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The psychophysicist S. S. Stevens developed a measure-
ment scale typology that has dominated social statistics
methodology for almost 50 years. During this period,
it has generated considerable controversy among stat-
isticians. Recently, there has been a renaissance in the
use of Stevens’s scale typology for guiding the design
of statistical computer packages. The current use of
Stevens’s terminology fails to deal with the classical
criticisms at the time it was proposed and ignores im-
portant developments in data analysis over the last sev-
eral decades.
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In the early 1940s, the Harvard psychologist S. S.
Stevens coined the terms nominal, ordinal, interval, and
ratio to describe a hierarchy of measurement scales used
in psychophysics, and classified statistical procedures
according to the scales for which they were “permis-
sible.” This taxonomy was subsequently adopted by
several important statistics textbooks and has thus in-
fluenced the statistical reasoning of a generation. Al-
though criticized by statisticians, Stevens’s categories
still persist in some textbooks.

Recent interest in artificially intelligent computer
programs that automate statistical analysis has renewed
attention to Stevens’s work. Computer programs de-
signed to assist in the selection of data analysis methods
have been based on his prescriptions. Even some general-
purpose programs have used them to structure their
interaction with the user.

Unfortunately, the use of Stevens’s categories in se-
lecting or recommending statistical analysis methods is
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inappropriate and can often be wrong. They do not
describe the attributes of real data that are essential to
good statistical analysis. Nor do they provide a classi-
fication scheme appropriate for modern data analysis
methods. Some of these points were raised even at the
time of Stevens’s original work. Others have become
clear with the development of new data analysis phi-
losophies and methods.

In the following sections, we review Stevens’s tax-
onomy and provide definitions; many have used these
terms without clarifying their exact meaning. We dis-
cuss their use in statistics and in applications, and con-
sider some of the classical criticisms of this work.
Throughout our account, we provide references for in-
terested readers who may wish to learn more. We then
describe some of the failures of Stevens’s taxonomy to
classify data, and examine the nature of these failures.
Similarly, we consider whether modern statistical meth-
ods can be classified according to the types of data
appropriate for them. Finally, we consider what ideas
from Stevens’s work are still useful for modern computer-
based statistical analysis.

1. STEVENS’S TYPOLOGY OF DATA

In his seminal paper, “On the Theory of Scales of
Measurement” (1946), Stevens presented a hierarchy
of data scales based on invariance of their meaning
under different classes of transformations. Measure-
ment scales that preserve meaning under a wide variety
of transformations in some sense convey less informa-
tion than those whose meaning is preserved by only a
restricted class of transformations. For example, as-
sume a scale, s, is used to assign real numbers in R to
the elements of a set, P, of observed judgments so that
for all { and jin P, s(i) > s(j) iff i is preferred to j. That
is, if we let the symbol *)” stand for “‘is preferred to,”
then

P— % such that
i)jos@)>s(), forali,jeE P (1
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Stevens called such a scale ordinal if any transfor-
mation of the scale values that preserves their numerical
order produces another scale that shares the same one-
to-one relation between comparisons among objects
(using )) and comparisons among corresponding scale
values (using >).

Stevens used the term permissible to describe the set
of transformations that preserves the ordinality of the
mapping in (1). Specifically, a transformation f is per-
missible for an ordinal scale iff:

s(i) > s(j) = fls@®)] > fls(D]- )

Any monotone transformation of the values s(i), s(j).
is permissible for ordinal scale data. We are thus free
to take logs or find square roots of the values (if they
are not negative) or to perform a linear transformation,
adding a constant and multiplying by another (positive)
constant.

Stevens developed similar arguments for three other
types of scales. Interval scales involve a difference (—)
instead of order (>>) operator, so the set of permissible
transformations for interval scales preserves relative
differences. Specifically, the transformation f is per-
missible for interval scales iff there is a constant ¢ such
that:

s@) = s(j) = clfls] = fs(HI ()

Thus, linear transformations in which we add the
same constant to each value and/or multiply each value
by a constant are permissible for interval scale data,
but we may not, for example, take logs. This is a smaller
class of permissible transformations than for ordinal
data, suggesting that in some sense the data values carry
more information.

Ratio scales preserve relative ratios, so permissible
transformations satisfy:

s@/s(j) = of sV s()] (4)

for some constant, c.

Thus it is permissible to multiply ratio scale data by
a constant, but we may not take logs or add a constant.
Ratio scale data have a defined zero, which may not
be changed.

Nominal scales are at the other end of the hierarchy.
They do not even require the assignment of numerical
values, but only of unique identifiers (numerals, letters,
colors). They are invariant under any transformation
that preserves the relationship between individuals and
their identifiers. Thus it is permissible to perform almost
any operation on the values as long as we do not com-
bine or confuse identities. (When the data values are
numeric, these operations include any functions that
map one-to-one from the original set of numbers into
a new set. When the data values are not numeric, per-
missible operations include rearranging the data val-
ues.) Of course, only the weakest kind of information
can survive such arbitrary transformations.

Measurement theorists call the issues involved in as-
signing scale values to observations, as expressed in (1)
above, the representation problem. They call the invari-
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ance of scales under transformations, as in (2}, (3), or
(4) the uniqueness problem. Determining the truth or
falsity of statements based on comparisons of assigned
scale values has been called the meaningfulness problem
(Suppes and Zinnes 1963). This last problem, concern-
ing the meaningfulness of empirical scalings and anal-
yses based on them, continues to be a focus of statistical
controversy.

2. PRESCRIBING AND PROSCRIBING
STATISTICS

In his article, “Mathematics, Measurement, and Psy-
chophysics™ (1951). Stevens went beyond his simple
typology. He classified not just simple operations, but
also statistical procedures according to the scales for
which they were “permissible.” A scale that preserves
meaning under some class of transformations should,
according to Stevens, be restricted to statistics whose
meaning would not change were any of those transfor-
mations applied to the data.

By this reasoning, analyses on nominal data, for ex-
ample, should be limited to summary statistics such as
the number of cases, the mode, and contingency cor-
relation, which require only that the identity of the
values be preserved. Permissible statistics for ordinal
scales included these plus the median, percentiles, and
ordinal correlations, that is, statistics whose meanings
are preserved when monotone transformations are ap-
plied to the data. Interval data allowed. in addition,
means, standard deviations (although not all common
statistics computed with standard deviations), and prod-
uct moment correlations, because the interpretations of
these statistics are unchanged when linear transfor-
mations are applied to the data. Finally ratio data al-
lowed all of these plus geometric means and coefficients
of variation, which are unchanged by rescaling the data.

In summarizing this argument Luce (1959, p. 84) said:

... the scale type places [limitations| upon the statistics onc may
sensibly employ. If the interpretation of a particular statistic or sta-
tistical test is altered when admissible scale transformations are ap-
plied, then our substantive conclusions will depend on which arbitrary
representation we have used in making our calculations. Most sci-
entists, when they understand the problem, feel that they should shun
such statistics and rely only upon those that exhibit the appropriate
invariances for the scale type at hand. Both the geometric and the
arithmetic means are legitimate in this sense for ratio scales (unit
arbitrary), only the latter is legitimate for interval scales (unit and
zero arbitrary), and neither for ordinal scales.

Textbook authors quickly adopted these ideas (e.g.,
Blalock 1960; Siegel 1956), perhaps because they ap-
pear to provide simple guidance and protect naive data
analysts from errors in applying statistics. Unfortu-
nately, while it seems easy enough to learn to identify
the type of scale to which some data might belong, the
underlying arguments in terms of transformation classes
are subtle and usually not understood by beginning stu-
dents, and, as we show below, the scale type of data
may not be evident at all.

It became common to find charts (often inside the
back cover of the text) in which the reader could look
up “the appropriate test” based on the number and
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scale types of the variables at hand. Stevens’s ideas also
influenced social science methodologists at more ad-
vanced levels. Andrews, Klem, Davidson, O’Malley,
and Rodgers (1981) derived an extended taxonomy of
univariate and multivariate statistical procedures based
on Stevens’s scales. Their tree-oriented system has been
implemented in at least one microcomputer program,
which claims to be a statistical advisor based on artificial
intelligence techniques.

Recently, some general-purpose microcomputer sta-
tistical packages have based their user interface on Ste-
vens’s taxonomy. These packages require users to iden-
tify the measurement scales of each variable before it
can be used in an analysis. They then automatically
select “appropriate” analyses according to the user’s
requested description of relationships in the data. Anal-
yses that are not permissible for a given scale, according
to Stevens’s proscriptions, cannot be performed without
first changing the scale designation.

3. CLASSICAL CRITICISMS OF STEVENS’S
PROSCRIPTIONS

Criticisms of Stevens’s work have focused on three
points. First, restricting the choice of statistical methods
to those that “exhibit the appropriate invariances for
the scale type at hand” is a dangerous practice for data
analysis. Second, his taxonomy is too strict to apply to
real-world data. Third, Stevens’s proscriptions often lead
to degrading data by rank ordering and unnecessarily
resorting to nonparametric methods.

In an entertaining and readable note, Lord (1953)
attacked Stevens’s arguments by showing that the choice
of permissible statistical tests for a given set of data
does not depend on the representation or uniqueness
problems, but is concerned instead with meaningful-
ness. Lord argued that the meaningfulness of a statis-
tical analysis depends on the question it is designed to
answer. His note imagined the accusation that a pro-
fessor who owned the university ‘“football jersey num-
ber concession” had peddled unusually low numbers to
the Freshman class. Although Lord’s professor protests
that football numbers are only nominal-scale values,
the statistician he consults is happy to add them up,
square them, compute their mean, and perform other
operations needed for the application of Tchebycheff’s
inequality (avoiding reference to normality) to test the
accusation that the numbers were “too low.” When the
professor protests that these were nominal “football
numbers,” the statistician remarks that ‘‘the numbers
don’t know where they came from”—a remark that,
in retrospect, may have been a bit too glib for the se-
riousness of Lord’s point.

Baker, Hardyck, and Petrinovich (1966) and Bor-
gatta and Bohrnstedt (1980) pointed out that following
Stevens’s proscriptions often forces researchers to rank
order data and thereby forsake the efficiency of para-
metric tests. Their arguments relied on the Central Limit
Theorem and Monte Carlo simulations to show that for
typical data, worrying about whether scales are “ordi-
nal” or “interval” doesn’t matter. Their arguments were

somewhat ad hoc, and they unfortunately ended up
recommending standard parametric procedures rather
than dealing with robustness issues. Nevertheless, they
highlighted deficiencies in Stevens’s discussion of ‘‘per-
missible” arithmetic.

Guttman (1977) argued more generally that the sta-
tistical interpretation of data depends on the question
asked of the data and on the kind of evidence we would
accept to inform us about that question. He defines this
evidence in terms of the loss function chosen to fit a
model. However, the same data can be interpreted in
different ways through the choice of different loss
functions:

Permission is not required in data analysis. What is required is a loss
function to be minimized. Practitioners like to ask about a priori rules
as to what is “permitted” to be done with their unordered, ordered,
or numerical observations, without reference to any overall loss func-
tion for their problem. Instead, they should say to the mathematician:
“Here is my loss function: how do I go about minimizing it?”” Min-
imization may require treating unordered data in numerical fashion
and numerical data in unordered fashion. If a mathematician gives
or withholds “‘permission” without reference to a loss function, he
may be accessory to helping the practitioner escape the reality of
defining the research problem.

John Tukey also attacked Stevens’s proposals as dan-
gerous to good statistical analysis. Like Lord and Gutt-
man, Tukey noted the importance of the meaning of
the data in determining both scale and appropriate anal-
ysis. Because Stevens’s scale types are absolute, data
that are not fully interval scale must be demoted to
ordinal scale. He argued that it is a misuse of statistics
to think that statistical methods must be similarly ab-
solute. Referring to the description by Luce quoted
above, he said (Tukey 1961, pp. 245, 246):

The view thus summarized [by Luce] is a dangerous one. . . .

One reason for the feelings of those who believe that precise scale
type should limit the use of statistics may well be the practice, entered
into by many, of regarding statistical procedures as a sanctification
and a final stamp of approval. Results based on approximate foun-
dations must be used with the underlying approximation in mind.
Those who seek certainty rather than truth will try to avoid this fact.
But what knowledge is not ultimately based on some approximation?
And what progress has been made, except with the use of such
knowledge?

Even Stevens himself waivered. In Stevens (1951, p. 26)
he admitted that

As a matter of fact, most of the scales used widely and effectively by
psychologists are ordinal scales. In the strictest propriety the ordinary
statistics involving means and standard deviations ought not to be
used with these scales. . . On the other hand, . . . there can be in-
voked a kind of pragmatic sanction: in numerous instances it leads
to fruitful results.

4. CONTROVERSY OVER STATISTICS AND
SCALE TYPES

Statisticians have generally rejected the proscription
of methods based on the limitations of permissible
transformations. Measurement theorists have devel-
oped a large body of formal results (see, for example,
Krantz, Luce, Suppes, and Tversky, 1971; Luce, Krantz,
Suppes, and Tversky, 1990; Narens and Luce, 1986;
Roberts, 1979). Many of these authors dealt specifically
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with statistics, usually concluding that the selection of
statistical methods must be constrained by the scale type
of the data. (See, for example, Luce et al. 1990, chap.
20-22.) Zumbo and Zimmerman (1991) provided a
thorough review and extensive bibliography.

At times, the debate has been less than cordial. Gaito
(1980) aimed sarcastic barbs at the measurement theory
camp and Townsend and Ashby (1984) fired back. Un-
fortunately, as Michell (1986) noted, they often shot
past each other.

We do not propose to settle a debate that has raged
for almost half a century. Instead, we focus on a par-
ticular aspect of the application of measurement theory
to statistics: that of using scale types to sclect or specify
statistical methods. Although we offer many arguments,
the single unifying argument against proscribing statis-
tics based on scale type is that it does not work.

The differences in viewpoint stem in part from a fun-
damental difference between mathematics and science.
Tukey (1962, p. 397) noted this difference in separating
data analysis from mathematical statistics:

There are diverse views as to what makes a science, but three con-
stituents will be judged essential by most, viz:

(al) intellectual content;

(a2) organization into an understandable form;

(a3) reliance upon the test of experience as the ultimate standard of
validity.

By these tests, mathematics is not a science, since its ultimate standard
of validity is an agreed-upon sort of logical consistency and prova-
bility.

Axiomatic measurement theory is mathematics rather
than science. Its proscription of certain statistical meth-
ods fails Tukey’s test (a3): Experience has shown in a
wide range of situations that the application of pros-
cribed statistics to data can yield results that are sci-
entifically meaningful, useful in making decisions, and
valuable as a basis for further research.

5. ALTERNATIVE SCALE TAXONOMIES

Several authors have suggested alternative taxon-
omies for types of data (although usually without the
suggestion that they should either prescribe or proscribe
statistical methods, and often with no claim to have
completely exhausted the alternatives). One thought-
provoking list was presented by Mosteller and Tukey
(1977, chap. 5):

Names

Grades (ordered labels such as Freshman, Sophomore, Junior,
Senior)

Ranks (starting from 1, which may represent either the largest or
smallest)

Counted fractions (bounded by zero and one. These include per-
centages, for example.)

Counts (non-negative integers)

Amounts (non-negative real numbers)

Balances (unbounded, positive or negative values).

Mosteller and Tukey used these types to suggest ““first
aid” ways to transform data values, incuding transfor-
mations that move values from one type to another. At
no time did they suggest that these categories should
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in any way restrict our choice of analysis or even of
transformation, nor did they propose them as measure-
ment scale types in the sense of the axiomatic arguments
of Luce et al. (1990).

Mosteller and Tukey’s list shows that Stevens’s types
do not exhaust the possibilities even for simple data.
Where, for example, should one place counted fractions
(such as percents), which are bounded at both ends,
and thus cannot tolerate even arbitrary scale shifts?

6. PROSCRIBING TRANSFORMATIONS

Many authors have noted that simple transformations
can make data more amenable to good data analysis.
Most who discuss this recommend the practice. Mos-
teller and Tukey, after proposing their list of data types,
recommended transforming the data—often in ways
that change the “‘type” of the data values among those
in their list of data types.

Transforming data values to simplify structure (for
example, to make distributions more nearly symmetric,
make variability more nearly constant across groups,
make relationships more nearly linear, or make facto-
rial experiments more nearly additive) has a long and
honored history in statistics. [See, for example, Bartlett
(1947), Tukey (1957). and Box and Cox (1964).] It is
clear from these authors and many others that the tools
of good data analysis include such transformations. The
most used and most useful transformations include the
logarithm and simple powers and roots, which are mon-
otone but nonlinear (else they could not simplify struc-
ture). But Stevens’s taxonomy permits such transfor-
mations only for nominal and ordinal sales—scales for
which concepts such as linearity, homoskedasticity. ad-
ditivity, and symmetry are supposed to be meaningless.

Tukey (1961, p. 250) proposed a thought experiment
in which a postal balance scale is miscalibrated, result-
ing in measurements for weights that maintain the cor-
rect ordering but do not behave as a ratio scale. He
argued that although experimental evidence would show
that weight is not a ratio measurement, we would do
better to transform the “weights” back to a scale that
behaves more simply.

There is no reason to believe that data come to us
measured in the “best” way. Hoaglin (1988) notes a
number of everyday examples of data that are ordinarily
transformed by some (usually monotone) function.

Abelson and Tukey (1963) mapped ordinal scales into
interval scales and discussed the amount of error likely
to be introduced by the procedure. They criticized the
tendency of scale-driven choice of statistics to select
nonparametric methods, not because they lack power,
but ““because they are poorly adapted to the variety of
uses one requires for good insight into bodies of data™
(p. 407).

Shepard (1962), Kruskal (1964), Guttman (1968), and
others developed multidimensional scaling procedures
that can be used to convert measurements that are or-
dinal, by Stevens’s definition, to ratio scales. These
results can be subjected to a variety of “‘ratio” statistical
procedures (e.g., spatial statistics) which are invariant
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under monotone transformations of the original ranked
data (since these do not affect the multidimensional
scaling results). This two-stage procedure violates Ste-
vens’s prescription that statistics like ¢ and F are not
valid for rank-order data, but has nonetheless been found
useful by many data analysts.

7. GOOD DATA ANALYSIS DOES NOT ASSUME
DATA TYPES

A number of authors have noted that in data analysis,
“Things are seldom what they seem.” For example,
Joiner (1981) noted examples in which data that appear
to have one type in fact hide other information (“‘lurking
variables” in his terminology). For example, the iden-
tifying number of a retail outlet might reasonably be
assumed to be nominal. Nevertheless, we should con-
sider the possibility that the ID numbers were assigned
sequentially as outlets were opened and search for pos-
sible relationships between ID and other important
variables such as sales or profits.

Joiner cited an example in which cages holding ani-
mals for an experiment that were located high on a wall
had a significantly different environment from cages
near the floor. In another experiment, animals were
(incorrectly) assigned to cages (and thus to treatments)
by litter rather than with correct randomization. A care-
ful data analyst should not assume that the scale type
of a variable is what it appears to be even when clear
assurances are made about the data.

8. STEVENS’S CATEGORIES DO NOT
DESCRIBE FIXED ATTRIBUTES OF DATA

It is relatively easy to construct situations in which
the scale type of data depends on its interpretation or
on what additional information is available. At a re-
ception sponsored by the ASA Section on Statistical
Computing and the Section on Statistical Graphics, con-
secutively numbered tickets, starting with “1,” were
allotted at the door as people entered so that a raffle
could be held. As a winning number, 126, was selected
and announced, one participant compared it to her ticket
to see if she had won, thus interpreting the “126” cor-
rectly as a nominal value. She then immediately looked
around the room and remarked that, “It doesn’t look
like there are 126 people here,” now interpreting the
same value, again correctly (but using the additional
information that tickets had been allotted consecutively
starting with 1), as a ratio-scale value. One of the au-
thors compared his ticket number (56) to the winning
value and realized that he had arrived too soon to win
the prize, thus interpreting the values ordinally. If ad-
ditional data about the rate and regularity of arrivals
had been available, he might have tried to estimate by
how much longer he should have delayed his arrival
from the 70-ticket difference between his ticket and the
winner, thus treating the ticket number as an interval-
scale value.

A common dataset reports facts about automobiles.
One of these facts is the number of cylinders in the

engine. In some analyses, the number of cylinders is a
nominal category supporting such questions as, “Are
there significant differences among the gas mileages of
cars with eight-cylinder, six-cylinder, and four-cylinder
engines?” Of course, these categories are clearly or-
dered, so ordinal-based statistics would also be appro-
priate. But one might also ask about the average num-
ber of cylinders in, say, U.S. cars, and wonder whether
this average had declined in recent years. This requires
us to consider these data values (all of them integers)
as interval-scale values—which they can certainly be
since the difference in number of cylinders between an
eight-cylinder car and a six-cylinder car is the same as
the difference between a six-cylinder car and a four-
cylinder car. Finally, we might consider the size of each
cylinder and compute the ratio of each car’s displace-
ment to the number of its cylinders—a completely ap-
propriate operation (for ratio-scale data).

The point of these examples, of course, is that the
assertion, common to many traditional statistics texts,
that ‘‘data values are nominal, ordinal, interval, or ra-
tio” simplifies the matter so far as to be false. Scale
type, as defined by Stevens, is not an attribute of the
data, but rather depends upon the questions we intend
to ask of the data and upon any additional information
we may have. It may change due to transformation of
the data, it may change with the addition of new in-
formation that helps us to interpret the data differently,
or it may change simply because of the questions we
choose to ask.

Rozeboom (1966, p. 197) argued a similar point of
view:

If we can but find some interpretive significance in a statistic pros-
cribed for scales of the type to which the scale in question has been

deemed to belong, then that scale’s “‘type” therewith broadens to
accommodate this newfound content.

9. STEVENS’S CATEGORIES ARE
INSUFFICIENT TO DESCRIBE DATA SCALES

It is relatively easy to find examples of data that
simply do not fit into Stevens’s categories. We have
already noted the problem of counted fractions. We
note here additional examples.

Scales can be multidimensional. Here is a partially
ordered binary scale, for example:

Left Right Row Sum
1111 4 More
1110 0111 3
1100 0110 0011 2
1000 0100 0010 0001 1
0000 0 Less

In this scale, the horizontal dimension comprises a
qualitative {nominal) scale of attributes and the vertical
dimension measures a quantitative (ordinal, interval,
or ratio) scale. For example, each profile might be the
presence or absence of each of four symptoms in a
patient. In this case, the vertical scale might be related
to severity of illness and the horizontal scale might be
related to different syndromes. Goodman (1975) and
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Guttman (in Shye 1978) discussed these scales. If we
were to use Stevens’s hierarchy to guide an analysis of
these structures, we would obscure their existence be-
cause the separate scale types for the rows or columns
do not define the joint scale type. The field of nonmetric
conjoint measurement is also devoted to multidimen-
sional scales of ‘“‘nominal” and “ordinal” data (Green
and Rao 1971).

Anderson (1961) showed that the same data may be
measured on alternative scales of the same type that
nonetheless will produce different statistical results. One
example he cited is the choice of whether to measure
the duration or velocity of a process. Both are valid
interval scales, and yet statistics computed on one form
may be quite different from those computed on the
other. Anderson noted that “Evidently, then, posses-
sion of an interval scale does not guarantee invariance
of interval scale statistics” (p. 31).

10. STATISTICS PROCEDURES CANNOT BE
CLASSIFIED ACCORDING TO STEVENS’S
CRITERIA

While this was true even when Stevens’s original pa-
per appeared, it has become more obvious with the
introduction of robust methods. Consider, for example,
a linear estimator of location:

L = E aixi’

where x; is the ith order statistic of a sample of size n.
Let the g; be uniform weights assigned so as to produce
a symmetrically trimmed linear estimator. That is, some
of the weights at each end of the sequence are set to
zero. If we use uniform weights of 1/n with no trimming,
then L becomes the mean. If we trim just less than 50%
of the values from each end, L becomes the median.
This estimator is thus on a continuum between Stevens’s
ordinal and interval categories. Of course, it is impos-
sible to categorize the “‘type” of data for which partial
trimming is appropriate (although studies have shown
that such an estimate performs quite well in many
circumstances).

In some sense, the trimmed mean seems to classify
the data into a central body of “interval” values and
outlying tails of “ordinal’ values. If we insist on cate-
gorizing more general robust measures according to Ste-
vens’s types, we find that they treat the data as nominal
in the extremes, ordinal in the tails, and interval in the
middle. In a survey of real-world data, Hampel, Ron-
chetti, Rousseeuw, and Stahel (1986) noted that a sub-
stantial fraction of real data are handled appropriately
by such estimators. Should we take this to mean that
much data can be described as falling into a variety of
scale types simultaneously?

If we seek simple rules for identifying scale types,
robust measures confound us still further. The assign-
ment of data values to the “middle” or “tails” of the
distribution is adaptive, depending on the observed data
values. The addition of even one new datum can alter
this assignment. For many measures, the transition from
tail to middie is smooth and cannot be defined exactly.
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11. SCALE TYPES ARE NOT PRECISE
CATEGORIES

Many of the discussions of scale types, and virtually
all of the mathematical results, treat them as absolute
categories. Data are expected to fit into one or another
of the categories. A failure to attain one level of mea-
surement is taken as a demotion to the next level. How-
ever, real data do not follow the requirements of many
scale types. Tukey (1961) pointed out that when mea-
surements that ought to be interval scale are made with
systematic errors of calibration that depend upon the
value measured (as can often happen), the resulting
values are not truly on an interval scale. The difference
of two measured values at one end of the scale will not
be perfectly comparable to a difference of measure-
ments at the other end of the scale. Yet when the errors
are small relative to the measurements, we would sac-
rifice much of the information in the data if we are
forced to “demote” them to ordinal scale. For example,
such a demotion would forbid us to even ask whether
two populations so measured had the same variance.
He concluded (1961, p. 247): ““An oversimplified and
overpurified view of what measurements are like cannot
be allowed to dictate how data is to be analyzed.”

12. SCALES AND DATA ANALYSIS

Discussions of statistics in terms of scale types (for
example, Luce et al. 1990, chap. 22) assert that the
scale type of data is determined by the nature of the
measurement and that it constrains the hypotheses that
may be meaningfully stated (and thus tested). Modern
approaches to data analysis, such as Exploratory Data
Analysis (Hoaglin, Mosteller, and Tukey 1983; Tukey
1977; Velleman and Hoaglin 1981), have clarified the
fact, known to practicing scientists, that the hypotheses
often do not precede the data.

As many of the examples we have cited show, the
scale type of data may be determined in part by the
questions we ask of the data or the purposes for which
we intend it. Thus Lord’s professor validated interval-
scale interpretation of the football jersey numbers when
he asked whether the Freshmen’s numbers were smaller
than the Sophomores’. The reception raffle treated ticket
number as nominal for determining *‘who wins this prize,”
but treating the same value as ratio scale for the purpose
of estimating ‘‘how many people are here™ is equally
appropriate.

Good data analysis rarely follows the formal para-
digm of hypothesis testing. It is a general search for
patterns in data that is open to discovering unantici-
pated relationships. Such analyses are, of course, im-
possible if the data are asserted to have a scale type
that forbids even considering some patterns—but such
an approach is clearly unscientific. A scientist must be
open to any interesting pattern. Approaches to statistics
that start from an a priori scale type and then proscribe
the kinds of hypotheses that may be considered or the
statistical methods and tests that may be computed based
on that scale type are simply bad science and bad data
analysis.

I
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It is in this spirit that prominent statisticians have
attacked Stevens’s proscriptions. For example, 1. R.
Savage (1957, p. 340), in a critical review of Siegel
(1956), stated: ““I know of no reason to limit statistical
procedures to those involving authentic operations con-
sistent with the scale of observed quantities.”

13. MEANINGFULNESS

The definitions of Stevens’s data scales in Section 1
use the traditional idea that the meaningfulness of state-
ments about the data for different scales is preserved
under permissible transformations. We left undefined
the key term meaningfulness. The definition given by
measurement theory is, “that which is preserved under
the permissible transformations.” From there it is a
short step to proscribing statistics that use forbidden
operations because they destroy meaningfulness. (For
example, see the quotation from Luce given earlier.)

Advocates of this approach consider meaningfulness
to be absolute. For example, Townsend and Ashby (1984,
p. 394) stated: ““As is perhaps obvious, meaningfulness
is an all-or-none concept. Thus a statement can not be
almost meaningful.”

In science, as in data analysis, meaning and mean-
ingfulness are not so simple. Science proceeds by mak-
ing measurements that are inevitably in error, formu-
lating theories that are expected to be incorrect (although
they may be the best we can do at the time), and then
trying to do better. If science were restricted to provably
meaningful statements, it could not proceed. We must
reason with respect to our imperfect descriptions of the
world. As Francis Bacon (1869, p. 210) noted: “Truth
emerges more readily from error than from confusion.”

Meaning in statistical analysis derives not only from
the data but also from the questions being investigated,
the patterns discovered in the course of the analysis,
and the additional data that may be available. In Lord’s
example, the magnitude of the football numbers had
no meaning in their original purpose, but were given a
meaning to the Freshmen when the Sophomores made
fun of them, and to the professor, when the Freshmen
wanted their money back. In the example of the raffle,
the absolute magnitude of the winning number had no
meaning in its original purpose as an arbitrary identifier
of the winner, but was given a meaning when applied
to estimating the attendance.

The debate over meaningfulness may, in part, derive
from a careless generalization of a term originally ap-
plied to a specialized concept. Mathematicians often
appropriate ordinary words to label carefully defined
concepts. Naming a concept with a term such as mean-
ing does not re-define the word. Just as ‘‘significant”
statistics need not be theoretically important, ‘“‘normal”
distributions are rare, and ‘‘powerful” tests have no
wattage, meaningfulness is a richer concept than is cap-
tured by the axioms of measurement theory.

14. A ROLE FOR DATA TYPES

It would be wrong to conclude that there is no value
to data types. Certainly any designed experiment must

differentiate between categorical factors, which in Ste-
vens’s terminology are usually nominal or ordinal, and
continuous covariates, which are usually interval or ra-
tio. The concept of scale type is an important one, and
Stevens’s terminology is often suitable. Indeed, much
of the discussion of this article would be impossible
without these concepts. We must keep in mind, how-
ever, that scale types are not fundamental attributes of
the data, but rather, derive from both how the data
were measured and what we conclude from the data.

In any data analysis it is possible to ask meaningless
questions. An understanding of data scaling can some-
times help us ferret out nonsense, but we must reason
in the correct order. Rather than basing the selection
of statistical methods on the scale type, we start from
the data and our theories about the circumstances
underlying the data. We guide the data analysis by what
we hope to learn from the data. Our conclusions will
ultimately require the data to support one or another
type of measurement scale. Once we have reached a
conclusion, it is appropriate to check whether the mea-
surement scale it requires is reasonable to expect of
those data. If it does not appear reasonable (for ex-
ample, we were certain that cage number was nominal,
but now we find a correlation with the response vari-
able), we must seek an explanation. To do less would
be irresponsible science.

To restrict our investigation only to hypotheses and
calculations permitted by an a priori assignment of scale
type would be far more irresponsible. As Kuhn (1962,
p. 52) points out, “Discovery commences with the
awareness of anomaly, i.e., with the recognition that
nature has somehow violated the paradigm-induced ex-
pectations that govern normal science.”

Responsible data analysis must be open to anomaly
if it is to support scientific advancement. Attempts to
narrow the range of relationships that may be consid-
ered, restrict the transformations that may be applied,
or proscribe the statistics that may be computed limit
our ability to detect anomalies. Textbooks and com-
puter programs that enforce such an approach to data
mislead their readers and users.

One source of difficulty in computer packages may
be that programmers commonly assign types to vari-
ables, separating real numbers, integers, and text strings,
for example. It may be natural for computer software
developers to adopt types for data as well, but that is
no reason to impose them on package users. Many of
the modern statistical methods that challenge data scale
typing have been made practical only by the ready avail-
ability of computers. The way we use them is likely to
depend on how they are implemented on computers.
We should take care to avoid unnecessary restrictions
that may be imposed for the programmer’s convenience
rather than from a fundamental understanding of data
and data analysis.

15. CONCLUSION

Measurement theory is important to the interpreta-
tion of statistical analyses. However, the application of

e American Statistician, February 1993, Vol. 47, No. 1 71

Th
Copyright © 2001. All Rights Reserved.



Stevens’s typology to statistics raises many subtle prob-
lems. Statistics programs based on Stevens’s typology
suggest that doing statistics is simply a matter of de-
claring the scale type of data and picking a model. Worse,
they assert that the scale type is evident from the data
independent of the questions asked of the data. They
thus restrict the questions that may be asked of the data.
Such restrictions lead to bad data analysis and bad science.

Recent attempts to produce “‘artificial intelligence”
statistical software have sustained the use of this ter-
minology in statistics and concealed the subtleties of
creative data analysis. Of course, data analysts must
take responsibility to apply methods appropriate to their
data and to the questions they wish to answer. Statistics
software that facilitates any analysis on any data permits
irresponsible analyses. Considering whether scale types
are plausible subsequent to the analysis can help ferret
out nonsense. But software that imposes arbitrary re-
strictions is likely to generate equally misleading
conclusions.

|Received June 1991. Revised January 1992.]
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