties given above (they

affect interpretation, they can cross multiple phrases, they show reconstruction effects).

The algorithm for spellout-driven movement is given in (25). It is basically a version of the

algorithm as presented in Starke (2018), and I will explain its workings step by step.

(25) Spellout Algorithm

a. Merge F and spell out.

(i) If (a) fails, try spec-to-spec movement of the node inserted at the previous

cycle, and spell out.

(ii) If (a.i) fails, move the complement of F, and spell out.

b. If (a.ii) fails, remove F from the main workspace. Start a new workspace, and

build a phrase containing F that can be spelled out. Once done, Merge that phrase

back with the main projection line.

19

In the previous section, we have already informally talked about how (25-a) works. What we

shall now see in more detail is what happens when spellout fails. I am going to ilustrate the

algorithm on a fragment of data discussed in Caha et al. (2019a) (CDV henceforth). Once the

system is introduced, I show that it is capable to replicate derivations that have been treated by

post-syntactic Merger in DM.

The goal of CDV’s paper is to capture alternations in comparative marking in Czech, En-

glish and other languages. Beginning with Czech, the basic contrast is illustrated in (26).

(26)
FULL MARKING REDUCED MARKING

POS CMPR GLOSS POS CMPR GLOSS

chab-ý chab-ějš-ı́ ‘weak’ slab-ý slab-š-ı́ ‘weak’

kulat-ý kulat-ějš-ı́ ‘round’ bohat-ý bohat-š-ı́ ‘rich’

jist-ý jist-ějš-ı́ ‘certain’ tlust-ý tlust-š-ı́ ‘fat’

The table shows two different classes of comparatives in Czech. The first class—which is the

productive one—can be seen on the left, and it forms comparatives by the suffix -ějš. The

marker appears in a position preceding the final agreement marker -ı́ (obligatory in Czech).

The second class uses a reduced marker to the same effect, namely -š. There does not seem to

be any straightforward way of deciding which adjective forms which type of comparative; this

seems to be to a large extent an arbitrary property of a particular root (though frequency and

phonology play a role, see Křivan 2012). In what follows, I will use the examples on the first

row (both meaning ‘weak’) to illustrate the working of the theory.

CDV give various reasons to believe that the non-reduced marker -ějš decomposes into -

ěj and -š, where the latter marker is shared between the two comparatives. For instance, the

comparative adjective chab-ěj-š-ı́ ‘weaker’ has a corresponding comparative adverb chab-ěj-i,

which lacks the -š, suggesting that -š has an independent life on its own. The two classes thus

differ as shown below, with the final agreement omitted:

(27) Two classes of comparatives

a. √ -ěj -š

b. √ -š

Taking the bi-morphemic nature of the comparative in (27-a) as a starting point, CDV propose

20

that in the morphosyntactic structure, two comparative projections must be present, where the

lower one is pronounced as -ěj, and the higher one as -š (cf. Caha 2017b, De Clercq and

Vanden Wyngaerd 2017). This is schematically depicted in (28-a), where the comparative

markers appear on top of a QP. QP corresponds to a gradable adjective, and decomposes into

the gradability head Q and the property head A (not shown in the tree).

(28) a. CMPR2P

CMPR1P

QP

chab

CMPR1

-ěj

CMPR2

-š

b. CMPR2P

CMPR1P

CMPR1 QP

...

CMPR2

-š

slab

In this setting, (28-b) encodes the proposal that Class 2 adjectives lack CMPR1 -ěj because their

roots spell out a phrasal projection that includes CMPR1 as well as the QP. The structures are

simplified, and I elaborate on them further below. However, what can be seen right away is that

the two classes of roots can be easily distinguished in the lexicon as follows:

(29) a. chab↔
QP

...
↔WEAK

b. slab-↔ CMPR1P

CMPR1 QP

...

↔WEAK

With such entries, both roots can spell out the QP (due to the Superset Principle), and appear

as such (without any affixes) in the positive degree (which corresponds precisely to the QP). In

the comparative, a difference shows up. The chab root, given in (29-a), still spells out QP only,

and needs additional affixes to express CMPR1 (-ěj) and CMPR2 (-š). The slab root, however,

is able to spell out CMPR1 on its own, and combines only with CMPR2 -š. It is interesting

to note that this way, we state the selection requirements between the root and the particular

comparative suffix using the variable size of the lexical tree associated with the root. There

is no need for a statement of the sort ‘this root combines with -š’ or ‘this root combines with

-ěj-š;’ such combinatorial statements simply fall out from the lexical difference in the size of

the tree associated to the two classes of roots.7

Let me now describe how exactly spellout works in Class 1 (non-reduced marking). The

derivation begins by forming a QP. Such a QP is contained in both lexical entries in (29), and

7This is an interesting proposal for allomorphy in general, and there is an ongoing work that investigates this
option (see, e.g., Holaj 2018), but I leave this aside here for reasons of space.

21

so both roots can be inserted. I am assuming here (following CDV) that the choice of the root

is free, and not subject to Elsewhere reasoning (cf. Harley and Noyer 1999). Suppose that

the root in (29-a) (chab) is selected. QP is thus successfully spelled out, and the derivation

continues by adding CMPR1, forming CMPR1P. When this happens, the structure is again sent

for spellout. The structure now looks as in (30-a):

(30) a. CMPR1P

CMPR1 QP (chab)

...

b.

QP (chab)

...

CMPR1P

CMPR1

(30-a) cannot be spelled out by the root chab (its lexical entry does not contain CMPR1), and so

the output of MergeF (CMPR1P) ends up without a spellout. The structure is therefore rejected

at the interface, and Merge F cannot continue. A repair spellout-driven movement is therefore

attempted. The various options of this movement are always applied in the succession given in

(25) (no look-ahead as to whether a particular step will succeed or not).

The first option is moving the Spec of the complement. For our case, this entails that the

movement of Spec,QP should be tried first, but QP has no movable Spec in (30-a), so this

option is skipped. The next option down the list is the movement of the full complement,

which is the QP. The output of such a movement is shown in (30-b). Note that QP leaves no

trace inside CMPR1P. According to Starke (2018), this is a general property of spellout-driven

movement, and this is also how it differs from, e.g., wh-movement (recall that spellout-driven

movement, unlike wh-movement, never shows any reconstruction effects, and so there is never

any evidence for two different interpretive positions).

After movement, the spell out of CMPR1P is tried again. CMPR1P now lacks the QP inside,

and so there is a chance that lexicalisation succeeds. We know that it does in Czech, inserting

the marker -ěj. Its lexical entry according to CDV is therefore as shown in (31). It is easy to see

that this entry perfectly matches the CMPR1P in (30-b). (Recall that it is the lower CMPR1P

that has been created by Merge F, and it is therefore this lower node that undergoes spellout.)

(31) -ěj↔ CMPR1P

CMPR1

At this stage, the structure (30-b) is successfully spelled out, and if no more features are added,

it would be pronounced as the sequence of chab and -ěj. Note that as a result of spellout-driven

22

movement, CMPR1P follows the QP, so on the surface, -ěj follows chab. The suffixal nature

of -ěj is determined by the shape of the lexical tree it is associated to in (31). The tree has

just a single feature dependent on the lowest phrasal projection CMPR1P. In a model like that

of Chomsky (1994) (Bare Phrase Structure), such a configuration only arises in syntax when

the second daughter of CMPR1P extracts. And since movement is only to the left (as in Kayne

1994 and many others), this means that -ěj will only ever be inserted as a suffix.

The derivation now proceeds by merging CMPR2 on top of (30-b), with the result shown

in (32). This constituent cannot be spelled out as is, triggering spellout-driven movement.

According to the spell out algorithm, the first operation that must be tried is the movement of

the Spec of CMPR2’s complement. This phrase corresponds to the QP, and so the QP is moved

out, with the result in (33). In Czech, there is no marker to spell the CMPR2P thus formed

(containing the features CMPR1 and CMPR2), and hence, spell out fails.

(32) CMPR2P

CMPR2

QP (chab)

...

CMPR1P (-ěj)

CMPR1

(33)

QP (chab)

...

CMPR2P

CMPR2 CMPR1P (-ěj)

CMPR1

When (33) is rejected, the next option to be tried is complement movement. We start from the

original Merge F structure (32), the complement of the newly added F is moved, producing

(34). CDV propose that the lexical entry for -š is as in (35). This lexical item matches the

CMPR2 in (34) out of which the phrase [chab-ěj] had extracted, and so spell out succeeds,

producing the correct sequence of morphemes chab-ěj-š.

(34)

QP (chab)

...

CMPR1P (-ěj)

CMPR1

CMPR2P

CMPR2

(35) -š↔ CMPR2P

CMPR2

Note that this way, Nanosyntax replicates a roll-up movement type of derivation without the

need to postulate the usual ‘movement’ features on particular heads. In this theory, mirror

23

image orders (in the sense of Baker 1985) arise as a result of the interaction between the spellout

algorithm and the tree shape of lexical entries (Starke 2014b).

I will now briefly show how reduced comparative marking arises in this theory. The deriva-

tion starts again by assembling a QP, which can be spelled out by slab, because it is contained

in its entry, recall (29-b). If we wanted to produce the positive, the derivation would end here,

producing just slab to which AGR would be added. In the comparative, when CMPR1 is added

on top of such an QP, see (36-a), spell out succeeds without any movement, because exactly

such a CMPR1P is contained in the lexical entry of slab in (29-b). CMPR1P is thus successfully

spelled out, and the derivation continues by merging CMPR2 on top, see (36-b).

(36) a. CMPR1P

CMPR1 QP (slab)

...

b. CMPR2P

CMPR2 CMPR1P (slab)

CMPR1 QP

...

This time, spell out fails, and spellout-driven movement is triggered. The first thing to be be

tried is Spec movement. However, the complement of CMPR2 in (36-b) has no Spec, and so

this option is skipped. Complement movement is tried next, producing the structure (37), which

correctly spells out as slab followed by -š:

(37)

CMPR1P (slab)

CMPR1 QP

...

CMPR2P

CMPR2

An important observation is that for different roots, the spellout algorithm produces different

tree shapes, compare (37) with (34). The choice of a particular root thus has a certain (limited)

power to steer the derivation in a particular direction. For example, the lexical item does not

influence the sequence in which features are merged, but it does influence in how the features

are linearly ordered (CMPR1 either precedes or follows the complement).

This turns out to be useful in extending this theory to English, focussing on the alternation

between more intelligent and smart-er. CDV build their analysis around the fact that the two

markers differ in terms of complexity. In particular, -er is simpler than mo-re (it spells out

fewer features). The complexity of more can be interpreted either literally, so that more is

24

segmented as mo-re. However, even in the absence of surface decomposition, the interpretation

tells us that more is the comparative of much, which in Nano necessarily means that more

(which is minimally [CMPR much]) must express more features than -er (CMPR). Importantly,

each feature must correpond to a syntactic head.

CDV implement these observations as follows. First of all, they interpret adjectives like

smart-er as exactly parallel to the Czech reduced comparatives like slab-š ‘weaker,’ with the

final structures as in (38), where spellout-driven movement has moved CMPR1P out of CMPR2P

in a way described for (37). Because of this parallel, the lexical entry of smart will be like the

one of slab in (29-b), i.e., associated to the full CMPR1P.

(38)
CMPR1P

CMPR1 QP

...

CMPR2

CMPR2

slab
smart

-š
-er

Now we know that adjectives like intelligent do not combine with -er. CDV encode this by as-

sociating such adjectives to a QP only, see (39). This yields *intelligent-er, since the two pieces

(intelligent and -er) do not spell out all the features of the comparative (they lack CMPR1).

(39) intelligent↔
QP

...

(40) more↔ CMPR2P

CMPR2 CMPR1P

CMPR1 Q

The lexical entry for more (which does appear in the comparative of intelligent) therefore needs

to spell out both CMPR1 and CMPR2. This is independently supported by the fact that more

on its own is the comparative of much, so it must be able to pronounce all the ingredients of

the comparative meaning—plus the meaning of much. Much in CDV’s system corresponds to

a functional adjective spelling out Q, which lacks any particular property A associated to it.

Therefore, if more is the comparative of much, its lexical entry must be as in (40).

With the lexical entries in place, let us see how the derivation proceeds. Syntax first assem-

bles the QP and spell out finds a match, the item intelligent. The structure is then fed back to

syntax for additional Merge F. CMPR1 is added, but since intelligent cannot spell out such a

phrase, repair movements take place. However, neither Spec movement or complement move-

25

ment produce the right configuration for the spell out of CMPR1 by more. The last option (25-b)

in the spell out algorithm is therefore followed. What the definition says is that we should re-

move F (CMPR1 in our case) from the main derivation, and open a separate derivational space,

where we Merge CMPR1 with something else. This separate derivation is treated similarly to

the main derivation, and the spellout algorithm works as usual. CDV propose that the first thing

which happens when a new derivational space opens is that CMPR (which corresponds to F) is

first attempted Merged with Q, which corresponds to F−1. The result is shown in (41-a), which

spells out as more, because it is contained in the lexical tree of more in (40).

(41) a. CMPR1P

CMPR1 Q

b. CMPR2P

CMPR2 CMPR1 (more)

CMPR1 Q

The derivation of the comparative then continues in the new workspace, adding the next F to

CMPR1P, see (41-b). This structure also spells out as more, and since the intended meaning

has been assembled, the second workspace is closed (merged with the QP intelligent), with the

result as shown in (42):

(42) CMPR2P

CMPR2P (more)

CMPR2 CMPR1

CMPR1 Q

QP (intelligent)

...

What we see here is that more is merged as a pre-modifier of intelligent, which is a consequence

of the geometrical shape of its lexical tree. In particular, the lexical tree of more has two sister

features as its lowest elements. This contrasts with suffixal markers, which only have a single

feature as the bottom-most element. In Nano, the difference between prefixes and suffixes is

thus encoded by the difference in the shape of the lexical tree.8

Note further that Spec formation has the effect that CMPR1 and CMPR2 form a constituent

in (42) to the exclusion of the QP spelled out by intelligent. In DM, such a ‘rebracketing’ (from

the scope order [CMPR1 [CMPR2 QP]] to [[CMPR1 CMPR2] QP]) is often treated as a

8Cf. Taraldsen et al. (2018); De Clercq and Vanden Wyngaerd (2018) for an analysis of prefixes as complex
specifiers.

26

result of post-syntactic Merger. In Nanosyntax, this type of re-bracketing arises as a core part

of the syntactic computation, executed by the Spellout algorithm (25). In particular, when Spec

formation is used during a derivation, Merger type of structures are going to arise.

Let me now compare this analysis with how comparatives are treated in DM. For instance,

in Matushansky (2013), more is the spell out of the very same syntactic Deg head that is spelled

out by -er. The difference between the two spell out shapes is attributed to a post-syntactic much

insertion, where a special node is created in the morphology that has not been present in syntax

and adjoined to Deg. Into this M-node, much is inserted as a last resort support for the affixal

-er in the Deg head.

Such an analysis does justice to the complex nature of more, but accounts for it by a post-

syntactic operation, something that CDV manage to avoid. Usually, in DM, justification for

M-nodes is provided by the observation that they do not contribute to interpretation. In this

particular case, the much part of the comparative more is apparently not needed for interpreta-

tion, since adjectives like smart-er do without it. However, such an observation does not, on

its own, require the existence of post-syntactic operations. In CDV’s analysis, the superfluous

nature of much is also captured, specifically by the fact that Q is present twice in the structure,

once as a part of intelligent, and second, as a part of more. In the latter case, it is introduced

simply as a way for CMPR1 to merge with something, so that the derivation can continue;

hence, the analogy to Matushansky’s much-support is clear (cf. Corver 1997 for the original

idea). The crucial difference is thus not so much about the analytic intuitions here (Matushan-

sky’s paper is rather similar in spirit to the CDV analysis, arguing for syntactic treatment of

comparatives); the difference is that the Nanosyntactic technology allows one to implement

such intuitions without the need to postulate a second generative system with the power to add

heads after syntax (duplicating Merge in Morphology).

In Bobaljik’s (2012) treatment, there is no much-support. Both more and -er spell out ex-

actly the same head. When this head is suffixal, -er surfaces. When it is not, more is inserted. I

shall leave it aside whether (and how) this proposal expresses the fact that more is the compar-

ative of much, and focus rather on the fact that the Morphological component is implicated also

in Bobaljik’s analysis. In order to govern the alternation between more intelligent and smart-er,

he introduces the feature [+M] on roots that have the affix er. This feature triggers the appli-

cation of a post-syntactic Merger operation, which (after syntax) attaches the CMPR head as a

suffix to the adjective. One of the reasons for using post-syntactic Merger is the fact that the

27

two different realisations of the comparative are sensitive to the particular choice of a lexical

item, which—in standard theories—should not influence how syntactic derivations proceed.

Clearly, the present analysis follows a very similar intuition, namely that there is a lexical

difference between the two classes of adjectives such that some combine with more and some

with -er. So again, the issue is rather how this intuition ends up encoded. In CDV, the difference

between the two classes of roots is expressed in terms of how many meaning components the

lexical items pronounce, an indispensable type of lexical variation. Via the cyclic-spellout

algorithm (which ensures that the choice of a lexical item can influence, to a limited extent,

how syntactic derivation proceeds), the difference in the size of the lexical items is reflected by

different structures, as syntax tries to merge the comparative features on top of two different

bases. Crucially, no reference to features like “I trigger post-syntactic merger” is needed, so

any post-syntactic component that effects such instructions is not needed either. However, this

is achieved not by dismissing the idea that the realisation of the comparative in English is a

consequence of a particular lexical choice. This idea is fully embraced, but embedded into a

model of syntax where such an observation can be implemented without invoking post-syntactic

operations.

Finally, on Embick’s (2007) analysis, it is left open as to whether more requires the addition

of an M-head (as in Matushansky’s analysis) or not (as in Bobaljik’s analysis). But similarly

to Bobaljik, he uses a post-syntactic operation of Local Dislocation to bring the affix and the

adjectival root together. The difference between Local Dislocation and Merger is too subtle to

be addressed here (see Matushansky 2013 for a good discussion of the problems associated to

this analysis), and similar remarks thus apply as in the case of Merger.

4.2 Pointers: idioms and root suppletion

The cyclic nature of spellout further opens up the interesting possibility that insertion at higher

nodes can make reference to lexical items inserted at an earlier cycle. A device that makes ref-

erence to a previous cycle is called a pointer in Nanosyntax (Starke 2014b, Caha and Pantcheva

2012, Taraldsen 2012, Vanden Wyngaerd 2018, Caha et al. 2019b).

(43) Pointers. Insertion at a cycle n can make reference to lexical items inserted at cycles

preceding n. A device that allows for such a reference is called a pointer.

28

At least since Bobaljik (2000), a rather similar idea has been also a part of DM. The crucial

difference between DM and Nano is how reference to lexical entries is executed. In DM, this is

relegated to traditional contextual rules: they scan the vicinity of the insertion site, and if they

find what they are looking for, a special allomorph may be inserted. However, such contextual

rules may never change the lexical item they refer to. In Nanosyntax, this is different. In order

to see it, consider the basic shape of an entry with a pointer (as used in Caha et al. 2019b). Such

a lexical item looks as in (44):

(44) γ ↔ FP

F LEXICAL

ITEM 153

Such a lexical item can be used to spell out a node that contains the feature F as one of the

daughters, and the other daughter corresponds to a phrase that has been spelled out by a partic-

ular lexical item (namely 153) at a previous cycle. Concerning the use of the numerical index:

lexical items in general correspond to a particular triplet of phonology, syntax and concept

(where phonology or concept may be empty). For ease of reference, we can assign a numerical

index to each such a triplet. The specific lexical item which is referenced in (44) is thus the one

that has the (arbitrarily assigned) index 153.

Now if at the stage F−1 the lexical item 153 is indeed used to spell out the structure, the

spellout procedure remembers it, and goes for another round of Merge F. This leads to the

addition of F, forming an FP as shown in (45). In the bracket, we once again find the information

that F−1P has been spelled out in a particular way, namely by the lexical item 153. (Recall that

this is a type of information that only spell out has access to, not syntax.)

(45) FxP

Fx F−1P (153)

...

If the derivation reaches a stage like the one in (45), then the the lexical item (44) will be

used to spell out such an FxP. This will lead to the over-riding of the lexical item 153, and its

replacement by the new lexical item, namely (44).

What kind of data do we need pointers for? The initial reason for Starke to introduce

pointers was the need to deal with idioms like kick the bucket. The observation that Starke

29

wanted to capture is that the idiomatic reading is only present in the context of specific lexical

items contained in the idiom; so even though pail can refer to the same object as bucket, kick the

pail lacks the idiomatic reading, which kick the bucket has. To encode the observation, Starke

proposed that idioms are phrasal lexical items which make reference to particular lexical items,

as in (46). Here small caps stand in for the lexical items that the spellout procedure had inserted

at previous cycles.

(46)
KICK

THE BUCKET

↔ ‘DIE’

When such a lexical item is used, it inserts the concept ‘die,’ over-riding the concepts associated

to kick and bucket. Note that the entry is not associated to any phonology, so the phonology of

the relevant entries remains unchanged; they sound exactly like kick, the and bucket.

The same technology can be used to deal with root suppletion. Suppose, for instance, that

we insert the adjective good as the spellout of a QP. Suppose that a CMPR1 head is further

merged with this structure, leading to the configuration as in (47-a). This structure is spelled

out by the lexical item bett in English, which is given in (47-b), over-riding the previous spell

out good. Note that the conceptual information is not over-ridden this time; only the phonol-

ogy is. From this perspective, suppletion is nothing else but the phonological counterpart of

idiomaticity.

(47) a. CMPR1P

CMPR1 QP (good)

...

b. bett↔ CMPR1P

CMPR1 GOOD

As Caha et al. (2019b) point out, this treatment of root suppletion shows some interesting

differences to how root suppletion is treated in DM. DM has from the start assumed that roots

are a-categorial entities, notated as √. Further, as a zero hypothesis, it was assumed that there

is just a single √ in syntax, and that morphological exponents are inserted late into √ nodes

(i.e., post syntax). This is important for modularity, which requires that only such information

is present in a module, which the module can “ read.” Now DM is well aware of the observation

that “[n]o phonological properties of roots interact with the principles or computations of syntax

nor do idiosyncratic Encyclopaedic facts about roots show any such interactions” (Marantz

1995). In an architecture where there is a single √ in syntax, and various morphological roots

30

are inserted late, it follows that syntactic computation will not be able to make reference to

phonological or conceptual information.

The work done in Nanosyntax on the issue of roots concurs with modularity as well, but

differs in one respect. In particular, as Ramchand (2008) proposes, a-categorial √ nodes could

easily be eliminated from syntax all together, and replaced by (sequences of) functional heads.

But the main point is the issue how root suppletion interacts with late insertion of root mor-

phemes, which turns out to be problematic in DM, but not in Nanosyntax. To see this, consider

the fact that among the adjectival roots (smart, fast, etc.) we also find suppletive ones like

good, see (48-a). Suppose further that lexical insertion targets only terminals, as in classi-

cal DM. What would be the entry for bett? The answer is that bett would be the contextual

allomorph of the√ node in the context of a CMPR head, as in (48-b).

(48) a. √ ⇔ smart, fast, good

b. √ ⇔ bett /] CMPR]

Once the entries are set up like this, good is inserted in the positive (bett- does not apply

since the conditions for insertion are not met), while bett- wins as an exponent of √ in the

comparative: both good and bett- are candidates, but bett- wins due to Elsewhere (it is more

specific). However, the problem is that if there is just a single √ in syntax, bett- does not win

only over good, but in fact over any exponent of the √ node. This in effect means that in the

grammar fragment (48), the comparative of any root is going to be spelled out as bett-. Marantz

(1995) notes this, and in an attempt to turn this observation into an advantage, he proposed that
√ suppletion does not exist, and all apparent instances of it involve the exponent of a functional

head. If bett- is a suppletive exponent of a functional head, then it is not a comparative of the
√ node, and it does not compete with items like fast, smart, etc.

However, Harley (2014) as well as Haugen and Siddiqi (2013) have argued, convincingly

to my mind, that √ suppletion exists. In order to implement it, and without running into the

issues noted above, Harley argues that √s must be individuated in syntax (she uses numerical

indexes for this purpose, Embick and Noyer 2007 propose that roots carry their phonology

and meaning through the entire derivation). However, once √s are differentiated in syntax

(in whatever way), the initial observation that, e.g., cat and dog are indistinguishable by the

syntactic computation no longer follows. As soon as the syntax contains individuated roots, it

31

can target them by different sets of rules.9

Pointers are important in that they allow us to account for root suppletion without the need

to distinguish roots in syntax. To see that, recall that the main reason why numerical indexes

on roots were introduced by Harley is to make sure that bett- will not win over fast (they each

spell out a√ node with a different index). This is not needed in a cyclic phrasal spell out model

with pointers: given the lexical entry for bett- in (47-b), there is no reason to expect that this

lexical item would outcompete fast. In particular, if fast had been chosen as the spell out of QP,

then (47-b) is simply not a candidate for spell out at all. This is so because the pointer makes

sure that bett- can only apply when at a previous cycle, good has been inserted.

In sum, cyclic spell out with pointers allows one to entertain a theory where individual roots

are not distinguished in syntax, and, at the same time, such roots are subject to suppletion,

something which is currently impossible in DM.

5 Summary of key features

To sum up, let me repeat here the most important features of the Nano framework as introduced

above, starting from the features it shares with DM:

(49) Nanosyntax and DM, shared features:

a. Late Insertion: All syntactic nodes systematically lack all phonological features.

The phonological features are supplied – after the syntax – by consulting the

Vocabulary Items (lexical entries) in the postsyntactic lexicon.

b. Syntax all the way down: Terminal nodes are organized into hierarchical struc-

tures determined by the principles and operations of the syntax. Since terminal

nodes correspond to units smaller than words, it follows that syntactic principles

govern the internal structure of words. There is no sharp boundary between the

traditional syntax and morphology.

The following properties have been identified as features that differentiate Nano from DM,

though not necessarily from other frameworks (like Cartography Cinque and Rizzi 2010 or
9I note here that systems with roots individuated in syntax avoid the timing paradox discussed in (10). Since

the identity of the root is fixed before the PF—CF split, the PF does not need to directly communicate to CF what
choice it had made. Importantly, such approaches are in the minority, so I only mention this in a footnote. The
main issue is that these approaches fall short of deriving the ‘modularity’ observation that roots like cat and dog
are not distinguished in syntax.

32

work by Kayne 2005, Koopman 2005 and others):

(50) Features differentiating Nano from DM, but not other frameworks:

a. No Bundling: The atoms (terminal nodes) of syntactic trees are single features.

All combinations of morphosyntactic features arise as the result of (binary) Merge.

Pre-syntactic feature bundles do not exist, they correspond to phrases assembled

by syntax.

b. No Morphology. There is no component of grammar other than syntax that has

the power to manipulate syntactic structures. No nodes or features may be added

or deleted outside of syntax, no displacement operations take place outside of the

syntactic computation.

Finally, the following features are specific to Nano and not present in any other framework, as

far as I am aware.

(51) Features specific to Nano:

a. Cyclic phrasal spellout. Spell out must successfully apply to the output of every

Merge F operation. After successful spellout, the derivation may terminate, or

proceed to another round of Merge F, in which case a new round of spellout is

initiated, and so on.

b. Overspecification. In order for a lexical item to be inserted in a node, the lexical

entry must fully contain the syntactic node, including all its daughters, grand-

daughters, etc., all the way down to every single feature dominated by the node

to be spelled out, and in exactly the right geometrical shape.

c. Spellout-driven movement. When Merge F produces an FP that cannot be spelled

out (no lexical item matches the FP), the FP is rejected at the interface. Syntax

then tries to rescue the structure by performing one in a predefined hierarchy of

movement operations, before it sends the structure for spellout again. A variety

of spellout-driven-movement operations may apply until spellout at FP succeed-

s. Once lexicalisation succeeds, the derivation either terminates or continues by

Merge F.

33

References

Abels, Klaus and Peter Muriungi. 2008. The focus particle in Kı̂ı̂tharaka: Syntax and semantics.

Lingua 118: 687–731.

Anderson, Stephen R. 1992. A-morphous morphology, vol. 62. Cambridge University Press,

Cambridge.

Baerman, Matthew, Dunstan Brown, and Greville G. Corbett. 2005. The Syntax-Morphology

Interface. A Study of Syncretism. Cambridge University Press, Cambridge.

Baker, Mark. 1985. The mirror principle and morphosyntactic explanation. Linguistic Inquiry

16: 373–415.

Baunaz, Lena and Eric Lander. 2018a. Deconstructing categories syncretic with the nominal

complementizer. Glossa: a journal of general linguistics 3 1.

Baunaz, Lena and Eric Lander. 2018b. Nanosyntax: the basics. In Exploring Nanosyntax,

edited by Lena Baunaz, Karen De Clercq, Liliane Haegeman, and Eric Lander, pp. 3–56.

Oxford University Press, Oxford.

Baunaz, Lena and Eric Lander. 2018c. Ontological categories. In The Unpublished Manuscript,

edited by Pavel Caha, Karen De Clercq, and Guido Vanden Wyngaerd, pp. 1–18. lingbuz-

z/003993.

Blix, Hagen. 2016. South Caucasian agreement: A Spanning account. Master’s thesis, Univer-

sity of Vienna.

Bobaljik, Jonathan. 2000. The ins and outs of contextual allomorphy. University of Maryland

Working Papers in Linguistics 10: 35–71.

Bobaljik, Jonathan. 2012. Universals In Comparative Morphology. MIT Press, Cambridge,

MA.

Bobaljik, Jonathan and Uli Sauerland. 2018. *ABA and the combinatorics of morphological

features. Glossa 3: 15.1–34.

Bobaljik, Jonathan David. 2017. Distributed morphology.

Caha, Pavel. 2007. The Superset Principle. Ms., CASTL.

34

Caha, Pavel. 2009. The Nanosyntax of Case. Ph.D. thesis, University of Tromsø, Tromsø.

Caha, Pavel. 2013. Explaining the structure of case paradigms through the mechanisms of

Nanosyntax. Natural Language and Linguistic Theory 31: 1015–1066.

Caha, Pavel. 2017a. How (not) to derive a *ABA: the case of Blansitt’s generalization. Glossa

2: 84.1–32.

Caha, Pavel. 2017b. Suppletion and morpheme order: Are words special? Journal of Linguis-

tics 53 4: 865–896.

Caha, Pavel. 2018a. Notes on insertion in distributed morphology and nanosyntax. In Exploring

Nanosyntax, edited by Lena Baunaz, Karen De Clercq, Liliane Haegeman, and Eric Lander,

pp. 57–87. Oxford University Press, Oxford.

Caha, Pavel. 2018b. Syncretism as Merge F. Ms., Masaryk University, lingbuzz/004340.

Caha, Pavel, Karen De Clercq, and Guido Vanden Wyngaerd. 2019a. The fine structure of the

comparative. Studia Linguistica 73 1.

Caha, Pavel, Karen De Clercq, and Guido Vanden Wyngaerd. 2019b. On the difference between
√ and root. Ms., Lingbuzz.

Caha, Pavel and Marina Pantcheva. 2012. Contiguity beyond linearity. Talk at Decennium:

The first 10 years of CASTL.

Calabrese, Andrea. 2008. On absolute and contextual syncretism. In Inflectional Identity, edited

by Asaf Bachrach and Andrew Nevins, pp. 156–205. Oxford University Press, Oxford.

Chomsky, Noam. 1994. Bare phrase structure. MIT Occasional Papers in Linguistics 5: 1–48.

Chomsky, Noam. 2001. Derivation by phase. In Ken Hale. A Life in Language, edited by

Michael Kenstowicz, pp. 1–52. Cambridge, Massachusetts: MIT Press.

Cinque, Guglielmo. 2005. Deriving Greenberg’s universal 20 and its exceptions. Linguistic

Inquiry 36 3: 315–332.

Cinque, Guglielmo and Luigi Rizzi. 2010. The cartography of syntactic structures. In The

Oxford Handbook of Linguistic Analysis, edited by Bernd Heine and Heiko Narrog, pp. 51–

65. Oxford University Press, Oxford.

35

Corver, Norbert. 1997. Much-support as a last resort. Linguistic Inquiry 28: 119–164.

De Clercq, Karen. 2013. A unified syntax of negation. Ph.D. thesis, Ghent University.

De Clercq, Karen and Guido Vanden Wyngaerd. 2017. Splitting up the comparative: evidence

from Czech. Papers of the Linguistic Society of Belgium 11: 1–18.

De Clercq, Karen and Guido Vanden Wyngaerd. 2018. Unmerging analytical comparatives.

Jezikoslovlje 19 3.: 341–363.

Dékány, Éva. 2012. A profile of the Hungarian DP: The interaction of lexicalization, agreement

and linearization with the functional sequence. Ph.D. thesis, Universitetet i Tromsø, Tromsø.

Di Sciullo, Anna-Maria and Edwin Williams. 1987. On the definition of word. MIT Press,

Cambridge, MA.

Embick, David. 2007. Blocking effects and analytic/synthetic alternations. Natural Language

and Linguistic Theory 25 1: 1–37.

Embick, David and Rolf Noyer. 2007. Distributed morphology and the syntax/morphology

interface. In The Oxford Handbook of Linguistic Interfaces, edited by Gillian Ramchand and

Charles Reiss, pp. 289–324. Oxford University Press, Oxford.

Halle, Morris. 1997. Distributed morphology: impoverishment and fission. MIT Working

Papers in Linguistics 30: 425–449.

Halle, Morris and Alec Marantz. 1993. Distributed morphology and the pieces of inflection.

In The View from Building 20, edited by Ken Hale and Jay Keyser, pp. 111–176. MIT Press,

Cambridge, MA.

Halle, Morris and Alec Marantz. 1994. Some key features of distributed morphology. In

Papers on Phonology and Morphology, edited by Andrew Carnie, Heidi Harley, and Tony

Bures, vol. 21 of MIT Working Papers in Linguistics, pp. 275 – 288. Cambridge, Mass.

Halle, Morris and Bert Vaux. 1998. Theoretical aspects of Indo-European nominal morphol-

ogy: The nominal declensions of Latin and Armenian. In Mir Curad: Studies in Honor of

Clavert Watkins, edited by Jay Jasanoff, H. Craig Melchert, and Lisi Olivier, Innsbrucker

Beiträge zur Sprachwissenschaft, pp. 223–240. Institut für Sprachwissenschaft der Univer-

sität Innsbruck, Innsbruck.

36

Hardarson, Gı́sli Rúnar. 2016. A case for a weak case contiguity hypothesis—a reply to Caha.

Natural Language & Linguistic Theory 34 4: 1329–1343.

Harley, Heidi. 2014. On the identity of roots. Theoretical Linguistics 40: 225–276.

Harley, Heidi and Rolf Noyer. 1999. State-of-the-article: distributed morphology. Glot Inter-

national 4: 3–9.

Harley, Heidi and Elizabeth Ritter. 2002. Structuring the bundle: A universal morphosyntactic

feature geometry. In Pronouns: Grammar and Representation, edited by Horst J. Simon and

Heike Wiese, p. 23–39. John Benjamins, Amsterdam.

Haugen, Jason D. and Daniel Siddiqi. 2013. Roots and the derivation. Linguistic Inquiry 44:

493–517.

Haugen, Jason D. and Daniel Siddiqi. 2016. Towards a restricted realization theory: Multimor-

phemic monolistemicity, portmanteaux, and post-linearization spanning. In Morphological

metatheory, edited by Daniel Siddiqi and Heidi Harley, pp. 343–385. John Benjamins, Am-

sterdam.

Holaj, Richard. 2018. Balancing between roots and thematic vowles. In The unpublished

manuscript, edited by Pavel Caha, Karen De Clercq, and Guido Vanden Wyngaerd, pp. 81–

93. Lingbuzz, lingbuzz/003993.

Jakobson, Roman. 1936 [1962]. Beitrag zur allgemeinen Kasuslehre: Gesamtbedeutungen der

russischen Kasus. In Selected writings, vol. 2, pp. 23–71. Mouton, The Hague.

Johnston, Jason. 1996. Systematic Homonymy and the Structure of Morphological Categories.

Some Lessons from Paradigm Geometry. Ph.D. thesis, University of Sydney.

Kayne, Richard. 1994. The Antisymmetry of Syntax. MIT Press, Cambridge, MA.

Kayne, Richard. 2005. Some notes on comparative syntax: With special reference to English

and French. In Movement and Silence, pp. 277–333. Oxford University Press, Oxford.

Kayne, Richard S. 2010. Toward a syntactic reinterpretation of Harris & Halle (2005). In

Selected papers from “Going Romance,” Groningen 2008, edited by R. Bok-Bennema,

B. Kampers-Manhe, and B. Hollebrandese, pp. 145–170. John Benjamins, Amsterdam.

37

Kiparsky, Paul. 1973. ‘Elsewhere’ in phonology. In A Festschrift for Morris Halle, edited by

Stephen Anderson and Paul Kiparsky, pp. 93–106. Holt, Rinehart & Winston, New York.

Koopman, Hilda. 2005. Korean (and Japanese) morphology from a syntactic perspective. Lin-

guistic Inquiry 36 4: 601–633.

Křivan, Jan. 2012. Komparativ v korpusu: explanace morfematické struktury českého

stupňovánı́ na základě frekvence tvarů. Slovo a slovesnost 73: 13–45.

Lander, Eric and Liliane Haegeman. 2018. The nanosyntax of spatial deixis. Studia linguistica

72 2: 362–427.

Marantz, Alec. 1991. Case and licensing. In Proceedings of ESCOL ’91, edited by Benjamin Ao

German Westphal and Hee-Rahk Chae, pp. 234–253. Cornell Linguistics Club, Ithaca.

Marantz, Alec. 1995. A late note on late insertion. In Explorations in generative grammar: A

festschrift for Dong-Whee Yang, edited by Young Sun Kim, Byung-Choon Lee, Kyoung-Jae

Lee, Kyun-Kwon Yang, and Jong-Kuri Yoon, pp. 396–413. Hankuk, Seoul.

Marantz, Alec. 1997. No escape from syntax: Don’t try morphological analysis in the privacy

of your own lexicon. In University of Pennsylvania Working Papers in Linguistics, edited by

Alexis Dimitriadis, Laura Siegel, Clarissa Surek-Clark, and Alexander Williams, vol. 4, pp.

201–225. University of Pennsylvania.

Matushansky, Ora. 2013. More or better: On the derivation of synthetic comparatives and

superlatives in English. In Distributed Morphology Today: Morphemes for Morris Halle,

edited by Ora Matushansky and Alec Marantz, pp. 59–78. MIT Press, Cambridge, MA.

McCawley, James. 1968. Lexical insertion in a transformational grammar without deep struc-

ture. CLS 4: 71–80.

McCreight, Katherine and Catherine V. Chvany. 1991. Geometric representation of paradigms

in a modular theory of grammar. In Paradigms: The Economy of Inflection, edited by Frans

Plank, pp. 91 – 112. Mouton de Gruyter, Berlin, New York.

McFadden, Thomas. 2004. The position of morphological case in the derivation. Ph.D. thesis,

UPenn.

38

McFadden, Thomas. 2017. *ABA in stem-allomorphy and the emptiness of the nominative.

Glossa .

Merchant, Jason. 2015. How much context is enough?: Two cases of span-conditioned stem

allomorphy. Linguistic Inquiry 46: 273–303.

Neeleman, Ad and Kriszta Szendrői. 2007. Radical pro-drop and the morphology of pronouns.

Linguistic Inquiry 38: 671–714.

Newell, Heather and Maire Noonan. 2018. A re-portage on spanning; feature portaging and

non-terminal spell-out. In McGill Working Papers in Linguistics, pp. 156–167. McGill Uni-

versity, Montreal.

Pantcheva, Marina. 2010. The syntactic structure of locations, goals, and sources. Linguitics

48: 1043–1081.

Plank, Frans. 1991. Rasmus Rask’s dilemma. In Paradigms: The Economy of Inflection, edited

by Frans Plank, pp. 161–196. Mouton de Gruyter, Berlin.

Radkevich, Nina. 2010. On Location: The structure of case and adpositions. dissertation,

University of Connecticut, Storrs, CT.

Ramchand, Gillian. 2008. Verb Meaning and the Lexicon. Cambridge University Press, Cam-

bridge.

Siddiqi, Daniel. 2006. Minimize Exponence: Economy Effects on the Morphosyntactic Com-

ponent of the Grammar. Ph.D. thesis, University of Arizona.

Smith, Peter W., Beata Moskal, Ting Xu, Jungmin Kang, and Jonathan David Bobaljik. 2018.

Case and number suppletion in pronouns. Natural Language and Linguistic Theory .

Starke, Michal. 2002. The day syntax ate morphology. Class taught at the EGG summerschool,

Novi Sad.

Starke, Michal. 2009. Nanosyntax: A short primer to a new approach to language. Nordlyd 36:

1–6.

Starke, Michal. 2014a. Cleaning up the lexicon. Linguistic Analysis 39: 245–256.

39

Starke, Michal. 2014b. Towards an elegant solution to language variation: Variation reduces to

the size of lexically stored trees. In Linguistic Variation in the Minimalist Framework, edited

by Carme M. Picalo, pp. 140 – 153. Oxford University Press, Oxford.

Starke, Michal. 2017. Resolving (dat = acc) 6= gen. Glossa 2 1: 104.1–8.

Starke, Michal. 2018. Complex left branches, spellout, and prefixes. In Exploring Nanosyntax,

edited by Lena Baunaz, Karen De Clercq, Liliane Haegeman, and Eric Lander, pp. 239–249.

Oxford University Press, Oxford.

Svenonius, Peter. 2012. Spanning. Ms., CASTL.

Taraldsen, Knut Tarald, Lucie Taraldsen Medová, and David Langa. 2018. Class prefixes as

specifiers in southern bantu. Natural Language & Linguistic Theory 36 4: 1339–1394.

Taraldsen, Tarald. 2012. *ABA and the representation of features in syntax. Talk presented at

BCGL 7, Brussels.

Taraldsen Medová, Lucie and Bartosz Wiland. 2018. Semelfactives are bigger than degree

achievements. Natural Language & Linguistic Theory .

Van Baal, Yvonne and Jan Don. 2018. Universals in possessive morphology. Glossa: a journal

of general linguistics 3 1.

Vanden Wyngaerd, Guido. 2018. The feature structure of pronouns: a probe into multidi-

mensional paradigms. In Exploring Nanosyntax, edited by Lena Baunaz, Karen De Clercq,

Liliane Haegeman, and Eric Lander, pp. 277–304. Oxford University Press, Oxford.

Weerman, Fred and Jacqueline Evers-Vermeul. 2002. Pronouns and case. Lingua 112: 301–

338.

Zompı̀, Stanislao. 2017. Case decomposition meets dependent-case theories. Master’s thesis,

Pisa: Universita de Pisa.

40

