

Rational animal

„Man is a rational animal - so at least I have been told. Throughout a long life I have been looking diligently for evidence in favour of this statement, but so far I have not had the good fortune to come across it."

B. Russell

- What does "RATIONAL" mean?
- Reasonable \& logical
- Unbiased by emotions
- Optimal, given the information available

Rational choice

- Expected Utility Theory:

Expectancy $\times V_{\text {alue }}$

Example 1: Crockery story

Example 1: Crockery story

Example 1: Crockery story

Hsee, C. K. (1998). Less is better: When low-value options are valued more highly than high-value options. Journal of Behavioral Decision Making, 11, 107-121.

Set A:

24 pieces

- Dinner plates 8, all in good condition
- Soup/salad bowls 8 , all in good condition
- Dessert plates 8, all in good condition

Set B:

31 pieces

- Dinner plates 8, all in good condition
- Soup/salad bowls 8 , all in good condition
- Dessert plates 8 , all in good condition
- Cups 8,2 of them broken
- Saucers 8,7 of them broken

Example 1: Crockery story

Hsee, C. K. (1998). Less is better: When low-value options are valued more highly than high-value options. Journal of Behavioral Decision Making, 11, 107-121.

Three groups:

	Offered price Set A(24pcs)	Offered price Set B (31pcs)
Group 1 - simultaneous evaluation	$\$ 30$	$\$ 32$
Group 2 - Set A only	$\$ 33$	-
Group B - Set B only	-	$\$ 23$

Example 2: Dictionary story

Hsee, C. K. (1996). The evaluability hypothesis: An explanation for preference reversals between joint and separate evaluations of alternatives. Organizational behavior and human decision processes, 67(3), 247-257.

Dictionary A:

- Published 1993
- 10,000 entries
- Like new

Dictionary B:

- Published 1993
- 20,000 entries
- Cover torn, otherwise like new

Example 2: Dictionary story

Hsee, C. K. (1996). The evaluability hypothesis: An explanation for preference reversals between joint and separate evaluations of alternatives. Organizational behavior and human decision processes, 67(3), 247-257.

Three groups:

	Offered price Dictionary A	Offered price Dictionary B
Group 1- simultaneous evaluation	$\$ 19$	$\$ 27$
Group 2 - Dictionary A only	$\mathbf{\$ 2 4}$	-
Group B - Dictionary B only	-	$\$ 20$

Example 3: Own data 2018

EXPERIMENT RESULTS - EFFECT OF ORDER OF PRESENTATION ("ANCHORING") AND FRAMING
(Means and 95\% confidence intervals)

Conclusions

- Preference reversal

In certain conditions, our preferences and/or evaluations may change even though the attributes of the objects remain the same.

Rational prioritization (transitive):
A is more than B is more than \mathbf{C}

Irrational prioritization (intransitive):
A is more than B is more than C is more than A
amount
amount
defect

Conclusions

』 Preference reversal

- Evaluability effect

Our evaluation of options is only based on the information immediately available.
We do not consider relative value of possible alternatives if they are not available.

Does this mean our minds are „broken"?

How we think our mind works...

Irrational thinking / decision making

Rational thinking / decision making

How our mind actually works...

HEURISTICS

Conclusions

@ Preference reversal

■ Evaluability effect

- Anchoring

Initial information on one of the alternatives profoundly influences our evaluation of subsequent alternatives $=$ RELATIVE EVALUATION.

Conclusions

- Preference reversal

■ Evaluability effect

■ Anchoring

- Loss aversion

We invest more into avoiding losses than into achieving gains (of the same value).
When negative information is available, we tend to give it special attention and prioritize it.

Loss aversion

Daniel Kahneman

Behavioural economics

Amos Tversky

Risk aversion

People avoid risk and uncertainty.

(Daniel Bernoulli)

Unfortunately, most of our decision-making involves risk and - especially - uncertainty.

Risk $=I$ know the probability of outcome (e.g. gambling - probability of winning can be computed)
Uncertainty $=I$ don't know the probability of outcome

Loss \times risk aversion

Kahneman \& Tversky

Situation A:

You have been given $\$ 1,000$. You are now asked to choose one of these options: 50\% chance to win $\$ 1,000$ OR get $\$ 500$ for sure
50% chance of $\$ 1,000$ or $\$ 2,000$ OR
100% chance of $\$ 1,500$

Situation B:

You have been given $\$ 2,000$. You are now asked to choose one of these options: 50\% chance to lose $\$ 1,000$
OR lose $\$ 500$ for sure
50% chance of $\$ 1,000$ or $\$ 2,000$ OR
100% chance of $\$ 1,500$

Loss \times risk aversion

	Certain \$1,500	Uncertain $\$ 1,000$ or $\$ 2,000$
Situation A: $\$ 1,000$ given 50% chance to win additional $\$ 1,000$ OR get $\$ 500$ for sure	YES!!!	No, thanks.
Situation B: $\$ 2,000$ given		
50% chance to lose $\$ 1,000$ OR lose $\$ 500$ for sure	Not if I can avoid it.	THANKS FOR

Loss \times risk aversion

	Certain $\$ 500$ gain	Uncertain $\$ 1,000$ or $\$ 0$ gain
Situation A: $\$ 1,000$ given		
50% chance to win additional $\$ 1,000$ OR get $\$ 500$ for sure	YES!!!	No, thanks.
Situation B: $\$ 2,000$ given		
50% chance to lose $\$ 1,000$ OR lose $\$ 500$ for sure	Not if I can avoid it.	THANKS FOR

Loss \times risk aversion

	Certain \$500 loss	Uncertain $\$ 1,000$ or $\$ 0$ loss
Situation A: $\$ 1,000$ given		
50% chance to win additional $\$ 1,000$ OR get $\$ 500$ for sure	YES!!!	No, thanks.
Situation B: $\$ 2,000$ given		
50% chance to lose $\$ 1,000$ OR lose $\$ 500$ for sure	Not if I can avoid it.	THANKS FOR

Loss aversion

A matter of FRAMING.

"Let's go for a hike! Adam and Susan said theverpuld also go!"
"Let's go for a hike! Adam and Susan said they would also go, but, unfortunately, Steve cannot make it..."

Loss aversion, preference reversal \& any choice

A matter of FRAMING.
Influenced by CONTEXT.

Irrational behaviour cont.

- Expected Utility Theory:

Expectancy \times Value

How people plan complex projects
 Kahneman's examples:

Estimate

- Plan to write a textbook on decision making
- Estimates of time needed based on available information on resources:
- 1,5 to 2,5 yrs

Reality

- Asked a colleague about other teams who attempted the same
- Only 40% success rate (others abandoned the plan)
- The others took around 10 yrs
- Most teams' resources were better

Planning Fallacy

Kahneman's examples:

Estimate

- New Scottish Parliament building - initial estimate $£ 40$ million
- Estimates of American homeowners of how much kitchen remodelling would cost: \$18,658

Planning Fallacy

People tend to...

- Only consider best-case scenarios
- Disregard "statistics" on actual success rate of previous similar attempts

Why?

- Because we do not consider unexpected events and random disruptive factors, which are almost always present
- As specific information on them is unavailable, we do not pay attention to them

Availability Heuristic

People tend to...

- Rely on immediate examples that come to mind when considering a situation / problem = AVAILABILITY HEURISTIC
- Make decisions based on this immediate information
- Which information is processed influenced by context (different cues remind us of different things)
- The cues may include attributes of the situation, of the present alternatives, of surrounding objects, previous events, inner states, etc.
- In addition, we seem to be "hard-wired" to pay more attention to certain pieces of information rather than others (information presented first, losses, beginnings and endings, unique features, etc.) - systematic biases

Availability heuristic

What the eye doesn't see the heart doesn't ache for.
(Czech proverb)

Additional materials

- Before attempting the first quiz, watch the two videos available in the interactive syllabus in the IS:
Dan Ariely's TED talk on decision making
Daniel Kahneman's TED talk on past, present and future selves
- Recommended good reading on behavioural economics:
Kahneman, Daniel: Thinking, Fast and Slow.
Ariely, Dan: Predictably Irrational.
Ariely, Dan: The Upside of Irrationality.

Next time: Dealing with emotion and motivation in behaviour

Thank you!

