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MULTIPLE REGRESSION AS A GENERAL
DATA-ANALYTIC SYSTEM 1

JACOB COHEN

New York University

Techniques for using multiple regression (MR) as a general variance-accounting
procedure of great flexibility, power, and fidelity to research aims in both manipula-
tive and observational psychological research are presented. As a prelude, the
identity of MR and fixed-model analysis of variance/covariance (AV/ACV) is
sketched. This requires an exposition of means of expressing nominal scale (qualita-
tive) data as independent variables in MR. Attention is given to methods for
handling interactions, curvilinearity, missing data, and covariates, for either un-
correlated or correlated independent variables in MR. Finally, the relative roles of
AV/ACV and MR in data analysis are described, and the practical advantages of
the latter are set forth.

If you should say to a mathematical
statistician that you have discovered that
linear multiple regression analysis and the
analysis of variance (and covariance) are
identical systems, he would mutter something
like, "Of course—general linear model," and
you might have trouble maintaining his atten-
tion. If you should say this to a typical psy-
chologist, you would be met with incredulity,
or worse. Yet it is true, and in its truth lie
possibilities for more relevant and therefore
more powerful exploitation of research data.

That psychologists would find strange the
claimed equivalence of multiple regression
(MR) and the fixed-model analysis of variance
(AV) and covariance (ACV) is readily under-
standable. The textbooks in "psychological"
statistics treat these matters quite separately,
with wholly different algorithms, nomencla-
ture, output, and examples.

MR is generally illustrated by examples
drawn from the psychotechnology of educa-
tional or personnel selection, usually the pre-
diction of some criterion (e.g., freshman grade
point average) from predictors (e.g., verbal

1 This work was supported by Grant No. MH 06137
from the National Institute of Mental Health of the
United States Public Health Service, and by an open
computing grant from Abacus Associates, Inc., New
York, N. Y., to whom grateful acknowledgement is
accorded. The author is also grateful to the members of
the Society of Multivariate Experimental Psychology
for their constructive response when this material was
presented at their annual meeting in Atlanta, Georgia,
November 1966. This work profited greatly from de-
tailed critiques supplied by Robert A. Bottenberg and
Joe H. Ward, Jr., but since not all their suggestions
were followed, they share no responsibility for any
defects in the result.

and quantitative score, high school rank). The
yield is a multiple correlation (R) and a re-
gression equation with weights which can be
used for optimal prediction. The multiple R and
the weights are subjected to significance test-
ing, and conclusions are drawn about the
effectiveness of the prediction, and which
predictors do and do not contribute signifi-
cantly to the prediction.

By way of contrast, AV and ACV are gener-
ally illustrated by pure research, manipulative
experiments with groups subjected to different
treatments or treatment combinations. Means
and variances are found and main effect, inter-
action, and error mean squares computed and
compared. Conclusions are drawn in terms of
the significance of differences in sets or pairs of
means or mean differences. More analytic
yield of one or both of these systems is some-
times presented, but the above is a fair de-
scription of the respective thrusts of the two
methods, and they are clearly different.

The differences are quite understandable,
but the basis for this understanding comes pri-
marily from the history and sociology of be-
havioral science research method and not from
the essential mathematics. MR began to be
exploited in the biological and behavioral sci-
ences around the turn of the century in the
course of the study of natural variation (Gal-
ton, Pearson, Yule). A couple of decades later,
AV and ACV came out of the structure of
(agronomic) experimentation, that is, of arti-

ficial or experimentally manipulated variation,
where the treatments were carefully varied
over the experimental material in efficient and
logically esthetic experimental designs. The
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chief architect here was R. A. Fisher. These
historical differences resulted in differences in
tradition associated with substantively differ-
ent areas and value systems in the psychologi-
cal spectrum (cf. Cattell, 1966).

Yet the systems are, in the most meaningful
sense, the same.

One of the purposes of this article is to sketch
the equivalence of the two systems. In order
to do so, it is necessary to show how nominal
scales ("treatment," religion) can be used as
"independent" variables in MR; the same is
shown for "interactions." It is also necessary
to demonstrate how multiple R* (and related
statistics) can be computed from fixed-model
AV and ACV output. Once the case is made for
the theoretical equivalence of the two systems,
the practical advantages of MR will be pre-
sented, which, given the foregoing, will be seen
to constitute a very flexible general system for
the analysis of data in the most frequently aris-
ing circumstance, namely, where an interval
scaled or dichotomous (dependent) variable
is to be "understood" in terms of other (inde-
pendent) variables, however scaled.

A word about originality. Most of the ma-
terial which follows was "discovered" by the
author, only to find, after some painstaking
library research, that much of it had been antic-
ipated in published but not widely known
works (chiefly Bottenberg & Ward, 1963; Li,
1964). Thus, no large claim for originality is
being made, except for some of the heuristic
concepts and their synthesis in a general data-
analytic system realized by means of MR.

THE EQUIVALENCE OF THE SYSTEMS : NOMINAL
SCALES AS INDEPENDENT VARIABLES

IN MR

Some of the apparent differences in MR and
AC/ACV lie in their respective terminologies.

The variable being analyzed (from AV and
ACV) and the criterion variable (from MR) are
the same, and will be called the dependent
variable and symbolized as Y. The variables
bearing on Y, variously called main effect,
interaction, or covariate in AV and ACV (de-
pending on their definition and design func-
tion), and predictor variables in MR will be
called independent variables, and symbolized
as Xi (i = 1, 2,- • -k). Each X< consumes one
degree of freedom (df). In complex problems
(e.g., factorial design, curvilinear analysis), it is
convenient to define sets of the Xi, each such
set representing a single research variable or
factor.

In the conventional use of MR, the X< are
ordered quantitative variables, treated as
equal interval scales. Thus, in a study of the
prediction of freshman grade point average
(Y), one might have Xi = verbal aptitude
score, X% = quantitative aptitude score, Xs
= percentile rank in high school graduating
class, and X^ = Hollingshead socio-economic
status index. Thus, k = 4, and the question of
sets need not arise (or, they may be thought of
as four sets, each of a single variable). But
what if one wanted to include religion among
the X^ Or alternatively, if the entering class
were to be assigned randomly to four different
experimental teaching systems, how would ex-
perimental group assignment be represented?
More generally, how does one accommodate a
purely nominal or qualitative variable as an
independent variable in MR?

Imagine a simple situation in which a de-
pendent variable Y is to be studied as a func-
tion of a nominal scale variable G, which has
four "levels": groups Gi, G2, G3, and G*. For
concreteness, 7 and G may be taken as having
the following alternative meanings:

Research Area

Social
Psychology

Clinical
Psychology

Attitude toward
United Nations

Suggestibility

TheGSet:Gi,G2,G3 ,G4

Religion: Protestant
Catholic
Jewish
Other

Diagnosis: Paranoid Schizophrenia
Nonparanoid Schizophrenia
Compulsive Neurosis
Hysterical Neurosis
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Physiological Retention
Psychology

Formally, what is being posited is the assign-
ment, not necessarily equally, of each of n cases
into (four) mutually exclusive and exhaustive
groups, no matter whether G is an organismic,
naturally occurring variable or one created by
the experimenter's manipulative efforts on
randomly assigned subjects.

The expression of group membership as in-
dependent variables in MR can be accom-
plished in several ways, all equivalent in a
sense to be later described. The intuitively
simplest of these is "dummy" variable coding
(Bottenberg & Ward, 1963; Suits, 1957).

Dummy Variable Coding

Table 1 presents various coding alternatives
for the rendition of membership in one of four
groups. Columns 1,2, and 3 represent a dummy
variable coding scheme. It involves merely
successively dichotomizing so that each of
3(= g— 1) of the 4( = g) groups is distin-
guished from the remainder as one aspect of
G. For example, on X\ all subjects in Gi are
scored 1 and all others, without differentiation,
are scored 0. Thus, this variable by itself car-
ries only some of the information in the G vari-
able as a whole, for example, Protestant versus
all other, or Paranoid Schizophrenia versus all
other. However, the three variables coded as
in Columns 1, 2, and 3 together exhaust the
information of the G variable. One might think
that a fourth independent variable, one which
distinguishes G* from all others, would be nec-
essary, but such a variable would be redundant.
In the usual MR system which uses a constant
term in the regression equation, it requires no
more than g — 1 independent variables (no
matter how coded) to represent g groups of a
G nominal scale. A fourth Xi here is not only
unnecessary, but its inclusion would result in
indeterminacy in the computation of the MR
constants. This is an instance of a more general
demand on the set of independent variables in
any MR system: no independent variable in
the set may yield a multiple R with the re-
maining independent variables of 1.00. This
constraint on the independent variables (in

Treatment: Drug and Frontal Lesion
Drug and Control Lesion
No Drug and Frontal Lesion
No Drug and Control Lesion

matrix algebraic terms, the demand that their
data matrix be nonsingular or of full rank)
would be violated if we introduced a fourth
variable, since, in that case, any of the four
Xi would yield R = 1.00 when treated as a
dependent variable regressed on the other
three. In terms that are intuitively compelling,
one can see that members of G< are identified
uniquely on the Xi, Z2, X$ vector as 0, 0, 0,
that is, as not Gi, not Gj, and not Ga, thus not
requiring a fourth dichotomous Xi. G4 is not be-
ing slighted; on the contrary, as will be shown
below, it serves as a reference group. Any group
may be designated for this role, but if one is
functionally a control or reference group, so
much the better.2

Before we turn to a consideration of Xi, Xz
and X^ as a set of variables, let us consider
them separately. Each can be correlated with
the dependent variable Y. A set of artificial
data was constructed to provide a concrete
illustration. For n = 36 cases, a set of three-
digit Y scores was written, the cases assigned
to four groups and coded for Xi as described.
The resulting product moment r's (point-
biserial) were ry\ = — .5863, rra = .0391, and
rY3 — .4965. When squared, the resulting
values indicate the proportion of the 7 vari-
ance each distinction accounts for: rVi
= .3437, rV2 = .0015, and rVs = .2465. Thus,
for example, the Protestant versus non-Prot-
estant variable accounts for .3437 of the vari-
! It is of interest to note that information about the

"omitted" group, here Gt (more generally, Go), is
readily recovered. The value for the correlation of the
dichotomy for that group with any variable Z (rzo) is a
simple function of the r's of the other variables with Z
(rz>) and the standard deviations of the Xi, namely

where

<ft — Cwi(« — «i)/»2]*, similarly for an.

When all groups are of the same size, this simplifies to

This relationship will hold whatever the nature of Z; it
need not even be a real variable,—it will hold if Z is a
factor in the factor-analytic sense, unrotated or rotated,
with the rzi being factor loadings.
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TABLE 1

ILLUSTRATIVE CODING FOR A NOMINAL SCALE

scale
variable

G,
G,
G3
G,

Columns

1

Xi«

1
0
0
0

2

X,

0
1
0
0

3

X,

0
0
1
0

4

Xi

1
1

-1
j

5

X,

1
-1

0
0

6

X,

0
0
1

-1

7

Xi

1
1

-1
-1

8

X,

1
j
1

-1

9

X,

1
1

-1
1

10

X,

5
0

-4
6

11

X,

25
0

16
36

12

Jfi

125
0

-64
216

13

Xi

1
-1
-4

1

14

Xj

_7
-1

*6

IS

X,

0
0

24
-1

a Independent variable.

ance in Attitude toward the United Nations
dependent variable, as represented in the
sample.

Whether the .3437 value can be used as an
estimator of the proportion of variance which
Gi versus remainder accounts for in the popu-
lation of naturally occurring G depends on the
way G was sampled. If the n cases of the
sample were obtained by randomly sampling
from the population as a whole so that the
proportion of G\ cases in the sample, n\/n re-
flects their population predominance, .3437
estimates the proportion of variance in the
natural population. However, if G was sam-
pled to yield equal m in the g groups (or some
other nonrepresentative numbers), the .3437
value is projectible to a similarly distributed
artificial population. The statistical purist
would abjure the use of r or r2 (and R or J?2) in
such instances, but if one understands that the
parameters being estimated are for populations
whose Xi characteristics are those of the sam-
ple, no inappropriate errors in inference need
be made, and a useful analytic tool becomes
available.

Although the separate rV,- are analytically
useful, our purpose is to understand the opera-
tion of Xi, X%, X3 as a set, since it is as a set
that they represent G as the four-level nominal
scale. The rV< cannot simply be added up to
determine how much Y variance G accounts
for, since dummy variables are inevitably cor-
related with each other. Mutually exclusive
assignment means that membership in one
group G( necessarily means nonmembership in
any other, Gy, hence a negative relationship.
The product moment r (i.e., the phi coefficient)
between such dichotomies, that is, between
Gi and G,- or Xi and X3- when expressed in

dummy variable form, is

__ / n<ni
rti~ \ (»-»<)(»-n,)

rn
L J

where «,-, HJ are the sample sizes of each group,
and n is the total sample size over all g groups.
When sample sizes are all equal, the formula
simplifies to

1
[2]

that is, the negative reciprocal of one less than
the number of groups; thus, in our running
artificial example, if we assume the four groups
equal in size, the phi coefficients among the Xt

dichotomies are all — \.
The fact that the independent variables

representing group membership are correlated
with each other poses no special problem for
MR, which is designed to allow for this in what-
ever guise it appears. But it does alert us to the
fact that the proportions of Y variance given
by the rVi are overlapping. If we now compute
the multiple R? using Xi, X2, and Xa as inde-
pendent variables, the value we find in the
artificial data is .RV-m = .4458. This is inter-
preted as meaning that G (religion, diagnosis,
or treatment group membership) accounts for
.4458 of the variance in the dependent variable
Y, and in the exact sense ordinarily understood.

Identity with Analysis of Variance

Consider the more familiar AV analysis of
these data. The Y scores can be assembled into
the four G groups and a one-way AV performed.
This yields the usual sums of squares for be-
tween groups (B 55), for within groups (W
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SS), and their total (T SS). If we determine
the proportion of T SS which B SS constitutes,
we have if (eta square), the squared correlation
ratio. This statistic has, as its most general
interpretation, the proportion of variance of
the dependent variable accounted for by
G-group membership, or, equivalently, ac-
counted for by the group F means. (Unfortu-
nately, tradition in applied statistics textbooks
and courses has focused on a narrow, special-
case interpretation of 17 as an index of curvi-
linear correlation. For a broader view, see
Cohen, 1965, pp. 104-105 and Peters & Van
Voorhis, 1940, pp. 312-325 and, particularly,
353-357).

If we compute -rfr-a for the artificial data, we
find

BSS _ 12127.0
r SS ~ 27205.6

= .4458 [3]

Thus, our MR coding procedure yields an
R?Y.IM exactly equal to ify.a, interpretable as
the proportion of F variance for which G ac-
counts. The parallel goes further. It is demon-
strable that the "shrunken" or ^/-corrected R2

(McNemar, 1962, pp. 184-185) is identically
the same as Kelley's "unbiased" squared cor-
relation ratio, epsilon-square (Cohen, 1965,
p. 105; Cureton, 1966; Peters & Van Voorhis,
1940, pp. 319-322).

Furthermore, if one tests either of these re-
sults for significance, one obtains identically
the same F ratio, for identically the same df:

For the .RV.m, using the standard formula
(e.g., McNemar, 1962, p. 283)

F =
(1 - JPr.«,...t)/(n - ft - 1)

(1 - -RV.123...ft)/(w - g)

.4458/(4 - 1)
(1 - .4458)/(36 - 4) = 8.580, [4]

for numerator (regression) df = k = g — 1
= 3 and denominator (residual or error)
df = n — k — \ — n — g = 32.

The significance of if is, of course, the sig-
nificance of the separation of the G groups' Y
means, that is, the usual AV F test of the be-

tween-groups mean square (MS):

between G groups MS (B SS)/(g-1)
~ within G groups MS ~ (W SS)/(n-g)

(12127.0)7(4-1) 4042.33
' (15078.6)/(36-4) 471.21

= 8.580, [5]

for numerator (between G groups) df = g — 1
= 4 — 1 = 3, and denominator (within G
groups, or error) df = n — g = 36 — 4 = 32.

These F ratios must be identical, since B SS
= CRV.iss...*) (total SS), and W SS = (I
- -R2r.i23».*) (total SS). Formula 4 differs
from Formula 5 only in that the total SS
has been cancelled out from numerator and
denominator.

The formulas help clarify the identity of the
two procedures. We obtain another perspective
on why 3(= g — 1) independent variables
carry all the group membership information for
4(= g) groups, —there are only 3 df "associ-
ated with" G group membership. By either the
MR or AV route, the total 55 (or variance) of
Y has been partitioned into a portion accounted
for by G group membership (or by G group Y
means), and a portion not so accounted for
(i.e., within group, residual, or "error"), the
latter, by either route, based on n — g df.

Conceptually, the F ratios can be understood
to be the same because they are testing null
hypotheses which are mathematically equiv-
alent, even though they are traditionally
differently stated:

MR: H0: Population R*r.m=Q
AV: H<>: Population m^mi—m^m^m

If the AV Ho is true, then knowledge of group
membership and the use of group means leads
to the same least squares prediction of the Y
value of a given case as no knowledge, namely,
the grand mean, thus one can account for none
of the variance in Y by such knowledge, hence
-RV.123 = 0, and conversely.

A full MR analysis also yields the regression
coefficients and constant for the regression
equation:

?= JBiXi+BjX, + - - -+5 t X i +4 [6]

where Y is the least-squares estimated ("pre-
dicted") value of Y, the B\ are raw score partial
regression coefficients attached to each X<, and
A is the regression constant or F-intercept,
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that is, the estimated value of F when all Xi
are set at zero. (Its computation is accom-
plished by including a "unit vector" with the
Xi; see Draper & Smith, 1967.)

In any MR problem, a Bi coefficient gives
the amount of the effect in Y expressed in F
units which is yielded by a unit increase in Xi.
But since as dummy variables the Xi are
coded 0 — 1, a unit increase means 1, member-
ship in the group, rather than 0, nonmember-
ship in the group. Solving for the values of the
general regression Equation 6 for the artificial
data, and using dummy variables, we obtain:

F = - 30.34Xi - .56X2 + 21.22X8 + 84.12

Since group membership is all-or-none, the
Bi values give the net consequence of member-
ship in G{ relative to Gt for groups G\, G2, and
G3. Thus,

Fi = Pi = - 30.34(1) - .56(0)
+ 21.22(0) + 84.12 = 53.78

F2 = F2 = - 30.34(0) - .56(1)
+ 21.22(0) + 84.12 = 83.56

F3 = Y, = - 30.34(0) - .56(0)
+ 21.22(1) + 84.12 = 105.34

And G4 has not been slighted, since, sub-
stituting its scores on X\, X2, and Xa, we find:

F4 = F4 = - 30.34(0) - .56(0)
+ 21.22(0) + 84.12 = 84.12.

Thus, one can understand that "J34," the
"missing" reference group's weight, is always
zero, and that therefore Y* = A. The exact
values of the Bi will vary, depending on which
group is taken as the reference group (i.e., is
coded 0,- • •, 0), but the differences among the
Bjs will always be the same, since they are the
same as the differences between the group F
means. That is, whichever the reference group,
the separation of the Bi's in the example will
be the same as that among the values —30.34,
— .56, +21.22 and 0. (For example, if GI is
taken as the reference group, the new Bt are 0,
29.78, 51.56, and 30.33, and the regression
constant A - Fi = 53.78.)

Not only are the £,• meaningful, but also the
multiple-partial correlations with the criterion,
that is, the correlation of F with Xi, partialing
out or holding constant all the other indepen-

dent variables, which for the sake of notational
simplicity, we designate pi. With dummy vari-
able coded Xi, pi can be more specifically
interpreted as the correlation between F and
the dichotomy made up of membership in G,-
versus membership in Go, the reference group.
The pi thus give, in correlational terms, the
relevance to F of the distinction between each
Gi and the reference group.

Furthermore, the pt, Bi, and ft (the stand-
ardized partial regression coefficient) can be
tested for significance by means of t (or equiva-
lently, F with numerator df = 1). Indeed, the
null hypothesis is the same for all three,—the
respective population parameter equals zero.
But for a given X,-, if any one of the three is
zero, all are zero, and the value of / is identical
for all three tests. For the artificial data, the
results are

ft
Pi

-30.34
- .478
- .464

- 2.96

X,

-.56
-.009
-.010

-.05

X3

+21.22
.334
.344

2.07

Thus, the Gi-Gi distinction and also the
Gs-G4 distinction with regard to F are sig-
nificant (two tailed .01 and .05, with 32 df)
while the G2-G4 is not. These are identically
the results one would obtain for t tests between
the respective F means, using the within-group
mean square (with 32 df) as the variance
estimate.

The reader, having been shown the MR-AV
identities, may nevertheless react, "O.K.,
that's interesting, but so what?" Other than
the provision of correlational (or regression)
values, no advantage of MR over AV is claimed
for this problem. But if there were other inde-
pendent variables of interest (main effects,
either nominal, ordinal, or interval; interac-
tions; covariates; nonlinear components; etc.,
whether or not correlated with G or each other),
their addition to the G variable could proceed
easily by means of MR, and not at all easily in
an AV/ACV framework. This possibility is the
single most important advantage of the MR
procedure, and will receive further attention
below.

To summarize, dummy variable coding of
nominal scale data yields the multiple R? and
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F test (proportion of variance accounted for
by group membership and an overall signifi-
cance test) and the group F means, but also
information on the degree of relevance to F of
membership in any given group, G,-, relative to
the remainder (ry,-), and to a reference group in
terms of either regression weights (£,• or ft) or
correlation (pi), as well as specific significance
tests on the relevant null hypotheses. The im-
portance of dummy variable (or other nominal
scale) coding lies not so much in its use when
only a single nominal scale constitutes the inde-
pendent variables, but rather in its ready in-
clusion with other independent variables in MR.

CONTRAST CODING

Another system for representing nominal
data can be thought of as contrast or "issues"
coding. Here, each independent variable car-
ries a contrast (in the AV/ACV sense) among
group means. Each subject is characterized for
each contrast according to the role he plays in
it, which depends upon his group membership.
With all contrasts so represented, the MR
analysis can proceed.

As an example, reconsider the representation
of the G variable. We can contrast membership
neither GI or G2 versus membership in either
G3 or Gn. This could be substantively inter-
preted as, for example, majority versus mi-
nority religions, schizophrenic versus neurotic,
or drug versus no-drug treatment condition.
The coding or scoring of this issue may be
rendered as in Column 4 in Table 1: the value
1 is assigned the subjects in Gi and G2 and the
value — 1 to those in Ga and G±, as is done in
the computation of orthogonal contrasts in AV
(e.g., Edwards, 1960). Actually, any two differ-
ent numbers can be used to render this issue by
itself, but there are advantages for some pur-
poses in using values which sum to zero. The
simple correlation between the dependent vari-
able and this Xi is a point-biserial correlation
(as were the dummy variable correlations)
whose square gives directly the proportion of F
variance attributable to the GI, G2 versus G3,
Gt distinction. For the artificial data, the rVi
= .2246 (TYI = — .4739). This is a meaningful
value which gives the size of the relationship
in the sample. This ryi can be tested for sig-
nificance, and confidence limits for it (or for

rVi) can be computed by conventional
procedures.

Other issues or contrasts can be rendered as
independent variables. For example, a second
issue which may be rendered is the effect on F
of the Gi versus G2 distinction, ignoring G% and
G4. A third issue may be the analogous Gs
versus G4 distinction, ignoring Gi and G2.
These are rendered, respectively, in Columns
5 and 6 in Table 1. Each yields an r and r2 with
the criterion which is interpretable, testable
for significance, and confidence boundable.

Beyond the separate correlations of these
three contrast variables, there is the further
question of what their combined, effect is on F.
We compute the .RV-m and F and obtain ex-
actly the same values as when the arbitrary or
dummy variable coding was used, .4458 and
8.580 (for the artificial data). This follows from
the fact that the three independent variables
satisfy the nonsingularity condition, that is, no
one of them gives a multiple R with the other
two of unity. This is a necessary and sufficient
condition for any coding of g — 1 independent
variables to represent G (see next section).

As before, the partial statistics, that is, the
pi, Bi and ft and the common / test of their
significance are also meaningful. If the inde-
pendent variables all correlate zero with each
other, the ft will equal their respective rn.
That this must be the case can be seen from
the fact that each rV« represents a different
portion of the F variance whose sum is the
multiple .RV.m and thus the relationship
-RV.123 = Srr,-ft = 2>V, must hold. The X,-
as presented in Columns 4, 5, and 6 will be
mutually uncorrelated if and only if the group
sample sizes are equal. If they are not equal, the
correlations among the Xi will be nonzero,
which means that the contrasts or issues posed
to the data are not independent. Such would
be the case, in general, in the example if it were
religion or diagnosis which formed the basis for
group membership, and the actual natural
population randomly sampled. Given unequal
Hi for the four samples, although it is possible
to make the three contrasts described above
mutually uncorrelated, the coding of Columns
4, 5, and 6 does not do so. The scope of this
article precludes discussion of the procedures
whereby contrasts are coded so as to be uncor-
related. We note here merely that although it is



MULTIPLE REGRESSION IN DATA ANALYSIS 433

always possible to do so, it is not necessarily
desirable (see below).

Since, in AV terms, the between-groups SS
can be (orthogonally) partitioned in various
ways, there are sets of contrasts other than the
set above which can be represented in the
coding. A particularly popular set is that auto-
matically provided by the AV factorial design.
If the four groups of this example are looked
upon as occupying the cells of a 2 X 2 design
(an interpretation to which the physiological
example of drug versus no drug, frontal lesion
versus control lesion particularly lends itself),
each of the usual AV effects can be represented
as Xi by the proper coding. The first is the
same as before, and contrasts G\ and G2 with
Gi and G^ for example, the drug-no-drug
main effect, reproduced as Column 7 of Table
1. The second main effect, for example, frontal-
control lesion, contrasts Gj. and Ga with G2 and
G4 and is given by the coding in Column 8.
This latter X^ gives ry?, the (point-biserial) r
for (e.g.) site of lesion with the dependent vari-
able (e.g.) retention, and rVa is the proportion
of F variance accounted for by this variable.

The remaining df is, as the AV has taught us,
the interaction of the two main effects, for
example, Drug-No-Drug X Frontal-Control
Lesion. It can always be rendered as a mul-
tiplicative function of the two single df
aspects of the main effects. Here, it is simply
coded as the product of each group's "scores"
on Xi and X2 (given as Column 9 in Table 1):
1X1 = 1, 1X-1=-1, -1X1=-1,
and — 1 X — 1 = 1. Rendering the inter-
action as X3, one can interpret it as carrying
the information of that aspect of group mem-
bership which represents the joint (note, not
additive) effect of the drug and frontal lesion
conditions. Its (point-biserial) ryz is an ex-
pression in correlational terms of the degree of
relationship between Y and the joint operation
of drug and lesion site. rVs gives the proportion
of F variance accounted for by this joint effect.

In the example, these three issues are
conceptually independent, thus it would be de-
sirable that the Xi be uncorrelated, that is,
r12 = r13 = r23 = 0. The coding values given
in Columns 7, 8, and 9 of Table 1 will satisfy
this condition if (and only if) the sample sizes
of the four cells are equal. (If not, other coding,
not discussed here, would be necessary.)

The conceptual independence of the issues
arises from the consideration that they are both
manipulated variables. When this is the case,
it is clearly desirable for them to be represented
as mutually uncorrelated, since then the /3y,-
= rri and the .RV-m is simply a sum of the
separate rV,. Thus, the total variance of F ac-
counted for by group membership is unambigu-
ously partitioned into the three separate
sources. Further, the factorial AV F test values
of each of the separate (one df) effects is identi-
cal with the t2 of the analogous MR partial
coefficients (&, Bt, or pi).

However, whether one wishes to represent
the issues as uncorrelated depends on whether
they are conceptually independent and the
differing «,• are a consequence of animals ran-
domly dying or test tubes being randomly
dropped on the one hand, or whether they carry
valid sampling information about a natural
population state of affairs. Assume F is a
measure of liberalism-conservatism and recon-
sider the problem with the groups reinterpreted
as d: low education, low income (n\ = 160),
G2: low education, high income (w2 = 20),
Ga: high education, low income (w3 = 80), and
G.»: high education, high income («4 = 100).
These unequal and disproportional «,• carry
valid sampling information about the univari-
ate and bivariate distributions of education
and income as defined here, the product mo-
ment fu (phi) between them (coded as in
Columns 7 and 8) equalling .4714. They may
also be correlated with their interaction. One
would ordinarily not wish to render these
effects as uncorrelated, since the resulting Xi
would be quite artificial, but rather by the
coding given in Columns 7, 8, and 9, where,
again, X3 is simply the XiX* product.

Note that whether the X< are correlated or
uncorrelated, or whether the m are equal or un-
equal, all of these coding systems yield the
same .RV.m and associated F.

Two systems of rendering nominal scale
(group membership) information into inde-
pendent variables have been described: dummy
variable coding and contrast coding. They re-
sult in identically the same multiple B? (and
associated F) but different per independent
variable partial statistics which are differently
interpreted. Either involves expressing the
nominal scale of g levels (groups) into g — 1
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independent variables, each carrying a distinct
aspect of group membership whose degree of
association and statistical significance can be
determined.

Nonsense Coding

It turns out, quite contraintuitively, that if
one's purpose is merely to represent G so that
its R*Y and/or its associated F test value can be
determined, it hardly matters how one codes
Xi, X2)- • • , Xe_i. Any real numbers, positive
or negative, whole or fractional, can be used in
the coding subject only to the nonsingularity
constraint, that is, no Xi may have a multiple
R of 1.00 with the other independent variables.

Consider, for example, the values of Columns
10-12 of Table 1. The numbers for Xi in Col-
umn 10 were obtained by random entry into a
random number table and their signs by coin
flipping. Column 11 for X2 was constructed by
squaring the entries in Column 10, and Column
12 for Xa by cubing them. Powering the X\
values assures the satisfaction of the nonsingu-
larity constraint. Now, using these nonsense
"scores" to code G and the same F values of
the artificial example, we find the same UV-ias
of .4458 with associated F = 8.580!

Or, alternatively, the coding values of
Columns 13, 14, and 15 were obtained by hap-
hazard free association with a quick eyeball
check to assure nonsingularity. They, too, yield
#V.m = .4458 and F = 8.580.

Why these, or any other values satisfying
nonsingularity will "work" would require too
much space to explain nontechnically. Ulti-
mately, it is a generalization of the same princi-
ple which makes it possible to score a dichot-
omy with any two different values (not only
the conventional 0 and 1) and obtain the same
point-biserial r2 against another variable.

Of course, the statistics per X*, that is, rYi,
pi, Bi, fti, are as nonsensical as the X»-. But the
regression equation will yield the correct group
means on F, and, as noted, J?2 and its F remain
invariant. Thus, with the aid of an MR com-
puter program and a table of random numbers
(or a nonsingular imagination), one can dupli-
cate the yield of an AV.

Apart from its status as a statistical curiosity,
of what value is the demonstration that one
can simulate an AV by means of an arbitrarily
coded MR analysis? Not much, taken by itself.

However, despite this disclaimer, it should be
pointed out that for most investigators, the
yield sought from the AV of such data is the
significance status of the F test on the means,
which the MR provides; the latter also "nat-
urally" yields, in R", a statement of proportion
of variance accounted for. True, this is identi-
cally available from the AV in if, but this is not
generally understood and computed. The MR
approach has the virtue of calling to the atten-
tion of the investigator the existence of a rho
(relationship) value and its distinction from a
tau (significance test) value (Cohen, 1965, pp.
101-106), an issue usually lost sight of in AV
contexts (but, see Hays, 1963, pp. 325-333).

But if it hardly matters how we score G and
still get the same .RV.m and F ratio, we can
score it in some meaningful way, one which
provides analytically useful intermediate re-
sults, that is, by dummy variable or contrast
coding. For other approaches to nominal scale
coding, see Bottenberg and Ward (1963) and
Jennings (1967).

ASPECTS OF QUANTITATIVE SCALES
AS INDEPENDENT VARIABLES

As noted in the introduction, psychologists
are familiar with the use of quantitative vari-
ables as independent variables in MR. This,
indeed, is the only use of MR illustrated in the
standard textbooks. Thus, given duration of
first psychiatric hospitalization as the depen-
dent variable Y, and as independent variables:
age (Xi), Hollingshead SES Index (X2), and
MMPI Schizophrenia (Sc) score (X3), the
psychologist knows how to proceed. But MR
provides opportunities for the analysis of
quantitative independent variables which
transcend this very limited approach.

Curmlinecur Regression

From the enlarged conceptual framework of
the present treatment of MR, we would say
that this analysis is concerned with the linear
aspects of age, SES, and Sc. There are other
functions or aspects of these variables which
can be represented as independent variables.

It has long been recognized that curvilinear
relationships can be represented in linear MR
by means of a polynomial form in powered
terms. The standard Equation 6

Y = B,Xi + -B2X2 + • • -BkXk + A
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is linear in the X{. If the X,- are Xi = Z, X2

= Z2, X3 = Z8,- • -Xk = Zk, the equation is
still linear in the Xi, even though not linear in
Z. The result of this strategem is that nonlinear
regression of F on Z can nevertheless be repre-
sented within the linear multiple regression
framework, the "multiplicity" being used to
represent various aspects of nonlinearity, the
quadratic, cubic, etc. The provision of any
given power « of Z, that is, Z" allows for u — 1
bends hi the regression curve of F or Z. Thus
Z1 or Z provides for 1 — 1 = 0 bends, hence a
straight line, Z2 provides for 2 - 1 = 1 bend, Z3

for 2 bends, etc. In most psychological re-
search, provision for more than one or two
bends will rarely be necessary.

It is the same strategem of polynomial
representation further refined to make these
aspects orthogonal to each other, which is
utilized in the AV, also a linear model, in trend
analysis designs.

A note of caution must be injected here.
Such variables as Z, Z2, and Z8 are in general
correlated, indeed, for score-like data, usually
highly so. Table 2 presents some illustrative
data. In this example, the correlations are
.9479, .8840, and .9846. For reasons of ordinary
scientific parsimony, unless one is working with
a strong hypothesis, we normally think of them
as a hierarchy: how much Y variance does Z
account for? (.5834) If Z2 is added to Z as a
second variable, how much do both together
account for? (.5949) The difference represents
the increment in variance accounted for by
making allowance for quadratic (parabolic)
curvature. In the example, it is a very small
amount,—.0115. If to Z and Z2 we add Z3, the
multiple J?2r.i23 becomes .5956, an increment
over .R2r.i2 of only .0007. Each of these separate
increments, or the two combined can be tested

TABLE 2
ILLUSTRATIVE DATA ON POLYNOMIAL

MULTIPLE REGRESSION

Variable

7 1 — v ^(=* -X-i)
yo / V \
Zi (— A 2^

z» (= X3)

Correlations (r)

Y

.7638

.7582

.7268

Z

.9479

.8840

Z»

.9846

Cumu-
lative

.5834

.5949

.5956

Incre-
ment

.5834

.0115

.0007

„
.1399

-.0116
.0419

for significance. In general, any increment to an
R*Y.A due to the addition of B can be tested by
the F ratio:

(1 - R*Y.A,B)/(n - a - b - 1)

with df = b and (n — a — b — 1), where

[V]

R2y-A,B is the incremented R> based on a + b
independent variables, that is, predicted from
the combined sets of A and B variables,

P?Y.A is the smaller P? based on only a inde-
pendent variables, that is, predicted from only
the A set,

a and b are the number of original (a) and
added (b) independent variables, hence the
number of df each "takes up."

This F test of an increment to R* is much
more general in its applicability than the
present narrow context, and its symbols have
been accordingly given quite general interpre-
tation. It is used several times later in the
exposition, in other circumstances where, be-
cause of correlation among X,-, it provides a
basis for judging how much a set of indepen-
dent variables contributes additionally to Y
variance accounting. Since what is added is
independent of what is already provided for,
this is a general device for partitioning JR2 into
orthogonal portions. Since the size of such
portions depends on the order in which sets are
included, the hierarchy of sets is an important
part of the investigator's hypothesis statement.
The generality of Formula 7 is further seen in
that Formula 4 is actually a special case of
Formula 7, where R*Y.A is zero because no Xi
are used (hence a = 0) and B?Y-B is the R*
based on b (= k) df which is being tested, that
is, an increment of J?2 from zero.

Either set may have one or more independent
variables. Thus, to test the increment of Z2 to Z
alone, assuming total n = 36,

F=-
(.5949-.5384)/l

.0115
:.4051/33

= .934

with df = 1 and 33 (a chance departure).
To test the pooled addition of both Z2 and Z8 to
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Z,

(.5956-.5834)/2
:(l-.5956)/(36-l-2- 1)

.0122/2
\4044/32°

= .483

with df = 2 and 32 (also a chance result).
The need for caution arises in that if one

studies the results of the regression analysis
which uses Z, Z2 and Z8, where the solution of
the partial (regression or correlation) coeffici-
ents is simultaneous, not successive, the three
variables are treated quite democratically.
Each is partialed from the others without favor
or hierarchy. Since such variables are highly
correlated, when one partials Z2 and Z3 from Z,
one is robbing Z of F variance which we think
of as rightfully belonging to it. Table 2 gives
the pi of the three predictors when one treats
them as a set. The values are smaller (reflecting
the mutual partialing), and may be negative
(reflecting "suppression" effects). Because the
pi are so small, they may well be nonsignificant
(as they are here), even though TYZ is signifi-
cant and any of the other variables may yield a
significant increment. Thus, the significance
interpretation of the regression of a set of poly-
nomial terms simultaneously may be quite mis-
leading when the usual hierarchical notions
prevail.

On the other hand, if the analyst's purpose
to portray a polynomial regression fit to an
observed set of data, he can solve for the set
simultaneously and use the resulting MR equa-
tion. For the data used for Table 2, the re-
gression Equation 6 is:

F = 11.70Xi - .50X2 + .25X3 + 55.90

the values being the B{ regression coefficients
and constant, and the Xt successively Z, Z2,
and Z3. One can substitute over the range of
interest of Z and obtain fitted values of F for
purposes of prediction or of graphing of the
function.

There are other means whereby curvilinear
relationships can be handled in an MR frame-
work. Briefly, one can organize an independent
variable Z into g class intervals (ordinarily,
but not necessarily equal in range) and treat
the resulting classes as groups, coding them by
the dummy variable technique described above.

This results in g — 1 independent variables,
each a segment of the Z range. The resulting
R'Y-Q is the amount of F variance accounted for
by Z (curvilinearly, if such is the case) and the
F means for the g intervals, computable from
the resulting raw score regression equation, can
be plotted graphically against the midpoints
of the class intervals of Z to portray the func-
tion.

A more elegant method is the transformation
(coding) of the Z values to orthogonal poly-
nomials. This has the advantages in that the
resulting Xt terms representing linear, quad-
ratic, cubic, etc., components of the poly-
nomial regression are uncorrelated with each
other; thus each contributes a separate portion
of the F variance capable of being tested for
significance. Unfortunately, this method be-
comes computationally quite cumbersome un-
less the Z values are equally spaced and with
equal w,- per interval. The latter is the usual
case when Z is an experimentally manipulated
variable, where the standard trend analysis
designs of the AV can be used (Edwards, 1960).

Finally, although the first few powers of a
polynomial is a good general fitting function, in
some circumstances, such transformations of
Z as log Z, 1/Z, or Zs may provide a better fit.
Draper and Smith (1967) provide a useful
general reference for handling curvilinearity
(and other MR problems).

Joint Aspects of Interactions

Given two independent variables, Xi = Z
and Xi = W, one may be interested in not
only their separate effects on F, but also on
their joint effect, over and above their separate
effects. As noted above (Contrast Coding),
where this was discussed in the narrow context
of a 2 X 2 design, this joint effect is carried by
a third independent variable, a score defined
for each subject by the product of his Z and
W scores, that is, Xz = ZW. This variable con-
tains this joint effect, which is identically the
(first-order) interaction effect of AV, or the
"moderator" effect of Saunders (1956). This
identity is quite general, so that a triple inter-
action is carried by a triple product, say ZWV,
etc. Furthermore, the above are all interac-
tions or joint effects of linear aspects of the
variables. The more complex interactions of
nonlinear aspects, such as the linear by quad-
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ratic, or quadratic by cubic, made familiar by
advanced treatments of AV trend analysis
(Winer, 1962, pp. 273-278), would be repre-
sented by products of powered variables, for
example, ZW1, ZW3, each a single independent
variable.

The presentation of joint effects as simple
products in MR requires the same caution as
in the polynomial representation of a single
variable. (Indeed, a powered variable can be
properly understood as a special case of an
interaction, for example, Z2 contains the Z by
Z interaction.) If one uses simultaneously as
independent variables X\ = Z, Xz = W, X3

= ZW, the correlations of Z with ZW, and W
with ZW will ordinarily not be zero, may in-
deed be large, and the partial coefficients for
Z and W (ft, B, p) will have lost to ZW some
F variance which properly is theirs (just as Z
would be robbed of some of its F variance by
Z2 and Z3). The problem is solved as in the
polynomial regression analysis: Find JRV.iss,
the variance proportion accounted for by all
three variables ; then find JfJV.iz, the amount ac-
counted for without the interaction. The incre-
ment is tested for significance by the F ratio of
Formula 7.

This, too, generalizes. In more complex
systems, involving either more variables and
higher order interactions or interactions among
polynomial aspects (or both), one forms a hi-
erarchy of sets of independent variables and
tests for the significance of increments to J22

by means of the same F ratio (Formula 7).
For example, if one has three variables Z, W,
and V, represented both linearly and quadrat-
ically with all their interactions, one possible
way of organizing the variables is by means of
the following sets :

A:Z,W,V
B:ZW,ZV, WV
C:ZWV
D:Z\ W\ V2

E: ZW, ZW\ ZW, ZV\ WW, WV1

One would then test K>Y.AB — R*Y.A, R
— R2Y-AB, etc., each by the F ratio for incre-
ments. When a set containing more than one

variable is significant, one can "break out"
each variable in it and test its increment for
significance by the same procedure. Of course,
one can elect to make all sets contain only one
variable, but the number of resulting tests (in
the example there would be 20) brings with it
an increased risk of spuriously significant
results over the complete analysis. This strategy
parallels that of the AV, where the avoidance
of this risk is implicit. In a 4 X 5 factorial de-
sign AV, for example, the interaction involves a
single mean square based on 3 X 4 = 12 df
which is tested by a single F test. One ordi-
narily does not test each of these 12 effects
separately unless the set as a whole is signi-
ficant. The principle, of course, obtains even
for the main effects, involving sets of 3 and 4
df, where each set normally is tested "whole-
sale."

Other combinations and priorities of the
X, Y, and Z variables are, of course, possible.
This operation involves formulating hypothe-
ses about what constitutes a relevant class of
independent variables and the priorities of
these classes. It depends not only on mechani-
cal variance-stealing considerations, but also
on substantive issues in the research and the
judgment of the investigator.

Although the discussion in this section has
been concerned with interactions among quan-
titative variables, the principles of forming
interaction variables hold also for nominal
variables, and for mixtures of variables. Let
an "aspect" of a research variable such as
religion or IQ be one of the Xt- of the set which
represent it. Then, for example, if the inter-
action of u aspects of one variable U and t> as-
pects of another variable V are desired, one
may form a total of uv interaction Xt, by
multiplying each of the « aspects by each of
the v aspects. Each of the resulting uv indepen-
dent variables is a single (one df) variable which
represents a specific aspect by aspect joint or
interaction effect. Either U or V may be
nominal or quantitative. Where nominal, their
aspects may be dummy variables or contrasts;
where quantitative, the aspects may be pow-
ered polynomial terms or missing data dichot-
omies (see below). One can thus generate such
single interaction X,- as "majority-minority
religious group by authoritarianism," "ex-
perimental group D versus control group by
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quadratic of stimulus intensity," etc. It is both
convenient and enlightening to have each such
joint aspect separately and unambiguously
(but not necessarily orthogonally) represented
in the set of independent variables. Their indi-
vidual increment to B? and significance can
then be determined.

Perhaps as important as being able to
represent the interaction Xf in specific detail is
the availability of the option not to represent
some or all of them. The textbook paradigms
for factorial design AV lead data analysts to
dutifully harvest all possible interactions of all
possible orders up to the highest, whether or
not they are meaningful or interpretable or, if
interpretable, communicable. There emanate
from psychology departments many silent
prayers to the spirit of R. A. Fisher that high-
order interactions will not prove significant!
Obviously, one need not (indeed cannot) ana-
lyze for all possible aspects including joint
aspects of variables if for no other reason than
the rapid loss of df for estimating error. The
need to "specify the model," that is, the set of
Xt to be studied in MR has the salutary effect
of requiring an incisive prior conceptual analy-
sis of the research problem. This goes hand in
hand with the flexibility of the MR system,
which makes readily possible the representa-
tion of the research issues posed by the in-
vestigator (i.e., multiple regression in the
service of the ego!), rather than the canned
issues mandated by AV computational routines.

Missing Data

In nonexperimental, particularly survey,
research, it frequently occurs that some sub-
jects are missing data on one or more (but not
all) of the independent variables under study.
Typically, the data are not missing randomly,
but for reasons frequently related to values for
other independent variables, and particularly
to values for the dependent variable under
study. For example, in a study of factors as-
sociated with the rehabilitation of drug addicts,
reported weekly wages on last job is used as an
independent variable, among others. Some
respondents claim they do not recall or refuse
to respond. As another example, consider a
retrospective study of the school records of
adult mental retardates where the recorded IQ
is abstracted for use as an independent variable

but found missing in some cases. In neither of
these cases can one prudently assume that the
mean of these cases on the X, in question,
other Xi, and, particularly, Y is the same as
that for the cases with data present. The prac-
tice of excluding cases lacking some of the data
has the undesirable properties of analyzing a
residual sample which is unrepresentative to
an unknown degree of the population origi-
nally sampled, as well as the loss of information
(viz., the fact of data being missing) which
may be criterion relevant.

MR provides a simple method for coping
with this problem. Each such variable has two
aspects, its value (where present) and whether
or not the value is present. Accordingly, two
independent variables are constructed: Xi is
the value itself, with the mean of X\ for those
cases where it is present entered for the cases
where it is missing, and Xz is the missing data
aspect, a dummy variable dichotomy coded
0-1 for absent-present. These two aspects con-
tain all the information available in the vari-
able. Moreover, as scored, ri2 = 0, hence Xi
and Xi are each contributing an independent
portion of the Y variance.

Actually, any value entered for the missing
data in X\ will "work" in the sense of account-
ing for Y variance, that is, the J?V-i2 will be
the same. The use of the mean will uniquely
result in r\i = 0, which may be advantageous
interpretively. For some purposes, this ad-
vantage may be offset by using some (or any)
other value, obviating the necessity of a prior
computation of the mean.

The researcher, normally sensitive about
tampering with data, may find the prospect of
"plugging" empty spaces in his data sheet with
means singularly unappealing. He may even
correctly point out that this will have the effect
of reducing rYi from what ry% is for the sub-
sample having X values present. In rebuttal, it
must be pointed out that the subsample is not
representative of the originally defined popu-
lation, and the method proposed can be thought
of as reflecting the fact that the population
studied contains missing data, and fully in-
corporates this fact as positive information.

ANALYSIS OF COVAEIANCE

Viewed from the perspective of the MR
system, the fixed-model ACV turns out to be a
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rather minor wrinkle, and not the imposing
parallel edifice it constitutes in the AV/ACV
framework. A covariate is, after all, nothing
but an independent variable, which, because of
the logic dictated by the substantive issues of
the research, assumes priority among the set
of independent variables as a basis for account-
ing for F variance. Consider a research in
educational psychology in which the F variable
is some performance measure in children, Xi is
midparental education, X2 is family income,
and G, carried by the set Xz, Xt, X6 represents
some differential learning experience in four
intact classes. This situation is a "natural" for
ACV (assuming its assumptions are reasonably
well met). One would think of it as studying the
effect of learning experience or class member-
ship on F, using Xi and Xz as covariates.
Thus considered, we are asking how much
variance in F (and its significance) the vari-
ables Xs, Xi, and Xt account for, after the
variance due to Xi and X2 is allowed for, or
held constant, or "partialed out" (the terms
being equivalent). The form of the MR analy-
sis to accomplish this purpose is directly sug-
gested. Find UV.12346, the proportion of F var-
iance all independent variables account for.
Then find R2Y-ii, the proportion of F variance
attributable to the covariates education and
income. Their difference is the increment due
to group membership, which is tested for sig-
nificance by the F test of Formula 7 used in a
different design context above. Note that no
problem arises if the four groups are defined by
a 2 X 2 factorial. If X3, X4, X& are coded as in
Columns 7, 8, 9 in Table 1 to represent the two
main effects and their interaction, the respec-
tive ACV significance tests are performed by
(Formula 7) F ratio tests of the increments
•RV-12346 — ^2^.1245 (for the main effect repre-
sented by X3), P*Y.mu — K*Y.IM> (for the
main effect represented by X\) and rVi2846
— rVm4 (for the interaction or joint effect).
Note that Xi and X2 are always included hi
the debited R2, because of their priority in the
issues as defined. This principle is readily
generalized to designs of greater complexity.

That a covariate is nothing but another
independent variable except for priority due to
substantive considerations is evident when one
considers a study formally almost identical to

the above, now, however, done by a social psy-
chologist. Since there are four different classes
and four different teachers, the classes ipso
facto have had different learning experiences.
But this research is concerned with the effects
of parental education and income on the per-
formance criterion, with group membership
now the contaminant which must be removed,
hence the covariate. Using the same set up and
data, he would find .RV.12846 — R^y.ut as the
combined effect of education and income,
•RV.12845 — -RV.2846 as the net effect of educa-
tion (i.e., over and above that of income as well
as the covariates of class membership), and
•RV.12845 — R*Y-IW for the net effect of income,
each F-testable as before. Thus, one man's
main effect is another man's covariate.

The MR approach to ACV-like problems
opens up possibilities for statistical control not
dreamed of in ACV. We have just seen how
purely nominal or qualitative variables (class
membership) can serve as covariates. Beyond
this, we can apply other principles which have
been adduced above: (a) Any aspects of data
can, by appropriate means, be represented as
independent variables. (&) Any (sets of) inde-
pendent variables can serve as covariates by
priority assignment in variance accounting.
Thus, for example, one can make provision for
a covariate being nonlinearly related to F (and/
or to other independent variables) by writing
a polynomial set of independent variables and
giving the set priority; or, one can carry two
variables and their interaction as a covariate
set; or, one can even carry as a covariate a
variable for which there are missing data by
representing the two aspects of such a datum
as two independent variables and giving them
priority. Finally, one can combine the priority
principle with those of contrast coding to
achieve analytic modes of high fidelity to sub-
stantive research aims.

The ACV assumption that the regression
lines (more generally, surfaces) of the covariate
([/) on F have the same slopes (more gener-
ally, regression parameters) between groups
(F) is equivalent to the hypothesis of no sig-
nificance for the set of wo interaction indepen-
dent variables. This hypothesis can be F-tested
as a Set B following the inclusion of U as Set
A, using Formula 7.
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DISCUSSION

In the introduction it was argued that MR
and AV/ACV are essentially identical systems,
and so they are, at least in their theory. In the
actual practice of the data-analytic art, many
differences emerge, differences which generally
favor the MR system as outlined above.

Before turning to these differences, a closer
look at their similarity in regard to statistical
assumptions is warranted. This article has
concerned itself only with the fixed-model
AV/ACV, wherein it is assumed that inference
to the population about the independent vari-
ables is for just those variables represented
(and not those variables considered as samples)
and that values on these variables are measured
without error. This means that in a MR whose
set of X{ include quantitative variates (e.g.,
scores), the population to which one general-
izes, strictly speaking, is made up of cases hav-
ing just those X{ values, only the F values for
any given combinations of values for the Xi
varying; moreover, the F distribution (and
only this distribution) is assumed normal and
of equal variance for all the observed combina-
tions of Xi values. These seem, indeed, to be a
constraining set of assumptions. However, the
practical effect on the validity of the general-
izations which one might wish to draw is likely
to be vanishingly small. It seems likely that the
substantive generalizations made strictly for
the particular vectors of Xi values in the rows
of the basic data matrix of the sample would
hold for the slightly differing values which the
population would contain if the sampling is
random. As for the normality and variance
homogeneity assumptions for F, the robustness
of the F test under conditions of such assump-
tion failure is well attested to (for a summary,
see Cohen, 1965, pp. 114-116). Particularly
when reasonably large samples are used, itself
desirable to assure adequate statistical power,
no special inhibition need surround the drawing
of inferences from the usual hypothesis testing,
certainly no more so than in AV.

A discussion of the practical differences be-
tween MR and AV is best begun with a con-
sideration of the nature of classical fixed-model
AV. Its natural use is in the analysis of data
generated by experimental manipulations along
one or more dimensions (main effects), result-
ing in subgroups of observations in multifactor

cells, treatment combinations. Each main
effect is paradigmatically a set of qualitative
distinctions along some dimension. These di-
mensions are conceptually independent of each
other, and since they are under the control of
the designer of the experiment, the data can, in
principle, be gathered in such a way that the
dimensions are actually mutually orthogonal
in their representation in the data. (This con-
dition is met by the proportionality of cell
frequencies in all two dimensional subtables.)
This also results in interactions being orthog-
onal to each other and to the main effects.
Thus, the paradigm is of a set of batches (one
batch per AV main effect or interaction) of
qualitative independent variables, all batches
mutually orthogonal.

Now, under such conditions, one can, as
illustrated above, analyze the data by MR, but
there is no advantage in so doing. The AV can
be seen as a computational shortcut to an
analysis by the linear model which analyzes by
batches and capitalizes on the fact that batches
are orthogonal. Thus, the classical fixed fac-
torial AV is a special simplified case of MR
analysis particularly suited to neat experi-
mental layouts, where qualitative treatments
are manipulated in appropriate orthogonal re-
lationships. Later refinements allows for quan-
titative independent variables being exploited
by trend analysis designs, but these, too, de-
mand manipulative control in the form of
equally spaced intervals in the dimension and
equal sized samples per level if the computa-
tional simplicity is to be retained.

These designs are quite attractive, not only
in their efficiency and relative computational
simplicity, but also in the conceptual power
they introduced to the data analyst, for ex-
ample, interactions, trend components. They
were presented in excellent applied statistics
textbooks. Inevitably, they attracted investi-
gators working in quite different modes, who
proceeded to a Procrustean imposition of such
designs on their research.

A simple example (not too much of a cari-
cature) may help illustrate the point. Dr. Doe
is investigating the effects of Authoritarianism
(California F scale) and IQ on a cognitive style
score (F), using high school students as
subjects. He is particularly interested in the
F X IQ interaction, that is, in the possibility
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that fYF differs as a function of IQ level. He
gives the three tests, and proceeds to set up the
data for analysis. He dichotomizes the F and
IQ distributions as closely as possible to their
medians into high-low groups and proceeds to
assign the Y scores into the four cells of the re-
sulting 2 X 2 fixed factorial design. He then
discovers that the number of cases in the high-
low and low-high cells distinctly exceed those
in the other two, an expression of the fact that
F and IQ are correlated. He must somehow
cope with this disproportionality (nonorthog-
onality). He may (a) throw out cases ran-
domly to achieve proportionality or equality;
(6) use an "unweighted means" or other ap-
proximate solution (Snedecor, 1956, pp. 385-
387); or (c) "fit constants by least squares"
(Snedecor, 1956, pp. 388-391; Winer, 1962,
pp. 224-227), which is, incidentally, an MR
procedure.

Clearly, this is a far cry from experimentally
manipulated qualitative variables. These are,
in fact, naturally varying correlated quantita-
tive variables. This analysis does violence to
the problem in one or both of the following
ways:

1. By reducing the F scale and IQ to
dichotomies, it has taken reliable variables
which provide graduated distinctions between
subjects over a wide range, and reduced them
to two-point (high-low) scales, squandering
much information in the process. For example,
assuming bivariate normality, when a variable
is so dichotomized, there is a reduction in rVx,
the criterion variance it accounts for, and hence
in the value of F in the test of its significance,
of 36%. This wilful degradation of available
measurement information has a direct conse-
quence in the loss of statistical power (Cohen,
1965, pp. 95-101,118).

2. The throwing out of cases to achieve
proportionality clearly reduces power, but,
even worse, distorts the situation by analyzing
as if IQ and F scale score were independent,
when they are not. Other approximations suffer
from these and/or other statistical deficiencies
or distortions.

If Dr. Doe uses the MR-equivalent exact-
fitting constants procedure, he has still given
up computational simplicity, and, of course,
the measurement information due to dichoto-

mization. If he seeks to reduce the latter and
also allow for the possibility of nonlinearity of
Y on X{ regressions by breakdown of IQ and/or
F scale into smaller segments, say quartiles,
his needs for equality of intervals and cases
will be frustrated, and he will not be able to
find a computational paradigm, which, in any
case, would be very complicated. It seems quite
clear that, however considered, the conven-
tional AV mode is the wrong way to analyze the
data.

On the other hand, the data can be com-
pletely, powerfully, and relevantly analyzed
by MR. A simple analysis would involve setting
Xi = IQ, X2 = F scale score, X3 = (IQ)(F).
By finding .RV.m — R*Y-U and testing it for
significance (or equivalently, by testing the
significance of pi), he learns how much the
interaction contributes to Y variance account-
ing and its significance. Determinations of the
values of rVi, rVz, l&r.it, -RVia — ̂ ri, and
-RV.12 — r*Yt and testing each for significance
fully exploits the information in the data at
this level. If he believes it warranted, he can
add polynomial terms for IQ and F score and
their interaction in order to provide for non-
linearity of any of the relationships involved.

Another practical difference between MR
and AC/ACV is with regard to computation.
The MR procedure, in general, requires the
computation and inversion of the matrix of
correlations (or sums of squares and products)
among the independent variables, a consider-
able amount of computation for even a modest
number of independent variables. It is true that
classical AV, whose main effects, interactions,
polynomial trend components, etc., are mutu-
ally orthogonal, capitalizes on this orthogonal-
ity to substantially reduce the computation
required. Whatever computational reduction
there is in AV or MR depends directly on the
orthogonality of the independent variables,
which we have seen is restricted to manipula-
tive experiments, and is by no means an invari-
ant feature even of such experiments.

However, given the widespread availability
of electronic computer facilities, the issue of
the amount of computation required in the
analysis of data from psychological research
dwindles to the vanishing point, and is replaced
by problems of programming. The typical
statistical user of a typical computer facility
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requires that a computer program which will
analyze his data be available in the program
library. Such programs will have been either
prepared or adapted for the particular
computer configuration of that facility. Un-
fortunately, it is frequently the case that the
available AV program or programs will not
analyze the particular fixed AV design which
the investigator brings. Some AV programs are
wanting in capacity in number of factors or
levels per factor, some will handle only orthog-
onal designs, some will handle only equal
cases per cell, some will do AV but not ACV,
some of those that do handle ACV can handle
only one or two covariates. Many will not
handle special forms of AV, for example,
Latin squares.

On the other hand, even the most poorly
programmed scientific computer facility will
have at least one good MR program, if for no
other reason than its wide use in various tech-
nologies, particularly engineering. All the
standard statistical program packages contain
at least one MR program. Although these vary
in convenience, efficiency, and degree of in-
formativeness of output, all of them can be
used to accomplish the analyses discussed in
this article. In contrast to the constraints of AV
programs, the very general MR program can be
particularized for any given design by repre-
senting (coding) those aspects of the indepen-
dent variables of interest to the investigator
according to the principles which have been
described.

A note of caution: as we have seen, given
even a few factors (main effects of nominal
variables or linear aspects of quantitative vari-
ables), one can generate very large numbers of
distinct independent variables (interactions of
any order, polynomials, interactions of poly-
nomials, etc.). The temptation to represent
many such features of the data in an analysis
must be resisted for sound research-philo-
sophical and statistical reasons. Even in re-
searches using a relatively large number of
subjects (ri), a small number of factors
(nominal and quantitative scales) can generate
a number of independent variables which ex-
ceed n. Each esoteric issue posed to the data
costs a df which is lost from the error estimate,
thus enfeebling the statistical power of the
analysis,

This, ultimately, is the reason that it is de-
sirable in research that is to lead to conclusions
to state hypotheses which are relatively few in
number. This formulation is not intended to
indict exploratory studies, which may be in-
valuable, but by definition, such studies do not
result in conclusions, but in hypotheses, which
then need to be tested (or, depending on the
research context, cross-validated). If one analy-
zes the data of a research involving 100 sub-
jects by means of MR, and utilizes 40 inde-
pendent variables, what does one conclude
about the 4 or 5 of them which prove to have
partial regression weights "significant" at the
.05 level? Certainly not that all of them are
real effects, when one realizes that an overall
null hypothesis leads to an expectation that
5% of 40, or 2 are expected by change. But
which two?

A reasonable strategy depends upon orga-
nizing a hierarchy of sets of independent vari-
ables, ordered, by sets, according to a priori
judgments. Set A represents the independent
variables which the investigator most expects
to be relevant to F (perhaps all or some of the
main effects and/or linear aspects of continu-
ous variables). These may be thought of as the
hypotheses of the research, and the fewer the
better. Set B consists of next order possibilities
(perhaps lower order interactions and/or some
quadratic aspects). These are variables which
are to be viewed less as hypotheses and more
as exploratory issues. If there is a Set C (per-
haps some higher order interactions and/or
higher degree polynomials), it should be
thought of as unqualifiedly exploratory. (If
there are covariates in the design, they, of
course, take precedence over all these sets, and
would enter first.) The "perhaps" in the paren-
thetical phrases in this paragraph are included
because it is not a mechanical ordering that is
intended. In any given research, a central issue
may be carried by an interaction or polynomial
aspect while some main effect may be quite
secondary. In most research, however, it is the
simplest aspects of factors which are most
likely to occupy the focus of the investigator's
attention. However, the decision as to what
constitutes an appropriate set depends on both
research-strategic issues that go to the heart of
the substantive nature of the research, and
subtle statistical issues beyond the scope of
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this article. The latter are discussed by Miller
(1966, pp. 30-35).

The independent variables so organized, one
first does an MR analysis for Set A, then Sets
A + B, then Sets A -f B + C. Each additional
set is tested for the increment to R* by means of
the F test of Formula 7. A prudent procedure
would then be to test for significance the con-
tribution of any single independent variable in
a set only if the set yields a significant incre-
ment to R2. A riskier procedure would be to
dispense with the latter condition, but then the
results would clearly require cross-validation.
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