
Computer-Generated Floral Ornament

Michael T. Wong Douglas E. Zongker David H. Salesin

University of Washington

Abstract
This paper describes some of the principles
of traditional floral ornamental design, and ex-
plores ways in which these designs can be
created algorithmically. It introduces the idea
of “adaptive clip art,” which encapsulates the
rules for creating a specific ornamental pattern.
Adaptive clip art can be used to generate pat-
terns that are tailored to fit a particularly shaped
region of the plane. If the region is resized or re-
shaped, the ornament can be automatically re-
generated to fill this new area in an appropriate
way. Our ornamental patterns are created in two
steps: first, the geometry of the pattern is gen-
erated as a set of two-dimensional curves and
filled boundaries; second, this geometry is ren-
dered in any number of styles. We demonstrate
our approach with a variety of floral ornamental
designs.
CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation; I.3.4 [Computer Graphics]: Graphics Utilities—
Picture description languages.

Additional Keywords: adaptive clip art, conventionaliza-
tion, pattern generation, plant development, ornamentation,
texture generation

1 Introduction
If I were asked to say what is at once
the most important production of Art
and the thing most to be longed for,
I should answer, A beautiful House;
and if I were further asked to name the
production next in importance and the
thing next to be longed for, I should an-
swer, A beautiful Book. To enjoy good
houses and good books in self-respect
and decent comfort, seems to me to be
the pleasurable end towards which all
societies of human beings ought now
to struggle.

— William Morris, 1892 [23]

Ornament is among the oldest forms of human
expression, already well developed by the Ne-
olithic Age [6]. Nearly all the commissioned
writing of the Middle Ages was decorated with
ornament, and the illuminated manuscripts of
the 13th century rank among the most beautiful
books ever produced.

Even the earliest printed books were often il-
luminated by hand, but by about 1530 such
carefully crafted illumination had all but dis-
appeared [23]. Today, documents are produced
with greater ease and in greater number than
ever, thanks to ubiquitous desktop publishing
tools—yet, beyond the use of static “clip art” el-
ements, these tools provide precious little sup-
port for ornamenting the page. Similarly, in ar-
chitecture, ornament has historically played a
critical and famous role. However, most mod-
ern buildings, despite the help of sophisticated
CAD tools, are largely devoid of these beautiful
decorations.

Though technological advances have virtually
ignored the creation of ornament, they have at
the same time provided new opportunities for
its use. The dynamic nature of Web documents
encourages ornament to be generated on the fly
to accommodate different browser configura-
tions and fonts. New printing processes make it
feasible to print on fabric or wallpaper in small
runs, raising the possibility of their custom de-
sign and production.

This paper therefore provides an early explo-
ration into how aesthetically pleasing orna-
ments might be generated algorithmically. The
method we describe attempts to capture the
“essence” of an ornamental pattern, encoding
it as a set of rules, which we call adaptive clip
art. This encoding allows the ornament to be
defined in a manner that is independent of a spe-
cific areal boundary. The adaptive clip art so de-
scribed can be used to generate ornaments that
are automatically tailored to any particular re-

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

Figure 1 Design element categories. (a) Geometric forms (after Alhambra tile) [29,
plate 29]. Natural forms (b) plants (Gothic vine) [10, fig. 82], (c) animal/human forms
(border detail, Germany 1518) [4, plate 30], (d) physiographic forms (17th century
Japanese wave motif) [9], (e) artificial objects (Renaissance torches) [21, plate 80].

gion of interest; moreover, if the region is changed, the ornament
can be regenerated to fill the new area in an appropriate way.

The automatic creation of aesthetically pleasing ornament is a mon-
umental challenge, which we by no means claim to solve here. Nev-
ertheless, we hope that this paper will offer some interesting new di-
rections, with the hope that further advances may someday help in
the creation of beautiful ornaments for our houses and books—and
online chat rooms and web pages!

1.1 Problem statement

The problem space of all possible ornamental design is simply enor-
mous. In order to approach the problem at all, we need to limit our
domain. We therefore make the following taxonomy (adapted from
Meyer [21]).

First, the elements of ornamental design can be broken down into
three broad categories:

1. geometrical elements, such as lines, polygons, ovals, and the
like (Figure 1a);

2. natural forms, which can be further classified as
1. plants (Figure 1b),
2. animal/human forms (Figure 1c),
3. physiographic features (Figure 1d); and

3. artificial objects, such as shields, ribbons, or torches (Fig-
ure 1e).

Second, for our purposes we will similarly divide the applications
of ornament into four main contexts:

A. to bands, which have finite thickness in one dimension and are
infinitely repeating in the other (Figure 2a);

B. to half-open borders, which are tightly constrained along one
or more edges, but open in other directions (Figure 2b);

C. to panels, which are arbitrary bounded regions of the plane
(Figure 2c); and

D. to the open plane, in which the ornament typically becomes a
repeating pattern (Figure 2d).

In this paper, we restrict the problem space to the case of producing
floral growth within panels (case 2.1-C in the classification above).
In particular, we will look at the challenging issues of structuring flo-
ral ornament according to various principles of ornamental design,
such as balance, analogy, and intention—as described in Section 2.
We will not, however, focus here on designs involving strict symme-
tries. As we shall see, the resulting design space is still quite large;
however, it is at least constrained enough that we can explore a se-
ries of related approaches within the confines of a single research
paper. Moreover, we expect that many of the approaches suggested
here will be useful, in some form, for other cases in the taxonomy.

In the rest of this paper, we describe a number of principles of floral
ornamental design, and we discuss ways in which such designs can
be created algorithmically.

Figure 2 Applications of ornament: (a) bands (16th century Germany) [31, plate 34]
(b) half-open borders [24, opening page of chapter 7], (c) panels (oak leaf vine from the
cathedral of Toledo) [10, fig. 104], (d) open plane [35, fig. 270].

1.2 Related work

The area of ornamental design synthesis has received relatively little
attention in the computer graphics community, to our knowledge.

At SIGGRAPH ’75 (the 2nd annual SIGGRAPH conference),
Alexander described a Fortran program for generating the 17 sym-
metry patterns in the plane [1]. Grünbaum and Shephard used a more
sophisticated computer program to generate periodic tilings and pat-
terns in their landmark text on the subject [14]. However, in both of
these cases, the ornamental designs produced are purely geometric
and purely on the open plane.

Glassner examined the synthesis of frieze patterns, which can be
used for generating textures for band ornaments [11].

Siromoney and Siromoney examined the synthesis of kolam pat-
terns: a form of ephemeral ornament practiced in India where grains
of rice are used to trace out designs forming intricate lattices [32].
Their goal, however, was to show how graph grammars could be
used to generate instances of such geometric patterns, rather than
to create ornament to fill a specified region.

Arvo and Kirk introduced the modeling of plant growth with
environmentally sensitive automata [2], Greene examined the
growth of plant-like branching structures in voxel space [13], and
Prusinkiewicz et al. examined the generation of ornamental topiary
plant forms with open L-systems [26]. The synthetic structures de-
scribed in these papers were adaptive to space, but not designed to
grow according to conventions of 2D ornamentation.

Smith introduced the graphics community to the modeling of plant
growth with a class of parallel rewriting grammars he termed
“graftals” [33]. The grammars were used to generate a branching
structure, which could then be given visual character through a post-
processing step. We use a similar two-step procedure to create first

the structure and then the rendering of our ornaments.

In their paper on graphical style sheets, Beach and Stone introduced
the idea of procedurally generating a simple repeating border pat-
tern that is warped to follow the path of a spline [3]. This idea was
subsequently elaborated by Hsu and Lee, in their papers on “skele-
tal strokes,” to the warping of predefined vector clip art along a
path [15, 16]. Skeletal strokes—whose commercial implementation,
MetaCreations Expression, we have used to render many of the il-
lustrations in this paper—may be thought of as a rudimentary form
of adaptive clip art along curvilinear paths. The work described in
this paper builds on their approach by creating a higher-level mech-
anism for the automatic arrangement of skeletal strokes within arbi-
trary regions of the plane.

1.3 Overview

The rest of this paper is organized as follows. Section 2 surveys the
key principles of floral ornamental design. Section 3 discusses how
these principles can be encapsulated algorithmically. Section 4 dis-
cusses the framework of our ornamental growth engine. Section 5
presents some of our results, and Section 6 suggests areas for future
research. Finally, Appendix A shows in detail some simple exam-
ples of using our system.

2 Principles of ornamental design
For our purposes, we will define ornament as the aesthetic enrich-
ment of the surfaces of man-made objects in ways not directly con-
tributing to their functional utility. In order to provide a sense of the
richness and depth of the problems involved in creating ornament,
we will briefly describe some of the principles that underlay its de-
sign. The system we have implemented so far addresses only a frac-
tion of these principles.

Let’s first look at some of the methods ornamentalists use in con-
veying a perception of order. We will then explore the particulars of
floral ornamental design.

2.1 Order in ornament

If there is any one underlying principle of ornament, it is the con-
veyance of a sense of order or design [12]. Ornamentalists use three
principal techniques in conveying a perception of order: repetition,
balance, and conformation to geometric constraints [10, 12, 36].

2.1.1 Repetition

Perhaps the most fundamental ordering principle is repetition. The
repetition of even the simplest mark can form the basis of an or-
nament. When forms are repeated, they may be repeated exactly
through translation and rotation (Figure 3a). Or they may be re-
flected about some axis, yielding bilateral symmetry (Figure 3c) or
glide reflection (Figure 3b). In many patterns containing rotational
symmetries, the point of radiation is positioned off-center from the
design elements it controls, leading to a bilaterally symmetric radi-
ation (Figure 3d).

A more subtle form of repetition is the use of analogy, in which sim-
ilar, rhythmic controlling lines are used to place and constrain dif-
ferent floral or figurative elements (Figure 3e). In addition, the re-
currence of almost any ratio, or proportion, in a design can impart
a pleasing unity of form. Color is another powerful attribute of pat-
terns, orthogonal to shape, that can be used to unify a design through
repetition.

While designs based on rigid repetition may appeal to a clean, aus-
tere aesthetic, other patterns use variation within a class of forms to
add organic dynamism to their composition (Figure 3h). This vari-
ation may be achieved through alternation of color or form (Fig-
ure 3f), or through scaled repetition (Figure 3g).

2.1.2 Balance

The principle of balance requires that asymmetrical visual masses
be made of equal weight. Figure 4a shows this principle applied to
several compositions. We can also speak of balance in the implicit
motion of lines. Crane [8] describes this phenomenon as each new

Figure 3 Repetition: (a) simple translation [4, plate 142], (b) glide reflection [10, plate
14], (c) reflection [36, cover illustration], (d) radiation (late Gothic “pine” ornament)
[10], (e) analogous (rhythmic lines in the frieze of the Parthenon) [8], (f) alternation
[34, plate 78], (g) scaled [9], (h) organic variation [34, plate 27].

line posing a question that requires an answering line (Figure 4b).
We can see both these principles at work in Figure 4c.

The principle of balanced masses, combined with the primal motiva-
tion for ornamentation, horror vacui, yields the principle of uniform
density: ornament should uniformly fill its allotted space. In some
ornaments, elements of similar mass are distributed non-uniformly
in space. In this case, their unequal distribution can be balanced with
different elements of a smaller scale. This type of ordering leads to a
balance within and among levels of hierarchies of visual mass (Fig-
ure 4d).

2.1.3 Conformation to geometric constraints

Since ornament must live within the boundaries of the objects it
seeks to enrich, the design process must generally begin with a con-
sideration of geometric constraints.

First and foremost, a careful fitting to boundaries is a hallmark of or-
nament from many cultures. Often, the period of a meandering vine,
for instance, has to be adjusted not only to fit properly between the

Figure 4 Balance: (a) in composition [8], (b) question and answer within lines [8], (c)
combined [36, fig. 126], (d) hierarchical [5, title page].

top and bottom edges of the panel, but also to provide appropriate
positions for secondary shoots to invade other portions of the orna-
mented region (Figure 5a). In addition, the shapes of the design ele-
ments themselves are sometimes deformed to better fill space (Fig-
ure 5b).

In many vining motifs, elements are made to grow together tangen-
tially. This principle of tangential junction lends a powerful sense of
teleological, or ends-driven, design to the composition. For obvious
reasons of structural integrity, tangential junction is also important
for ornament that is “cut through” or must otherwise hang together,
such as the open-work bronze basket in Figure 5c, and the sign sup-
port in Figure 5d.

A further principle ordering the layout of motifs is placement at sig-
nal geometric points such as points of maximum concavity or con-
vexity, as in the rosettes of Figure 5e. When filling a region that
has distinct corners, a design element is almost always dedicated to
the task of filling each corner. When accomplishing this task with a
growth motif, the growth is often coordinated by the skeleton of the
region to be filled, as demonstrated by the paisley in Figure 5f.

The design of ornament frequently proceeds through the subdivision
of an area followed by the filling of the divisions. Figure 5g shows
the sequence of steps taken by a 19th-century textile designer from
India in laying out a woodblock print. Since the act of filling may
also be viewed as one of subdivision, the process may be recursively
repeated, leading to a many-tiered hierarchical composition in the
final design.

2.2 Floral ornament

For our purposes, we will define floral ornament as any ornamental
design process involving plant-like growth models, such as branch-
ing structures; or plant-like elements, such as vines, leaves, or flow-
ers.

In this section we will first examine the peculiar qualities of growth
that distinguishes it as a progenitor of ornamental design. We will
then discuss how plant-like structures can be transformed into orna-
mental elements through the process of conventionalization.

Figure 5 Conformation to geometric constraints: (a) fitting meander period (drawn
after [22, p. 35]), (b) deformation of design elements [24], (c) tangential junction (drawn
after [19, p. 107]), (d) tangential junction (drawn after [12, fig. 66]), (e) signal geometric
points [36, fig. 99], (f) following skeleton of a region [25], (g) hierarchical subdivision
[6, fig. 213].

2.2.1 Growth

To begin with, it is worth noting that most of the ornamental prin-
ciples discussed so far are already principles of growth. As Owen
Jones observed in the Grammar of Ornament [17], “whenever any
style of ornament commands universal admiration, it will always be
found to be in concordance with the laws which regulate the distri-
bution of form in nature.”

Growth is a particularly good source for continuous patterns that fill
space and that can logically transport a design into new regions. In
Figure 6, design elements are transported by linear trunks and sin-
uous meanders. Space is filled by smaller spiral branches and half-

Figure 6 Growth transporting a design [10, plate 77].

spiral leaves. In addition, the non-rigid repetition of forms derived
from natural growth can be used to breathe life into a design.

Another issue of growth as represented in ornament is that it tends to
be more highly structured, or ordered, in this context. This ordering
property can be described as intention. Intention can be defined as
the aesthetic perception of teleological growth or placement of form,
discernible from multiscale features of a design: its high-level lay-
out; its sinuous sub-motifs and their serial and hierarchical compo-
sitions; and, at the lowest level, the continuous change in curvature
along a line, a line’s modulation in width, and the angles of crossings
of lines. In other words, intention is not just the process of growth
in the absence of external influences, but rather a way of express-
ing growth even under such influences. Examples include growth
toward pre-placed flowers, or the cooperative formation of symmet-
ric structures, sometimes even from non-analogous locations in an
overall branch structure.

2.2.2 Conventionalization

While in common usage the term “convention” has a pejorative ring,
implying lack of invention, in ornamental design it can have just
the opposite meaning. Conventionalization in ornament is the de-
velopment of abstractions of natural form, a highly creative process.
When artists develop a conventionalization they perform a sort of
inventive prefiltering of phenomenal reality followed by a creative
resynthesis of form. The focus is to extract essential features of form
from the vagaries of environmental influence.

In Figure 7 we see a side-by-side comparison of a study drawn from
nature and a conventional representation based on that study. Note
how the subtle wave of the leaf margins of the poppy get amplified
and regularized in its conventionalization. Note also how the form
of the seed pods has been stylized to fill space.

3 Approach
We will represent a given adaptive clip art pattern as a set of ele-
ments, which describe the geometric primitives that comprise the or-
nament, together with a set of growth rules, which describe how the
elements are structured in relation to one another and to the bound-
aries of the panel. The growth rules are invoked by a controlling
framework to produce the ornamental pattern, customized for any
planar region.

L-systems would appear to be the natural choice for expressing our
growth rules, as they have been used to model many plant-like struc-
tures. In the rest of this section, therefore, we will take a closer look
at the use of L-systems for ornament and discuss the reasons we ul-
timately chose not to use them. We will then discuss the approach

Figure 7 Natural vs. conventional representation [8].

we took in encoding our adaptive clip art in more detail.

3.1 Using L-systems for ornament

L-systems were developed by biologists seeking to model the de-
velopment of plants, and they have been extended by the computer
graphics community [27, 28, 33] to create realistic plant images and
animations. Traditional L-systems do not receive information about
the environment. More recently, open L-systems have been intro-
duced to allow information from the model’s environment to also
affect growth [20, 26]. Open L-systems are therefore a reasonable
choice for encoding growth rules for ornament. As we discuss be-
low, however, the generation of ornament differs from the growth
of real plants in several significant ways that we felt limited the ap-
plicability of open L-systems in this context.

First, while floral ornaments may involve leaves, flowers, vines, and
so forth, in their conventionalization these elements are often con-
nected and arranged in ways that no plant would ever produce. Bio-
logical models are therefore not directly applicable. Indeed, we felt
it would be easier, in most cases, to model the appearance of an
ornament rather than some underlying process to produce it. Also,
by modeling the appearance of the output directly, we felt we could
have tighter control over it.

Second, the environmental feedback loop for real plant growth is
indirect: the environment at a given point in space produces chem-
ical changes in the plant that act to alter its further growth. Open
L-systems model this loop by alternating “rule application” phases
with “environment query” phases—productions leave symbols in
the L-string to indicate where queries should be answered by the
environment process. These answers can only affect productions in
future iterations of the simulation. Thus, a rule for growth that incor-
porates environment queries must be split into a set of productions.
We felt that in our case it would be easier to design rules in the form
of procedures, which could both query the environment and directly
act on the results of those queries in placing graphical elements of
the ornament.

Finally, L-systems apply all productions to a string in parallel: each
element in the string is simultaneously replaced with the result of a
rule acting on the element. Rather than trying to define the semantics
of parallel rule application when each rule is a procedure, we have
chosen to apply our rules serially. A successful iteration of our sys-
tem, then, consists of the selection of a single element, followed by
the incremental growth of that element according to a certain growth
rule associated with it. This process also provides an opportunity to
integrate some form of global planning into both the selection of the
element and the rule being applied.

3.2 Adaptive clip art

Adaptive clip art consists of two parts: elements and growth rules.

Elements correspond to the 2D geometric primitives that appear in
the ornament (e.g., flowers, leaves, and stems); they are the objects
upon which the growth rules operate. To provide simplicity without
sacrificing the ability to draw detail, each element is defined as a col-
lection of one or more proxies. A proxy is a relatively simple geo-
metric shape that represents the element (or a part of the element) for
the purposes of locating empty spaces and testing for intersections.
When producing final output, a more complicated rendering proce-
dure can be invoked. The use of proxies, therefore, keeps the details
of rendering an element separate from the mechanics of positioning
it in the design.

Our growth rules are specified as procedures. When a rule is invoked
on a parent element, the code associated with that rule (the rule
body) is executed. This code can perform environmental queries and
create child elements, among other things. A support library is pro-
vided for common environmental queries and for conveniently ma-
nipulating geometrical primitives such as proxy shapes.

Finally, our framework for elaborating adaptive clip art uses a lim-
ited form of planning in selecting the element for growth on each
new iteration. As described in more detail in the next section, the
framework attempts first to grow the ornament into large open
space, then shifts to filling in corners of the desired region.

4 Implementation
The current implementation consists of approximately 600 lines of
Perl (the preprocessor) and 3,600 lines of C++ (the framework). The
preprocessor reads a rule file which encodes an ornamental pattern.
The preprocessor output is a C++ source file and a corresponding
header file, which are compiled with the framework code to pro-
duce an executable. This executable can take a region specification
and produce the ornamental pattern to fill that particular region. The
output generated is a PostScript file. A default rendering is provided
for every element, which simply draws each proxy of the element in
outline form. The user can attach arbitrary C++ code to each element
type within the rule file to generate custom PostScript output if de-
sired. Alternatively, the PostScript output can be converted to paths
and rendered with skeletal strokes [15, 16] to produce a wide variety
of effects.

We will take a top-down approach to describing the implementation
in the next three sections, first describing the way in which elements
and rules are selected for growth, then covering the details of how
they are specified.

4.1 Rule invocation

The main job of the framework is to decide which elements to
“grow” with the rules in order to fill the given space. Let R repre-
sent the region to be filled with a pattern. Our heuristic is simple:
it finds the largest circle C (modulo some approximation error) that
does not intersect the boundary R or any element of the design, and
tries invoking rules on the elements within a distance � of that circle.
Elements are tried in order of their distance from the circle. When a
rule succeeds (or when all possibilities are exhausted), the iteration
ends and a new circle C is selected.

To find the desired circle, we keep a (relatively) low-resolution
buffer into which we render the proxies of already placed elements,
along with the boundary of the region R. We start small test circles at
various points within the region and increase the radius of each cir-
cle until it intersects an element or the boundary. If the inflation pro-
cedure for a given circle is stopped because the circle hits a bound-
ary, the circle is discarded, since the circle is not adjacent to the ex-
isting ornament. If inflation is stopped by hitting an element, the cir-
cle is kept. The largest kept circle is chosen as C. The center and
radius of C are made available within rule bodies so that rules may
direct their growth based on the circle’s location.

To determine at which points to center the test circles, we perform
a medial axis transformation (MAT) [30] using the Manhattan dis-
tance metric. A circle is centered on each pixel whose transform
value is at least as great as those of its neighbors. We use these skele-

(a) (b) (c) (d)

Figure 8 One iteration of the main loop. (a) Elements already in place at the start of
the iteration. (b) The render buffer, with points covered by elements and/or the region
boundary (in red). Eligible empty-region circles are superimposed in yellow, ineligi-
ble circles (on the exclude list) in green. (c) The selected empty circle C (dashed blue
lines) and the nearby elements that are candidates for growth (thick purple lines). (d)
The ornament after a rule has placed a new leaf.

ton points as centers of the candidate circles to avoid having to per-
form the circle inflation, which is relatively slow, starting at every
uncovered point in the region. The MAT is updated incrementally
after each new element is placed.

It is possible that all the rules on all the elements near a given circle
C may fail to place new elements. In this case, C would continue to
be the largest empty circle available and would immediately be tried
again. To prevent the algorithm from falling into an infinite loop, we
keep a list of points called the exclude list. No circle that intersects
a point on the exclude list can be selected as C. If all the elements
near a given circle fail to produce new elements, then the center of
the circle is placed on the exclude list. A point can be removed from
the exclude list in one of two ways. Whenever a rule is successful
in placing elements for a circle C, all points within � of that circle’s
center are removed from the list. The idea is that we want to prevent
a failed circle from being eligible until some change has occurred in
its vicinity; then it can be tried again. The other way is for a rule body
to explicitly clear the list (useful, for instance, if some state change
within the rule code allows previously unavailable possibilities for
placing elements).

The overall algorithm can be summarized with the following pseu-
docode. The FindEmptyCircle procedure locates the largest empty
circle in the region, subject to the two restrictions above. The effects
of one iteration of the main loop are illustrated in Figure 8.

initialize element tree with seed points
render boundary elements into buffer
compute initial MAT
initialize empty exclude list
repeat

C FindEmptyCircle()
find elements within � of C
try elements in order of distance from C

try rules in order specified in rule file
if rule succeeds, break

if some rule succeeded
update element tree
render new elements into buffer
incrementally update MAT
remove points on exclude list within � of C

else
add center of empty circle to exclude list

4.2 Elements and rules

Each design element has a type. The set of available types is declared
in the rule file. Each element type is associated with one or more
proxies, and zero or more user fields. Available proxies include cir-
cles (circle), arcs (arc), cubic Bézier segments (bezier), line
segments (linesegment), etc. Each element contains a few stan-
dard fields (such as the number of children the element has), any
user fields given in the element declaration, and proxy objects of the
types specified in the declaration. The fields of each proxy are de-
pendent on its type: acircle proxy, for instance, has center and
radius fields.

Each rule file must declare the element type seed, with a single
point proxy. Seed elements are placed by the framework in user-
selected locations at the beginning of the run to start the ornament.

After the element declaration section of the file is the rule section.
Each rule specifies what element type the rule acts on (the parent)

and what types of children the rule produces. The set of children cre-
ated by the rule consists of the static children declared in the rule
preamble, plus any dynamic children created within the rule. The
only difference between static and dynamic children is how they are
initialized and how they are referenced within the rule body.

The body of the rule looks very much like a block of C++ code. Any-
thing that is legal within a C++ function is legal within a rule body.
Additionally, special dollar-sign tokens provide convenient access
to the fields of the parent and child elements. The preprocessor trans-
lates these tokens into C++ expressions referring into the data struc-
tures of the elements.

Each rule returns a flag to indicate success or failure. On success,
the children created by the rule are permanently added to the orna-
ment and a new iteration begins. On failure, the children elements
are discarded, and the framework proceeds to try other element/rule
combinations as discussed in Section 4.1.

Two detailed examples of patterns implemented with this system are
given in Appendix A.

5 Results
Our first set of results shows four different ornamental patterns, each
elaborated over two regions.

The first pattern (Figure 9) is based on a pattern taken from a Chi-
nese vase [18, plate 47]. The pattern has two types of stylized flow-
ers laid down in a grid pattern and connected by curving stems.
The remaining space is filled with small hook-shaped curves, which
themselves are adorned with smaller teardrop shapes. In addition to
exhibiting constraints to geometric bounds, this example was cho-
sen to demonstrate “intentional” growth: the large vine appears to
deliver its flowers to predefined locations on the grid.

The second pattern (Figure 10) demonstrates the principle of hierar-
chical growth. The pattern starts from the seed points by growing the
vines. It then adds the red flowers and the yellow and blue shapes,
connecting them to the main vine structure with shorter subsidiary
vines. Next, leaves are added, either attached to a vine or floating
on their own, and finally the small double-quote-shaped structure is
used to fill in small gaps. This ordering of rule phases is imposed
on the system by adding “state” preconditions to each rule, so that
any rule that is invoked when the program is not in the right state
automatically fails.

The third pattern (Figure 11) is a somewhat less successful attempt,
motivated by a William Morris willow-leaf wallpaper. There is only
one rule, which grows through the empty circle by adding a curved
stem with alternating leaves while preventing the leaves from over-
lapping too much. This pattern illustrates a shortcoming in our ap-
proach, which is that it is difficult to do significant global planning of
a design. In our current system, rule invocation is controlled by the
empty-space-finding algorithm, so growth always proceeds from the
nearest element. For many patterns, it would be better to fill a given
space with growth from a more distant element that curves so as to
naturally pass through that space. Our “willow” pattern, while cov-
ering the region well, is jumbled in comparison to the more elegant
original.

The fourth pattern (Figure 12) uses a motif based on an equal-angle
spiral, a shape that can be seen in diverse natural forms, from the
spiral of a nautilus shell to the curve of a vine tendril [7]. This same
pattern is also used, with a different rendering style, to generate the
border on the first page of this paper. Each spiral is composed of
multiple curved segments, making heavy use of dynamic child cre-
ation, since spirals of different lengths require different numbers of
segments in order to appear smooth. Each spiral curve is given an
orientation opposite to that of its parent. Note how the pattern gen-
erates a rhythmic repeat with a period that is related to the changing
width of the space; the pattern also simplifies as it wanders into nar-
rower spaces. Although the rules that generate this pattern are not
explicitly hierarchical, the appearance of hierarchical structuring is
nonetheless formed by placing new elements in, and scaling them
to, the largest empty circle adjacent to the growing ornament. The
resulting ornament reveals large-scale structures placed in relation
to the outline of the boundary space, with finer-scale details placed

in relation to both the boundary space and the evolving ornament.

Figure 13 shows each of these four patterns again, elaborated over
differently-shaped panels.

Figure 17 shows the breadth of rendering possibilities provided by
the skeletal strokes technique [16]. The same spiral design is ren-
dered with four different strokes, producing a variety of effects. Al-
though the underlying spiral growth motif is more subtly felt in the
more abstract renderings, its ordering properties structure the distri-
bution and scaled repetition of design elements, creating an organic
feel to the compositions.

6 Conclusion
In this paper, we have described a mechanism for encapsulating
growth principles for ornamental design into “adaptive clip art” pat-
terns.

Although we have so far implemented only a rudimentary testbed
for these ideas, we envision, ultimately, a powerful interactive au-
thoring system for designing these patterns. The artistic tool so
derived—unlike most previous work in computer-generated artis-
tic rendering—might be more than just a digital form of an existing
artistic medium: it could essentially provide a new medium of artis-
tic expression, one that yields “living,” dynamic patterns that adapt
to their environments. As we gain more experience with the novel
parameter space of this new medium we hope to encapsulate our
knowledge in high-level, interactive tools that novices and artists
alike will be able to use for creating new instances of these patterns.

In addition to creating better high-level design tools, there are a huge
number of other important areas for future research:

Ornaments over manifolds. We would like to extend our work
to creating ornaments over arbitrary manifolds. Such techniques
would allow the ornamentation of 3D objects (vases, mugs, T-shirts,
etc.) without the distortion that results from simply mapping a pla-
nar ornament onto the surface.

Incorporating global planning strategies. Our strategy of growth
towards the largest empty region is a simple, relatively local one. A
more sophisticated approach might be developed to look at the de-
sign more globally and better incorporate ornamental design princi-
ples such as balance and symmetry.

Putting an artist “in the loop.” In applications such as web page
ornamentation, the adaptive clip art must be generated purely auto-
matically, on the fly. However, in other applications, such as wallpa-
per design, there is no reason not to put an artist in front of the com-
puter to help guide the growth of the pattern and improve its appear-
ance artistically, since both the cost of manufacturing the resulting
artwork and the longevity of the finished piece are both relatively
high. It would be interesting to explore semi-automatic algorithmic
design processes and user interfaces for use in these situations.

Acknowledgements

We would like to thank Przemyslaw Prusinkiewicz, Ned Greene,
and Victor Ostromoukhov for many helpful discussions. This work
was supported by an NSF Presidential Faculty Fellow award (CCR-
9553199), an ONR Young Investigator award (N00014-95-1-0728),
an NSF Graduate Research Fellowship, and industrial gifts from Mi-
crosoft and Pixar.

References
[1] Howard Alexander. The computer/plotter and the 17 ornamental design types. In

Proceedings of SIGGRAPH ’75, pages 160–167. 1975.

[2] J. Arvo and D. Kirk. Modeling plants with environment-sensitive automata. In
Ausgraph 88 proceedings, pages 27–33. 1988.

[3] Richard Beach and Maureen Stone. Graphical style—towards high quality illus-
trations. In Proceedings of SIGGRAPH ’83, pages 127–135. 1983.

[4] Albert Fidelis Butsch. Handbook of Renaissance Ornament: 1290 Designs from
Decorated Books. Dover Publications, Inc., New York, 1969.

[5] William Caxton. History of Reynard the Foxe. Kelmscott, Hammersmith, Eng-
land, 1892.

[6] Archibald H. Christie. Traditional Methods of Pattern Designing. The Clarendon
Press, Oxford, 1929.

[7] Theodore A. Cook. The Curves of Life. Constable and Company, London, 1914.

Figure 9 Red Chinese vase pattern.

[8] Walter Crane. Line and Form. G. Bell & Sons, London, 1902.
[9] Joseph D’Addetta. Traditional Japanese Design Motifs. Dover Publications, Inc.,

New York, 1984.

[10] Lewis F. Day. Nature in Ornament. B.T. Batsford, London, 1898.
[11] Andrew Glassner. Frieze groups. IEEE Computer Graphics and Applications,

16(3):78–83, May 1996.
[12] E.H. Gombrich. The Sense of Order. Phaidon Press Limited, London, 1994.
[13] N. Greene. Voxel space automata: Modeling with stocastic growth processes in

voxel space. In Proceedings of SIGGRAPH ’89, pages 175–184. 1989.

[14] Branko Grünbaum and G. C. Shephard. Tilings and Patterns. W.H. Freeman,
New York, 1987.

[15] Siu Chi Hsu, I. H. H. Lee, and N. E. Wiseman. Skeletal strokes. In Proceedings
of UIST ’93, pages 197–206. 1993.

[16] Siu Chi Hsu and Irene H. H. Lee. Drawing and animation using skeletal strokes.
In Proceedings of SIGGRAPH ’94, pages 109–118. 1994.

[17] Owen Jones. Grammar of Ornament. Day and son, London, 1856.
[18] Owen Jones. The Grammar of Chinese Ornament. Portland House, New York,

1987.

Figure 10 Flowers and leaves pattern.

[19] Sherman E. Lee. The Genius of Japanese Design. Kodansha International, Tokyo,
1981.

[20] Radomı́r Měch and Przemyslaw Prusinkiewicz. Visual models of plants interact-
ing with their environment. In Proceedings of SIGGRAPH ’96, pages 397–410.
1996.

[21] Franz S. Meyer. Handbook of Ornament. Dover Publications, New York, 1957.

[22] William Morris. A Book of verse. Kelmscott, Hammersmith, England, 1870.

[23] William Morris. Ideal Book: Essays and Lectures on the Arts of the Book. Uni-
versity of California Press, Berkeley, 1982.

[24] William Morris and A.J. Wyatt. The Tale of Beowulf. Kelmscott Press, Hammer-
smith, England, 1895.

[25] K. Prakash. Paisleys and Other Textile Designs from India. Dover, New York,
1994.

[26] Przemyslaw Prusinkiewicz, Mark James, and Radomı́r Měch. Synthetic topiary.
In Proceedings of SIGGRAPH ’94, pages 351–358. 1994.

[27] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of
Plants. Springer-Verlag, New York, 1990.

Figure 11 Willow leaf pattern.

[28] Przemyslaw Prusinkiewicz, Aristid Lindenmayer, and James Hanan. Develop-
mental models of herbaceous plants for computer imagery purposes. In Proceed-
ings of SIGGRAPH ’88, pages 141–150. 1988.

[29] Auguste Racinet. Polychromatic Ornament. Firmin Didot freres, fils & cie, Paris,
1873.

[30] A. Rosenfeld and A. C. Kak. Digital Picture Processing. Academic Press, New
York, 1976.

[31] Henry Shaw. The Encylopedia of Ornament. J. Grant, Edinburgh, 1898.

[32] Gift Siromoney and Rani Siromoney. Rosenfeld’s cycle grammars and kolam. In
Graph-Grammars and Their Application to Computer Science, pages 564–579.
Springer-Verlag, Berlin, 1986.

[33] Alvy Ray Smith. Plants, fractals, and formal languages. In Proceedings of SIG-
GRAPH ’84, pages 1–10. 1984.

[34] M.P. Verneuil. Floral Patterns. Dover, New York, 1981.

[35] Otto von Falke. Decorative Silks. W. Helburn, Inc., New York, 1922.

[36] James Ward. The Principles of Ornament. Scribner, New York, 1896.

Figure 12 Bamboo spirals pattern.

A Examples
Our first example pattern is a simple cluster of circular dots (Fig-
ure 14). The first dot is centered on the seed point, and subsequent
dots are placed adjacent to the existing ornament. Dots may be at
most 3 units in radius. Table 1 explains the dollar-sign tokens used
within the rules in this appendix.

%element
seed point // the seed element is required
%endelement

%element
dot circle
int order; // number each dot in order of placement
%endelement

%source // declare a global variable
int dot_count = 0; // to count the dots placed
%endsource

Figure 13 All four patterns, elaborated over different shapes. The line width variation in the outer spiral arch has been reversed from that of Figure 12 to give a filigreed effect.

%rule
seed --> dot
{

// place a maximum-sized dot on the initial seed
$0.set($, 3.0);
$$0.order = dot_count++;

// prevent the seed from being used again
$$.sterile = 1;

return SUCCESS;
}
%endrule

%rule
dot --> dot
{

// ignore tiny empty spaces.
if ($goal.radius < 0.5) return FAILURE;

// determine the radius of the new dot.
double r = min(3.0, $goal.radius);

// place the new dot adjacent to the parent dot.
$0.set($.center.offset($goal.center - $.center,

$.radius + r), r);
$$0.order = dot_count++;

return SUCCESS;
}
%endrule

The $0.set call is the critical line. It places the new child dot by
taking the center of the parent dot ($.center), and offsetting it
by the sum of the parent and child radii ($.radius + r) in the
direction from the center of the parent dot to the center of the goal
circle C.

Figure 14 shows this pattern applied to three different regions. For
this example, we have colored the dots, using the order field,
to indicate the order in which they were placed, from oldest (red)
to newest (purple). This example illustrates how the empty-circle
heuristic first extends the ornament along the skeleton of the region,

token meaning
$$ the parent element
$ proxy 0 of the parent

$(k) proxy k of the parent
$$j the j’th declared child element
$j proxy 0 of the j’th declared child

$j(k) proxy k of the j’th child
$$var dynamic child element in var
$var proxy 0 of a dynamic child

$var(k) proxy k of a dynamic child
$goal the empty circle C

Table 1 Explanation of dollar-sign tokens used in rule bodies.

(a) (b) (c)

Figure 14 A simple example applied to three different regions. Parts (a) and (b) were
seeded near the lower left corner, while part (c) was seeded at the center.

then fills in smaller and smaller regions successively.

A more complex example involves an arrangement of flowers,
leaves, and stems. This rule file has the following declaration sec-
tion:

(a) (b) (c) (d)

(e) (f) (g)

Figure 15 Two applications of the second example rule. Part (a) shows the parent
flower (bold), and the empty goal circle (dashed). The center of the goal circle lies more
than 8 units away, so the rule produces (b) a flower, a stem, and a leaf. When the rule
is applied in the situation of part (c), where the goal circle is smaller, only the flower
and stem are produced (d). Parts (e)–(g) show the elements of part (d) in a variety of
rendering styles.

%element
seed point // the required seed element type
%endelement

%element
flower circle // flower: a circle proxy
int color; // this element type has a user field
%endelement

%element
stem linesegment // stem: a line segment proxy
%endelement

%element
leaf bezier bezier // leaf: two Bezier segment proxies
%endelement

Here three element types are declared, in addition to the required
seed type: flower, which is proxied by a single circle; stem,
which is proxied by a line segment; and leaf, proxied by two
Bézier segments. The flower element contains an integer user
field called color.

This pattern also has only two rules. One rule places a flower on top
of the initial seed point, and so is invoked only once. We will omit
the code for of this rule. The other rule is more interesting: it places
a new flower connected to an existing flower with a new stem seg-
ment, and adds a leaf to the stem only if the stem is long enough.
Thus, the number of children produced is variable (two or three).
The effects of this rule are pictured in Figure 15.

Here is the preamble to the rule, which creates a set of elements
whose relationships are depicted in Figure 16:

%rule
flower --> stem flower
* x leaf

The last line of the preamble tells the preprocessor that the variable
x within the rule body will point to an element of type leaf. This
declaration is necessary so that when the preprocessor sees a dollar-
sign construction involving the variable x, it knows the type of x
and can insert appropriate typecasts.

Here is the remainder of the rule:

$$

$

flower
sterile
children
color

sterile
children

leaf

$$0

$0

$$1

$1

$x

$$x

$x(0)

$x(1)

parent children

circle
center
radius

bezier
c[]

bezier
c[]

flower
sterile
children
color

circle
center
radius

sterile
children

stem

linesegment
p0
p1

Figure 16 Data structures and dollar-sign tokens for the rule in the second example.

{
Direction to_goal = $goal.center - $.center;
double distance;

// determine how far away to place the child flower.
// ˜ on the difference between two points gives
// the distance between them.
distance = ˜($goal.center - $.center);
if (distance > 10.0)

distance = 10.0;

// place the flower centered "distance" units away
// in the direction of the goal, with a radius of 3.
$1.set($.center.offset(to_goal, distance), 3.0);

// if the new flower intersects any
// already-placed element, cancel this rule.
if (intersection($$1))

return FAILURE;

// the stem extends from the center of the parent
// flower to the center of the child flower.
$0.set($.center, $1.center);

// if the new flower was placed far enough away
// add a leaf as well.
if (distance > 8.0)
{

leaf *x = new leaf;

// the base of the leaf is the stem midpoint.
Point leaf_base = ($1.center - $.center) / 2;

// place the leaf at a right angle to the stem,
// and make it 3 units long.
Direction leaf_dir = to_goal + M_PI/2;
Point leaf_tip = leaf_base.offset(leaf_dir, 3.0);

// a leaf is proxied by two Bezier segments.
// each is placed giving position and tangent
// direction and magnitude.
$x(0).set(leaf_base, leaf_dir+M_PI/4, 0.6,

leaf_tip, leaf_dir, 0.4);
$x(1).set(leaf_base, leaf_dir-M_PI/4, 0.6,

leaf_tip, leaf_dir, 0.4);

// add the newly created leaf to the
// child set of this rule.
new_child($$x);

}

// commit the set of children to the design.
return SUCCESS;

}
%endrule

Figure 17 Results of applying different skeletal strokes to a single design.

	Introduction
	Problem statement
	Related work
	Overview

	Principles of ornamental design
	Order in ornament
	Floral ornament

	Approach
	Using L-systems for ornament
	Adaptive clip art

	Implementation
	Rule invocation
	Elements and rules

	Results
	Conclusion
	References
	Examples
	Figures
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Table 1

