Tractatus Logico-Philosophicus Logisch-philosophische Abhandlung By Ludwig Wittgenstein First published by Kegan Paul (London), 1922. SIDE-BY-SIDE-BY-SIDE EDITION, VERSION 0.42 (JANUARY 5, 2015), containing the original German, alongside both the Ogden/Ramsey, and Pears/McGuinness English translations. Available at: http://people.umass.edu/klement/tlp/ 1 Introduction By Bertrand Russell, F. R. S. MR. WITTGENSTEIN’S Tractatus Logico-Philosophicus, whether or not it prove to give the ultimate truth on the matters with which it deals, certainly deserves, by its breadth and scope and profundity, to be considered an important event in the philosophical world. Starting from the principles of Symbolism and the relations which are necessary between words and things in any language, it applies the result of this inquiry to various departments of traditional philosophy, showing in each case how traditional philosophy and traditional solutions arise out of ignorance of the principles of Symbolism and out of misuse of language. The logical structure of propositions and the nature of logical inference are first dealt with. Thence we pass successively to Theory of Knowledge, Principles of Physics, Ethics, and finally the Mystical (das Mystische). In order to understand Mr. Wittgenstein’s book, it is necessary to realize what is the problem with which he is concerned. In the part of his theory which deals with Symbolism he is concerned with the conditions which would have to be fulfilled by a logically perfect language. There are various problems as regards language. First, there is the problem what actually occurs in our minds when we use language with the intention of meaning something by it; this problem belongs to psychology. Secondly, there is the problem as to what is the relation subsisting between thoughts, words, or sentences, and that which they refer to or mean; this problem belongs to epistemology. Thirdly, there is the problem of using sentences so as to convey truth rather that falsehood; this belongs to the special sciences dealing with the subjectmatter of the sentences in question. Fourthly, there is the question: what relation must one fact (such as a sentence) have to another in order to be capable of being a symbol for that other? This last is a logical question, and is the one with which Mr. Wittgenstein is concerned. He is concerned with the conditions for accurate Symbolism, i.e. for Symbolism in which a sentence “means” something quite definite. In practice, language is always more or less vague, so that what we assert is never quite precise. Thus, logic has two problems to deal with in regard to Symbolism: (1) the conditions for sense rather than nonsense in combinations of symbols; (2) the conditions for uniqueness of meaning or reference in symbols or combinations of symbols. A logically perfect language has rules of syntax which prevent nonsense, and has single symbols which always have a definite and unique meaning. Mr. Wittgenstein is concerned with the conditions for a logically perfect language—not that any language is logically perfect, or that we believe ourselves capable, here and now, of constructing a logically perfect language, but that the whole function of language is to have meaning, and it only fulfills this function in proportion as it approaches to the ideal language which we postulate. The essential business of language is to assert or deny facts. Given the syntax of language, the meaning of a sentence is determined as soon as the meaning of the component words is known. In order that a certain sentence should assert a certain fact there must, however the language may be constructed, be something in common between the structure of the sentence and the structure of the fact. This is perhaps the most fundamental thesis of Mr. Wittgenstein’s theory. That which has to be in common between the sentence and the fact cannot, he contends, be itself in turn said in language. It can, in his phraseology, only be shown, not said, for whatever we may say will still need to have the same structure. The first requisite of an ideal language would be that there should be one name for every simple, and never the same name for two different simples. A name is a simple symbol in the sense that it has no parts which are themselves symbols. In a logically perfect language nothing that is not simple will have a simple symbol. The symbol for the whole will be a “complex”, containing the symbols for the parts. (In speaking of a “complex” we are, as will appear later, sinning against the rules of philosophical grammar, but this is unavoidable at the outset. “Most propositions and questions that have been written about philosophical matters are not false but senseless. We cannot, therefore, 2 answer questions of this kind at all, but only state their senselessness. Most questions and propositions of the philosophers result from the fact that we do not understand the logic of our language. They are of the same kind as the question whether the Good is more or less identical than the Beautiful” (4.003).) What is complex in the world is a fact. Facts which are not compounded of other facts are what Mr. Wittgenstein calls Sachverhalte, whereas a fact which may consist of two or more facts is a Tatsache: thus, for example “Socrates is wise” is a Sachverhalt, as well as a Tatsache, whereas “Socrates is wise and Plato is his pupil” is a Tatsache but not a Sachverhalt. He compares linguistic expression to projection in geometry. A geometrical figure may be projected in many ways: each of these ways corresponds to a different language, but the projective properties of the original figure remain unchanged whichever of these ways may be adopted. These projective properties correspond to that which in his theory the proposition and the fact must have in common, if the proposition is to assert the fact. In certain elementary ways this is, of course, obvious. It is impossible, for example, to make a statement about two men (assuming for the moment that the men may be treated as simples), without employing two names, and if you are going to assert a relation between the two men it will be necessary that the sentence in which you make the assertion shall establish a relation between the two names. If we say “Plato loves Socrates”, the word “loves” which occurs between the word “Plato” and the word “Socrates” establishes a certain relation between these two words, and it is owing to this fact that our sentence is able to assert a relation between the persons named by the words “Plato” and “Socrates”. “We must not say, the complex sign ‘aRb’ says that ‘a stands in a certain relation R to b’; but we must say, that ‘a’ stands in a certain relation to ‘b’ says that aRb” (3.1432). Mr. Wittgenstein begins his theory of Symbolism with the statement (2.1): “We make to ourselves pictures of facts.” A picture, he says, is a model of the reality, and to the objects in the reality correspond the elements of the picture: the picture itself is a fact. The fact that things have a certain relation to each other is represented by the fact that in the picture its elements have a certain relation to one another. “In the picture and the pictured there must be something identical in order that the one can be a picture of the other at all. What the picture must have in common with reality in order to be able to represent it after its manner—rightly or falsely—is its form of representation” (2.161, 2.17). We speak of a logical picture of a reality when we wish to imply only so much resemblance as is essential to its being a picture in any sense, that is to say, when we wish to imply no more than identity of logical form. The logical picture of a fact, he says, is a Gedanke. A picture can correspond or not correspond with the fact and be accordingly true or false, but in both cases it shares the logical form with the fact. The sense in which he speaks of pictures is illustrated by his statement: “The gramophone record, the musical thought, the score, the waves of sound, all stand to one another in that pictorial internal relation which holds between language and the world. To all of them the logical structure is common. (Like the two youths, their two horses and their lilies in the story. They are all in a certain sense one)” (4.014). The possibility of a proposition representing a fact rests upon the fact that in it objects are represented by signs. The so-called logical “constants” are not represented by signs, but are themselves present in the proposition as in the fact. The proposition and the fact must exhibit the same logical “manifold”, and this cannot be itself represented since it has to be in common between the fact and the picture. Mr. Wittgenstein maintains that everything properly philosophical belongs to what can only be shown, or to what is in common between a fact and its logical picture. It results from this view that nothing correct can be said in philosophy. Every philosophical proposition is bad grammar, and the best that we can hope to achieve by philosophical discussion is to lead people to see that philosophical discussion is a mistake. “Philosophy is not one of the natural sciences. (The word ‘philosophy’ must mean something which stands above or below, but not beside the natural sciences.) The object of philosophy is the logical clarification of thoughts. Philosophy is not a theory but an activity. A philosophical work consists essentially of elucidations. The result of philosophy is not a number of ‘philosophical propositions’, but to make propositions clear. Philosophy should make clear and delimit sharply the thoughts which otherwise are, as it were, opaque and blurred” (4.111 and 4.112). In accordance with this principle the things that have to be said in 3 leading the reader to understand Mr. Wittgenstein’s theory are all of them things which that theory itself condemns as meaningless. With this proviso we will endeavour to convey the picture of the world which seems to underlie his system. The world consists of facts: facts cannot strictly speaking be defined, but we can explain what we mean by saying that facts are what makes propositions true, or false. Facts may contain parts which are facts or may contain no such parts; for example: “Socrates was a wise Athenian”, consists of the two facts, “Socrates was wise”, and “Socrates was an Athenian.” A fact which has no parts that are facts is called by Mr. Wittgenstein a Sachverhalt. This is the same thing that he calls an atomic fact. An atomic fact, although it contains no parts that are facts, nevertheless does contain parts. If we may regard “Socrates is wise” as an atomic fact we perceive that it contains the constituents “Socrates” and “wise”. If an atomic fact is analyzed as fully as possible (theoretical, not practical possibility is meant) the constituents finally reached may be called “simples” or “objects”. It is a logical necessity demanded by theory, like an electron. His ground for maintaining that there must be simples is that every complex presupposes a fact. It is not necessarily assumed that the complexity of facts is finite; even if every fact consisted of an infinite number of atomic facts and if every atomic fact consisted of an infinite number of objects there would still be objects and atomic facts (4.2211). The assertion that there is a certain complex reduces to the assertion that its constituents are related in a certain way, which is the assertion of a fact: thus if we give a name to the complex the name only has meaning in virtue of the truth of a certain proposition, namely the proposition asserting the relatedness of the constituents of the complex. Thus the naming of complexes presupposes propositions, while propositions presuppose the naming of simples. In this way the naming of simples is shown to be what is logically first in logic. The world is fully described if all atomic facts are known, together with the fact that these are all of them. The world is not described by merely naming all the objects in it; it is necessary also to know the atomic facts of which these objects are constituents. Given this totality of atomic facts, every true proposition, however complex, can theoretically be inferred. A proposition (true or false) asserting an atomic fact is called an atomic proposition. All atomic propositions are logically independent of each other. No atomic proposition implies any other or is inconsistent with any other. Thus the whole business of logical inference is concerned with propositions which are not atomic. Such propositions may be called molecular. Wittgenstein’s theory of molecular propositions turns upon his theory of the construction of truth-functions. A truth-function of a proposition p is a proposition containing p and such that its truth or falsehood depends only upon the truth or falsehood of p, and similarly a truth-function of several propositions p, q, r, ... is one containing p, q, r, ... and such that its truth or falsehood depends only upon the truth or falsehood of p, q, r, ... It might seem at first sight as though there were other functions of propositions besides truth-functions; such, for example, would be “A believes p”, for in general A will believe some true propositions and some false ones: unless he is an exceptionally gifted individual, we cannot infer that p is true from the fact that he believes it or that p is false from the fact that he does not believe it. Other apparent exceptions would be such as “p is a very complex proposition” or “p is a proposition about Socrates”. Mr. Wittgenstein maintains, however, for reasons which will appear presently, that such exceptions are only apparent, and that every function of a proposition is really a truth-function. It follows that if we can define truth-functions generally, we can obtain a general definition of all propositions in terms of the original set of atomic propositions. This Wittgenstein proceeds to do. It has been shown by Dr. Sheffer (Trans. Am. Math. Soc., Vol. XIV. pp. 481–488) that all truth-functions of a given set of propositions can be constructed out of either of the two functions “not-p or not-q” or “not-p and not-q”. Wittgenstein makes use of the latter, assuming a knowledge of Dr. Sheffer’s work. The manner in which other truthfunctions are constructed out of “not-p and not-q” is easy to see. “Not-p and not-p” is equivalent to “not-p”, hence we obtain a definition of negation in terms of our primitive function: hence we can define “p or q”, since this is the negation of “not-p and not-q”, i.e. of our primitive function. The development of other truth-functions out of “not-p” and “p or q” is given in detail at the beginning of Principia Mathematica. This gives all that is wanted when the propositions which are argu- 4 ments to our truth-function are given by enumeration. Wittgenstein, however, by a very interesting analysis succeeds in extending the process to general propositions, i.e. to cases where the propositions which are arguments to our truth-function are not given by enumeration but are given as all those satisfying some condition. For example, let fx be a propositional function (i.e. a function whose values are propositions), such as “x is human”—then the various values of fx form a set of propositions. We may extend the idea “not-p and not-q” so as to apply to the simultaneous denial of all the propositions which are values of fx. In this way we arrive at the proposition which is ordinarily represented in mathematical logic by the words “fx is false for all values of x”. The negation of this would be the proposition “there is at least one x for which fx is true” which is represented by “(∃x). fx”. If we had started with not-fx instead of fx we should have arrived at the proposition “fx is true for all values of x” which is represented by “(x). fx”. Wittgenstein’s method of dealing with general propositions [i.e. “(x). fx” and “(∃x). fx”] differs from previous methods by the fact that the generality comes only in specifying the set of propositions concerned, and when this has been done the building up of truth-functions proceeds exactly as it would in the case of a finite number of enumerated arguments p, q, r, ... Mr. Wittgenstein’s explanation of his symbolism at this point is not quite fully given in the text. The symbol he uses is [p, ξ, N(ξ)]. The following is the explanation of this symbol: p stands for all atomic propositions. ξ stands for any set of propositions. N(ξ) stands for the negation of all the propositions making up ξ. The whole symbol [p, ξ, N(ξ)] means whatever can be obtained by taking any selection of atomic propositions, negating them all, then taking any selection of the set of propositions now obtained, together with any of the originals—and so on indefinitely. This is, he says, the general truth-function and also the general form of proposition. What is meant is somewhat less complicated than it sounds. The symbol is intended to describe a process by the help of which, given the atomic propositions, all others can be manufactured. The process depends upon: (a). Sheffer’s proof that all truth-functions can be obtained out of simultaneous negation, i.e. out of “not-p and not-q”; (b). Mr. Wittgenstein’s theory of the derivation of general propositions from conjunctions and disjunctions; (c). The assertion that a proposition can only occur in another proposition as argument to a truth-function. Given these three foundations, it follows that all propositions which are not atomic can be derived from such as are, buy a uniform process, and it is this process which is indicated by Mr. Wittgenstein’s symbol. From this uniform method of construction we arrive at an amazing simplification of the theory of inference, as well as a definition of the sort of propositions that belong to logic. The method of generation which has just been described, enables Wittgenstein to say that all propositions can be constructed in the above manner from atomic propositions, and in this way the totality of propositions is defined. (The apparent exceptions which we mentioned above are dealt with in a manner which we shall consider later.) Wittgenstein is enabled to assert that propositions are all that follows from the totality of atomic propositions (together with the fact that it is the totality of them); that a proposition is always a truth-function of atomic propositions; and that if p follows from q the meaning of p is contained in the meaning of q, from which of course it results that nothing can be deduced from an atomic proposition. All the propositions of logic, he maintains, are tautologies, such, for example, as “p or not p”. The fact that nothing can be deduced from an atomic proposition has interesting applications, for example, to causality. There cannot, in Wittgenstein’s logic, be any such thing as a causal nexus. “The events of the future”, he says, “cannot be inferred from those of the present. Superstition is the belief in the causal nexus.” That the sun will rise to-morrow is a hypothesis. We do not in fact know whether it will rise, since there is no compulsion according to which one thing must happen because another happens. Let us now take up another subject—that of names. In Wittgenstein’s theoretical logical language, names are only given to simples. We do not give two names to one thing, or one name to two things. There is no way whatever, according to him, by which we can describe the totality of things that can be named, in other words, the totality of 5 what there is in the world. In order to be able to do this we should have to know of some property which must belong to every thing by a logical necessity. It has been sought to find such a property in self-identity, but the conception of identity is subjected by Wittgenstein to a destructive criticism from which there seems no escape. The definition of identity by means of the identity of indiscernibles is rejected, because the identity of indiscernibles appears to be not a logically necessary principle. According to this principle x is identical with y if every property of x is a property of y, but it would, after all be logically possible for two things to have exactly the same properties. If this does not in fact happen that is an accidental characteristic of the world, not a logically necessary characteristic, and accidental characteristics of the world must, of course, not be admitted into the structure of logic. Mr. Wittgenstein accordingly banishes identity and adopts the convention that different letters are to mean different things. In practice, identity is needed as between a name and a description or between two descriptions. It is needed for such propositions as “Socrates is the philosopher who drank the hemlock”, or “The even prime is the next number after 1.” For such uses of identity it is easy to provide on Wittgenstein’s system. The rejection of identity removes one method of speaking of the totality of things, and it will be found that any other method that may be suggested is equally fallacious: so, at least, Wittgenstein contends and, I think, rightly. This amounts to saying that “object” is a pseudoconcept. To say “x is an object” is to say nothing. It follows from this that we cannot make such statements as “there are more than three objects in the world”, or “there are an infinite number of objects in the world”. Objects can only be mentioned in connexion with some definite property. We can say “there are more than three objects which are human”, or “there are more than three objects which are red”, for in these statements the word object can be replaced by a variable in the language of logic, the variable being one which satisfies in the first case the function “x is human”; in the second the function “x is red”. But when we attempt to say “there are more than three objects”, this substitution of the variable for the word “object” becomes impossible, and the proposition is therefore seen to be meaningless. We here touch one instance of Wittgenstein’s fundamental thesis, that it is impossible to say anything about the world as a whole, and that whatever can be said has to be about bounded portions of the world. This view may have been originally suggested by notation, and if so, that is much in its favor, for a good notation has a subtlety and suggestiveness which at times make it seem almost like a live teacher. Notational irregularities are often the first sign of philosophical errors, and a perfect notation would be a substitute for thought. But although notation may have first suggested to Mr. Wittgenstein the limitation of logic to things within the world as opposed to the world as a whole, yet the view, once suggested, is seen to have much else to recommend it. Whether it is ultimately true I do not, for my part, profess to know. In this Introduction I am concerned to expound it, not to pronounce upon it. According to this view we could only say things about the world as a whole if we could get outside the world, if, that is to say, it ceased to be for us the whole world. Our world may be bounded for some superior being who can survey it from above, but for us, however finite it may be, it cannot have a boundary, since it has nothing outside it. Wittgenstein uses, as an analogy, the field of vision. Our field of vision does not, for us, have a visual boundary, just because there is nothing outside it, and in like manner our logical world has no logical boundary because our logic knows of nothing outside it. These considerations lead him to a somewhat curious discussion of Solipsism. Logic, he says, fills the world. The boundaries of the world are also its boundaries. In logic, therefore, we cannot say, there is this and this in the world, but not that, for to say so would apparently presuppose that we exclude certain possibilities, and this cannot be the case, since it would require that logic should go beyond the boundaries of the world as if it could contemplate these boundaries from the other side also. What we cannot think we cannot think, therefore we also cannot say what we cannot think. This, he says, gives the key to solipsism. What Solipsism intends is quite correct, but this cannot be said, it can only be shown. That the world is my world appears in the fact that the boundaries of language (the only language I understand) indicate the boundaries of my world. The metaphysical subject does not belong to the world but is a boundary of the world. We must take up next the question of molecular propositions which 6 are at first sight not truth-functions, of the propositions that they contain, such, for example, as “A believes p.” Wittgenstein introduces this subject in the statement of his position, namely, that all molecular functions are truth-functions. He says (5.54): “In the general propositional form, propositions occur in a proposition only as bases of truth-operations.” At first sight, he goes on to explain, it seems as if a propositions could also occur in other ways, e.g. “A believes p.” Here it seems superficially as if the proposition p stood in a sort of relation to the object A. “But it is clear that ‘A believes that p,’ ‘A thinks p,’ ‘A says p’ are of the form “‘p’ says p”; and here we have no co-ordination of a fact and an object, but a co-ordination of facts by means of a co-ordination of their objects” (5.542). What Mr. Wittgenstein says here is said so shortly that its point is not likely to be clear to those who have not in mind the controversies with which he is concerned. The theory which which he is disagreeing will be found in my articles on the nature of truth and falsehood in Philosophical Essays and Proceedings of the Aristotelian Society, 1906– 7. The problem at issue is the problem of the logical form of belief, i.e. what is the schema representing what occurs when a man believes. Of course, the problem applies not only to belief, but also to a host of other mental phenomena which may be called propositional attitudes: doubting, considering, desiring, etc. In all these cases it seems natural to express the phenomenon in the form “A doubts p”, “A considers p”, “A desires p”, etc., which makes it appear as though we were dealing with a relation between a person and a proposition. This cannot, of course, be the ultimate analysis, since persons are fictions and so are propositions, except in the sense in which they are facts on their own account. A proposition, considered as a fact on its own account, may be a set of words which a man says over to himself, or a complex image, or train of images passing through his mind, or a set of incipient bodily movements. It may be any one of innumerable different things. The proposition as a fact on its own account, for example, the actual set of words the man pronounces to himself, is not relevant to logic. What is relevant to logic is that common element among all these facts, which enables him, as we say, to mean the fact which the proposition asserts. To psychology, of course, more is relevant; for a symbol does not mean what it symbolizes in virtue of a logical relation alone, but in virtue also of a psychological relation of intention, or association, or what-not. The psychological part of meaning, however, does not concern the logician. What does concern him in this problem of belief is the logical schema. It is clear that, when a person believes a proposition, the person, considered as a metaphysical subject, does not have to be assumed in order to explain what is happening. What has to be explained is the relation between the set of words which is the proposition considered as a fact on its own account, and the “objective” fact which makes the proposition true or false. This reduces ultimately to the question of the meaning of propositions, that is to say, the meaning of propositions is the only non-psychological portion of the problem involved in the analysis of belief. This problem is simply one of a relation of two facts, namely, the relation between the series of words used by the believer and the fact which makes these words true or false. The series of words is a fact just as much as what makes it true or false is a fact. The relation between these two facts is not unanalyzable, since the meaning of a proposition results from the meaning of its constituent words. The meaning of the series of words which is a proposition is a function of the meaning of the separate words. Accordingly, the proposition as a whole does not really enter into what has to be explained in explaining the meaning of a propositions. It would perhaps help to suggest the point of view which I am trying to indicate, to say that in the cases which have been considering the proposition occurs as a fact, not as a proposition. Such a statement, however, must not be taken too literally. The real point is that in believing, desiring, etc., what is logically fundamental is the relation of a proposition considered as a fact, to the fact which makes it true or false, and that this relation of two facts is reducible to a relation of their constituents. Thus the proposition does not occur at all in the same sense in which it occurs in a truth-function. There are some respects, in which, as it seems to me, Mr. Wittgenstein’s theory stands in need of greater technical development. This applies in particular to his theory of number (6.02ff.) which, as it stands, is only capable of dealing with finite numbers. No logic can be considered adequate until it has been shown to be capable of dealing with transfinite numbers. I do not think there is anything in Mr. Wittgenstein’s system to make it impossible for him to fill this lacuna. 7 More interesting than such questions of comparative detail is Mr. Wittgenstein’s attitude towards the mystical. His attitude upon this grows naturally out of his doctrine in pure logic, according to which the logical proposition is a picture (true or false) of the fact, and has in common with the fact a certain structure. It is this common structure which makes it capable of being a picture of the fact, but the structure cannot itself be put into words, since it is a structure of words, as well as of the fact to which they refer. Everything, therefore, which is involved in the very idea of the expressiveness of language must remain incapable of being expressed in language, and is, therefore, inexpressible in a perfectly precise sense. This inexpressible contains, according to Mr. Wittgenstein, the whole of logic and philosophy. The right method of teaching philosophy, he says, would be to confine oneself to propositions of the sciences, stated with all possible clearness and exactness, leaving philosophical assertions to the learner, and proving to him, whenever he made them, that they are meaningless. It is true that the fate of Socrates might befall a man who attempted this method of teaching, but we are not to be deterred by that fear, if it is the only right method. It is not this that causes some hesitation in accepting Mr. Wittgenstein’s position, in spite of the very powerful arguments which he brings to its support. What causes hesitation is the fact that, after all, Mr. Wittgenstein manages to say a good deal about what cannot be said, thus suggesting to the sceptical reader that possibly there may be some loophole through a hierarchy of languages, or by some other exit. The whole subject of ethics, for example, is placed by Mr. Wittgenstein in the mystical, inexpressible region. Nevertheless he is capable of conveying his ethical opinions. His defence would be that what he calls the mystical can be shown, although it cannot be said. It may be that this defence is adequate, but, for my part, I confess that it leaves me with a certain sense of intellectual discomfort. There is one purely logical problem in regard to which these difficulties are peculiarly acute. I mean the problem of generality. In the theory of generality it is necessary to consider all propositions of the form fx where fx is a given propositional function. This belongs to the part of logic which can be expressed, according to Mr. Wittgenstein’s system. But the totality of possible values of x which might seem to be involved in the totality of propositions of the form fx is not admitted by Mr. Wittgenstein among the things that can be spoken of, for this is no other than the totality of things in the world, and thus involves the attempt to conceive the world as a whole; “the feeling of the world as a bounded whole is the mystical”; hence the totality of the values of x is mystical (6.45). This is expressly argued when Mr. Wittgenstein denies that we can make propositions as to how may things there are in the world, as for example, that there are more than three. These difficulties suggest to my mind some such possibility as this: that every language has, as Mr. Wittgenstein says, a structure concerning which in the language, nothing can be said, but that there may be another language dealing with the structure of the first language, and having itself a new structure, and that to this hierarchy of languages there may be no limit. Mr. Wittgenstein would of course reply that his whole theory is applicable unchanged to the totality of such languages. The only retort would be to deny that there is any such totality. The totalities concerning which Mr. Wittgenstein holds that it is impossible to speak logically are nevertheless thought by him to exist, and are the subject-matter of his mysticism. The totality resulting from our hierarchy would be not merely logically inexpressible, but a fiction, a mere delusion, and in this way the supposed sphere of the mystical would be abolished. Such a hypothesis is very difficult, and I can see objections to it which at the moment I do not know how to answer. Yet I do not see how any easier hypothesis can escape from Mr. Wittgenstein’s conclusions. Even if this very difficult hypothesis should prove tenable, it would leave untouched a very large part of Mr. Wittgenstein’s theory, though possibly not the part upon which he himself would wish to lay most stress. As one with a long experience of the difficulties of logic and of the deceptiveness of theories which seem irrefutable, I find myself unable to be sure of the rightness of a theory, merely on the ground that I cannot see any point on which it is wrong. But to have constructed a theory of logic which is not at any point obviously wrong is to have achieved a work of extraordinary difficulty and importance. This merit, in my opinion, belongs to Mr. Wittgenstein’s book, and makes it one which no serious philosopher can afford to neglect. BERTRAND RUSSELL. May 1922. Tractatus Logico-Philosophicus DEDICATED TO THE MEMORY OF MY FRIEND DAVID H. PINSENT M o t t o: . . . und alles, was man weiss, nicht bloss rauschen und brausen gehört hat, lässt sich in drei Worten sagen. –KÜRNBERGER. 9 Vorwort (Preface) German Ogden Pears/McGuinness Dieses Buch wird vielleicht nur der ver- This book will perhaps only be under- Perhaps this book will be understood only stehen, der die Gedanken, die darin ausge- stood by those who have themselves already by someone who has himself already had the drückt sind—oder doch ähnliche Gedanken— thought the thoughts which are expressed in thoughts that are expressed in it—or at least schon selbst einmal gedacht hat.—Es ist also it—or similar thoughts. It is therefore not similar thoughts.—So it is not a textbook.— kein Lehrbuch.—Sein Zweck wäre erreicht, a text-book. Its object would be attained if Its purpose would be achieved if it gave pleawenn es Einem, der es mit Verständnis liest there were one person who read it with under- sure to one person who read and understood Vergnügen bereitete. standing and to whom it afforded pleasure. it. Das Buch behandelt die philosophischen The book deals with the problems of The book deals with the problems of phiProbleme und zeigt—wie ich glaube—daß die philosophy and shows, as I believe, that losophy, and shows, I believe, that the reason Fragestellung dieser Probleme auf dem Miß- the method of formulating these problems why these problems are posed is that the logic verständnis der Logik unserer Sprache be- rests on the misunderstanding of the logic of of our language is misunderstood. The whole ruht. Man könnte den ganzen Sinn des Bu- our language. Its whole meaning could be sense of the book might be summed up in ches etwa in die Worte fassen: Was sich über- summed up somewhat as follows: What can the following words: what can be said at all haupt sagen lässt, lässt sich klar sagen; und be said at all can be said clearly; and whereof can be said clearly, and what we cannot talk wovon man nicht reden kann, darüber muss one cannot speak thereof one must be silent. about we must pass over in silence. man schweigen. Das Buch will also dem Denken eine The book will, therefore, draw a limit to Thus the aim of the book is to draw a limit Grenze ziehen, oder vielmehr—nicht dem thinking, or rather—not to thinking, but to to thought, or rather—not to thought, but to Denken, sondern dem Ausdruck der Gedan- the expression of thoughts; for, in order to the expression of thoughts: for in order to be ken: Denn um dem Denken eine Grenze zu draw a limit to thinking we should have to able to draw a limit to thought, we should ziehen, müssten wir beide Seiten dieser Gren- be able to think both sides of this limit (we have to find both sides of the limit thinkable ze denken können (wir müssten also denken should therefore have to be able to think (i.e. we should have to be able to think what können, was sich nicht denken lässt). what cannot be thought). cannot be thought). Die Grenze wird also nur in der Sprache The limit can, therefore, only be drawn in It will therefore only be in language that gezogen werden können und was jenseits der language and what lies on the other side of the limit can be drawn, and what lies on the Grenze liegt, wird einfach Unsinn sein. the limit will be simply nonsense. other side of the limit will simply be non- sense. Wieweit meine Bestrebungen mit denen How far my efforts agree with those of I do not wish to judge how far my efforts anderer Philosophen zusammenfallen, will other philosophers I will not decide. Indeed coincide with those of other philosophers. Inich nicht beurteilen. Ja, was ich hier geschrie- what I have here written makes no claim to deed, what I have written here makes no ben habe macht im Einzelnen überhaupt novelty in points of detail; and therefore I claim to novelty in detail, and the reason nicht den Anspruch auf Neuheit; und dar- give no sources, because it is indifferent to why I give no sources is that it is a matter of um gebe ich auch keine Quellen an, weil es me whether what I have thought has already indifference to me whether the thoughts that 10 mir gleichgültig ist, ob das was ich gedacht been thought before me by another. I have had have been anticipated by someone habe, vor mir schon ein anderer gedacht hat. else. Nur das will ich erwähnen, dass ich den I will only mention that to the great I will only mention that I am indebted to großartigen Werken Freges und den Arbei- works of Frege and the writings of my friend Frege’s great works and of the writings of my ten meines Freundes Herrn Bertrand Russell Bertrand Russell I owe in large measure the friend Mr. Bertrand Russell for much of the einen großen Teil der Anregung zu meinen stimulation of my thoughts. stimulation of my thoughts. Gedanken schulde. Wenn diese Arbeit einen Wert hat, so be- If this work has a value it consists in If this work has any value, it consists in steht er in Zweierlei. Erstens darin, dass in two things. First that in it thoughts are ex- two things: the first is that thoughts are exihr Gedanken ausgedrückt sind, und dieser pressed, and this value will be the greater the pressed in it, and on this score the better the Wert wird umso größer sein, je besser die Ge- better the thoughts are expressed. The more thoughts are expressed—the more the nail danken ausgedrückt sind. Je mehr der Nagel the nail has been hit on the head.—Here I am has been hit on the head—the greater will auf den Kopf getroffen ist.—Hier bin ich mir conscious that I have fallen far short of the be its value.—Here I am conscious of having bewusst, weit hinter dem Möglichen zurück- possible. Simply because my powers are in- fallen a long way short of what is possible. geblieben zu sein. Einfach darum, weil meine sufficient to cope with the task.—May others Simply because my powers are too slight for Kraft zur Bewältigung der Aufgabe zu gering come and do it better. the accomplishment of the task.—May others ist.—Mögen andere kommen und es besser come and do it better. machen. Dagegen scheint mir die W a h r h e i t On the other hand the truth of the On the other hand the truth of the der hier mitgeteilten Gedanken unantastbar thoughts communicated here seems to me thoughts that are here communicated seems und definitiv. Ich bin also der Meinung, die unassailable and definitive. I am, therefore, to me unassailable and definitive. I therefore Probleme im Wesentlichen endgültig gelöst of the opinion that the problems have in es- believe myself to have found, on all essenzu haben. Und wenn ich mich hierin nicht sentials been finally solved. And if I am not tial points, the final solution of the problems. irre, so besteht nun der Wert dieser Arbeit mistaken in this, then the value of this work And if I am not mistaken in this belief, then zweitens darin, dass sie zeigt, wie wenig da- secondly consists in the fact that it shows the second thing in which the value of this mit getan ist, dass diese Probleme gelöst how little has been done when these prob- work consists is that it shows how little is sind. lems have been solved. achieved when these problems are solved. L. W. L. W. L. W. Wien, 1918 Vienna, 1918 Vienna, 1918 11 Tractatus Logico-Philosophicus German Ogden Pears/McGuinness 1* Die Welt ist alles, was der Fall ist. The world is everything that is the The world is all that is the case. case. 1.1 Die Welt ist die Gesamtheit der Tatsa- The world is the totality of facts, not The world is the totality of facts, not chen, nicht der Dinge. of things. of things. 1.11 Die Welt ist durch die Tatsachen be- The world is determined by the facts, The world is determined by the facts, stimmt und dadurch, dass es a l l e Tat- and by these being all the facts. and by their being all the facts. sachen sind. 1.12 Denn, die Gesamtheit der Tatsachen For the totality of facts determines For the totality of facts determines bestimmt, was der Fall ist und auch, was both what is the case, and also all that is what is the case, and also whatever is alles nicht der Fall ist. not the case. not the case. 1.13 Die Tatsachen im logischen Raum The facts in logical space are the The facts in logical space are the sind die Welt. world. world. 1.2 Die Welt zerfällt in Tatsachen. The world divides into facts. The world divides into facts. 1.21 Eines kann der Fall sein oder nicht Any one can either be the case or not Each item can be the case or not the der Fall sein und alles übrige gleich blei- be the case, and everything else remain case while everything else remains the ben. the same. same. 2 Was der Fall ist, die Tatsache, ist das What is the case, the fact, is the exis- What is the case—a fact—is the exisBestehen von Sachverhalten. tence of atomic facts. tence of states of affairs. 2.01 Der Sachverhalt ist eine Verbindung An atomic fact is a combination of ob- A state of affairs (a state of things) is von Gegenständen. (Sachen, Dingen.) jects (entities, things). a combination of objects (things). 2.011 Es ist dem Ding wesentlich, der Be- It is essential to a thing that it can be It is essential to things that they standteil eines Sachverhaltes sein zu kön- a constituent part of an atomic fact. should be possible constituents of states nen. of affairs. 2.012 In der Logik ist nichts zufällig: Wenn In logic nothing is accidental: if a In logic nothing is accidental: if a das Ding im Sachverhalt vorkommen thing can occur in an atomic fact the pos- thing can occur in a state of affairs, the k a n n, so muss die Möglichkeit des Sach- sibility of that atomic fact must already possibility of the state of affairs must be verhaltes im Ding bereits präjudiziert be prejudged in the thing. written into the thing itself. sein. * [German] Die Decimalzahlen als Nummern der einzelnen Sätze deuten das logische Gewicht der Sätze an, den Nachdruck, der auf ihnen in meiner Darstellung liegt. Die Sätze n.1, n.2, n.3, etc., sind Bemerkungen zum Sätze No. n; die Sätze n.m1, n.m2, etc. Bemerkungen zum Satze No. n.m; und so weiter. / [Ogden] The decimal figures as numbers of the separate propositions indicate the logical importance of the propositions, the emphasis laid upon them in my exposition. The propositions n.1, n.2, n.3, etc., are comments on proposition No. n; the propositions n.m1, n.m2, etc., are comments on the proposition No. n.m; and so on. / [Pears & McGuinness] The decimal numbers assigned to the individual propositions indicate the logical importance of the propositions, the stress laid on them in my exposition. The propositions n.1, n.2, n.3, etc. are comments on proposition no. n; the propositions n.m1, n.m2, etc. are comments on proposition no. n.m; and so on. 12 2.0121 Es erschiene gleichsam als Zufall, It would, so to speak, appear as an It would seem to be a sort of accident, wenn dem Ding, das allein für sich beste- accident, when to a thing that could exist if it turned out that a situation would fit hen könnte, nachträglich eine Sachlage alone on its own account, subsequently a a thing that could already exist entirely passen würde. state of affairs could be made to fit. on its own. Wenn die Dinge in Sachverhalten vor- If things can occur in atomic facts, this If things can occur in states of affairs, kommen können, so muss dies schon in possibility must already lie in them. this possibility must be in them from the ihnen liegen. beginning. (Etwas Logisches kann nicht nur- (A logical entity cannot be merely pos- (Nothing in the province of logic can möglich sein. Die Logik handelt von jeder sible. Logic treats of every possibility, and be merely possible. Logic deals with evMöglichkeit und alle Möglichkeiten sind all possibilities are its facts.) ery possibility and all possibilities are its ihre Tatsachen.) facts.) Wie wir uns räumliche Gegenstände Just as we cannot think of spatial ob- Just as we are quite unable to imagine überhaupt nicht außerhalb des Raumes, jects at all apart from space, or tempo- spatial objects outside space or temporal zeitliche nicht außerhalb der Zeit denken ral objects apart from time, so we cannot objects outside time, so too there is no können, so können wir uns k e i n e n Ge- think of any object apart from the possi- object that we can imagine excluded from genstand außerhalb der Möglichkeit sei- bility of its connexion with other things. the possibility of combining with others. ner Verbindung mit anderen denken. Wenn ich mir den Gegenstand im Ver- If I can think of an object in the con- If I can imagine objects combined in bande des Sachverhalts denken kann, so text of an atomic fact, I cannot think of it states of affairs, I cannot imagine them kann ich ihn nicht außerhalb der M ö g - apart from the possibility of this context. excluded from the possibility of such coml i c h k e i t dieses Verbandes denken. binations. 2.0122 Das Ding ist selbständig, insofern es The thing is independent, in so far as Things are independent in so far as in allen m ö g l i c h e n Sachlagen vor- it can occur in all possible circumstances, they can occur in all possible situations, kommen kann, aber diese Form der Selb- but this form of independence is a form of but this form of independence is a form ständigkeit ist eine Form des Zusammen- connexion with the atomic fact, a form of of connexion with states of affairs, a form hangs mit dem Sachverhalt, eine Form dependence. (It is impossible for words to of dependence. (It is impossible for words der Unselbständigkeit. (Es ist unmöglich, occur in two different ways, alone and in to appear in two different roles: by themdass Worte in zwei verschiedenen Weisen the proposition.) selves, and in propositions.) auftreten, allein und im Satz.) 2.0123 Wenn ich den Gegenstand kenne, so If I know an object, then I also know If I know an object I also know all its kenne ich auch sämtliche Möglichkeiten all the possibilities of its occurrence in possible occurrences in states of affairs. seines Vorkommens in Sachverhalten. atomic facts. (Jede solche Möglichkeit muss in der (Every such possibility must lie in the (Every one of these possibilities must Natur des Gegenstandes liegen.) nature of the object.) be part of the nature of the object.) Es kann nicht nachträglich eine neue A new possibility cannot subsequently A new possibility cannot be discovered Möglichkeit gefunden werden. be found. later. 2.01231 Um einen Gegenstand zu kennen, In order to know an object, I must If I am to know an object, though I 13 muss ich zwar nicht seine externen—aber know not its external but all its internal need not know its external properties, I ich muss alle seine internen Eigenschaf- qualities. must know all its internal properties. ten kennen. 2.0124 Sind alle Gegenstände gegeben, so If all objects are given, then thereby If all objects are given, then at the sind damit auch alle m ö g l i c h e n Sach- are all possible atomic facts also given. same time all possible states of affairs are verhalte gegeben. also given. 2.013 Jedes Ding ist, gleichsam, in einem Every thing is, as it were, in a space Each thing is, as it were, in a space of Raume möglicher Sachverhalte. Diesen of possible atomic facts. I can think of possible states of affairs. This space I can Raum kann ich mir leer denken, nicht this space as empty, but not of the thing imagine empty, but I cannot imagine the aber das Ding ohne den Raum. without the space. thing without the space. 2.0131 Der räumliche Gegenstand muss im A spatial object must lie in infinite A spatial object must be situated in unendlichen Raume liegen. (Der Raum- space. (A point in space is an argument infinite space. (A spatial point is an punkt ist eine Argumentstelle.) place.) argument-place.) Der Fleck im Gesichtsfeld muss zwar A speck in a visual field need not be A speck in the visual field, thought it nicht rot sein, aber eine Farbe muss er red, but it must have a colour; it has, so need not be red, must have some colour: haben: er hat sozusagen den Farbenraum to speak, a colour space round it. A tone it is, so to speak, surrounded by colourum sich. Der Ton muss e i n e Höhe ha- must have a pitch, the object of the sense space. Notes must have some pitch, obben, der Gegenstand des Tastsinnes e i - of touch a hardness, etc. jects of the sense of touch some degree of n e Härte, usw. hardness, and so on. 2.014 Die Gegenstände enthalten die Mög- Objects contain the possibility of all Objects contain the possibility of all lichkeit aller Sachlagen. states of affairs. situations. 2.0141 Die Möglichkeit seines Vorkommens The possibility of its occurrence in The possibility of its occurring in in Sachverhalten, ist die Form des Gegen- atomic facts is the form of the object. states of affairs is the form of an object. standes. 2.02 Der Gegenstand ist einfach. The object is simple. Objects are simple. 2.0201 Jede Aussage über Komplexe lässt Every statement about complexes can Every statement about complexes can sich in eine Aussage über deren Bestand- be analysed into a statement about their be resolved into a statement about their teile und in diejenigen Sätze zerlegen, constituent parts, and into those proposi- constituents and into the propositions welche die Komplexe vollständig beschrei- tions which completely describe the com- that describe the complexes completely. ben. plexes. 2.021 Die Gegenstände bilden die Substanz Objects form the substance of the Objects make up the substance of the der Welt. Darum können sie nicht zusam- world. Therefore they cannot be com- world. That is why they cannot be commengesetzt sein. pound. posite. 2.0211 Hätte die Welt keine Substanz, so wür- If the world had no substance, then If the world had no substance, then de, ob ein Satz Sinn hat, davon abhängen, whether a proposition had sense would whether a proposition had sense would ob ein anderer Satz wahr ist. depend on whether another proposition depend on whether another proposition was true. was true. 14 2.0212 Es wäre dann unmöglich, ein Bild der It would then be impossible to form a In that case we could not sketch any Welt (wahr oder falsch) zu entwerfen. picture of the world (true or false). picture of the world (true or false). 2.022 Es ist offenbar, dass auch eine von der It is clear that however different from It is obvious that an imagined world, wirklichen noch so verschieden gedachte the real one an imagined world may be, however different it may be from the real Welt Etwas—eine Form—mit der wirkli- it must have something—a form—in com- one, must have something—a form—in chen gemein haben muss. mon with the real world. common with it. 2.023 Diese feste Form besteht eben aus den This fixed form consists of the objects. Objects are just what constitute this Gegenständen. unalterable form. 2.0231 Die Substanz der Welt k a n n nur The substance of the world can only The substance of the world can only eine Form und keine materiellen Eigen- determine a form and not any material determine a form, and not any material schaften bestimmen. Denn diese werden properties. For these are first presented properties. For it is only by means of erst durch die Sätze dargestellt—erst by the propositions—first formed by the propositions that material properties are durch die Konfiguration der Gegenstände configuration of the objects. represented—only by the configuration of gebildet. objects that they are produced. 2.0232 Beiläufig gesprochen: Die Gegenstän- Roughly speaking: objects are colour- In a manner of speaking, objects are de sind farblos. less. colourless. 2.0233 Zwei Gegenstände von der gleichen Two objects of the same logical If two objects have the same logical logischen Form sind—abgesehen von ih- form are—apart from their external form, the only distinction between them, ren externen Eigenschaften—von einan- properties—only differentiated from one apart from their external properties, is der nur dadurch unterschieden, dass sie another in that they are different. that they are different. verschieden sind. 2.02331 Entweder ein Ding hat Eigenschaften, Either a thing has properties which no Either a thing has properties that die kein anderes hat, dann kann man other has, and then one can distinguish nothing else has, in which case we can es ohneweiteres durch eine Beschreibung it straight away from the others by a de- immediately use a description to distinaus den anderen herausheben, und dar- scription and refer to it; or, on the other guish it from the others and refer to it; auf hinweisen; oder aber, es gibt mehrere hand, there are several things which have or, on the other hand, there are several Dinge, die ihre sämtlichen Eigenschaften the totality of their properties in common, things that have the whole set of their gemeinsam haben, dann ist es überhaupt and then it is quite impossible to point to properties in common, in which case it is unmöglich auf eines von ihnen zu zeigen. any one of them. quite impossible to indicate one of them. Denn, ist das Ding durch nichts her- For if a thing is not distinguished by For if there is nothing to distinguish vorgehoben, so kann ich es nicht hervor- anything, I cannot distinguish it—for oth- a thing, I cannot distinguish it, since othheben, denn sonst ist es eben hervorgeho- erwise it would be distinguished. erwise it would be distinguished after all. ben. 2.024 Die Substanz ist das, was unabhängig Substance is what exists indepen- The substance is what subsists indevon dem was der Fall ist, besteht. dently of what is the case. pendently of what is the case. 2.025 Sie ist Form und Inhalt. It is form and content. It is form and content. 2.0251 Raum, Zeit und Farbe (Färbigkeit) Space, time and colour (colouredness) Space, time, colour (being coloured) 15 sind Formen der Gegenstände. are forms of objects. are forms of objects. 2.026 Nur wenn es Gegenstände gibt, kann Only if there are objects can there be There must be objects, if the world is es eine feste Form der Welt geben. a fixed form of the world. to have unalterable form. 2.027 Das Feste, das Bestehende und der The fixed, the existent and the object Objects, the unalterable, and the subGegenstand sind Eins. are one. sistent are one and the same. 2.0271 Der Gegenstand ist das Feste, Beste- The object is the fixed, the existent; Objects are what is unalterable and hende; die Konfiguration ist das Wech- the configuration is the changing, the subsistent; their configuration is what is selnde, Unbeständige. variable. changing and unstable. 2.0272 Die Konfiguration der Gegenstände The configuration of the objects forms The configuration of objects produces bildet den Sachverhalt. the atomic fact. states of affairs. 2.03 Im Sachverhalt hängen die Gegen- In the atomic fact objects hang one in In a state of affairs objects fit into one stände ineinander, wie die Glieder einer another, like the links of a chain. another like the links of a chain. Kette. 2.031 Im Sachverhalt verhalten sich die Ge- In the atomic fact the objects are com- In a state of affairs objects stand in a genstände in bestimmter Art und Weise bined in a definite way. determinate relation to one another. zueinander. 2.032 Die Art und Weise, wie die Gegenstän- The way in which objects hang to- The determinate way in which objects de im Sachverhalt zusammenhängen, ist gether in the atomic fact is the structure are connected in a state of affairs is the die Struktur des Sachverhaltes. of the atomic fact. structure of the state of affairs. 2.033 Die Form ist die Möglichkeit der The form is the possibility of the struc- Form is the possibility of structure. Struktur. ture. 2.034 Die Struktur der Tatsache besteht aus The structure of the fact consists of The structure of a fact consists of the den Strukturen der Sachverhalte. the structures of the atomic facts. structures of states of affairs. 2.04 Die Gesamtheit der bestehenden The totality of existent atomic facts is The totality of existing states of afSachverhalte ist die Welt. the world. fairs is the world. 2.05 Die Gesamtheit der bestehenden The totality of existent atomic facts The totality of existing states of afSachverhalte bestimmt auch, welche also determines which atomic facts do not fairs also determines which states of afSachverhalte nicht bestehen. exist. fairs do not exist. 2.06 Das Bestehen und Nichtbestehen von The existence and non-existence of The existence and non-existence of Sachverhalten ist die Wirklichkeit. atomic facts is the reality. states of affairs is reality. (Das Bestehen von Sachverhalten nen- (The existence of atomic facts we also (We call the existence of states of nen wir auch eine positive, das Nichtbe- call a positive fact, their non-existence a affairs a positive fact, and their nonstehen eine negative Tatsache.) negative fact.) existence a negative fact.) 2.061 Die Sachverhalte sind von einander Atomic facts are independent of one States of affairs are independent of unabhängig. another. one another. 2.062 Aus dem Bestehen oder Nichtbeste- From the existence or non-existence From the existence or non-existence of hen eines Sachverhaltes kann nicht auf of an atomic fact we cannot infer the exis- one state of affairs it is impossible to infer 16 das Bestehen oder Nichtbestehen eines tence or non-existence of another. the existence or non-existence of another. anderen geschlossen werden. 2.063 Die gesamte Wirklichkeit ist die Welt. The total reality is the world. The sum-total of reality is the world. 2.1 Wir machen uns Bilder der Tatsachen. We make to ourselves pictures of facts. We picture facts to ourselves. 2.11 Das Bild stellt die Sachlage im logi- The picture presents the facts in logi- A picture presents a situation in logischen Raume, das Bestehen und Nichtbe- cal space, the existence and non-existence cal space, the existence and non-existence stehen von Sachverhalten vor. of atomic facts. of states of affairs. 2.12 Das Bild ist ein Modell der Wirklich- The picture is a model of reality. A picture is a model of reality. keit. 2.13 Den Gegenständen entsprechen im To the objects correspond in the pic- In a picture objects have the elements Bilde die Elemente des Bildes. ture the elements of the picture. of the picture corresponding to them. 2.131 Die Elemente des Bildes vertreten im The elements of the picture stand, in In a picture the elements of the picBild die Gegenstände. the picture, for the objects. ture are the representatives of objects. 2.14 Das Bild besteht darin, dass sich seine The picture consists in the fact that its What constitutes a picture is that its Elemente in bestimmter Art und Weise elements are combined with one another elements are related to one another in a zu einander verhalten. in a definite way. determinate way. 2.141 Das Bild ist eine Tatsache. The picture is a fact. A picture is a fact. 2.15 Dass sich die Elemente des Bildes in That the elements of the picture are The fact that the elements of a picbestimmter Art und Weise zu einander combined with one another in a definite ture are related to one another in a deverhalten, stellt vor, dass sich die Sachen way, represents that the things are so terminate way represents that things are so zu einander verhalten. combined with one another. related to one another in the same way. Dieser Zusammenhang der Elemente This connexion of the elements of the Let us call this connexion of its eledes Bildes heiße seine Struktur und ihre picture is called its structure, and the pos- ments the structure of the picture, and Möglichkeit seine Form der Abbildung. sibility of this structure is called the form let us call the possibility of this structure of representation of the picture. the pictorial form of the picture. 2.151 Die Form der Abbildung ist die Mög- The form of representation is the pos- Pictorial form is the possibility that lichkeit, dass sich die Dinge so zu ein- sibility that the things are combined with things are related to one another in the ander verhalten, wie die Elemente des one another as are the elements of the same way as the elements of the picture. Bildes. picture. 2.1511 Das Bild ist s o mit der Wirklichkeit Thus the picture is linked with reality; That is how a picture is attached to verknüpft—es reicht bis zu ihr. it reaches up to it. reality; it reaches right out to it. 2.1512 Es ist wie ein Maßstab an die Wirk- It is like a scale applied to reality. It is laid against reality like a mealichkeit angelegt. sure. 2.15121 Nur die äußersten Punkte der Teil- Only the outermost points of the divid- Only the end-points of the graduating striche b e r ü h r e n den zu messenden ing lines touch the object to be measured. lines actually touch the object that is to Gegenstand. be measured. 2.1513 Nach dieser Auffassung gehört also According to this view the represent- So a picture, conceived in this way, 17 zum Bilde auch noch die abbildende Be- ing relation which makes it a picture, also also includes the pictorial relationship, ziehung, die es zum Bild macht. belongs to the picture. which makes it into a picture. 2.1514 Die abbildende Beziehung besteht aus The representing relation consists of The pictorial relationship consists of den Zuordnungen der Elemente des Bil- the co-ordinations of the elements of the the correlations of the picture’s elements des und der Sachen. picture and the things. with things. 2.1515 Diese Zuordnungen sind gleichsam These co-ordinations are as it were These correlations are, as it were, the die Fühler der Bildelemente, mit denen the feelers of its elements with which the feelers of the picture’s elements, with das Bild die Wirklichkeit berührt. picture touches reality. which the picture touches reality. 2.16 Die Tatsache muss, um Bild zu sein, In order to be a picture a fact must If a fact is to be a picture, it must have etwas mit dem Abgebildeten gemeinsam have something in common with what it something in common with what it dehaben. pictures. picts. 2.161 In Bild und Abgebildetem muss etwas In the picture and the pictured there There must be something identical in identisch sein, damit das eine überhaupt must be something identical in order that a picture and what it depicts, to enable ein Bild des anderen sein kann. the one can be a picture of the other at the one to be a picture of the other at all. all. 2.17 Was das Bild mit der Wirklichkeit ge- What the picture must have in com- What a picture must have in common mein haben muss, um sie auf seine Art mon with reality in order to be able to with reality, in order to be able to depict und Weise—richtig oder falsch—abbilden represent it after its manner—rightly or it—correctly or incorrectly—in the way zu können, ist seine Form der Abbildung. falsely—is its form of representation. that it does, is its pictorial form. 2.171 Das Bild kann jede Wirklichkeit abbil- The picture can represent every real- A picture can depict any reality whose den, deren Form es hat. ity whose form it has. form it has. Das räumliche Bild alles Räumliche, The spatial picture, everything spa- A spatial picture can depict anything das farbige alles Farbige, etc. tial, the coloured, everything coloured, spatial, a coloured one anything coloured, etc. etc. 2.172 Seine Form der Abbildung aber, kann The picture, however, cannot repre- A picture cannot, however, depict its das Bild nicht abbilden; es weist sie auf. sent its form of representation; it shows pictorial form: it displays it. it forth. 2.173 Das Bild stellt sein Objekt von außer- The picture represents its object from A picture represents its subject from halb dar (sein Standpunkt ist seine Form without (its standpoint is its form of rep- a position outside it. (Its standpoint is der Darstellung), darum stellt das Bild resentation), therefore the picture repre- its representational form.) That is why a sein Objekt richtig oder falsch dar. sents its object rightly or falsely. picture represents its subject correctly or incorrectly. 2.174 Das Bild kann sich aber nicht außer- But the picture cannot place itself out- A picture cannot, however, place itself halb seiner Form der Darstellung stellen. side of its form of representation. outside its representational form. 2.18 Was jedes Bild, welcher Form immer, What every picture, of whatever form, What any picture, of whatever form, mit der Wirklichkeit gemein haben muss, must have in common with reality in must have in common with reality, in orum sie überhaupt—richtig oder falsch— order to be able to represent it at all— der to be able to depict it—correctly or 18 abbilden zu können, ist die logische Form, rightly or falsely—is the logical form, that incorrectly—in any way at all, is logical das ist, die Form der Wirklichkeit. is, the form of reality. form, i.e. the form of reality. 2.181 Ist die Form der Abbildung die logi- If the form of representation is the A picture whose pictorial form is logische Form, so heißt das Bild das logische logical form, then the picture is called a cal form is called a logical picture. Bild. logical picture. 2.182 Jedes Bild ist a u c h ein logisches. Every picture is also a logical picture. Every picture is at the same time a (Dagegen ist z. B. nicht jedes Bild ein (On the other hand, for example, not ev- logical one. (On the other hand, not every räumliches.) ery picture is spatial.) picture is, for example, a spatial one.) 2.19 Das logische Bild kann die Welt abbil- The logical picture can depict the Logical pictures can depict the world. den. world. 2.2 Das Bild hat mit dem Abgebildeten The picture has the logical form of rep- A picture has logico-pictorial form in die logische Form der Abbildung gemein. resentation in common with what it pic- common with what it depicts. tures. 2.201 Das Bild bildet die Wirklichkeit ab, The picture depicts reality by repre- A picture depicts reality by representindem es eine Möglichkeit des Bestehens senting a possibility of the existence and ing a possibility of existence and nonund Nichtbestehens von Sachverhalten non-existence of atomic facts. existence of states of affairs. darstellt. 2.202 Das Bild stellt eine mögliche Sachlage The picture represents a possible A picture represents a possible situaim logischen Raume dar. state of affairs in logical space. tion in logical space. 2.203 Das Bild enthält die Möglichkeit der The picture contains the possibility of A picture contains the possibility of Sachlage, die es darstellt. the state of affairs which it represents. the situation that it represents. 2.21 Das Bild stimmt mit der Wirklichkeit The picture agrees with reality or not; A picture agrees with reality or fails überein oder nicht; es ist richtig oder un- it is right or wrong, true or false. to agree; it is correct or incorrect, true or richtig, wahr oder falsch. false. 2.22 Das Bild stellt dar, was es darstellt, The picture represents what it repre- What a picture represents it repreunabhängig von seiner Wahr- oder Falsch- sents, independently of its truth or false- sents independently of its truth or falsity, heit, durch die Form der Abbildung. hood, through the form of representation. by means of its pictorial form. 2.221 Was das Bild darstellt, ist sein Sinn. What the picture represents is its What a picture represents is its sense. sense. 2.222 In der Übereinstimmung oder Nicht- In the agreement or disagreement of The agreement or disagreement of its übereinstimmung seines Sinnes mit der its sense with reality, its truth or falsity sense with reality constitutes its truth or Wirklichkeit, besteht seine Wahrheit oder consists. falsity. Falschheit. 2.223 Um zu erkennen, ob das Bild wahr In order to discover whether the pic- In order to tell whether a picture is oder falsch ist, müssen wir es mit der ture is true or false we must compare it true or false we must compare it with Wirklichkeit vergleichen. with reality. reality. 2.224 Aus dem Bild allein ist nicht zu erken- It cannot be discovered from the pic- It is impossible to tell from the picture 19 nen, ob es wahr oder falsch ist. ture alone whether it is true or false. alone whether it is true or false. 2.225 Ein a priori wahres Bild gibt es nicht. There is no picture which is a priori There are no pictures that are true a true. priori. 3 Das logische Bild der Tatsachen ist The logical picture of the facts is the A logical picture of facts is a thought. der Gedanke. thought. 3.001 „Ein Sachverhalt ist denkbar“ heißt: “An atomic fact is thinkable”—means: ‘A state of affairs is thinkable’: what Wir können uns ein Bild von ihm machen. we can imagine it. this means is that we can picture it to ourselves. 3.01 Die Gesamtheit der wahren Gedan- The totality of true thoughts is a pic- The totality of true thoughts is a picken sind ein Bild der Welt. ture of the world. ture of the world. 3.02 Der Gedanke enthält die Möglichkeit The thought contains the possibility of A thought contains the possibility of der Sachlage, die er denkt. Was denkbar the state of affairs which it thinks. What the situation of which it is the thought. ist, ist auch möglich. is thinkable is also possible. What is thinkable is possible too. 3.03 Wir können nichts Unlogisches den- We cannot think anything unlogical, Thought can never be of anything ilken, weil wir sonst unlogisch denken müs- for otherwise we should have to think un- logical, since, if it were, we should have sten. logically. to think illogically. 3.031 Man sagte einmal, dass Gott alles It used to be said that God could cre- It used to be said that God could creschaffen könne, nur nichts, was den logi- ate everything, except what was contrary ate anything except what would be conschen Gesetzen zuwider wäre.—Wir kön- to the laws of logic. The truth is, we could trary to the laws of logic. The truth is nen nämlich von einer „unlogischen“ Welt not say of an “unlogical” world how it that we could not say what an ‘illogical’ nicht s a g e n, wie sie aussähe. would look. world would look like. 3.032 Etwas „der Logik widersprechendes“ To present in language anything It is as impossible to represent in lanin der Sprache darstellen, kann man which “contradicts logic” is as impossi- guage anything that ‘contradicts logic’ as ebensowenig, wie in der Geometrie eine ble as in geometry to present by its co- it is in geometry to represent by its coden Gesetzen des Raumes widersprechen- ordinates a figure which contradicts the ordinates a figure that contradicts the de Figur durch ihre Koordinaten darstel- laws of space; or to give the co-ordinates laws of space, or to give the co-ordinates len; oder die Koordinaten eines Punktes of a point which does not exist. of a point that does not exist. angeben, welcher nicht existiert. 3.0321 Wohl können wir einen Sachverhalt We could present spatially an atomic Though a state of affairs that would räumlich darstellen, welcher den Geset- fact which contradicted the laws of contravene the laws of physics can be repzen der Physik, aber keinen, der den Ge- physics, but not one which contradicted resented by us spatially, one that would setzen der Geometrie zuwiderliefe. the laws of geometry. contravene the laws of geometry cannot. 3.04 Ein a priori richtiger Gedanke wä- An a priori true thought would be one If a thought were correct a priori, it re ein solcher, dessen Möglichkeit seine whose possibility guaranteed its truth. would be a thought whose possibility enWahrheit bedingte. sured its truth. 3.05 Nur so könnten wir a priori wissen, Only if we could know a priori that a A priori knowledge that a thought was dass ein Gedanke wahr ist, wenn aus dem thought is true if its truth was to be rec- true would be possible only if its truth 20 Gedanken selbst (ohne Vergleichsobjekt) ognized from the thought itself (without were recognizable from the thought itself seine Wahrheit zu erkennen wäre. an object of comparison). (without anything to compare it with). 3.1 Im Satz drückt sich der Gedanke sinn- In the proposition the thought is ex- In a proposition a thought finds an lich wahrnehmbar aus. pressed perceptibly through the senses. expression that can be perceived by the senses. 3.11 Wir benützen das sinnlich wahrnehm- We use the sensibly perceptible sign We use the perceptible sign of a propobare Zeichen (Laut- oder Schriftzeichen (sound or written sign, etc.) of the propo- sition (spoken or written, etc.) as a projecetc.) des Satzes als Projektion der mögli- sition as a projection of the possible state tion of a possible situation. chen Sachlage. of affairs. Die Projektionsmethode ist das Den- The method of projection is the think- The method of projection is to think of ken des Satz-Sinnes. ing of the sense of the proposition. the sense of the proposition. 3.12 Das Zeichen, durch welches wir den The sign through which we express I call the sign with which we express Gedanken ausdrücken, nenne ich das the thought I call the propositional sign. a thought a propositional sign.—And a Satzzeichen. Und der Satz ist das Satzzei- And the proposition is the propositional proposition is a propositional sign in its chen in seiner projektiven Beziehung zur sign in its projective relation to the world. projective relation to the world. Welt. 3.13 Zum Satz gehört alles, was zur Projek- To the proposition belongs everything A proposition includes all that the protion gehört; aber nicht das Projizierte. which belongs to the projection; but not jection includes, but not what is projected. what is projected. Also die Möglichkeit des Projizierten, Therefore the possibility of what is Therefore, though what is projected is aber nicht dieses selbst. projected but not this itself. not itself included, its possibility is. Im Satz ist also sein Sinn noch nicht In the proposition, therefore, its sense A proposition, therefore, does not acenthalten, wohl aber die Möglichkeit, ihn is not yet contained, but the possibility of tually contain its sense, but does contain auszudücken. expressing it. the possibility of expressing it. („Der Inhalt des Satzes“ heißt der In- (“The content of the proposition” (‘The content of a proposition’ means halt des sinnvollen Satzes.) means the content of the significant the content of a proposition that has proposition.) sense.) Im Satz ist die Form seines Sinnes In the proposition the form of its sense A proposition contains the form, but enthalten, aber nicht dessen Inhalt. is contained, but not its content. not the content, of its sense. 3.14 Das Satzzeichen besteht darin, dass The propositional sign consists in the What constitutes a propositional sign sich seine Elemente, die Wörter, in ihm fact that its elements, the words, are com- is that in it its elements (the words) stand auf bestimmte Art und Weise zu einander bined in it in a definite way. in a determinate relation to one another. verhalten. Das Satzzeichen ist eine Tatsache. The propositional sign is a fact. A propositional sign is a fact. 3.141 Der Satz ist kein Wörtergemisch.— The proposition is not a mixture of A proposition is not a blend of words.— (Wie das musikalische Thema kein Ge- words (just as the musical theme is not a (Just as a theme in music is not a blend misch von Tönen.) mixture of tones). of notes.) 21 Der Satz ist artikuliert. The proposition is articulate. A proposition is articulate. 3.142 Nur Tatsachen können einen Sinn Only facts can express a sense, a class Only facts can express a sense, a set ausdrücken, eine Klasse von Namen kann of names cannot. of names cannot. es nicht. 3.143 Dass das Satzzeichen eine Tatsache That the propositional sign is a fact is Although a propositional sign is a fact, ist, wird durch die gewöhnliche Aus- concealed by the ordinary form of expres- this is obscured by the usual form of exdrucksform der Schrift oder des Druckes sion, written or printed. pression in writing or print. verschleiert. Denn im gedruckten Satz z. B. sieht For in the printed proposition, for ex- For in a printed proposition, for examdas Satzzeichen nicht wesentlich ver- ample, the sign of a proposition does not ple, no essential difference is apparent schieden aus vom Wort. appear essentially different from a word. between a propositional sign and a word. (So war es möglich, dass Frege den (Thus it was possible for Frege to call (That is what made it possible for Satz einen zusammengesetzten Namen the proposition a compounded name.) Frege to call a proposition a composite nannte.) name.) 3.1431 Sehr klar wird das Wesen des Satzzei- The essential nature of the proposi- The essence of a propositional sign chens, wenn wir es uns, statt aus Schrift- tional sign becomes very clear when we is very clearly seen if we imagine one zeichen, aus räumlichen Gegenständen imagine it made up of spatial objects composed of spatial objects (such as ta(etwa Tischen, Stühlen, Büchern) zusam- (such as tables, chairs, books) instead of bles, chairs, and books) instead of written mengesetzt denken. written signs. signs. Die gegenseitige räumliche Lage die- The mutual spatial position of these Then the spatial arrangement of these ser Dinge drückt dann den Sinn des Sat- things then expresses the sense of the things will express the sense of the propozes aus. proposition. sition. 3.1432 Nicht: „Das komplexe Zeichen ‚aRb‘ We must not say, “The complex sign Instead of, ‘The complex sign “aRb” sagt, dass a in der Beziehung R zu b ‘aRb’ says ‘a stands in relation R to b’”; says that a stands to b in the relation R’, steht“, sondern: D a s s „a“ in einer gewis- but we must say, “That ‘a’ stands in a we ought to put, ‘That “a” stands to “b” in sen Beziehung zu „b“ steht, sagt, d a s s certain relation to ‘b’ says that aRb”. a certain relation says that aRb.’ aRb. 3.144 Sachlagen kann man beschreiben, States of affairs can be described but Situations can be described but not nicht b e n e n n e n. not named. given names. (Namen gleichen Punkten, Sätze Pfei- (Names resemble points; propositions (Names are like points; propositions len, sie haben Sinn.) resemble arrows, they have sense.) like arrows—they have sense.) 3.2 Im Satze kann der Gedanke so ausge- In propositions thoughts can be so ex- In a proposition a thought can be exdrückt sein, dass den Gegenständen des pressed that to the objects of the thoughts pressed in such a way that elements of Gedankens Elemente des Satzzeichens correspond the elements of the proposi- the propositional sign correspond to the entsprechen. tional sign. objects of the thought. 3.201 Diese Elemente nenne ich „einfache These elements I call “simple signs” I call such elements ‘simple signs’, and Zeichen“ und den Satz „vollständig analy- and the proposition “completely anal- such a proposition ‘complete analysed’. 22 siert“. ysed”. 3.202 Die im Satze angewandten einfachen The simple signs employed in proposi- The simple signs employed in proposiZeichen heißen Namen. tions are called names. tions are called names. 3.203 Der Name bedeutet den Gegenstand. The name means the object. The ob- A name means an object. The object is Der Gegenstand ist seine Bedeutung. („A“ ject is its meaning. (“A” is the same sign its meaning. (‘A’ is the same sign as ‘A’.) ist dasselbe Zeichen wie „A“.) as “A”.) 3.21 Der Konfiguration der einfachen Zei- To the configuration of the simple The configuration of objects in a situchen im Satzzeichen entspricht die Konfi- signs in the propositional sign corre- ation corresponds to the configuration of guration der Gegenstände in der Sachla- sponds the configuration of the objects simple signs in the propositional sign. ge. in the state of affairs. 3.22 Der Name vertritt im Satz den Gegen- In the proposition the name repre- In a proposition a name is the represtand. sents the object. sentative of an object. 3.221 Die Gegenstände kann ich nur n e n - Objects I can only name. Signs rep- Objects can only be named. Signs are n e n. Zeichen vertreten sie. Ich kann nur resent them. I can only speak of them. their representatives. I can only speak v o n ihnen sprechen, s i e a u s s p r e - I cannot assert them. A proposition can about them: I cannot put them into words. c h e n kann ich nicht. Ein Satz kann nur only say how a thing is, not what it is. Propositions can only say how things are, sagen, w i e ein Ding ist, nicht w a s es not what they are. ist. 3.23 Die Forderung der Möglichkeit der The postulate of the possibility of the The requirement that simple signs be einfachen Zeichen ist die Forderung der simple signs is the postulate of the deter- possible is the requirement that sense be Bestimmtheit des Sinnes. minateness of the sense. determinate. 3.24 Der Satz, welcher vom Komplex han- A proposition about a complex stands A proposition about a complex stands delt, steht in interner Beziehung zum Sat- in internal relation to the proposition in an internal relation to a proposition ze, der von dessen Bestandteil handelt. about its constituent part. about a constituent of the complex. Der Komplex kann nur durch seine A complex can only be given by its A complex can be given only by its Beschreibung gegeben sein, und diese description, and this will either be right description, which will be right or wrong. wird stimmen oder nicht stimmen. Der or wrong. The proposition in which there A proposition that mentions a complex Satz, in welchem von einem Komplex die is mention of a complex, if this does not will not be nonsensical, if the complex Rede ist, wird, wenn dieser nicht existiert, exist, becomes not nonsense but simply does not exist, but simply false. nicht unsinnig, sondern einfach falsch false. sein. Dass ein Satzelement einen Komplex That a propositional element signifies When a propositional element signibezeichnet, kann man aus einer Unbe- a complex can be seen from an indetermi- fies a complex, this can be seen from an stimmtheit in den Sätzen sehen, worin es nateness in the propositions in which it indeterminateness in the propositions in vorkommt. Wir w i s s e n, durch diesen occurs. We know that everything is not which it occurs. In such cases we know Satz ist noch nicht alles bestimmt. (Die yet determined by this proposition. (The that the proposition leaves something unAllgemeinheitsbezeichnung e n t h ä l t notation for generality contains a proto- determined. (In fact the notation for gen- 23 ja ein Urbild.) type.) erality contains a prototype.) Die Zusammenfassung des Symbols The combination of the symbols of a The contraction of a symbol for a comeines Komplexes in ein einfaches Symbol complex in a simple symbol can be ex- plex into a simple symbol can be exkann durch eine Definition ausgedrückt pressed by a definition. pressed in a definition. werden. 3.25 Es gibt eine und nur eine vollständige There is one and only one complete A proposition has one and only one Analyse des Satzes. analysis of the proposition. complete analysis. 3.251 Der Satz drückt auf bestimmte, klar The proposition expresses what it ex- What a proposition expresses it exangebbare Weise aus, was er ausdrückt: presses in a definite and clearly specifi- presses in a determinate manner, which Der Satz ist artikuliert. able way: the proposition is articulate. can be set out clearly: a proposition is articulated. 3.26 Der Name ist durch keine Definition The name cannot be analysed further A name cannot be dissected any furweiter zu zergliedern: er ist ein Urzei- by any definition. It is a primitive sign. ther by means of a definition: it is a primchen. itive sign. 3.261 Jedes definierte Zeichen bezeichnet Every defined sign signifies via those Every sign that has a definition signiü b e r jene Zeichen, durch welche es defi- signs by which it is defined, and the defi- fies via the signs that serve to define it; niert wurde; und die Definitionen weisen nitions show the way. and the definitions point the way. den Weg. Zwei Zeichen, ein Urzeichen, und Two signs, one a primitive sign, and Two signs cannot signify in the same ein durch Urzeichen definiertes, können one defined by primitive signs, cannot manner if one is primitive and the other nicht auf dieselbe Art und Weise bezeich- signify in the same way. Names cannot is defined by means of primitive signs. nen. Namen k a n n man nicht durch be taken to pieces by definition (nor any Names cannot be anatomized by means Definitionen auseinanderlegen. (Kein Zei- sign which alone and independently has of definitions. (Nor can any sign that has chen, welches allein, selbständig eine Be- a meaning). a meaning independently and on its own.) deutung hat.) 3.262 Was in den Zeichen nicht zum Aus- What does not get expressed in the What signs fail to express, their applidruck kommt, das zeigt ihre Anwendung. sign is shown by its application. What the cation shows. What signs slur over, their Was die Zeichen verschlucken, das spricht signs conceal, their application declares. application says clearly. ihre Anwendung aus. 3.263 Die Bedeutung von Urzeichen können The meanings of primitive signs can The meanings of primitive signs can durch Erläuterungen erklärt werden. Er- be explained by elucidations. Elucida- be explained by means of elucidations. läuterungen sind Sätze, welche die Ur- tions are propositions which contain the Elucidations are propositions that conzeichen enthalten. Sie können also nur primitive signs. They can, therefore, tain the primitive signs. So they can only verstanden werden, wenn die Bedeutun- only be understood when the meanings of be understood if the meanings of those gen dieser Zeichen bereits bekannt sind. these signs are already known. signs are already known. 3.3 Nur der Satz hat Sinn; nur im Zusam- Only the proposition has sense; only Only propositions have sense; only in menhang des Satzes hat ein Name Bedeu- in the context of a proposition has a name the nexus of a proposition does a name 24 tung. meaning. have meaning. 3.31 Jeden Teil des Satzes, der seinen Sinn Every part of a proposition which char- I call any part of a proposition that charakterisiert, nenne ich einen Aus- acterizes its sense I call an expression (a characterizes its sense an expression (or druck (ein Symbol). symbol). a symbol). (Der Satz selbst ist ein Ausdruck.) (The proposition itself is an expres- (A proposition is itself an expression.) sion.) Ausdruck ist alles, für den Sinn des Expressions are everything—essen- Everything essential to their sense Satzes wesentliche, was Sätze miteinan- tial for the sense of the proposition—that that propositions can have in common der gemein haben können. propositions can have in common with with one another is an expression. one another. Der Ausdruck kennzeichnet eine An expression characterizes a form An expression is the mark of a form Form und einen Inhalt. and a content. and a content. 3.311 Der Ausdruck setzt die Formen aller An expression presupposes the forms An expression presupposes the forms Sätze voraus, in welchem er vorkommen of all propositions in which it can occur. of all the propositions in which it can ockann. Er ist das gemeinsame charakteri- It is the common characteristic mark of a cur. It is the common characteristic mark stische Merkmal einer Klasse von Sätzen. class of propositions. of a class of propositions. 3.312 Er wird also dargestellt durch die all- It is therefore represented by the gen- It is therefore presented by means of gemeine Form der Sätze, die er charakte- eral form of the propositions which it char- the general form of the propositions that risiert. acterizes. it characterizes. Und zwar wird in dieser Form der Aus- And in this form the expression is con- In fact, in this form the expression will druck k o n s t a n t und alles übrige v a - stant and everything else variable. be constant and everything else variable. r i a b e l sein. 3.313 Der Ausdruck wird also durch eine Va- An expression is thus presented by a Thus an expression is presented by riable dargestellt, deren Werte die Sätze variable, whose values are the proposi- means of a variable whose values are the sind, die den Ausdruck enthalten. tions which contain the expression. propositions that contain the expression. (Im Grenzfall wird die Variable zur (In the limiting case the variable be- (In the limiting case the variable beKonstanten, der Ausdruck zum Satz.) comes constant, the expression a proposi- comes a constant, the expression becomes tion.) a proposition.) Ich nenne eine solche Variable „Satz- I call such a variable a “propositional I call such a variable a ‘propositional variable“. variable”. variable’. 3.314 Der Ausdruck hat nur im Satz Bedeu- An expression has meaning only in a An expression has meaning only in tung. Jede Variable lässt sich als Satzva- proposition. Every variable can be con- a proposition. All variables can be conriable auffassen. ceived as a propositional variable. strued as propositional variables. (Auch der variable Name.) (Including the variable name.) (Even variable names.) 3.315 Verwandeln wir einen Bestandteil ei- If we change a constituent part of a If we turn a constituent of a propones Satzes in eine Variable, so gibt es eine proposition into a variable, there is a class sition into a variable, there is a class of Klasse von Sätzen, welche sämtlich Wer- of propositions which are all the values of propositions all of which are values of the 25 te des so entstandenen variablen Satzes the resulting variable proposition. This resulting variable proposition. In general, sind. Diese Klasse hängt im allgemeinen class in general still depends on what, by this class too will be dependent on the noch davon ab, was wir, nach willkürli- arbitrary agreement, we mean by parts meaning that our arbitrary conventions cher Übereinkunft, mit Teilen jenes Sat- of that proposition. But if we change all have given to parts of the original proposizes meinen. Verwandeln wir aber alle je- those signs, whose meaning was arbitrar- tion. But if all the signs in it that have arne Zeichen, deren Bedeutung willkürlich ily determined, into variables, there al- bitrarily determined meanings are turned bestimmt wurde, in Variable, so gibt es ways remains such a class. But this is into variables, we shall still get a class of nun noch immer eine solche Klasse. Diese now no longer dependent on any agree- this kind. This one, however, is not depenaber ist nun von keiner Übereinkunft ab- ment; it depends only on the nature of dent on any convention, but solely on the hängig, sondern nur noch von der Natur the proposition. It corresponds to a logi- nature of the proposition. It corresponds des Satzes. Sie entspricht einer logischen cal form, to a logical prototype. to a logical form—a logical prototype. Form—einem logischen Urbild. 3.316 Welche Werte die Satzvariable anneh- What values the propositional vari- What values a propositional variable men darf, wird festgesetzt. able can assume is determined. may take is something that is stipulated. Die Festsetzung der Werte i s t die The determination of the values is the The stipulation of values is the variVariable. variable. able. 3.317 Die Festsetzung der Werte der Satzva- The determination of the values of the To stipulate values for a propositional riablen ist die A n g a b e d e r S ä t z e, propositional variable is done by indicat- variable is to give the propositions whose deren gemeinsames Merkmal die Varia- ing the propositions whose common mark common characteristic the variable is. ble ist. the variable is. Die Festsetzung ist eine Beschreibung The determination is a description of The stipulation is a description of dieser Sätze. these propositions. those propositions. Die Festsetzung wird also nur von The determination will therefore deal The stipulation will therefore be conSymbolen, nicht von deren Bedeutung only with symbols not with their mean- cerned only with symbols, not with their handeln. ing. meaning. Und n u r dies ist der Festset- And only this is essential to the deter- And the only thing essential to the zung wesentlich, d a s s s i e n u r e i - mination, that it is only a description of stipulation is that it is merely a descripn e B e s c h r e i b u n g v o n S y m b o - symbols and asserts nothing about what tion of symbols and states nothing about l e n i s t u n d n i c h t ü b e r d a s is symbolized. what is signified. B e z e i c h n e t e a u s s a g t. Wie die Beschreibung der Sätze ge- The way in which we describe the How the description of the proposischieht, ist unwesentlich. propositions is not essential. tions is produced is not essential. 3.318 Den Satz fasse ich—wie Frege und I conceive the proposition—like Frege Like Frege and Russell I construe a Russell—als Funktion der in ihm enthal- and Russell—as a function of the expres- proposition as a function of the exprestenen Ausdrücke auf. sions contained in it. sions contained in it. 3.32 Das Zeichen ist das sinnlich Wahr- The sign is the part of the symbol per- A sign is what can be perceived of a nehmbare am Symbol. ceptible by the senses. symbol. 26 3.321 Zwei verschiedene Symbole können al- Two different symbols can therefore So one and the same sign (written or so das Zeichen (Schriftzeichen oder Laut- have the sign (the written sign or the spoken, etc.) can be common to two difzeichen etc.) miteinander gemein haben— sound sign) in common—they then sig- ferent symbols—in which case they will sie bezeichnen dann auf verschiedene Art nify in different ways. signify in different ways. und Weise. 3.322 Es kann nie das gemeinsame Merk- It can never indicate the common char- Our use of the same sign to signify two mal zweier Gegenstände anzeigen, dass acteristic of two objects that we symbolize different objects can never indicate a comwir sie mit demselben Zeichen, aber them with the same signs but by differ- mon characteristic of the two, if we use it durch zwei verschiedene B e z e i c h - ent methods of symbolizing. For the sign with two different modes of signification. n u n g s w e i s e n bezeichnen. Denn das is arbitrary. We could therefore equally For the sign, of course, is arbitrary. So we Zeichen ist ja willkürlich. Man könnte well choose two different signs and where could choose two different signs instead, also auch zwei verschiedene Zeichen wäh- then would be what was common in the and then what would be left in common len, und wo bliebe dann das Gemeinsame symbolization? on the signifying side? in der Bezeichnung? 3.323 In der Umgangssprache kommt es un- In the language of everyday life it very In everyday language it very fregemein häufig vor, dass dasselbe Wort auf often happens that the same word sig- quently happens that the same word has verschiedene Art und Weise bezeichnet— nifies in two different ways—and there- different modes of signification—and so also verschiedene Symbolen angehört—, fore belongs to two different symbols—or belongs to different symbols—or that two oder, dass zwei Wörter, die auf verschiede- that two words, which signify in different words that have different modes of signine Art und Weise bezeichnen, äußerlich ways, are apparently applied in the same fication are employed in propositions in in der gleichen Weise im Satz angewandt way in the proposition. what is superficially the same way. werden. So erscheint das Wort „ist“ als Kopu- Thus the word “is” appears as the cop- Thus the word ‘is’ figures as the copla, als Gleichheitszeichen und als Aus- ula, as the sign of equality, and as the ula, as a sign for identity, and as an exdruck der Existenz; „existieren“ als in- expression of existence; “to exist” as an pression for existence; ‘exist’ figures as an transitives Zeitwort wie „gehen“; „iden- intransitive verb like “to go”; “identical” intransitive verb like ‘go’, and ‘identical’ tisch“ als Eigenschaftswort; wir reden von as an adjective; we speak of something as an adjective; we speak of something, E t w a s, aber auch davon, dass e t w a s but also of the fact of something happen- but also of something’s happening. geschieht. ing. (Im Satze „Grün ist grün“—wo das (In the proposition “Green is green”— (In the proposition, ‘Green is green’— erste Wort ein Personenname, das letz- where the first word is a proper name as where the first word is the proper name te ein Eigenschaftswort ist—haben diese the last an adjective—these words have of a person and the last an adjective— Worte nicht einfach verschiedene Bedeu- not merely different meanings but they these words do not merely have different tung, sondern es sind v e r s c h i e d e n e are different symbols.) meanings: they are different symbols.) S y m b o l e.) 3.324 So entstehen leicht die fundamental- Thus there easily arise the most fun- In this way the most fundamental consten Verwechselungen (deren die ganze damental confusions (of which the whole fusions are easily produced (the whole of 27 Philosophie voll ist). of philosophy is full). philosophy is full of them). 3.325 Um diesen Irrtümern zu entgehen, In order to avoid these errors, we must In order to avoid such errors we must müssen wir eine Zeichensprache verwen- employ a symbolism which excludes them, make use of a sign-language that excludes den, welche sie ausschließt, indem sie by not applying the same sign in different them by not using the same sign for difnicht das gleiche Zeichen in verschied- symbols and by not applying signs in the ferent symbols and by not using in a sunen Symbolen, und Zeichen, welche auf same way which signify in different ways. perficially similar way signs that have verschiedene Art bezeichnen, nicht äu- A symbolism, that is to say, which obeys different modes of signification: that is to ßerlich auf die gleiche Art verwendet. the rules of logical grammar—of logical say, a sign-language that is governed by Eine Zeichensprache also, die der l o - syntax. logical grammar—by logical syntax. g i s c h e n Grammatik—der logischen Syntax—gehorcht. (Die Begriffsschrift Freges und Rus- (The logical symbolism of Frege and (The conceptual notation of Frege and sells ist eine solche Sprache, die aller- Russell is such a language, which, how- Russell is such a language, though, it is dings noch nicht alle Fehler ausschließt.) ever, does still not exclude all errors.) true, it fails to exclude all mistakes.) 3.326 Um das Symbol am Zeichen zu erken- In order to recognize the symbol in the In order to recognize a symbol by its nen, muss man auf den sinnvollen Ge- sign we must consider the significant use. sign we must observe how it is used with brauch achten. a sense. 3.327 Das Zeichen bestimmt erst mit sei- The sign determines a logical form A sign does not determine a logical ner logisch-syntaktischen Verwendung only together with its logical syntactic ap- form unless it is taken together with its zusammen eine logische Form. plication. logico-syntactical employment. 3.328 Wird ein Zeichen n i c h t g e - If a sign is not necessary then it is If a sign is useless, it is meaningless. b r a u c h t, so ist es bedeutungslos. Das meaningless. That is the meaning of Oc- That is the point of Occam’s maxim. ist der Sinn der Devise Occams. cam’s razor. (Wenn sich alles so verhält als hätte (If everything in the symbolism works (If everything behaves as if a sign had ein Zeichen Bedeutung, dann hat es auch as though a sign had meaning, then it has meaning, then it does have meaning.) Bedeutung.) meaning.) 3.33 In der logischen Syntax darf nie die In logical syntax the meaning of a sign In logical syntax the meaning of a sign Bedeutung eines Zeichens eine Rolle spie- ought never to play a rôle; it must admit should never play a role. It must be poslen; sie muss sich aufstellen lassen, ohne of being established without mention be- sible to establish logical syntax without dass dabei von der B e d e u t u n g eines ing thereby made of the meaning of a sign; mentioning the meaning of a sign: only Zeichens die Rede wäre, sie darf n u r die it ought to presuppose only the descrip- the description of expressions may be preBeschreibung der Ausdrücke vorausset- tion of the expressions. supposed. zen. 3.331 Von dieser Bemerkung sehen wir in From this observation we get a fur- From this observation we turn to RusRussells „Theory of types“ hinüber: Der ther view—into Russell’s Theory of Types. sell’s ‘theory of types’. It can be seen that Irrtum Russells zeigt sich darin, dass er Russell’s error is shown by the fact that Russell must be wrong, because he had bei der Aufstellung der Zeichenregeln von in drawing up his symbolic rules he has to mention the meaning of signs when 28 der Bedeutung der Zeichen reden musste. to speak about the things his signs mean. establishing the rules for them. 3.332 Kein Satz kann etwas über sich selbst No proposition can say anything about No proposition can make a statement aussagen, weil das Satzzeichen nicht in itself, because the propositional sign can- about itself, because a propositional sign sich selbst enthalten sein kann (das ist not be contained in itself (that is the cannot be contained in itself (that is the die ganze „Theory of types“). “whole theory of types”). whole of the ‘theory of types’). 3.333 Eine Funktion kann darum nicht ihr A function cannot be its own argu- The reason why a function cannot be eigenes Argument sein, weil das Funkti- ment, because the functional sign already its own argument is that the sign for a onszeichen bereits das Urbild seines Ar- contains the prototype of its own argu- function already contains the prototype guments enthält und es sich nicht selbst ment and it cannot contain itself. of its argument, and it cannot contain enthalten kann. itself. Nehmen wir nämlich an, die Funktion If, for example, we suppose that the For let us suppose that the function F(fx) könnte ihr eigenes Argument sein; function F(fx) could be its own argu- F(fx) could be its own argument: in dann gäbe es also einen Satz: „F(F(fx))“ ment, then there would be a proposition that case there would be a proposition und in diesem müssen die äußere Funkti- “F(F(fx))”, and in this the outer function ‘F(F(fx))’, in which the outer function F on F und die innere Funtion F verschie- F and the inner function F must have and the inner function F must have differdene Bedeutungen haben, denn die in- different meanings; for the inner has the ent meanings, since the inner one has the nere hat die Form φ(fx), die äußere die form φ(fx), the outer the form ψ(φ(fx)). form φ(fx) and the outer one has the form Form ψ(φ(fx)). Gemeinsam ist den beiden Common to both functions is only the let- ψ(φ(fx)). Only the letter ‘F’ is common to Funktionen nur der Buchstabe „F“, der ter “F”, which by itself signifies nothing. the two functions, but the letter by itself aber allein nichts bezeichnet. signifies nothing. Dies wird sofort klar, wenn wir statt This is at once clear, if instead of This immediately becomes clear if in„F(Fu)“ schreiben „(∃φ):F(φu) . φu = Fu“. “F(Fu)” we write “(∃φ):F(φu) . φu = Fu”. stead of ‘F(Fu)’ we write ‘(∃φ):F(φu) . φu = Fu’. Hiermit erledigt sich Russells Para- Herewith Russell’s paradox vanishes. That disposes of Russell’s paradox. dox. 3.334 Die Regeln der logischen Syntax müs- The rules of logical syntax must follow The rules of logical syntax must go sen sich von selbst verstehen, wenn man of themselves, if we only know how every without saying, once we know how each nur weiß, wie ein jedes Zeichen bezeich- single sign signifies. individual sign signifies. net. 3.34 Der Satz besitzt wesentliche und zu- A proposition possesses essential and A proposition possesses essential and fällige Züge. accidental features. accidental features. Zufällig sind die Züge, die von der Accidental are the features which are Accidental features are those that rebesonderen Art der Hervorbringung des due to a particular way of producing the sult from the particular way in which the Satzzeichens herrühren. Wesentlich die- propositional sign. Essential are those propositional sign is produced. Essenjenigen, welche allein den Satz befähigen, which alone enable the proposition to ex- tial features are those without which the seinen Sinn auszudrücken. press its sense. proposition could not express its sense. 3.341 Das Wesentliche am Satz ist also das, The essential in a proposition is there- So what is essential in a proposition 29 was allen Sätzen, welche den gleichen fore that which is common to all proposi- is what all propositions that can express Sinn ausdrücken können, gemeinsam ist. tions which can express the same sense. the same sense have in common. Und ebenso ist allgemein das Wesent- And in the same way in general the And similarly, in general, what is esliche am Symbol das, was alle Symbole, essential in a symbol is that which all sential in a symbol is what all symbols die denselben Zweck erfüllen können, ge- symbols which can fulfill the same pur- that can serve the same purpose have in meinsam haben. pose have in common. common. 3.3411 Man könnte also sagen: Der eigentli- One could therefore say the real name So one could say that the real name che Name ist das, was alle Symbole, die is that which all symbols, which signify of an object was what all symbols that den Gegenstand bezeichnen, gemeinsam an object, have in common. It would then signified it had in common. Thus, one by haben. Es würde sich so successive erge- follow, step by step, that no sort of compo- one, all kinds of composition would prove ben, dass keinerlei Zusammensetzung für sition was essential for a name. to be unessential to a name. den Namen wesentlich ist. 3.342 An unseren Notationen ist zwar etwas In our notations there is indeed some- Although there is something arbiwillkürlich, aber d a s ist nicht willkür- thing arbitrary, but this is not arbitrary, trary in our notations, this much is lich: Dass, w e n n wir etwas willkürlich namely that if we have determined any- not arbitrary—that when we have deterbestimmt haben, dann etwas anderes der thing arbitrarily, then something else mined one thing arbitrarily, something Fall sein muss. (Dies hängt von dem W e - must be the case. (This results from the else is necessarily the case. (This derives s e n der Notation ab.) essence of the notation.) from the essence of notation.) 3.3421 Eine besondere Bezeichnungsweise A particular method of symbolizing A particular mode of signifying may mag unwichtig sein, aber wichtig ist es may be unimportant, but it is always im- be unimportant but it is always imporimmer, dass diese eine m ö g l i c h e Be- portant that this is a possible method of tant that it is a possible mode of signifyzeichnungsweise ist. Und so verhält es symbolizing. And this happens as a rule ing. And that is generally so in philososich in der Philosophie überhaupt: Das in philosophy: The single thing proves phy: again and again the individual case Einzelne erweist sich immer wieder als over and over again to be unimportant, turns out to be unimportant, but the posunwichtig, aber die Möglichkeit jedes Ein- but the possibility of every single thing sibility of each individual case discloses zelnen gibt uns einen Aufschluss über das reveals something about the nature of the something about the essence of the world. Wesen der Welt. world. 3.343 Definitionen sind Regeln der Überset- Definitions are rules for the transla- Definitions are rules for translating zung von einer Sprache in eine andere. tion of one language into another. Every from one language into another. Any corJede richtige Zeichensprache muss sich correct symbolism must be translatable rect sign-language must be translatable in jede andere nach solchen Regeln über- into every other according to such rules. into any other in accordance with such setzen lassen: D i e s ist, was sie alle It is this which all have in common. rules: it is this that they all have in comgemeinsam haben. mon. 3.344 Das, was am Symbol bezeichnet, ist What signifies in the symbol is what What signifies in a symbol is what is das Gemeinsame aller jener Symbole, is common to all those symbols by which common to all the symbols that the rules durch die das erste den Regeln der lo- it can be replaced according to the rules of logical syntax allow us to substitute for gischen Syntax zufolge ersetzt werden of logical syntax. it. 30 kann. 3.3441 Man kann z. B. das Gemeinsame aller We can, for example, express what For instance, we can express what Notationen für die Wahrheitsfunktionen is common to all notations for the truth- is common to all notations for truthso ausdrücken: Es ist ihnen gemeinsam, functions as follows: It is common to them functions in the following way: they have dass sich alle—z. B.—durch die Notation that they all, for example, can be replaced in common that, for example, the notation von „∼p“ („nicht p“) und „p ∨ q“ („p oder by the notations of “∼p” (“not p”) and that uses ‘∼p’ (‘not p’) and ‘p∨q’ (‘p or q’) q“) e r s e t z e n l a s s e n. “p ∨ q” (“p or q”). can be substituted for any of them. (Hiermit ist die Art und Weise gekenn- (Herewith is indicated the way in (This serves to characterize the way in zeichnet, wie eine spezielle mögliche No- which a special possible notation can give which something general can be disclosed tation uns allgemeine Aufschlüsse geben us general information.) by the possibility of a specific notation.) kann.) 3.3442 Das Zeichen des Komplexes löst sich The sign of the complex is not arbitrar- Nor does analysis resolve the sign for auch bei der Analyse nicht willkürlich auf, ily resolved in the analysis, in such a way a complex in an arbitrary way, so that it so dass etwa seine Auflösung in jedem that its resolution would be different in would have a different resolution every Satzgefüge eine andere wäre. every propositional structure. time that it was incorporated in a different proposition. 3.4 Der Satz bestimmt einen Ort im lo- The proposition determines a place in A proposition determines a place in gischen Raum. Die Existenz dieses logi- logical space: the existence of this logical logical space. The existence of this logical schen Ortes ist durch die Existenz der place is guaranteed by the existence of the place is guaranteed by the mere existence Bestandteile allein verbürgt, durch die constituent parts alone, by the existence of the constituents—by the existence of Existenz des sinnvollen Satzes. of the significant proposition. the proposition with a sense. 3.41 Das Satzzeichen und die logischen Ko- The propositional sign and the logical The propositional sign with logical coordinaten: Das ist der logische Ort. co-ordinates: that is the logical place. ordinates—that is the logical place. 3.411 Der geometrische und der logische Ort The geometrical and the logical place In geometry and logic alike a place is stimmen darin überein, dass beide die agree in that each is the possibility of an a possibility: something can exist in it. Möglichkeit einer Existenz sind. existence. 3.42 Obwohl der Satz nur einen Ort des lo- Although a proposition may only de- A proposition can determine only one gischen Raumes bestimmen darf, so muss termine one place in logical space, the place in logical space: nevertheless the doch durch ihn schon der ganze logische whole logical space must already be given whole of logical space must already be Raum gegeben sein. by it. given by it. (Sonst würden durch die Verneinung, (Otherwise denial, the logical sum, (Otherwise negation, logical sum, die logische Summe, das logische Pro- the logical product, etc., would always in- logical product, etc., would introduce dukt, etc. immer neue Elemente—in troduce new elements—in co-ordination.) more and more new elements—in coKoordinaten—eingeführt.) ordination.) (Das logische Gerüst um das Bild her- (The logical scaffolding round the pic- (The logical scaffolding surrounding um bestimmt den logischen Raum. Der ture determines the logical space. The a picture determines logical space. The Satz durchgreift den ganzen logischen proposition reaches through the whole force of a proposition reaches through the 31 Raum.) logical space.) whole of logical space.) 3.5 Das angewandte, gedachte Satzeichen The applied, thought, propositional A propositional sign, applied and ist der Gedanke. sign, is the thought. thought out, is a thought. 4 Der Gedanke ist der sinnvolle Satz. The thought is the significant proposi- A thought is a proposition with a tion. sense. 4.001 Die Gesamtheit der Sätze ist die Spra- The totality of propositions is the lan- The totality of propositions is lanche. guage. guage. 4.002 Der Mensch besitzt die Fähigkeit Man possesses the capacity of con- Man possesses the ability to construct Sprachen zu bauen, womit sich jeder Sinn structing languages, in which every sense languages capable of expressing every ausdrücken lässt, ohne eine Ahnung da- can be expressed, without having an idea sense, without having any idea how each von zu haben, wie und was jedes Wort how and what each word means—just as word has meaning or what its meaning bedeutet.—Wie man auch spricht, ohne one speaks without knowing how the sin- is—just as people speak without knowing zu wissen, wie die einzelnen Laute her- gle sounds are produced. how the individual sounds are produced. vorgebracht werden. Die Umgangssprache ist ein Teil des Colloquial language is a part of the hu- Everyday language is a part of the humenschlichen Organismus und nicht we- man organism and is not less complicated man organism and is no less complicated niger kompliziert als dieser. than it. than it. Es ist menschenunmöglich, From it it is humanly impossible to It is not humanly possible to gather die Sprachlogik aus ihr unmittelbar zu gather immediately the logic of language. immediately from it what the logic of lanentnehmen. guage is. Die Sprache verkleidet den Gedanken. Language disguises the thought; so Language disguises thought. So much Und zwar so, dass man nach der äußeren that from the external form of the clothes so, that from the outward form of the Form des Kleides, nicht auf deie Form des one cannot infer the form of the thought clothing it is impossible to infer the form bekleideten Gedankens schließen kann; they clothe, because the external form of the thought beneath it, because the outweil die äußere Form des Kleides nach of the clothes is constructed with quite ward form of the clothing is not designed ganz anderen Zwecken gebildet ist als da- another object than to let the form of the to reveal the form of the body, but for ennach, die Form des Körpers erkennen zu body be recognized. tirely different purposes. lassen. Die stillschweigenden Abmachungen The silent adjustments to understand The tacit conventions on which the zum Verständnis der Umgangssprache colloquial language are enormously com- understanding of everyday language desind enorm kompliziert. plicated. pends are enormously complicated. 4.003 Die meisten Sätze und Fragen, wel- Most propositions and questions, that Most of the propositions and questions che über philosophische Dinge geschrie- have been written about philosophical to be found in philosophical works are not ben worden sind, sind nicht falsch, son- matters, are not false, but senseless. We false but nonsensical. Consequently we dern unsinnig. Wir können daher Fragen cannot, therefore, answer questions of cannot give any answer to questions of dieser Art überhaupt nicht beantworten, this kind at all, but only state their sense- this kind, but can only point out that they sondern nur ihre Unsinnigkeit feststellen. lessness. Most questions and propositions are nonsensical. Most of the propositions 32 Die meisten Fragen und Sätze der Philo- of the philosophers result from the fact and questions of philosophers arise from sophen beruhen darauf, dass wir unsere that we do not understand the logic of our our failure to understand the logic of our Sprachlogik nicht verstehen. language. language. (Sie sind von der Art der Frage, ob das (They are of the same kind as the ques- (They belong to the same class as the Gute mehr oder weniger identisch sei als tion whether the Good is more or less question whether the good is more or less das Schöne.) identical than the Beautiful.) identical than the beautiful.) Und es ist nicht verwunderlich, dass And so it is not to be wondered at that And it is not surprising that the deepdie tiefsten Probleme eigentlich k e i n e the deepest problems are really no prob- est problems are in fact not problems at Probleme sind. lems. all. 4.0031 Alle Philosophie ist „Sprachkritik“. All philosophy is “Critique of lan- All philosophy is a ‘critique of lan(Allerdings nicht im Sinne Mauthners.) guage” (but not at all in Mauthner’s guage’ (though not in Mauthner’s sense). Russells Verdienst ist es, gezeigt zu ha- sense). Russell’s merit is to have shown It was Russell who performed the service ben, dass die scheinbar logische Form des that the apparent logical form of the of showing that the apparent logical form Satzes nicht seine wirkliche sein muss. proposition need not be its real form. of a proposition need not be its real one. 4.01 Der Satz ist ein Bild der Wirklichkeit. The proposition is a picture of reality. A proposition is a picture of reality. Der Satz ist ein Modell der Wirklich- The proposition is a model of the real- A proposition is a model of reality as keit, so wie wir sie uns denken. ity as we think it is. we imagine it. 4.011 Auf den ersten Blick scheint der Satz— At the first glance the proposition— At first sight a proposition—one set wie er etwa auf dem Papier gedruckt say as it stands printed on paper—does out on the printed page, for example— steht—kein Bild der Wirklichkeit zu sein, not seem to be a picture of the reality of does not seem to be a picture of the reality von der er handelt. Aber auch die No- which it treats. But nor does the musical with which it is concerned. But neither tenschrift scheint auf den ersten Blick score appear at first sight to be a picture do written notes seem at first sight to kein Bild der Musik zu sein, und unse- of a musical piece; nor does our phonetic be a picture of a piece of music, nor our re Lautzeichen-(Buchstaben-)Schrift kein spelling (letters) seem to be a picture of phonetic notation (the alphabet) to be a Bild unserer Lautsprache. our spoken language. picture of our speech. Und doch erweisen sich diese Zeichen- And yet these symbolisms prove to be And yet these sign-languages prove to sprachen auch im gewöhnlichen Sinne als pictures—even in the ordinary sense of be pictures, even in the ordinary sense, of Bilder dessen, was sie darstellen. the word—of what they represent. what they represent. 4.012 Offenbar ist, dass wir einen Satz von It is obvious that we perceive a propo- It is obvious that a proposition of the der Form „aRb“ als Bild empfinden. Hier sition of the form aRb as a picture. Here form ‘aRb’ strikes us as a picture. In this ist das Zeichen offenbar ein Gleichnis des the sign is obviously a likeness of the sig- case the sign is obviously a likeness of Bezeichneten. nified. what is signified. 4.013 Und wenn wir in das Wesentliche die- And if we penetrate to the essence of And if we penetrate to the essence of ser Bildhaftigkeit eindringen, so sehen this pictorial nature we see that this is this pictorial character, we see that it is wir, dass dieselbe durch s c h e i n b a - not disturbed by apparent irregularities not impaired by apparent irregularities r e U n r e g e l m ä ß i g k e i t e n (wie (like the use of and in the score). (such as the use of and in musical nodie Verwendung von und in der No- tation). 33 tenschrift) n i c h t gestört wird. Denn auch diese Unregelmäßigkeiten For these irregularities also picture For even these irregularities depict bilden das ab, was sie ausdrücken sollen; what they are to express; only in another what they are intended to express; only nur auf eine andere Art und Weise. way. they do it in a different way. 4.014 Die Grammophonplatte, der musika- The gramophone record, the musical A gramophone record, the musical lische Gedanke, die Notenschrift, die thought, the score, the waves of sound, idea, the written notes, and the soundSchallwellen, stehen alle in jener abbil- all stand to one another in that pictorial waves, all stand to one another in the denden internen Beziehung zu einander, internal relation, which holds between same internal relation of depicting that die zwischen Sprache und Welt besteht. language and the world. holds between language and the world. Ihnen allen ist der logische Bau ge- To all of them the logical structure is They are all constructed according to meinsam. common. a common logical pattern. (Wie im Märchen die zwei Jünglinge, (Like the two youths, their two horses (Like the two youths in the fairy-tale, ihre zwei Pferde und ihre Lilien. Sie sind and their lilies in the story. They are all their two horses, and their lilies. They alle in gewissem Sinne Eins.) in a certain sense one.) are all in a certain sense one.) 4.0141 Dass es eine allgemeine Regel gibt, In the fact that there is a general rule There is a general rule by means of durch die der Musiker aus der Partitur by which the musician is able to read which the musician can obtain the symdie Symphonie entnehmen kann, durch the symphony out of the score, and that phony from the score, and which makes it welche man aus der Linie auf der Gram- there is a rule by which one could recon- possible to derive the symphony from the mophonplatte die Symphonie und nach struct the symphony from the line on a groove on the gramophone record, and, usder ersten Regel wieder die Partitur ab- gramophone record and from this again— ing the first rule, to derive the score again. leiten kann, darin besteht eben die inne- by means of the first rule—construct the That is what constitutes the inner simire Ähnlichkeit dieser scheinbar so ganz score, herein lies the internal similarity larity between these things which seem to verschiedenen Gebilde. Und jene Regel between these things which at first sight be constructed in such entirely different ist das Gesetz der Projektion, welches die seem to be entirely different. And the rule ways. And that rule is the law of proSymphonie in die Notensprache projiziert. is the law of projection which projects the jection which projects the symphony into Sie ist die Regel der Übersetzung der No- symphony into the language of the mu- the language of musical notation. It is the tensprache in die Sprache der Grammo- sical score. It is the rule of translation rule for translating this language into the phonplatte. of this language into the language of the language of gramophone records. gramophone record. 4.015 Die Möglichkeit aller Gleichnisse, der The possibility of all similes, of all the The possibility of all imagery, of all ganzen Bildhaftigkeit unserer Ausdrucks- images of our language, rests on the logic our pictorial modes of expression, is conweise, ruht in der Logik der Abbildung. of representation. tained in the logic of depiction. 4.016 Um das Wesen des Satzes zu verste- In order to understand the essence In order to understand the essential hen, denken wir an die Hieroglyphen- of the proposition, consider hieroglyphic nature of a proposition, we should conschrift, welche die Tatsachen die sie be- writing, which pictures the facts it de- sider hieroglyphic script, which depicts schreibt abbildet. scribes. the facts that it describes. Und aus ihr wurde die Buchstaben- And from it came the alphabet with- And alphabetic script developed out 34 schrift, ohne das Wesentliche der Abbil- out the essence of the representation be- of it without losing what was essential to dung zu verlieren. ing lost. depiction. 4.02 Dies sehen wir daraus, dass wir den This we see from the fact that we un- We can see this from the fact that we Sinn des Satzzeichens verstehen, ohne derstand the sense of the propositional understand the sense of a propositional dass er uns erklärt wurde. sign, without having had it explained to sign without its having been explained to us. us. 4.021 Der Satz ist ein Bild der Wirklichkeit: The proposition is a picture of reality, A proposition is a picture of reality: Denn ich kenne die von ihm dargestel- for I know the state of affairs presented for if I understand a proposition, I know le Sachlage, wenn ich den Satz verstehe. by it, if I understand the proposition. And the situation that it represents. And I unUnd den Satz verstehe ich, ohne dass mir I understand the proposition, without its derstand the proposition without having sein Sinn erklärt wurde. sense having been explained to me. had its sense explained to me. 4.022 Der Satz z e i g t seinen Sinn. The proposition shows its sense. A proposition shows its sense. Der Satz z e i g t, wie es sich verhält, The proposition shows how things A proposition shows how things stand w e n n er wahr ist. Und er s a g t, d a s s stand, if it is true. And it says, that they if it is true. And it says that they do so es sich so verhält. do so stand. stand. 4.023 Die Wirklichkeit muss durch den Satz The proposition determines reality to A proposition must restrict reality to auf ja oder nein fixiert sein. this extent, that one only needs to say two alternatives: yes or no. “Yes” or “No” to it to make it agree with reality. Dazu muss sie durch ihn vollständig Reality must therefore be completely In order to do that, it must describe beschrieben werden. described by the proposition. reality completely. Der Satz ist die Beschreibung eines A proposition is the description of a A proposition is a description of a Sachverhaltes. fact. state of affairs. Wie die Beschreibung einen Gegen- As the description of an object de- Just as a description of an object destand nach seinen externen Eigenschaf- scribes it by its external properties so scribes it by giving its external properties, ten, so beschreibt der Satz die Wirklich- propositions describe reality by its inter- so a proposition describes reality by its inkeit nach ihren internen Eigenschaften. nal properties. ternal properties. Der Satz konstruiert eine Welt mit The proposition constructs a world A proposition constructs a world with Hilfe eines logischen Gerüstes und dar- with the help of a logical scaffolding, and the help of a logical scaffolding, so that um kann man am Satz auch sehen, wie therefore one can actually see in the one can actually see from the proposition sich alles Logische verhält, w e n n er proposition all the logical features pos- how everything stands logically if it is wahr ist. Man kann aus einem falschen sessed by reality if it is true. One can true. One can draw inferences from a Satz S c h l ü s s e z i e h e n. draw conclusions from a false proposition. false proposition. 4.024 Einen Satz verstehen, heißt, wissen To understand a proposition means to To understand a proposition means to was der Fall ist, wenn er wahr ist. know what is the case, if it is true. know what is the case if it is true. (Man kann ihn also verstehen, ohne (One can therefore understand it with- (One can understand it, therefore, zu wissen, ob er wahr ist.) out knowing whether it is true or not.) without knowing whether it is true.) 35 Man versteht ihn, wenn man seine One understands it if one understands It is understood by anyone who underBestandteile versteht. it constituent parts. stands its constituents. 4.025 Die Übersetzung einer Sprache in ei- The translation of one language into When translating one language into ne andere geht nicht so vor sich, dass man another is not a process of translating another, we do not proceed by translating jeden S a t z der einen in einen S a t z each proposition of the one into a proposi- each proposition of the one into a proposider anderen übersetzt, sondern nur die tion of the other, but only the constituent tion of the other, but merely by translatSatzbestandteile werden übersetzt. parts of propositions are translated. ing the constituents of propositions. (Und das Wörterbuch übersetzt nicht (And the dictionary does not only (And the dictionary translates not nur Substantiva, sondern auch Zeit-, translate substantives but also adverbs only substantives, but also verbs, adjecEigenschafts- und Bindewörter etc.; und and conjunctions, etc., and it treats them tives, and conjunctions, etc.; and it treats es behandelt sie alle gleich.) all alike.) them all in the same way.) 4.026 Die Bedeutung der einfachen Zeichen The meanings of the simple signs (the The meanings of simple signs (words) (der Wörter) müssen uns erklärt werden, words) must be explained to us, if we are must be explained to us if we are to undass wir sie verstehen. to understand them. derstand them. Mit den Sätzen aber verständigen wir By means of propositions we explain With propositions, however, we make uns. ourselves. ourselves understood. 4.027 Es liegt im Wesen des Satzes, dass er It is essential to propositions, that It belongs to the essence of a proposiuns einen n e u e n Sinn mitteilen kann. they can communicate a new sense to us. tion that it should be able to communicate a new sense to us. 4.03 Ein Satz muss mit alten Ausdrücken A proposition must communicate a A proposition must use old expreseinen neuen Sinn mitteilen. new sense with old words. sions to communicate a new sense. Der Satz teilt uns eine Sachlage mit, The proposition communicates to us a A proposition communicates a situaalso muss er w e s e n t l i c h mit der state of affairs, therefore it must be essen- tion to us, and so it must be essentially Sachlage zusammenhängen. tially connected with the state of affairs. connected with the situation. Und der Zusammenhang ist eben, And the connexion is, in fact, that it is And the connexion is precisely that it dass er ihr logisches Bild ist. its logical picture. is its logical picture. Der Satz sagt nur insoweit etwas aus, The proposition only asserts some- A proposition states something only als er ein Bild ist. thing, in so far as it is a picture. in so far as it is a picture. 4.031 Im Satz wird gleichsam eine Sachlage In the proposition a state of affairs is, In a proposition a situation is, as it probeweise zusammengestellt. as it were, put together for the sake of were, constructed by way of experiment. experiment. Man kann geradezu sagen: statt, die- One can say, instead of, This propo- Instead of, ‘This proposition has such ser Satz hat diesen und diesen Sinn; die- sition has such and such a sense, This and such a sense’, we can simply say, ‘This ser Satz stellt diese und diese Sachlage proposition represents such and such a proposition represents such and such a dar. state of affairs. situation’. 4.0311 Ein Name steht für ein Ding, ein an- One name stands for one thing, and One name stands for one thing, anderer für ein anderes Ding und unterein- another for another thing, and they are other for another thing, and they are 36 ander sind sie verbunden, so stellt das connected together. And so the whole, like combined with one another. In this way Ganze—wie ein lebendes Bild—den Sach- a living picture, presents the atomic fact. the whole group—like a tableau vivant— verhalt vor. presents a state of affairs. 4.0312 Die Möglichkeit des Satzes beruht auf The possibility of propositions is based The possibility of propositions is based dem Prinzip der Vertretung von Gegen- upon the principle of the representation on the principle that objects have signs ständen durch Zeichen. of objects by signs. as their representatives. Mein Grundgedanke ist, dass die „logi- My fundamental thought is that the My fundamental idea is that the ‘logschen Konstanten“ nicht vertreten. Dass “logical constants” do not represent. That ical constants’ are not representatives; sich die L o g i k der Tatsachen nicht ver- the logic of the facts cannot be repre- that there can be no representatives of treten lässt. sented. the logic of facts. 4.032 Nur insoweit ist der Satz ein Bild der The proposition is a picture of its state It is only in so far as a proposition is Sachlage, als er logisch gegliedert ist. of affairs, only in so far as it is logically logically articulated that it is a picture of articulated. a situation. (Auch der Satz: „ambulo“, ist zusam- (Even the proposition “ambulo” is com- (Even the proposition, Ambulo, is commengesetzt, denn sein Stamm ergibt mit posite, for its stem gives a different sense posite: for its stem with a different ending einer anderen Endung, und seine Endung with another termination, or its termina- yields a different sense, and so does its mit einem anderen Stamm, einen ande- tion with another stem.) ending with a different stem.) ren Sinn.) 4.04 Am Satz muss gerade soviel zu unter- In the proposition there must be ex- In a proposition there must be exactly scheiden sein, als an der Sachlage, die er actly as many thing distinguishable as as many distinguishable parts as in the darstellt. there are in the state of affairs, which it situation that it represents. represents. Die beiden müssen die gleiche logische They must both possess the same The two must possess the same logical (mathematische) Mannigfaltigkeit besit- logical (mathematical) multiplicity (cf. (mathematical) multiplicity. (Compare zen. (Vergleiche Hertz’s „Mechanik“, über Hertz’s Mechanics, on Dynamic Models). Hertz’s Mechanics on dynamical models.) dynamische Modelle.) 4.041 Diese mathematische Mannigfaltig- This mathematical multiplicity natu- This mathematical multiplicity, of keit kann man natürlich nicht selbst wie- rally cannot in its turn be represented. course, cannot itself be the subject of deder abbilden. Aus ihr kann man beim Ab- One cannot get outside it in the represen- piction. One cannot get away from it bilden nicht heraus. tation. when depicting. 4.0411 Wollten wir z. B. das, was wir durch If we tried, for example, to express If, for example, we wanted to express „(x). fx“ ausdrücken, durch Vorsetzen ei- what is expressed by “(x). fx” by putting what we now write as ‘(x). fx’ by putting nes Indexes von „fx“ ausdrücken—etwa an index before fx, like: “Gen. fx”, it an affix in front of ‘fx’—for instance by so: „Alg. fx“—es würde nicht genügen— would not do, we should not know what writing ‘Gen. fx’—it would not be adewir wüssten nicht, was verallgemeinert was generalized. If we tried to show it quate: we should not know what was bewurde. Wollten wir es durch einen Index by an index g, like: “f (xg)” it would not ing generalized. If we wanted to signalize „a“ anzeigen—etwa so: „f (xa)“—es würde do—we should not know the scope of the it with an affix ‘g’—for instance by writ- 37 auch nicht genügen—wir wüssten nicht generalization. ing ‘f (xg)’—that would not be adequate den Bereich der Allgemeinheitsbezeich- either: we should not know the scope of nung. the generality-sign. Wollten wir es durch Einführung If we were to try it by introducing If we were to try to do it by introduceiner Marke in die Argumentstellen a mark in the argument places, like ing a mark into the argument-places—for versuchen—etwa so: „(A, A).F(A, A)“—es “(G,G).F(G,G)”, it would not do—we instance by writing ‘(G,G).F(G,G)’ —it würde nicht genügen—wir könnten die could not determine the identity of the would not be adequate: we should not be Identität der Variablen nicht feststellen. variables, etc. able to establish the identity of the variU.s.w. ables. And so on. Alle diese Bezeichnungsweisen genü- All these ways of symbolizing are in- All these modes of signifying are inadgen nicht, weil sie nicht die notwendige adequate because they have not the nec- equate because they lack the necessary mathematische Mannigfaltigkeit haben. essary mathematical multiplicity. mathematical multiplicity. 4.0412 Aus demselben Grunde genügt die For the same reason the idealist expla- For the same reason the idealist’s apidealistische Erklärung des Sehens der nation of the seeing of spatial relations peal to ‘spatial spectacles’ is inadequate räumlichen Beziehung durch die „Raum- through “spatial spectacles” does not do, to explain the seeing of spatial relations, brille“ nicht, weil sie nicht die Mannig- because it cannot explain the multiplicity because it cannot explain the multiplicity faltigkeit dieser Beziehungen erklären of these relations. of these relations. kann. 4.05 Die Wirklichkeit wird mit dem Satz Reality is compared with the proposi- Reality is compared with propositions. verglichen. tion. 4.06 Nur dadurch kann der Satz wahr oder Propositions can be true or false only A proposition can be true or false only falsch sein, indem er ein Bild der Wirk- by being pictures of the reality. in virtue of being a picture of reality. lichkeit ist. 4.061 Beachtet man nicht, dass der Satz If one does not observe that proposi- It must not be overlooked that a propoeinen von den Tatsachen unabhängigen tions have a sense independent of the sition has a sense that is independent of Sinn hat, so kann man leicht glauben, facts, one can easily believe that true and the facts: otherwise one can easily supdass wahr und falsch gleichberechtigte false are two relations between signs and pose that true and false are relations of Beziehungen von Zeichen und Bezeichne- things signified with equal rights. equal status between signs and what they tem sind. signify. Man könnte dann z. B. sagen, dass „p“ One could, then, for example, say that In that case one could say, for example, auch die wahre Art bezeichnet, was „∼p“ “p” signifies in the true way what “∼p” that ‘p’ signified in the true way what ‘∼p’ auf die falsche Art, etc. signifies in the false way, etc. signified in the false way, etc. 4.062 Kann man sich nicht mit falschen Can we not make ourselves under- Can we not make ourselves underSätzen, wie bisher mit wahren, verstän- stood by means of false propositions as stood with false propositions just as we digen? Solange man nur weiß, dass sie hitherto with true ones, so long as we have done up till now with true ones?—So falsch gemeint sind. Nein! Denn, wahr ist know that they are meant to be false? No! long as it is known that they are meant ein Satz, wenn es sich so verhält, wie wir For a proposition is true, if what we as- to be false.—No! For a proposition is true 38 es durch ihn sagen; und wenn wir mit „p“ sert by means of it is the case; and if by if we use it to say that things stand in a ∼p meinen, und es sich so verhält wie wir “p” we mean ∼p, and what we mean is certain way, and they do; and if by ‘p’ we es meinen, so ist „p“ in der neuen Auffas- the case, then “p” in the new conception mean ∼p and things stand as we mean sung wahr und nicht falsch. is true and not false. that they do, then, construed in the new way, ‘p’ is true and not false. 4.0621 Dass aber die Zeichen „p“ und „∼p“ That, however, the signs “p” and “∼p” But it is important that the signs ‘p’ das gleiche sagen k ö n n e n, ist wichtig. can say the same thing is important, for and ‘∼p’ can say the same thing. For it Denn es zeigt, dass dem Zeichen „∼“ in it shows that the sign “∼” corresponds to shows that nothing in reality corresponds der Wirklichkeit nichts entspricht. nothing in reality. to the sign ‘∼’. Dass in einem Satz die Verneinung That negation occurs in a proposition, The occurrence of negation in a propovorkommt, ist noch kein Merkmal seines is no characteristic of its sense (∼∼p = p). sition is not enough to characterize its Sinnes (∼∼p = p). sense (∼∼p = p). Die Sätze „p“ und „∼p“ haben entge- The propositions “p” and “∼p” have The propositions ‘p’ and ‘∼p’ have opgengesetzten Sinn, aber es entspricht ih- opposite senses, but to them corresponds posite sense, but there corresponds to nen eine und dieselbe Wirklichkeit. one and the same reality. them one and the same reality. 4.063 Ein Bild zur Erklärung des Wahrheits- An illustration to explain the concept An analogy to illustrate the concept begriffes: Schwarzer Fleck auf weißem of truth. A black spot on white paper; the of truth: imagine a black spot on white Papier; die Form des Fleckes kann man form of the spot can be described by say- paper: you can describe the shape of the beschreiben, indem man für jeden Punkt ing of each point of the plane whether it spot by saying, for each point on the sheet, der Fläche angibt, ob er weiß oder is white or black. To the fact that a point whether it is black or white. To the fact schwarz ist. Der Tatsache, dass ein Punkt is black corresponds a positive fact; to the that a point is black there corresponds a schwarz ist, entspricht eine positive—der, fact that a point is white (not black), a positive fact, and to the fact that a point is dass ein Punkt weiß (nicht schwarz) ist, negative fact. If I indicate a point of the white (not black), a negative fact. If I deseine negative Tatsache. Bezeichne ich plane (a truth-value in Frege’s terminol- ignate a point on the sheet (a truth-value einen Punkt der Fläche (einen Frege- ogy), this corresponds to the assumption according to Frege), then this corresponds schen Wahrheitswert), so entspricht dies proposed for judgment, etc. etc. to the supposition that is put forward for der Annahme, die zur Beurteilung aufge- judgement, etc. etc. stellt wird, etc. etc. Um aber sagen zu können, ein Punkt But to be able to say that a point is But in order to be able to say that a sei schwarz oder weiß, muss ich vorerst black or white, I must first know under point is black or white, I must first know wissen, wann man einen Punkt schwarz what conditions a point is called white when a point is called black, and when und wann man ihn weiß nennt; um sa- or black; in order to be able to say “p” is white: in order to be able to say, ‘“p” is gen zu können: „p“ ist wahr (oder falsch), true (or false) I must have determined true (or false)’, I must have determined muss ich bestimmt haben, unter welchen under what conditions I call “p” true, in what circumstances I call ‘p’ true, and Umständen ich „p“ wahr nenne, und da- and thereby I determine the sense of the in so doing I determine the sense of the mit bestimme ich den Sinn des Satzes. proposition. proposition. Der Punkt, an dem das Gleichnis hin- The point at which the simile breaks Now the point where the simile breaks 39 kt ist nun der: Wir können auf einen down is this: we can indicate a point on down is this: we can indicate a point on Punkt des Papiers zeigen, auch ohne the paper, without knowing what white the paper even if we do not know what zu wissen, was weiß und schwarz ist; and black are; but to a proposition with- black and white are, but if a proposieinem Satz ohne Sinn aber entspricht out a sense corresponds nothing at all, for tion has no sense, nothing corresponds gar nichts, denn er bezeichnet kein Ding it signifies no thing (truth-value) whose to it, since it does not designate a thing (Wahrheitswert) dessen Eigenschaften et- properties are called “false” or “true”; the (a truth-value) which might have properwa „falsch“ oder „wahr“ hießen; das Ver- verb of the proposition is not “is true” ties called ‘false’ or ‘true’. The verb of a bum eines Satzes ist nicht „ist wahr“ oder or “is false”—as Frege thought—but that proposition is not ‘is true’ or ‘is false’, as „ist falsch“—wie Frege glaubte—, sondern which “is true” must already contain the Frege thought: rather, that which ‘is true’ das, was „wahr ist“, muss das Verbum verb. must already contain the verb. schon enthalten. 4.064 Jeder Satz muss s c h o n einen Sinn Every proposition must already have Every proposition must already have haben; die Bejahung kann ihn ihm nicht a sense; assertion cannot give it a sense, a sense: it cannot be given a sense by afgeben, denn sie bejaht ja gerade den Sinn. for what it asserts is the sense itself. And firmation. Indeed its sense is just what is Und dasselbe gilt von der Verneinung, the same holds of denial, etc. affirmed. And the same applies to negaetc. tion, etc. 4.0641 Man könnte sagen: Die Verneinung One could say, the denial is already One could say that negation must be bezieht sich schon auf den logischen Ort, related to the logical place determined by related to the logical place determined by den der verneinte Satz bestimmt. the proposition that is denied. the negated proposition. Der verneinende Satz bestimmt einen The denying proposition determines a The negating proposition determines a n d e r e n logischen Ort als der vernein- logical place other than does the proposi- a logical place different from that of the te. tion denied. negated proposition. Der verneinende Satz bestimmt einen The denying proposition determines a The negating proposition determines logischen Ort mit Hilfe des logischen Or- logical place, with the help of the logical a logical place with the help of the logical tes des verneinten Satzes, indem er jenen place of the proposition denied, by saying place of the negated proposition. For it als außerhalb diesem liegend beschreibt. that it lies outside the latter place. describes it as lying outside the latter’s logical place. Dass man den verneinten Satz wie- That one can deny again the denied The negated proposition can be der verneinen kann, zeigt schon, dass das, proposition, shows that what is denied is negated again, and this in itself shows was verneint wird, schon ein Satz und already a proposition and not merely the that what is negated is already a proponicht erst die Vorbereitung zu einem Sat- preliminary to a proposition. sition, and not merely something that is ze ist. preliminary to a proposition. 4.1 Der Satz stellt das Bestehen und A proposition presents the existence Propositions represent the existence Nichtbestehen der Sachverhalte dar. and non-existence of atomic facts. and non-existence of states of affairs. 4.11 Die Gesamtheit der wahren Sätze ist The totality of true propositions is the The totality of true propositions is the die gesamte Naturwissenschaft (oder die total natural science (or the totality of the whole of natural science (or the whole corGesamtheit der Naturwissenschaften). natural sciences). pus of the natural sciences). 40 4.111 Die Philosophie ist keine der Natur- Philosophy is not one of the natural Philosophy is not one of the natural wissenschaften. sciences. sciences. (Das Wort „Philosophie“ muss etwas (The word “philosophy” must mean (The word ‘philosophy’ must mean bedeuten, was über oder unter, aber nicht something which stands above or below, something whose place is above or below neben den Naturwissenschaften steht.) but not beside the natural sciences.) the natural sciences, not beside them.) 4.112 Der Zweck der Philosophie ist die logi- The object of philosophy is the logical Philosophy aims at the logical clarifische Klärung der Gedanken. clarification of thoughts. cation of thoughts. Die Philosophie ist keine Lehre, son- Philosophy is not a theory but an ac- Philosophy is not a body of doctrine dern eine Tätigkeit. tivity. but an activity. Ein philosophisches Werk besteht we- A philosophical work consists essen- A philosophical work consists essensentlich aus Erläuterungen. tially of elucidations. tially of elucidations. Das Resultat der Philosophie sind The result of philosophy is not a num- Philosophy does not result in ‘philonicht „philosophische Sätze“, sondern das ber of “philosophical propositions”, but to sophical propositions’, but rather in the Klarwerden von Sätzen. make propositions clear. clarification of propositions. Die Philosophie soll die Gedanken, die Philosophy should make clear and de- Without philosophy thoughts are, as it sonst, gleichsam, trübe und verschwom- limit sharply the thoughts which other- were, cloudy and indistinct: its task is to men sind, klar machen und scharf abgren- wise are, as it were, opaque and blurred. make them clear and to give them sharp zen. boundaries. 4.1121 Die Psychologie ist der Philosophie Psychology is no nearer related to phi- Psychology is no more closely related nicht verwandter als irgend eine andere losophy, than is any other natural science. to philosophy than any other natural sciNaturwissenschaft. ence. Erkenntnistheorie ist die Philosophie The theory of knowledge is the philos- Theory of knowledge is the philosophy der Psychologie. ophy of psychology. of psychology. Entspricht nicht mein Studium der Does not my study of sign-language Does not my study of sign-language Zeichensprache dem Studium der Denk- correspond to the study of thought pro- correspond to the study of thoughtprozesse, welches die Philosophen für die cesses which philosophers held to be so processes, which philosophers used to conPhilosophie der Logik für so wesentlich essential to the philosophy of logic? Only sider so essential to the philosophy of hielten? Nur verwickelten sie sich mei- they got entangled for the most part in logic? Only in most cases they got entanstens in unwesentliche psychologische unessential psychological investigations, gled in unessential psychological investiUntersuchungen und eine analoge Gefahr and there is an analogous danger for my gations, and with my method too there is gibt es auch bei meiner Methode. method. an analogous risk. 4.1122 Die Darwinsche Theorie hat mit der The Darwinian theory has no more to Darwin’s theory has no more to do Philosophie nicht mehr zu schaffen als do with philosophy than has any other with philosophy than any other hypotheirgendeine andere Hypothese der Natur- hypothesis of natural science. sis in natural science. wissenschaft. 4.113 Die Philosophie begrenzt das bestreit- Philosophy limits the disputable Philosophy sets limits to the much disbare Gebiet der Naturwissenschaft. sphere of natural science. puted sphere of natural science. 41 4.114 Sie soll das Denkbare abgrenzen und It should limit the thinkable and It must set limits to what can be damit das Undenkbare. thereby the unthinkable. thought; and, in doing so, to what cannot be thought. Sie soll das Undenkbare von innen It should limit the unthinkable from It must set limits to what cannot be durch das Denkbare begrenzen. within through the thinkable. thought by working outwards through what can be thought. 4.115 Sie wird das Unsagbare bedeuten, in- It will mean the unspeakable by It will signify what cannot be said, by dem sie das Sagbare klar darstellt. clearly displaying the speakable. presenting clearly what can be said. 4.116 Alles was überhaupt gedacht werden Everything that can be thought at all Everything that can be thought at all kann, kann klar gedacht werden. Alles, can be thought clearly. Everything that can be thought clearly. Everything that was sich aussprechen läßt, läßt sich klar can be said can be said clearly. can be put into words can be put clearly. aussprechen. 4.12 Der Satz kann die gesamte Wirklich- Propositions can represent the whole Propositions can represent the whole keit darstellen, aber er kann nicht das reality, but they cannot represent what of reality, but they cannot represent what darstellen, was er mit der Wirklichkeit they must have in common with reality they must have in common with reality gemein haben muss, um sie darstellen zu in order to be able to represent it—the in order to be able to represent it—logical können—die logische Form. logical form. form. Um die logische Form darstellen zu To be able to represent the logical In order to be able to represent logical können, müssten wir uns mit dem Satze form, we should have to be able to put form, we should have to be able to station außerhalb der Logik aufstellen können, ourselves with the propositions outside ourselves with propositions somewhere das heißt außerhalb der Welt. logic, that is outside the world. outside logic, that is to say outside the world. 4.121 Der Satz kann die logische Form nicht Propositions cannot represent the log- Propositions cannot represent logical darstellen, sie spiegelt sich in ihm. ical form: this mirrors itself in the propo- form: it is mirrored in them. sitions. Was sich in der Sprache spiegelt, kann That which mirrors itself in language, What finds its reflection in language, sie nicht darstellen. language cannot represent. language cannot represent. Was s i c h in der Sprache ausdrückt, That which expresses itself in lan- What expresses itself in language, we können w i r nicht durch sie ausdrücken. guage, we cannot express by language. cannot express by means of language. Der Satz z e i g t die logische Form The propositions show the logical form Propositions show the logical form of der Wirklichkeit. of reality. reality. Er weist sie auf. They exhibit it. They display it. 4.1211 So zeigt ein Satz „fa“, dass in seinem Thus a proposition “fa” shows that in Thus one proposition ‘fa’ shows that Sinn der Gegenstand a vorkommt, zwei its sense the object a occurs, two propo- the object a occurs in its sense, two propoSätze „fa“ und „ga“, dass in ihnen beiden sitions “fa” and “ga” that they are both sitions ‘fa’ and ‘ga’ show that the same von demselben Gegenstand die Rede ist. about the same object. object is mentioned in both of them. Wenn zwei Sätze einander widerspre- If two propositions contradict one an- If two propositions contradict one an- 42 chen. So zeigt dies ihre Struktur; ebenso, other, this is shown by their structure; other, then their structure shows it; the wenn einer aus dem anderen folgt. U.s.w. similarly if one follows from another, etc. same is true if one of them follows from the other. And so on. 4.1212 Was gezeigt werden k a n n, k a n n What can be shown cannot be said. What can be shown, cannot be said. nicht gesagt werden. 4.1213 Jetzt verstehen wir auch unser Ge- Now we understand our feeling that Now, too, we understand our feeling fühl: dass wir im Besitze einer richti- we are in possession of the right logical that once we have a sign-language in gen logischen Auffassung seien, wenn nur conception, if only all is right in our sym- which everything is all right, we already einmal alles in unserer Zeichensprache bolism. have a correct logical point of view. stimmt. 4.122 Wir können in gewissem Sinne von We can speak in a certain sense of In a certain sense we can talk about formalen Eigenschaften der Gegenstände formal properties of objects and atomic formal properties of objects and states of und Sachverhalte bezw. von Eigenschaf- facts, or of properties of the structure of affairs, or, in the case of facts, about structen der Struktur der Tatsachen reden, facts, and in the same sense of formal tural properties: and in the same sense und in demselben Sinne von formalen Re- relations and relations of structures. about formal relations and structural relationen und Relationen von Strukturen. lations. (Statt Eigenschaft der Struktur sage (Instead of property of the structure (Instead of ‘structural property’ I also ich auch „interne Eigenschaft“; statt Re- I also say “internal property”; instead of say ‘internal property’; instead of ‘struclation der Strukturen „interne Relation“. relation of structures “internal relation”. tural relation’, ‘internal relation’. Ich führe diese Ausdrücke ein, um den I introduce these expressions in order I introduce these expressions in order Grund der bei den Philosophen sehr ver- to show the reason for the confusion, very to indicate the source of the confusion breiteten Verwechslung zwischen den in- widespread among philosophers, between between internal relations and relations ternen Relationen und den eigentlichen internal relations and proper (external) proper (external relations), which is very (externen) Relationen zu zeigen.) relations.) widespread among philosophers.) Das Bestehen solcher interner Eigen- The holding of such internal proper- It is impossible, however, to assert by schaften und Relationen kann aber nicht ties and relations cannot, however, be as- means of propositions that such internal durch Sätze behauptet werden, sondern serted by propositions, but it shows it- properties and relations obtain: rather, es zeigt sich in den Sätzen, welche jene self in the propositions, which present the this makes itself manifest in the proposiSachverhalte darstellen und von jenen facts and treat of the objects in question. tions that represent the relevant states Gegenständen handeln. of affairs and are concerned with the relevant objects. 4.1221 Eine interne Eigenschaft einer Tatsa- An internal property of a fact we also An internal property of a fact can also che können wir auch einen Zug dieser Tat- call a feature of this fact. (In the sense in be called a feature of that fact (in the sache nennen. (In dem Sinn, in welchem which we speak of facial features.) sense in which we speak of facial features, wir etwa von Gesichtszügen sprechen.) for example). 4.123 Eine Eigenschaft ist intern, wenn es A property is internal if it is unthink- A property is internal if it is unthinkundenkbar ist, dass ihr Gegenstand sie able that its object does not possess it. able that its object should not possess it. 43 nicht besitzt. (Diese blaue Farbe und jene stehen (This bright blue colour and that (This shade of blue and that one stand, in der internen Relation von heller und stand in the internal relation of bright eo ipso, in the internal relation of lighter dunkler eo ipso. Es ist undenkbar, dass and darker eo ipso. It is unthinkable that to darker. It is unthinkable that these two d i e s e beiden Gegenstände nicht in die- these two objects should not stand in this objects should not stand in this relation.) ser Relation stünden.) relation.) (Hier entspricht dem schwankenden (Here to the shifting use of the words (Here the shifting use of the word ‘obGebrauch der Worte „Eigenschaft“ und “property” and “relation” there corre- ject’ corresponds to the shifting use of the „Relation“ der schwankende Gebrauch des sponds the shifting use of the word “ob- words ‘property’ and ‘relation’.) Wortes „Gegenstand“.) ject”.) 4.124 Das Bestehen einer internen Eigen- The existence of an internal property The existence of an internal property schaft einer möglichen Sachlage wird of a possible state of affairs is not ex- of a possible situation is not expressed nicht durch einen Satz ausgedrückt, son- pressed by a proposition, but it expresses by means of a proposition: rather, it exdern es drückt sich in dem sie darstellen- itself in the proposition which presents presses itself in the proposition representden Satz durch eine interne Eigenschaft that state of affairs, by an internal prop- ing the situation, by means of an internal dieses Satzes aus. erty of this proposition. property of that proposition. Es wäre ebenso unsinnig, dem Satze It would be as senseless to ascribe It would be just as nonsensical to aseine formale Eigenschaft zuzusprechen, a formal property to a proposition as to sert that a proposition had a formal propals sie ihm abzusprechen. deny it the formal property. erty as to deny it. 4.1241 Formen kann man nicht dadurch von- One cannot distinguish forms from It is impossible to distinguish forms einander unterscheiden, dass man sagt, one another by saying that one has this from one another by saying that one has die eine habe diese, die andere aber jene property, the other that: for this assumes this property and another that property: Eigenschaft; denn dies setzt voraus, dass that there is a sense in asserting either for this presupposes that it makes sense es einen Sinn habe, beide Eigenschaften property of either form. to ascribe either property to either form. von beiden Formen auszusagen. 4.125 Das Bestehen einer internen Relati- The existence of an internal relation The existence of an internal relation on zwischen möglichen Sachlagen drückt between possible states of affairs ex- between possible situations expresses itsich sprachlich durch eine interne Relati- presses itself in language by an internal self in language by means of an internal on zwischen den sie darstellenden Sätzen relation between the propositions present- relation between the propositions repreaus. ing them. senting them. 4.1251 Hier erledigt sich nun die Streitfra- Now this settles the disputed question Here we have the answer to the vexed ge, „ob alle Relationen intern oder extern “whether all relations are internal or ex- question ‘whether all relations are interseien“. ternal”. nal or external’. 4.1252 Reihen, welche durch i n t e r n e Re- Series which are ordered by internal I call a series that is ordered by an lationen geordnet sind, nenne ich Formen- relations I call formal series. internal relation a series of forms. reihen. Die Zahlenreihe ist nicht nach einer The series of numbers is ordered not The order of the number-series is not 44 externen, sondern nach einer internen Re- by an external, but by an internal rela- governed by an external relation but by lation geordnet. tion. an internal relation. Ebenso die Reihe der Sätze „aRb“, Similarly the series of propositions The same is true of the series of propo“aRb”, sitions ‘aRb’, „(∃x):aRx . xRb“, “(∃x):aRx . xRb”, ‘(∃x):aRx . xRb’, „(∃x, y):aRx . xR y . yRb“, u. s. f. “(∃x, y):aRx . xR y . yRb”, etc. ‘(∃x, y):aRx . xR y . yRb’, and so forth. (Steht b in einer dieser Beziehungen (If b stands in one of these relations (If b stands in one of these relations zu a, so nenne ich b einen Nachfolder von to a, I call b a successor of a.) to a, I call b a successor of a.) a.) 4.126 In dem Sinne, in welchem wir von for- In the sense in which we speak of for- We can now talk about formal conmalen Eigenschaften sprechen, können mal properties we can now speak also of cepts, in the same sense that we speak wir nun auch von formalen Begriffen re- formal concepts. of formal properties. den. (Ich führe diesen Ausdruck ein, um (I introduce this expression in order (I introduce this expression in order den Grund der Verwechslung der forma- to make clear the confusion of formal con- to exhibit the source of the confusion len Begriffe mit den eigentlichen Begrif- cepts with proper concepts which runs between formal concepts and concepts fen, welche die ganze alte Logik durch- through the whole of the old logic.) proper, which pervades the whole of trazieht, klar zu machen.) ditional logic.) Dass etwas unter einen formalen Be- That anything falls under a formal When something falls under a formal griff als dessen Gegenstand fällt, kann concept as an object belonging to it, can- concept as one of its objects, this cannot nicht durch einen Satz ausgedrückt wer- not be expressed by a proposition. But it be expressed by means of a proposition. den. Sondern es zeigt sich an dem Zeichen is shown in the symbol for the object it- Instead it is shown in the very sign for dieses Gegenstandes selbst. (Der Name self. (The name shows that it signifies an this object. (A name shows that it signizeigt, dass er einen Gegenstand bezeich- object, the numerical sign that it signifies fies an object, a sign for a number that it net, das Zahlenzeichen, dass es eine Zahl a number, etc.) signifies a number, etc.) bezeichnet etc.) Die formalen Begriffe können ja nicht, Formal concepts, cannot, like proper Formal concepts cannot, in fact, be wie die eigentlichen Begriffe, durch eine concepts, be presented by a function. represented by means of a function, as Funktion dargestellt werden. concepts proper can. Denn ihre Merkmale, die formalen Ei- For their characteristics, the formal For their characteristics, formal propgenschaften, werden nicht durch Funktio- properties, are not expressed by the func- erties, are not expressed by means of funcnen ausgedrückt. tions. tions. Der Ausdruck der formalen Eigen- The expression of a formal property is The expression for a formal property schaft ist ein Zug gewisser Symbole. a feature of certain symbols. is a feature of certain symbols. Das Zeichen der Merkmale eines for- The sign that signifies the character- So the sign for the characteristics of malen Begriffes ist also ein charakteristi- istics of a formal concept is, therefore, a formal concept is a distinctive feature scher Zug aller Symbole, deren Bedeutun- a characteristic feature of all symbols, of all symbols whose meanings fall under 45 gen unter den Begriff fallen. whose meanings fall under the concept. the concept. Der Ausdruck des formalen Begriffes, The expression of the formal concept So the expression for a formal concept also, eine Satzvariable, in welcher nur is therefore a propositional variable in is a propositional variable in which this dieser charakteristische Zug konstant ist. which only this characteristic feature is distinctive feature alone is constant. constant. 4.127 Die Satzvariable bezeichnet den for- The propositional variable signifies The propositional variable signifies malen Begriff und ihre Werte die Gegen- the formal concept, and its values signify the formal concept, and its values signify stände, welche unter diesen Begriff fal- the objects which fall under this concept. the objects that fall under the concept. len. 4.1271 Jede Variable ist das Zeichen eines Every variable is the sign of a formal Every variable is the sign for a formal formalen Begriffes. concept. concept. Denn jede Variable stellt eine konstan- For every variable presents a constant For every variable represents a conte Form dar, welche alle ihre Werte be- form, which all its values possess, and stant form that all its values possess, and sitzen, und die als formale Eigenschaft which can be conceived as a formal prop- this can be regarded as a formal property dieser Werte aufgefasst werden kann. erty of these values. of those values. 4.1272 So ist der variable Name „x“ das So the variable name “x” is the proper Thus the variable name ‘x’ is the eigentliche Zeichen des Scheinbegriffes sign of the pseudo-concept object. proper sign for the pseudo-concept object. G e g e n s t a n d. Wo immer das Wort „Gegenstand“ Wherever the word “object” (“thing”, Wherever the word ‘object’ (‘thing’, („Ding“, „Sache“, etc.) richtig gebraucht “entity”, etc.) is rightly used, it is ex- etc.) is correctly used, it is expressed in wird, wird es in der Begriffsschrift durch pressed in logical symbolism by the vari- conceptual notation by a variable name. den variablen Namen ausgedrückt. able name. Zum Beispiel in dem Satz „es For example in the proposition “there For example, in the proposition, gibt 2 Gegenstände, welche . . . “ durch are two objects which . . . ”, by “(∃x, y)...”. ‘There are 2 objects which . . . ’, it is ex„(∃x, y)...“. pressed by ‘(∃x, y)...’. Wo immer es anders, also als eigentli- Wherever it is used otherwise, i.e. as Wherever it is used in a different way, ches Begriffswort gebraucht wird, entste- a proper concept word, there arise sense- that is as a proper concept-word, nonsenhen unsinnige Scheinsätze. less pseudo-propositions. sical pseudo-propositions are the result. So kann man z. B. nicht sagen „Es So one cannot, e.g. say “There are ob- So one cannot say, for example, ‘There gibt Gegenstände“, wie man etwa sagt: jects” as one says “There are books”. Nor are objects’, as one might say, ‘There are „Es gibt Bücher“. Und ebenso wenig: „Es “There are 100 objects” or “There are ℵ0 books’. And it is just as impossible to say, gibt 100 Gegenstände“, oder „Es gibt ℵ0 objects”. ‘There are 100 objects’, or, ‘There are ℵ0 Gegenstände“. objects’. Und es ist unsinnig, von der A n - And it is senseless to speak of the And it is nonsensical to speak of the z a h l a l l e r G e g e n s t ä n d e zu number of all objects. total number of objects. sprechen. Dasselbe gilt von den Worten „Kom- The same holds of the words “Com- The same applies to the words ‘com- 46 plex“, „Tatsache“, „Funktion“, „Zahl“, etc. plex”, “Fact”, “Function”, “Number”, etc. plex’, ‘fact’, ‘function’, ‘number’, etc. Sie alle bezeichnen formale Begriffe They all signify formal concepts and They all signify formal concepts, and und werden in der Begriffsschrift durch are presented in logical symbolism by are represented in conceptual notation by Variable, nicht durch Funktionen oder variables, not by functions or classes (as variables, not by functions or classes (as Klassen dargestellt. (Wie Frege und Rus- Frege and Russell thought). Frege and Russell believed). sell glaubten.) Ausdrücke wie „1 ist eine Zahl“, „Es Expressions like “1 is a number”, ‘1 is a number’, ‘There is only one zero’, gibt nur Eine Null“ und alle ähnlichen “there is only one number nought”, and and all similar expressions are nonsensisind unsinnig. all like them are senseless. cal. (Es ist ebenso unsinnig zu sagen: „Es (It is as senseless to say, “there is only (It is just as nonsensical to say, ‘There gibt nur Eine 1“, als es unsinnig wäre, zu one 1” as it would be to say: 2+2 is at 3 is only one 1’, as it would be to say, ‘2+2 sagen: „2+2 ist um 3 Uhr gleich 4“.) o’clock equal to 4.) at 3 o’clock equals 4’.) 4.12721 Der formale Begriff ist mit einem Ge- The formal concept is already given A formal concept is given immediately genstand, der unter ihn fällt, bereits ge- with an object, which falls under it. One any object falling under it is given. It geben. Man kann also nicht Gegenstän- cannot, therefore, introduce both, the ob- is not possible, therefore, to introduce as de eines formalen Begriffes u n d den jects which fall under a formal concept primitive ideas objects belonging to a forformalen Begriff selbst als Grundbegrif- and the formal concept itself, as prim- mal concept and the formal concept itself. fe einführen. Man kann also z. B. nicht itive ideas. One cannot, therefore, e.g. So it is impossible, for example, to introden Begriff der Funktion, und auch spezi- introduce (as Russell does) the concept duce as primitive ideas both the concept elle Funktionen (wie Russell) als Grund- of function and also special functions as of a function and specific functions, as begriffe einführen; oder den Begriff der primitive ideas; or the concept of number Russell does; or the concept of a number Zahl und bestimmte Zahlen. and definite numbers. and particular numbers. 4.1273 Wollen wir den allgemeinen Satz: „b If we want to express in logical sym- If we want to express in conceptual ist ein Nachfolger von a“ in der Begriffs- bolism the general proposition “b is a suc- notation the general proposition, ‘b is a schrift ausdrücken, so brauchen wir hier- cessor of a” we need for this an expression successor of a’, then we require an expreszu einen Ausdruck für das allgemeine for the general term of the formal series: sion for the general term of the series of Glied der Formenreihe: forms aRb, aRb, aRb, (∃x):aRx . xRb, (∃x):aRx . xRb, (∃x):aRx . xRb, (∃x, y):aRx . xR y . yRb, (∃x, y):aRx . xR y . yRb, (∃x, y):aRx . xR y . yRb, . . . . . . . . . . . . Das allgemeine Glied einer Formenreihe The general term of a formal series can In order to express the general term of a kann man nur durch eine Variable aus- only be expressed by a variable, for the series of forms, we must use a variable, drücken, denn der Begriff: Glied dieser concept symbolized by “term of this for- because the concept ‘term of that series Formenreihe, ist ein f o r m a l e r Begriff. mal series” is a formal concept. (This of forms’ is a formal concept. (This is (Dies haben Frege und Russell übersehen; Frege and Russell overlooked; the way in what Frege and Russell overlooked: con- 47 die Art und Weise, wie sie allgemeine Sät- which they express general propositions sequently the way in which they want to ze wie den obigen ausdrücken wollen, ist like the above is, therefore, false; it con- express general propositions like the one daher falsch; sie enthält einen circulus tains a vicious circle.) above is incorrect; it contains a vicious vitiosus.) circle.) Wir können das allgemeine Glied der We can determine the general term of We can determine the general term of Formenreihe bestimmen, indem wir ihr the formal series by giving its first term a series of forms by giving its first term erstes Glied angeben und die allgemeine and the general form of the operation, and the general form of the operation that Form der Operation, welche das folgen- which generates the following term out produces the next term out of the proposide Glied aus dem vorhergehenden Satz of the preceding proposition. tion that precedes it. erzeugt. 4.1274 Die Frage nach der Existenz eines for- The question about the existence of a To ask whether a formal concept exmalen Begriffes ist unsinnig. Denn kein formal concept is senseless. For no propo- ists is nonsensical. For no proposition can Satz kann eine solche Frage beantworten. sition can answer such a question. be the answer to such a question. (Man kann also z. B. nicht fra- (For example, one cannot ask: “Are (So, for example, the question, ‘Are gen: „Gibt es unanalysierbare Subjekt- there unanalysable subject-predicate there unanalysable subject-predicate Prädikatsätze?“) propositions?”) propositions?’ cannot be asked.) 4.128 Die logischen Formen sind zahl l o s. The logical forms are anumerical. Logical forms are without number. Darum gibt es in der Logik keine aus- Therefore there are in logic no pre- Hence there are no pre-eminent numgezeichneten Zahlen und darum gibt es eminent numbers, and therefore there is bers in logic, and hence there is no possikeinen philosophischen Monismus oder no philosophical monism or dualism, etc. bility of philosophical monism or dualism, Dualismus, etc. etc. 4.2 Der Sinn des Satzes ist seine Überein- The sense of a proposition is its agree- The sense of a proposition is its agreestimmung und Nichtübereinstimmung ment and disagreement with the possibil- ment and disagreement with possibilities mit den Möglichkeiten des Bestehens und ities of the existence and non-existence of of existence and non-existence of states of Nichtbestehens der Sachverhalte. the atomic facts. affairs. 4.21 Der einfachste Satz, der Elementar- The simplest proposition, the elemen- The simplest kind of proposition, an satz, behauptet das Bestehen eines Sach- tary proposition, asserts the existence of elementary proposition, asserts the exisverhaltes. an atomic fact. tence of a state of affairs. 4.211 Ein Zeichen des Elementarsatzes ist It is a sign of an elementary proposi- It is a sign of a proposition’s being elees, dass kein Elementarsatz mit ihm in tion, that no elementary proposition can mentary that there can be no elementary Widerspruch stehen kann. contradict it. proposition contradicting it. 4.22 Der Elementarsatz besteht aus Na- The elementary proposition consists of An elementary proposition consists of men. Er ist ein Zusammenhang, eine Ver- names. It is a connexion, a concatenation, names. It is a nexus, a concatenation, of kettung, von Namen. of names. names. 4.221 Es ist offenbar, dass wir bei der Analy- It is obvious that in the analysis of It is obvious that the analysis of propose der Sätze auf Elementarsätze kommen propositions we must come to elementary sitions must bring us to elementary propomüssen, die aus Namen in unmittelbarer propositions, which consist of names in sitions which consist of names in immedi- 48 Verbindung bestehen. immediate combination. ate combination. Es frägt sich hier, wie kommt der Satz- The question arises here, how the This raises the question how such comverband zustande. propositional connexion comes to be. bination into propositions comes about. 4.2211 Auch wenn die Welt unendlich kom- Even if the world is infinitely complex, Even if the world is infinitely complex, plex ist, so dass jede Tatsache aus unend- so that every fact consists of an infinite so that every fact consists of infinitely lich vielen Sachverhalten besteht und je- number of atomic facts and every atomic many states of affairs and every state of der Sachverhalt aus unendlich vielen Ge- fact is composed of an infinite number of affairs is composed of infinitely many obgenständen zusammengesetzt ist, auch objects, even then there must be objects jects, there would still have to be objects dann müsste es Gegenstände und Sach- and atomic facts. and states of affairs. verhalte geben. 4.23 Der Name kommt im Satz nur im Zu- The name occurs in the proposition It is only in the nexus of an elemensammenhange des Elementarsatzes vor. only in the context of the elementary tary proposition that a name occurs in a proposition. proposition. 4.24 Die Namen sind die einfachen Symbo- The names are the simple symbols, I Names are the simple symbols: I indile, ich deute sie durch einzelne Buchsta- indicate them by single letters (x, y, z). cate them by single letters (‘x’, ‘y’, ‘z’). ben („x“, „y“, „z“) an. Den Elementarsatz schreibe ich als The elementary proposition I write as I write elementary propositions as Funktion der Namen in der Form: „fx“, function of the names, in the form “fx”, functions of names, so that they have the „φ(x, y)“, etc. “φ(x, y)”, etc. form ‘fx’, ‘φ(x, y)’, etc. Oder ich deute ihn durch die Buchsta- Or I indicate it by the letters p, q, r. Or I indicate them by the letters ‘p’, ben p, q, r an. ‘q’, ‘r’. 4.241 Gebrauche ich zwei Zeichen in ein und If I use two signs with one and the When I use two signs with one and the derselben Bedeutung, so drücke ich dies same meaning, I express this by putting same meaning, I express this by putting aus, indem ich zwischen beide das Zei- between them the sign “=”. the sign ‘=’ between them. chen „=“ setze. „a = b“ heißt also: das Zeichen „a“ ist “a = b” means then, that the sign “a” So ‘a = b’ means that the sign ‘b’ can durch das Zeichen „b“ ersetzbar. is replaceable by the sign “b”. be substituted for the sign ‘a’. (Führe ich durch eine Gleichung ein (If I introduce by an equation a new (If I use an equation to introduce a neues Zeichen „b“ ein, indem ich bestim- sign “b”, by determining that it shall re- new sign ‘b’, laying down that it shall me, es solle ein bereits bekanntes Zei- place a previously known sign “a”, I write serve as a substitute for a sign ‘a’ that is chen „a“ ersetzen, so schreibe ich die the equation—definition—(like Russell) already known, then, like Russell, I write Gleichung—Definition—(wie Russell) in in the form “a = b Def.”. A definition is a the equation—definition—in the form ‘a = der Form „a = b Def.“. Die Definition ist symbolic rule.) b Def.’ A definition is a rule dealing with eine Zeichenregel.) signs.) 4.242 Ausdrücke von der Form „a = b“ sind Expressions of the form “a = b” are Expressions of the form ‘a = b’ are, also nur Behelfe der Darstellung; sie sa- therefore only expedients in presentation: therefore, mere representational devices. gen nichts über die Bedeutung der Zei- They assert nothing about the meaning They state nothing about the meaning of 49 chen „a“, „b“ aus. of the signs “a” and “b”. the signs ‘a’ and ‘b’. 4.243 Können wir zwei Namen verstehen, Can we understand two names with- Can we understand two names withohne zu wissen, ob sie dasselbe Ding oder out knowing whether they signify the out knowing whether they signify the zwei verschiedene Dinge bezeichnen?— same thing or two different things? Can same thing or two different things?—Can Können wir einen Satz, worin zwei Na- we understand a proposition in which we understand a proposition in which two men vorkommen, verstehen, ohne zu wis- two names occur, without knowing if they names occur without knowing whether sen, ob sie Dasselbe oder Verschiedenes mean the same or different things? their meaning is the same or different? bedeuten? Kenne ich etwa die Bedeutung eines If I know the meaning of an English Suppose I know the meaning of an englischen und eines gleichbedeutenden and a synonymous German word, it is English word and of a German word that deutschen Wortes, so ist es unmöglich, impossible for me not to know that they means the same: then it is impossible for dass ich nicht weiß, dass die beiden gleich- are synonymous, it is impossible for me me to be unaware that they do mean the bedeutend sind; es ist unmöglich, dass ich not to be able to translate them into one same; I must be capable of translating sie nicht ineinander übersetzen kann. another. each into the other. Ausdrücke wie „a = a“, oder von die- Expressions like “a = a”, or expres- Expressions like ‘a = a’, and those desen abgeleitete, sind weder Elementar- sions deduced from these are neither el- rived from them, are neither elementary sätze, noch sonst sinnvolle Zeichen. (Dies ementary propositions nor otherwise sig- propositions nor is there any other way in wird sich später zeigen.) nificant signs. (This will be shown later.) which they have sense. (This will become evident later.) 4.25 Ist der Elementarsatz wahr, so be- If the elementary proposition is true, If an elementary proposition is true, steht der Sachverhalt; ist der Elementar- the atomic fact exists; if it is false the the state of affairs exists: if an elemensatz falsch, so besteht der Sachverhalt atomic fact does not exist. tary proposition is false, the state of afnicht. fairs does not exist. 4.26 Die Angabe aller wahren Elementar- The specification of all true elemen- If all true elementary propositions are sätze beschreibt die Welt vollständig. Die tary propositions describes the world com- given, the result is a complete description Welt ist vollständig beschrieben durch die pletely. The world is completely described of the world. The world is completely deAngaben aller Elementarsätze plus der by the specification of all elementary scribed by giving all elementary proposiAngabe, welche von ihnen wahr und wel- propositions plus the specification, which tions, and adding which of them are true che falsch sind. of them are true and which false. and which false. 4.27 Bezüglich des Bestehens und Nicht- With regard to the existence of n For n states of affairs, there are Kn = bestehens von n Sachverhalten gibt es atomic facts there are Kn = n ν=0 n ν pos- n ν=0 n ν possibilities of existence and nonKn = n ν=0 n ν Möglichkeiten. sibilities. existence. Es können alle Kombinationen der It is possible for all combinations of Of these states of affairs any combiSachverhalte bestehen, die andern nicht atomic facts to exist, and the others not nation can exist and the remainder not 50 bestehen. to exist. exist. 4.28 Diesen Kombinationen entsprechen To these combinations correspond the There correspond to these combinaebenso viele Möglichkeiten der Wahr- same number of possibilities of the truth— tions the same number of possibilities heit—und Falschheit—von n Elementar- and falsehood—of n elementary proposi- of truth—and falsity—for n elementary sätzen. tions. propositions. 4.3 Die Wahrheitsmöglichkeiten der Ele- The truth-possibilities of the elemen- Truth-possibilities of elementary propmentarsätze bedeuten die Möglichkeiten tary propositions mean the possibilities ositions mean possibilities of existence des Bestehens und Nichtbestehens der of the existence and non-existence of the and non-existence of states of affairs. Sachverhalte. atomic facts. 4.31 Die Wahrheitsmöglichkeiten können The truth-possibilities can be pre- We can represent truth-possibilities wir durch Schemata folgender Art dar- sented by schemata of the following kind by schemata of the following kind (‘T’ stellen („W“ bedeutet „wahr“, „F“, „falsch“. (“T” means “true”, “F” “false”. The rows means ‘true’, ‘F’ means ‘false’; the rows Die Reihen der „W“ und „F“ unter der Rei- of T’s and F’s under the row of the ele- of ‘T’s’ and ‘F’s’ under the row of elemenhe der Elementarsätze bedeuten in leicht- mentary propositions mean their truth- tary propositions symbolize their truthverständlicher Symbolik deren Wahr- possibilities in an easily intelligible sym- possibilities in a way that can easily be heitsmöglichkeiten): bolism). understood): p q r W W W F W W W F W W W F F F W F W F W F F F F F p q W W F W W F F F p W F p q r T T T F T T T F T T T F F F T F T F T F F F F F p q T T F T T F F F p T F p q r T T T F T T T F T T T F F F T F T F T F F F F F p q T T F T T F F F p T F 4.4 Der Satz ist der Ausdruck der A proposition is the expression of A proposition is an expression of Übereinstimmung und Nichtübereinstim- agreement and disagreement with the agreement and disagreement with truthmung mit den Wahrheitsmöglichkeiten truth-possibilities of the elementary possibilities of elementary propositions. der Elementarsätze. propositions. 4.41 Die Wahrheitsmöglichkeiten der Ele- The truth-possibilities of the elemen- Truth-possibilities of elementary propmentarsätze sind die Bedingungen der tary propositions are the conditions of the ositions are the conditions of the truth Wahrheit und Falschheit der Sätze. truth and falsehood of the propositions. and falsity of propositions. 4.411 Es ist von vornherein wahrscheinlich, It seems probable even at first sight It immediately strikes one as probable dass die Einführung der Elementarsätze that the introduction of the elementary that the introduction of elementary propofür das Verständnis aller anderen Satzar- propositions is fundamental for the com- sitions provides the basis for understandten grundlegend ist. Ja, das Verständnis prehension of the other kinds of proposi- ing all other kinds of proposition. Indeed der allgemeinen Sätze hängt f ü h l b a r tions. Indeed the comprehension of the the understanding of general propositions 51 von dem der Elementarsätze ab. general propositions depends palpably on palpably depends on the understanding that of the elementary propositions. of elementary propositions. 4.42 Bezüglich der Übereinstimmung und With regard to the agreement and dis- For n elementary propositions there Nichtüberein stimmung eines Satzes mit agreement of a proposition with the truth- are Kn κ=0 Kn κ = Ln ways in which a propoden Wahrheitsmöglichkeiten von n Ele- possibilities of n elementary propositions sition can agree and disagree with their mentarsätzen gibt es Kn κ=0 Kn κ = Ln Mög- there are Kn κ=0 Kn κ = Ln possibilities. truth possibilities. lichkeiten. 4.43 Die Übereinstimmung mit den Wahr- Agreement with the truth-possibili- We can express agreement with truthheitsmöglichkeiten können wir dadurch ties can be expressed by co-ordinating possibilities by correlating the mark ‘T’ ausdrücken, indem wir ihnen im Schema with them in the schema the mark “T” (true) with them in the schema. etwa das Abzeichen „W“ (wahr) zuordnen. (true). Das Fehlen dieses Abzeichens bedeu- Absence of this mark means disagree- The absence of this mark means distet die Nichtübereinstimmung. ment. agreement. 4.431 Der Ausdruck der Übereinstimmung The expression of the agreement and The expression of agreement and disund Nichtübereinstimmung mit den disagreement with the truth-possibilities agreement with the truth possibilities Wahrheitsmöglichkeiten der Elementar- of the elementary propositions expresses of elementary propositions expresses the sätze drückt die Wahrheitsbedingungen the truth-conditions of the proposition. truth-conditions of a proposition. des Satzes aus. Der Satz ist der Ausdruck seiner The proposition is the expression of A proposition is the expression of its Wahrheitsbedingungen. its truth-conditions. truth-conditions. (Frege hat sie daher ganz richtig als (Frege has therefore quite rightly put (Thus Frege was quite right to use Erklärung der Zeichen seiner Begriffs- them at the beginning, as explaining them as a starting point when he exschrift vorausgeschickt. Nur ist die Er- the signs of his logical symbolism. Only plained the signs of his conceptual notaklärung des Wahrheitsbegriffes bei Fre- Frege’s explanation of the truth-concept tion. But the explanation of the concept of ge falsch: Wären „das Wahre“ und „das is false: if “the true” and “the false” were truth that Frege gives is mistaken: if ‘the Falsche“ wirklich Gegenstände und die real objects and the arguments in ∼p, etc., true’ and ‘the false’ were really objects, Argumente in ∼p etc. dann wäre nach then the sense of ∼p would by no means and were the arguments in ∼p etc., then Freges Bestimmung der Sinn von „∼p“ be determined by Frege’s determination.) Frege’s method of determining the sense keineswegs bestimmt.) of ‘∼p’ would leave it absolutely undeter- mined.) 4.44 Das Zeichen, welches durch die Zuord- The sign which arises from the co- The sign that results from correlating nung jener Abzeichen „W“ und der Wahr- ordination of that mark “T” with the the mark ‘T’ with truth-possibilities is a heitsmöglichkeiten entsteht, ist ein Satz- truth-possibilities is a propositional sign. propositional sign. zeichen. 52 4.441 Es ist klar, dass dem Komplex der Zei- It is clear that to the complex of the It is clear that a complex of the signs chen „F“ und „W“ kein Gegenstand (oder signs “F” and “T” no object (or complex ‘F’ and ‘T’ has no object (or complex of obKomplex von Gegenständen) entspricht; of objects) corresponds; any more than to jects) corresponding to it, just as there is so wenig, wie den horizontalen und ver- horizontal and vertical lines or to brack- none corresponding to the horizontal and tikalen Strichen oder den Klammern.— ets. There are no “logical objects”. vertical lines or to the brackets.—There „Logische Gegenstände“ gibt es nicht. are no ‘logical objects’. Analoges gilt natürlich für alle Zei- Something analogous holds of course Of course the same applies to all signs chen, die dasselbe ausdrücken wie die for all signs, which express the same as that express what the schemata of ‘T’s’ Schemata der „W“ und „F“. the schemata of “T” and “F”. and ‘F’s’ express. 4.442 Es ist z. B.: Thus e.g. For example, the following is a propositional sign: p q “ W W W F W W W F „ F F W “ p q T T T F T T T F F F T ” ‘ p q ’ T T T F T T T F F F T ein Satzzeichen. is a propositional sign. (Frege’s „Urtelistrich“ „ “ ist logisch (Frege’s assertion sign “ ” is logically (Frege’s ‘judgement stroke’ ‘ ’ is logiganz bedeutunglos; er zeigt bei Frege altogether meaningless; in Frege (and cally quite meaningless: in the works of (und Russell) nur an, dass diese Autoren Russell) it only shows that these authors Frege (and Russell) it simply indicates die so bezeichneten Sätze für wahr halten. hold as true the propositions marked in that these authors hold the propositions „ “ gehört daher ebenso wenig zum Satz- this way. “ ” belongs therefore to the marked with this sign to be true. Thus ‘ ’ gefüge, wie etwa die Nummer des Satzes. propositions no more than does the num- is no more a component part of a proposiEin Satz kann unmöglich von sich selbst ber of the proposition. A proposition can- tion than is, for instance, the proposition’s aussagen, dass er wahr ist.) not possibly assert of itself that it is true.) number. It is quite impossible for a proposition to state that it itself is true.) Ist die Reihenfolge der Wahrheitsmög- If the sequence of the truth-possibil- If the order or the truth-possibilities lichkeiten im Schema durch eine Kombi- ities in the schema is once for all deter- in a schema is fixed once and for all by a nationsregel ein für allemal festgesetzt, mined by a rule of combination, then the combinatory rule, then the last column by dann ist die letzte Kolonne allein schon last column is by itself an expression of itself will be an expression of the truthein Ausdruck der Wahrheitsbedingungen. the truth-conditions. If we write this col- conditions. If we now write this column as Schreiben wir diese Kolonne als Reihe umn as a row the propositional sign be- a row, the propositional sign will become hin, so wird das Satzzeichen zu comes: „(WW−W) (p, q)“ “(TT−T) (p, q)”, “(TT−T) (p, q)”, oder deutlicher „(WWFW) (p, q)“. or more plainly: “(TTFT) (p, q)”. or more explicitly “(TTFT) (p, q)”. 53 (Die Anzahl der Stellen in der linken (The number of places in the left-hand (The number of places in the left-hand Klammer ist durch die Anzahl der Glieder bracket is determined by the number of pair of brackets is determined by the numin der rechten bestimmt.) terms in the right-hand bracket.) ber of terms in the right-hand pair.) 4.45 Für n Elementarsätze gibt es Ln mög- For n elementary propositions there For n elementary propositions there liche Gruppen von Wahrheitsbedingun- are Ln possible groups of truth-condi- are Ln possible groups of truth-condigen. tions. tions. Die Gruppen von Wahrheitsbedingun- The groups of truth-conditions which The groups of truth-conditions that gen, welche zu den Wahrheitsmöglichkeit- belong to the truth-possibilities of a num- are obtainable from the truth-possibilities en einer Anzahl von Elementarsätzen ge- ber of elementary propositions can be or- of a given number of elementary proposihören, lassen sich in eine Reihe ordnen. dered in a series. tions can be arranged in a series. 4.46 Unter den möglichen Gruppen von Among the possible groups of truth- Among the possible groups of truthWahrheitsbedingungen gibt es zwei ex- conditions there are two extreme cases. conditions there are two extreme cases. treme Fälle. In dem einen Fall ist der Satz für In the one case the proposition is true In one of these cases the proposition sämtliche Wahrheitsmöglichkeiten der for all the truth-possibilities of the ele- is true for all the truth-possibilities of the Elementarsätze wahr. Wir sagen, die mentary propositions. We say that the elementary propositions. We say that the Wahrheitsbedingungen sind t a u t o l o - truth-conditions are tautological. truth-conditions are tautological. g i s c h. Im zweiten Fall ist der Satz für sämt- In the second case the proposition is In the second case the proposition is liche Wahrheitsmöglichkeiten falsch: Die false for all the truth-possibilities. The false for all the truth-possibilities: the Wahrheitsbedingungen sind k o n t r a - truth-conditions are self-contradictory. truth-conditions are contradictory. d i k t o r i s c h. Im ersten Fall nennen wir den Satz In the first case we call the proposition In the first case we call the proposieine Tautologie, im zweiten Fall eine Kon- a tautology, in the second case a contra- tion a tautology; in the second, a contratradiktion. diction. diction. 4.461 Der Satz zeigt was er sagt, die Tau- The proposition shows what it says, Propositions show what they say: tautologie und die Kontradiktion, dass sie the tautology and the contradiction that tologies and contradictions show that nichts sagen. they say nothing. they say nothing. Die Tautologie hat keine Wahrheits- The tautology has no truth-conditions, A tautology has no truth-conditions, bedingungen, denn sie ist bedingungslos for it is unconditionally true; and the con- since it is unconditionally true: and a conwahr; und die Kontradiktion ist unter kei- tradiction is on no condition true. tradiction is true on no condition. ner Bedingung wahr. Tautologie und Kontradiktion sind Tautology and contradiction are with- Tautologies and contradictions lack sinnlos. out sense. sense. (Wie der Punkt, von dem zwei Pfeile (Like the point from which two arrows (Like a point from which two arrows in entgegengesetzter Richtung auseinan- go out in opposite directions.) go out in opposite directions to one andergehen.) other.) 54 (Ich weiß z. B. nichts über das Wetter, (I know, e.g. nothing about the (For example, I know nothing about wenn ich weiß, dass es regnet oder nicht weather, when I know that it rains or does the weather when I know that it is either regnet.) not rain.) raining or not raining.) 4.4611 Tautologie und Kontradiktion sind Tautology and contradiction are, how- Tautologies and contradictions are aber nicht unsinnig; sie gehören zum ever, not nonsensical; they are part of the not, however, nonsensical. They are part Symbolismus, und zwar ähnlich wie die symbolism, in the same way that “0” is of the symbolism, much as ‘0’ is part of „0“ zum Symbolismus der Arithmetik. part of the symbolism of Arithmetic. the symbolism of arithmetic. 4.462 Tautologie und Kontradiktion sind Tautology and contradiction are not Tautologies and contradictions are not nicht Bilder der Wirklichkeit. Sie stellen pictures of the reality. They present no pictures of reality. They do not represent keine mögliche Sachlage dar. Denn jene possible state of affairs. For the one al- any possible situations. For the former lässt j e d e mögliche Sachlage zu, diese lows every possible state of affairs, the admit all possible situations, and latter k e i n e. other none. none. In der Tautologie heben die Bedin- In the tautology the conditions of In a tautology the conditions of agreegungen der Übereinstimmung mit der agreement with the world—the present- ment with the world—the representaWelt—die darstellenden Beziehungen— ing relations—cancel one another, so that tional relations—cancel one another, so einander auf, so dass sie in keiner darstel- it stands in no presenting relation to real- that it does not stand in any representalenden Beziehung zur Wirklichkeit steht. ity. tional relation to reality. 4.463 Die Wahrheitsbedingungen bestim- The truth-conditions determine the The truth-conditions of a proposition men den Spielraum, der den Tatsachen range, which is left to the facts by the determine the range that it leaves open durch den Satz gelassen wird. proposition. to the facts. (Der Satz, das Bild, das Modell, sind (The proposition, the picture, the (A proposition, a picture, or a model im negativen Sinne wie ein fester Kör- model, are in a negative sense like a solid is, in the negative sense, like a solid body per, der die Bewegungsfreiheit der ande- body, which restricts the free movement that restricts the freedom of movement of ren beschränkt; im positiven Sinne, wie of another: in a positive sense, like the others, and, in the positive sense, like der von fester Substanz begrenzte Raum, space limited by solid substance, in which a space bounded by solid substance in worin ein Körper Platz hat.) a body may be placed.) which there is room for a body.) Die Tautologie lässt der Wirklich- Tautology leaves to reality the whole A tautology leaves open to reality keit den ganzen—unendlichen—logisch- infinite logical space; contradiction fills the whole—the infinite whole—of logical en Raum; die Kontradiktion erfüllt den the whole logical space and leaves no space: a contradiction fills the whole of ganzen logischen Raum und lässt der point to reality. Neither of them, there- logical space leaving no point of it for reWirklichkeit keinen Punkt. Keine von bei- fore, can in any way determine reality. ality. Thus neither of them can determine den kann daher die Wirklichkeit irgend- reality in any way. wie bestimmen. 4.464 Die Wahrheit der Tautologie ist ge- The truth of tautology is certain, of A tautology’s truth is certain, a propowiss, des Satzes möglich, der Kontradik- propositions possible, of contradiction im- sition’s possible, a contradiction’s impostion unmöglich. possible. sible. (Gewiss, möglich, unmöglich: Hier ha- (Certain, possible, impossible: here (Certain, possible, impossible: here 55 ben wir das Anzeichen jener Gradation, we have an indication of that gradation we have the first indication of the scale die wir in der Wahrscheinlichkeitslehre which we need in the theory of probabil- that we need in the theory of probability.) brauchen.) ity.) 4.465 Das logische Produkt einer Tautolo- The logical product of a tautology and The logical product of a tautology and gie und eines Satzes sagt dasselbe, wie a proposition says the same as the propo- a proposition says the same thing as the der Satz. Also ist jenes Produkt identisch sition. Therefore that product is identical proposition. This product, therefore, is mit dem Satz. Denn man kann das We- with the proposition. For the essence of identical with the proposition. For it is sentliche des Symbols nicht ändern, ohne the symbol cannot be altered without al- impossible to alter what is essential to a seinen Sinn zu ändern. tering its sense. symbol without altering its sense. 4.466 Einer bestimmten logischen Verbin- To a definite logical combination of What corresponds to a determinate dung von Zeichen entspricht eine be- signs corresponds a definite logical combi- logical combination of signs is a determistimmte logische Verbindung ihrer Be- nation of their meanings; every arbitrary nate logical combination of their meandeutungen; j e d e b e l i e b i g e Verbin- combination only corresponds to the un- ings. It is only to the uncombined signs dung entspricht nur den unverbundenen connected signs. that absolutely any combination correZeichen. sponds. Das heißt, Sätze, die für jede Sachlage That is, propositions which are true In other words, propositions that are wahr sind, können überhaupt keine Zei- for every state of affairs cannot be combi- true for every situation cannot be combichenverbindungen sein, denn sonst könn- nations of signs at all, for otherwise there nations of signs at all, since, if they were, ten ihnen nur bestimmte Verbindungen could only correspond to them definite only determinate combinations of objects von Gegenständen entsprechen. combinations of objects. could correspond to them. (Und keiner logischen Verbindung ent- (And to no logical combination corre- (And what is not a logical combination spricht k e i n e Verbindung der Gegen- sponds no combination of the objects.) has no combination of objects correspondstände.) ing to it.) Tautologie und Kontradiktion sind die Tautology and contradiction are the Tautology and contradiction are the Grenzfälle der Zeichenverbindung, näm- limiting cases of the combination of sym- limiting cases—indeed the disintegralich ihre Auflösung. bols, namely their dissolution. tion—of the combination of signs. 4.4661 Freilich sind auch in der Tautologie Of course the signs are also combined Admittedly the signs are still comund Kontradiktion die Zeichen noch mit with one another in the tautology and con- bined with one another even in tautoloeinander verbunden, d. h. sie stehen tradiction, i.e. they stand in relations to gies and contradictions—i.e. they stand in Beziehungen zu einander, aber die- one another, but these relations are mean- in certain relations to one another: but se Beziehungen sind bedeutungslos, dem ingless, unessential to the symbol. these relations have no meaning, they are S y m b o l unwesentlich. not essential to the symbol. 4.5 Nun scheint es möglich zu sein, die all- Now it appears to be possible to give It now seems possible to give the most gemeinste Satzform anzugeben: das heißt, the most general form of proposition; i.e. general propositional form: that is, to eine Beschreibung der Sätze i r g e n d to give a description of the propositions give a description of the propositions of e i n e r Zeichensprache zu geben, so dass of some one sign language, so that every any sign-language whatsoever in such a jeder mögliche Sinn durch ein Symbol, possible sense can be expressed by a sym- way that every possible sense can be ex- 56 auf welches die Beschreibung passt, aus- bol, which falls under the description, and pressed by a symbol satisfying the degedrückt werden kann, und dass jedes so that every symbol which falls under scription, and every symbol satisfying the Symbol, worauf die Beschreibung passt, the description can express a sense, if the description can express a sense, provided einen Sinn ausdrücken kann, wenn die meanings of the names are chosen accord- that the meanings of the names are suitBedeutungen der Namen entsprechend ingly. ably chosen. gewählt werden. Es ist klar, dass bei der Beschreibung It is clear that in the description of It is clear that only what is essential der allgemeinsten Satzform n u r ihr the most general form of proposition only to the most general propositional form Wesentliches beschrieben werden darf,— what is essential to it may be described— may be included in its description—for sonst wäre sie nämlich nicht die allge- otherwise it would not be the most gen- otherwise it would not be the most genmeinste. eral form. eral form. Dass es eine allgemeine Satzform gibt, That there is a general form is proved The existence of a general proposiwird dadurch bewiesen, dass es keinen by the fact that there cannot be a propo- tional form is proved by the fact that Satz geben darf, dessen Form man nicht sition whose form could not have been there cannot be a proposition whose form hätte voraussehen (d. h. konstruieren) foreseen (i.e. constructed). The general could not have been foreseen (i.e. conkönnen. Die allgemeine Form des Satzes form of proposition is: Such and such is structed). The general form of a propoist: Es verhält sich so und so. the case. sition is: This is how things stand. 4.51 Angenommen, mir wären a l l e Ele- Suppose all elementary propositions Suppose that I am given all elemenmentarsätze gegeben: Dann lässt sich ein- were given me: then we can simply ask: tary propositions: then I can simply ask fach fragen: Welche Sätze kann ich aus what propositions I can build out of them. what propositions I can construct out of ihnen bilden? Und das sind a l l e Sätze And these are all propositions and so are them. And there I have all propositions, und s o sind sie begrenzt. they limited. and that fixes their limits. 4.52 Die Sätze sind alles, was aus der Ge- The propositions are everything which Propositions comprise all that follows samtheit aller Elementarsätze folgt (na- follows from the totality of all elementary from the totality of all elementary propotürlich auch daraus, dass es die G e - propositions (of course also from the fact sitions (and, of course, from its being the s a m t h e i t a l l e r ist). (So könnte that it is the totality of them all). (So, in totality of them all). (Thus, in a certain man in gewissem Sinne sagen, dass a l l e some sense, one could say, that all propo- sense, it could be said that all proposiSätze Verallgemeinerungen der Elemen- sitions are generalizations of the elemen- tions were generalizations of elementary tarsätze sind.) tary propositions.) propositions.) 4.53 Die allgemeine Satzform ist eine Va- The general proposition form is a vari- The general propositional form is a riable. able. variable. 5 Der Satz ist eine Wahrheitsfunktion Propositions are truth-functions of el- A proposition is a truth-function of elder Elementarsätze. ementary propositions. ementary propositions. (Der Elementarsatz ist eine Wahr- (An elementary proposition is a truth- (An elementary proposition is a truthheitsfunktion seiner selbst.) function of itself.) function of itself.) 5.01 Die Elementarsätze sind die Wahr- The elementary propositions are the Elementary propositions are the heitsargumente des Satzes. truth-arguments of propositions. truth-arguments of propositions. 57 5.02 Es liegt nahe, die Argumente von It is natural to confuse the arguments The arguments of functions are readFunktionen mit den Indices von Namen of functions with the indices of names. ily confused with the affixes of names. For zu verwechseln. Ich erkenne nämlich so- For I recognize the meaning of the sign both arguments and affixes enable me to wohl am Argument wie am Index die Be- containing it from the argument just as recognize the meaning of the signs condeutung des sie enthaltenden Zeichens. much as from the index. taining them. In Russells „+c“ ist z.B. „c“ ein Index, In Russell’s “+c”, for example, “c” is For example, when Russell writes ‘+c’, der darauf hinweist, dass das ganze Zei- an index which indicates that the whole the ‘c’ is an affix which indicates that the chen das Additionszeichen für Kardinal- sign is the addition sign for cardinal num- sign as a whole is the addition-sign for carzahlen ist. Aber diese Bezeichnung be- bers. But this way of symbolizing depends dinal numbers. But the use of this sign ruht auf willkürlicher Übereinkunft und on arbitrary agreement, and one could is the result of arbitrary convention and man könnte statt „+c“ auch ein einfaches choose a simple sign instead of “+c”: but it would be quite possible to choose a simZeichen wählen; in „∼p“ aber ist „p“ kein in “∼p” “p” is not an index but an argu- ple sign instead of ‘+c’; in ‘∼p’, however, Index, sondern ein Argument: der Sinn ment; the sense of “∼p” cannot be under- ‘p’ is not an affix but an argument: the von „∼p“ k a n n n i c h t verstanden wer- stood, unless the sense of “p” has pre- sense of ‘∼p’ cannot be understood unless den, ohne dass vorher der Sinn von „p“ viously been understood. (In the name the sense of ‘p’ has been understood alverstanden worden wäre. (Im Namen Ju- Julius Cæsar, Julius is an index. The in- ready. (In the name Julius Caesar ‘Julius’ lius Cäsar ist „Julius“ ein Index. Der In- dex is always part of a description of the is an affix. An affix is always part of a dex ist immer ein Teil einer Beschreibung object to whose name we attach it, e.g. description of the object to whose name des Gegenstandes, dessen Namen wir ihn The Cæsar of the Julian gens.) we attach it: e.g. the Caesar of the Julian anhängen. Z. B. d e r Cäsar aus dem Ge- gens.) schlechte der Julier.) Die Verwechslung von Argument und The confusion of argument and index If I am not mistaken, Frege’s theory Index liegt, wenn ich mich nicht irre, der is, if I am not mistaken, at the root of about the meaning of propositions and Theorie Freges von der Bedeutung der Frege’s theory of the meaning of proposi- functions is based on the confusion beSätze und Funktionen zugrunde. Für Fre- tions and functions. For Frege the propo- tween an argument and an affix. Frege rege waren die Sätze der Logik Namen, und sitions of logic were names and their ar- garded the propositions of logic as names, deren Argumente die Indices dieser Na- guments the indices of these names. and their arguments as the affixes of men. those names. 5.1 Die Wahrheitsfunktionen lassen sich The truth-functions can be ordered in Truth-functions can be arranged in in Reihen ordnen. series. series. Das ist die Grundlage der Wahrschein- That is the foundation of the theory of That is the foundation of the theory of lichkeitslehre. probability. probability. 5.101 Die Wahrheitsfunktionen jeder An- The truth-functions of every number The truth-functions of a given number zahl von Elementarsätzen lassen sich in of elementary propositions can be written of elementary propositions can always be einem Schema folgender Art hinschrei- in a schema of the following kind: set out in a schema of the following kind: ben: 58 (WWWW) (p, q) Tautologie (Wenn p, so p; und wenn q, so q.) (p ⊃ p . q ⊃ q) (F WWW) (p, q) in Worten: Nicht beides p und q. (∼(p . q)) (W F WW) (p, q) ” ” Wenn q, so p. (q ⊃ p) (WW F W) (p, q) ” ” Wenn p, so q. (p ⊃ q) (WWW F) (p, q) ” ” p oder q. (p ∨ q) (F F WW) (p, q) ” ” Nicht q. (∼q) (F W F W) (p, q) ” ” Nicht p. (∼p) (F WW F) (p, q) ” ” p, oder q, aber nicht beide. (p . ∼q :∨: q . ∼p) (W F F W) (p, q) ” ” Wenn p, so q; und wenn q, so p. (p ≡ q) (W F W F) (p, q) ” ” p (WW F F) (p, q) ” ” q (F F F W) (p, q) ” ” Weder p noch q. (∼p . ∼q) oder (p | q) (F F W F) (p, q) ” ” p und nicht q. (p . ∼q) (F W F F) (p, q) ” ” q und nicht p. (q . ∼p) (W F F F) (p, q) ” ” q und p. (q . p) (F F F F) (p, q) Kontradiktion (p und nicht p; und q und nicht q.) (p . ∼p . q . ∼q) (TTTT) (p, q) Tautology (if p then p; and if q then q) [p ⊃ p . q ⊃ q] (FTTT) (p, q) in words: Not both p and q. [∼(p . q)] (TFTT) (p, q) ” ” If q then p. [q ⊃ p] (TTFT) (p, q) ” ” If p then q. [p ⊃ q] (TTTF) (p, q) ” ” p or q. [p ∨ q] (FFTT) (p, q) ” ” Not q. [∼q] (FTFT) (p, q) ” ” Not p. [∼p] (FTTF) (p, q) ” ” p or q, but not both. [p . ∼q :∨: q . ∼p] (TFFT) (p, q) ” ” If p, then q; and if q, then p. [p ≡ q] (TFTF) (p, q) ” ” p (TTFF) (p, q) ” ” q (FFFT) (p, q) ” ” Neither p nor q. [∼p . ∼q or p | q] (FFTF) (p, q) ” ” p and not q. [p . ∼q] (FTFF) (p, q) ” ” q and not p. [q . ∼p] (TFFF) (p, q) ” ” p and q. [p . q] (FFFF) (p, q) Contradiction (p and not p; and q and not q.) [p . ∼p . q . ∼q] (TTTT) (p, q) Tautology (If p then p; and if q then q.) (p ⊃ p . q ⊃ q) (FTTT) (p, q) In words: Not both p and q. (∼(p . q)) (TFTT) (p, q) ” ” : If q then p. (q ⊃ p) (TTFT) (p, q) ” ” : If p then q. (p ⊃ q) (TTTF) (p, q) ” ” : p or q. (p ∨ q) (FFTT) (p, q) ” ” : Not q. (∼q) (FTFT) (p, q) ” ” : Not p. (∼p) (FTTF) (p, q) ” ” : p or q, but not both. (p . ∼q :∨: q . ∼p) (TFFT) (p, q) ” ” : If p then q, and if q then p. (p ≡ q) (TFTF) (p, q) ” ” : p (TTFF) (p, q) ” ” q (FFFT) (p, q) ” ” : Neither p nor q. (∼p . ∼q or p | q) (FFTF) (p, q) ” ” : p and not q. (p . ∼q) (FTFF) (p, q) ” ” : q and not p. (q . ∼p) (TFFF) (p, q) ” ” : q and p. (q . p) (FFFF) (p, q) Contradiction (p and not p, and q and not q.) (p . ∼p . q . ∼q) Diejenigen Wahrheitsmöglichkeiten Those truth-possibilities of its truth- I will give the name truth-grounds of seiner Wahrheitsargumente, welche den arguments, which verify the proposition, a proposition to those truth-possibilities Satz bewahrheiten, will ich seine W a h r - I shall call its truth-grounds. of its truth-arguments that make it true. h e i t s g r ü n d e nennen. 5.11 Sind die Wahrheitsgründe, die ei- If the truth-grounds which are com- If all the truth-grounds that are comner Anzahl von Sätzen gemeinsam sind, mon to a number of propositions are all mon to a number of propositions are at sämtlich auch Wahrheitsgründe eines be- also truth-grounds of some one proposi- the same time truth-grounds of a certain stimmten Satzes, so sagen wir, die Wahr- tion, we say that the truth of this proposi- proposition, then we say that the truth of heit dieses Satzes folge aus der Wahrheit tion follows from the truth of those propo- that proposition follows from the truth of jener Sätze. sitions. the others. 5.12 Insbesondere folgt die Wahrheit eines In particular the truth of a proposition In particular, the truth of a proposiSatzes „p“ aus der Wahrheit eines an- p follows from that of a proposition q, if tion ‘p’ follows from the truth of another deren „q“, wenn alle Wahrheitsgründe all the truth-grounds of the second are proposition ‘q’ if all the truth-grounds of des zweiten Wahrheitsgründe des ersten truth-grounds of the first. the latter are truth-grounds of the former. sind. 5.121 Die Wahrheitsgründe des einen sind The truth-grounds of q are contained The truth-grounds of the one are conin denen des anderen enthalten; p folgt in those of p; p follows from q. tained in those of the other: p follows aus q. from q. 5.122 Folgt p aus q, so ist der Sinn von „p“ If p follows from q, the sense of “p” is If p follows from q, the sense of ‘p’ is im Sinne von „q“ enthalten. contained in that of “q”. contained in the sense of ‘q’. 5.123 Wenn ein Gott eine Welt erschafft, If a god creates a world in which cer- If a god creates a world in which cerworin gewisse Sätze wahr sind, so schafft tain propositions are true, he creates tain propositions are true, then by that 59 er damit auch schon eine Welt, in welcher thereby also a world in which all proposi- very act he also creates a world in which alle ihre Folgesätze stimmen. Und ähn- tions consequent on them are true. And all the propositions that follow from them lich könnte er keine Welt schaffen, worin similarly he could not create a world in come true. And similarly he could not creder Satz „p“ wahr ist, ohne seine sämtli- which the proposition “p” is true without ate a world in which the proposition ‘p’ chen Gegenstände zu schaffen. creating all its objects. was true without creating all its objects. 5.124 Der Satz bejaht jeden Satz, der aus A proposition asserts every proposi- A proposition affirms every proposiihm folgt. tion which follows from it. tion that follows from it. 5.1241 „p . q“ ist einer der Sätze, welche „p“ “p . q” is one of the propositions which ‘p . q’ is one of the propositions that bejahen, und zugleich einer der Sätze, assert “p” and at the same time one of the affirm ‘p’ and at the same time one of the welche „q“ bejahen. propositions which assert “q”. propositions that affirm ‘q’. Zwei Sätze sind einander entgegen- Two propositions are opposed to one Two propositions are opposed to one gesetzt, wenn es keinen sinnvollen Satz another if there is no significant proposi- another if there is no proposition with a gibt, der sie beide bejaht. tion which asserts them both. sense, that affirms them both. Jeder Satz der einem anderen wider- Every proposition which contradicts Every proposition that contradicts anspricht, verneint ihn. another, denies it. other negates it. 5.13 Dass die Wahrheit eines Satzes aus That the truth of one proposition fol- When the truth of one proposition folder Wahrheit anderer Sätze folgt, ersehen lows from the truth of other propositions, lows from the truth of others, we can see wir aus der Struktur der Sätze. we perceive from the structure of the this from the structure of the proposipropositions. tions. 5.131 Folgt die Wahrheit eines Satzes aus If the truth of one proposition follows If the truth of one proposition follows der Wahrheit anderer, so drückt sich dies from the truth of others, this expresses from the truth of others, this finds expresdurch Beziehungen aus, in welchen die itself in relations in which the forms of sion in relations in which the forms of the Formen jener Sätze zu einander stehen; these propositions stand to one another, propositions stand to one another: nor is und zwar brauchen wir sie nicht erst in and we do not need to put them in these it necessary for us to set up these relajene Beziehungen zu setzen, indem wir relations first by connecting them with tions between them, by combining them sie in einem Satz miteinander verbinden, one another in a proposition; for these re- with one another in a single proposition; sondern diese Beziehungen sind intern lations are internal, and exist as soon as, on the contrary, the relations are interund bestehen, sobald, und dadurch dass, and by the very fact that, the propositions nal, and their existence is an immediate jene Sätze bestehen. exist. result of the existence of the propositions. 5.1311 Wenn wir von p ∨ q und ∼p auf q When we conclude from p ∨ q and ∼p When we infer q from p ∨ q and ∼p, schließen, so ist hier durch die Bezeich- to q the relation between the forms of the relation between the propositional nungsweise die Beziehung der Satzfor- the propositions “p ∨ q” and “∼p” is here forms of ‘p∨ q’ and ‘∼p’ is masked, in this men von „p∨q“ und „∼p“ verhüllt. Schrei- concealed by the method of symbolizing. case, by our mode of signifying. But if ben wir aber z. B. statt „p ∨ q“ „p | q .|. p | But if we write, e.g. instead of “p ∨ q” instead of ‘p ∨ q’ we write, for example, q“ und statt „∼p“ „p | p“ (p | q = weder p, “p | q .|. p | q” and instead of “∼p” “p | p” ‘p | q .|. p | q’, and instead of ‘∼p’, ‘p | p’ noch q), so wird der innere Zusammen- (p | q = neither p nor q), then the inner (p | q = neither p nor q), then the inner hang offenbar. connexion becomes obvious. connexion becomes obvious. 60 (Dass man aus (x). fx auf fa schließen (The fact that we can infer fa from (The possibility of inference from kann, das zeigt, dass die Allgemeinheit (x). fx shows that generality is present (x). fx to fa shows that the symbol (x). fx auch im Symbol „(x). fx“ vorhanden ist.) also in the symbol “(x). fx”. itself has generality in it.) 5.132 Folgt p aus q, so kann ich von q auf p If p follows from q, I can conclude If p follows from q, I can make an schließen; p aus q folgern. from q to p; infer p from q. inference from q to p, deduce p from q. Die Art des Schlusses ist allein aus The method of inference is to be un- The nature of the inference can be den beiden Sätzen zu entnehmen. derstood from the two propositions alone. gathered only from the two propositions. Nur sie selbst können den Schluss Only they themselves can justify the They themselves are the only possible rechtfertigen. inference. justification of the inference. „Schlussgesetze“, welche—wie bei Fre- Laws of inference, which—as in Frege ‘Laws of inference’, which are supge und Russell—die Schlüsse rechtferti- and Russell—are to justify the conclu- posed to justify inferences, as in the gen sollen, sind sinnlos, und wären über- sions, are senseless and would be super- works of Frege and Russell, have no sense, flüssig. fluous. and would be superfluous. 5.133 Alles Folgern geschieht a priori. All inference takes place a priori. All deductions are made a priori. 5.134 Aus einem Elementarsatz lässt sich From an elementary proposition no One elementary proposition cannot be kein anderer folgern. other can be inferred. deduced form another. 5.135 Auf keine Weise kann aus dem Beste- In no way can an inference be made There is no possible way of making an hen irgend einer Sachlage auf das Beste- from the existence of one state of affairs to inference from the existence of one situahen einer von ihr gänzlich verschiedenen the existence of another entirely different tion to the existence of another, entirely Sachlage geschlossen werden. from it. different situation. 5.136 Einen Kausalnexus, der einen solchen There is no causal nexus which justi- There is no causal nexus to justify Schluss rechtfertigte, gibt es nicht. fies such an inference. such an inference. 5.1361 Die Ereignisse der Zukunft k ö n n e n The events of the future cannot be in- We cannot infer the events of the fuwir nicht aus den gegenwärtigen erschlie- ferred from those of the present. ture from those of the present. ßen. Der Glaube an den Kausalnexus ist Superstition is the belief in the causal Belief in the causal nexus is superstider A b e r g l a u b e. nexus. tion. 5.1362 Die Willensfreiheit besteht darin, The freedom of the will consists in The freedom of the will consists in the dass zukünftige Handlungen jetzt nicht the fact that future actions cannot be impossibility of knowing actions that still gewusst werden können. Nur dann könn- known now. We could only know them lie in the future. We could know them ten wir sie wissen, wenn die Kausalität if causality were an inner necessity, like only if causality were an inner necessity eine i n n e r e Notwendigkeit wäre, wie that of logical deduction.—The connexion like that of logical inference.—The condie des logischen Schlusses.—Der Zusam- of knowledge and what is known is that nexion between knowledge and what is menhang von Wissen und Gewusstem ist of logical necessity. known is that of logical necessity. der der logischen Notwendigkeit. („A weiß, dass p der Fall ist“ ist sinn- (“A knows that p is the case” is sense- (‘A knows that p is the case’, has no los, wenn p eine Tautologie ist.) less if p is a tautology.) sense if p is a tautology.) 61 5.1363 Wenn daraus, dass ein Satz uns ein- If from the fact that a proposition is If the truth of a proposition does not leuchtet, nicht f o l g t, dass er wahr ist, obvious to us it does not follow that it is follow from the fact that it is self-evident so ist das Einleuchten auch keine Recht- true, then obviousness is no justification to us, then its self-evidence in no way jusfertigung für unseren Glauben an seine for our belief in its truth. tifies our belief in its truth. Wahrheit. 5.14 Folgt ein Satz aus einem anderen, so If a proposition follows from another, If one proposition follows from ansagt dieser mehr als jener, jener weniger then the latter says more than the former, other, then the latter says more than the als dieser. the former less than the latter. former, and the former less than the lat- ter. 5.141 Folgt p aus q und q aus p, so sind sie If p follows from q and q from p then If p follows from q and q from p, then ein und derselbe Satz. they are one and the same proposition. they are one and the same proposition. 5.142 Die Tautologie folgt aus allen Sätzen: A tautology follows from all proposi- A tautology follows from all proposisie sagt nichts. tions: it says nothing. tions: it says nothing. 5.143 Die Kontradiktion ist das Gemeinsa- Contradiction is something shared by Contradiction is that common factor me der Sätze, was k e i n Satz mit ei- propositions, which no proposition has of propositions which no proposition has nem anderen gemein hat. Die Tautologie in common with another. Tautology is in common with another. Tautology is ist das Gemeinsame aller Sätze, welche that which is shared by all propositions, the common factor of all propositions that nichts miteinander gemein haben. which have nothing in common with one have nothing in common with one ananother. other. Die Kontradiktion verschwindet so- Contradiction vanishes so to speak Contradiction, one might say, vanzusagen außerhalb, die Tautologie inner- outside, tautology inside all propositions. ishes outside all propositions: tautology halb aller Sätze. vanishes inside them. Die Kontradiktion ist die äußere Gren- Contradiction is the external limit Contradiction is the outer limit of ze der Sätze, die Tautologie ihr substanz- of the propositions, tautology their sub- propositions: tautology is the unsubstanloser Mittelpunkt. stanceless centre. tial point at their centre. 5.15 Ist Wr die Anzahl der Wahrheitsgrün- If Tr is the number of the truth- If Tr is the number of the truthde des Satzes „r“, Wrs die Anzahl derjeni- grounds of the proposition “r”, Trs the grounds of a proposition ‘r’, and if Trs gen Wahrheitsgründe des Satzes „s“, die number of those truth-grounds of the is the number of the truth-grounds of a zugleich Wahrheitsgründe von „r“ sind, proposition “s” which are at the same proposition ‘s’ that are at the same time dann nennen wir das Verhältnis: Wrs : time truth-grounds of “r”, then we call truth-grounds of ‘r’, then we call the ratio Wr das Maß der W a h r s c h e i n l i c h - the ratio Trs : Tr the measure of the prob- Trs : Tr the degree of probability that the k e i t, welche der Satz „r“ dem Satz „s“ ability which the proposition “r” gives to proposition ‘r’ gives to the proposition ‘s’. gibt. the proposition “s”. 5.151 Sei in einem Schema wie dem obigen Suppose in a schema like that above In a schema like the one above in in No. 5.101 Wr die Anzahl der „W“ im in No. 5.101 Tr is the number of the “T” ’s 5.101, let Tr be the number of ‘T’s’ in the Satze r; Wrs die Anzahl derjenigen „W“ in the proposition r, Trs the number of proposition r, and let Trs, be the number im Satze s, die in gleichen Kolonnen mit those “T” ’s in the proposition s, which of ‘T’s’ in the proposition s that stand in 62 „W“ des Satzes r stehen. Der Satz r gibt stand in the same columns as “T” ’s of columns in which the proposition r has dann dem Satze s die Wahrscheinlichkeit: the proposition r; then the proposition r ‘T’s’. Then the proposition r gives to the Wrs : Wr. gives to the proposition s the probability proposition s the probability Trs : Tr. Trs : Tr. 5.1511 Es gibt keinen besonderen Gegen- There is no special object peculiar to There is no special object peculiar to stand, der den Wahrscheinlichkeitssätzen probability propositions. probability propositions. eigen wäre. 5.152 Sätze, welche keine Wahrheitsargu- Propositions which have no truth- When propositions have no truthmente mit einander gemein haben, nen- arguments in common with one another arguments in common with one another, nen wir von einander unabhängig. we call independent. we call them independent of one another. Zwei Elementarsätze geben einander Independent propositions (e.g. any two Two elementary propositions give one die Wahrscheinlichkeit 1 2. elementary propositions) give to one an- another the probability 1 2. other the probability 1 2. Folgt p aus q, so gibt der Satz „q“ dem If p follows from q, the proposition q If p follows from q, then the propoSatz „p“ die Wahrscheinlichkeit 1. Die gives to the proposition p the probability sition ‘q’ gives to the proposition ‘p’ the Gewissheit des logischen Schlusses ist ein 1. The certainty of logical conclusion is a probability 1. The certainty of logical inGrenzfall der Wahrscheinlichkeit. limiting case of probability. ference is a limiting case of probability. (Anwendung auf Tautologie und Kon- (Application to tautology and contra- (Application of this to tautology and tradiktion.) diction.) contradiction.) 5.153 Ein Satz ist an sich weder wahrschein- A proposition is in itself neither prob- In itself, a proposition is neither problich noch unwahrscheinlich. Ein Ereignis able nor improbable. An event occurs or able nor improbable. Either an event octrifft ein, oder es trifft nicht ein, ein Mit- does not occur, there is no middle course. curs or it does not: there is no middle telding gibt es nicht. way. 5.154 In einer Urne seien gleichviel weiße In an urn there are equal numbers of Suppose that an urn contains black und schwarze Kugeln (und keine ande- white and black balls (and no others). I and white balls in equal numbers (and ren). Ich ziehe eine Kugel nach der ande- draw one ball after another and put them none of any other kind). I draw one ball ren und lege sie wieder in die Urne zu- back in the urn. Then I can determine by after another, putting them back into the rück. Dann kann ich durch den Versuch the experiment that the numbers of the urn. By this experiment I can establish feststellen, dass sich die Zahlen der gezo- black and white balls which are drawn that the number of black balls drawn and genen schwarzen und weißen Kugeln bei approximate as the drawing continues. the number of white balls drawn approxifortgesetztem Ziehen einander nähern. mate to one another as the draw contin- ues. D a s ist also kein mathematisches So this is not a mathematical fact. So this is not a mathematical truth. Faktum. Wenn ich nun sage: Es ist gleich wahr- If then, I say, It is equally probable Now, if I say, ‘The probability of my scheinlich, dass ich eine weiße Kugel wie that I should draw a white and a black drawing a white ball is equal to the probeine schwarze ziehen werde, so heißt das: ball, this means, All the circumstances ability of my drawing a black one’, this 63 Alle mir bekannten Umstände (die hy- known to me (including the natural laws means that all the circumstances that I pothetisch angenommenen Naturgesetze hypothetically assumed) give to the occur- know of (including the laws of nature asmitinbegriffen) geben dem Eintreffen des rence of the one event no more probability sumed as hypotheses) give no more probeinen Ereignisses nicht m e h r Wahr- than to the occurrence of the other. That ability to the occurrence of the one event scheinlichkeit als dem Eintreffen des an- is they give—as can easily be understood than to that of the other. That is to say, deren. Das heißt, sie geben—wie aus den from the above explanations—to each the they give each the probability 1 2, as can obigen Erklärungen leicht zu entnehmen probability 1 2. easily be gathered from the above definiist—jedem die Wahrscheinlichkeit 1 2. tions. Was ich durch den Versuch bestätige What I can verify by the experiment What I confirm by the experiment is ist, dass das Eintreffen der beiden Ereig- is that the occurrence of the two events that the occurrence of the two events is innisse von den Umständen, die ich nicht is independent of the circumstances with dependent of the circumstances of which näher kenne, unabhängig ist. which I have no closer acquaintance. I have no more detailed knowledge. 5.155 Die Einheit des Wahrscheinlichkeits- The unit of the probability proposition The minimal unit for a probability satzes ist: Die Umstände—die ich sonst is: The circumstances—with which I am proposition is this: The circumstances— nicht weiter kenne—geben dem Eintref- not further acquainted—give to the occur- of which I have no further knowledge— fen eines bestimmten Ereignisses den rence of a definite event such and such a give such and such a degree of probability und den Grad der Wahrscheinlichkeit. degree of probability. to the occurrence of a particular event. 5.156 So ist die Wahrscheinlichkeit eine Ver- Probability is a generalization. It is in this way that probability is a allgemeinerung. generalization. Sie involviert eine allgemeine Be- It involves a general description of a It involves a general description of a schreibung einer Satzform. propositional form. propositional form. Nur in Ermanglung der Gewissheit Only in default of certainty do we need We use probability only in default of gebrauchen wir die Wahrscheinlichkeit.— probability. If we are not completely ac- certainty—if our knowledge of a fact is Wenn wir zwar eine Tatsache nicht voll- quainted with a fact, but know something not indeed complete, but we do know kommen kennen, wohl aber e t w a s über about its form. something about its form. ihre Form wissen. (Ein Satz kann zwar ein unvollstän- (A proposition can, indeed, be an in- (A proposition may well be an incomdiges Bild einer gewissen Sachlage sein, complete picture of a certain state of af- plete picture of a certain situation, but aber er ist immer e i n vollständiges fairs, but it is always a complete picture.) it is always a complete picture of someBild.) thing.) Der Wahrscheinlichkeitssatz ist The probability proposition is, as it A probability proposition is a sort of gleichsam ein Auszug aus anderen Sätz- were, an extract from other propositions. excerpt from other propositions. en. 5.2 Die Strukturen der Sätze stehen in The structures of propositions stand The structures of propositions stand internen Beziehungen zu einander. to one another in internal relations. in internal relations to one another. 5.21 Wir können diese internen Beziehun- We can bring out these internal re- In order to give prominence to these gen dadurch in unserer Ausdrucksweise lations in our manner of expression, by internal relations we can adopt the follow- 64 hervorheben, dass wir einen Satz als Re- presenting a proposition as the result of ing mode of expression: we can represent sultat einer Operation darstellen, die ihn an operation which produces it from other a proposition as the result of an operation aus anderen Sätzen (den Basen der Ope- propositions (the bases of the operation). that produces it out of other propositions ration) hervorbringt. (which are the bases of the operation). 5.22 Die Operation ist der Ausdruck einer The operation is the expression of a re- An operation is the expression of a reBeziehung zwischen den Strukturen ih- lation between the structures of its result lation between the structures of its result res Resultats und ihrer Basen. and its bases. and of its bases. 5.23 Die Operation ist das, was mit dem The operation is that which must hap- The operation is what has to be done einen Satz geschehen muss, um aus ihm pen to a proposition in order to make an- to the one proposition in order to make den anderen zu machen. other out of it. the other out of it. 5.231 Und das wird natürlich von ihren for- And that will naturally depend on And that will, of course, depend on malen Eigenschaften, von der internen their formal properties, on the internal their formal properties, on the internal Ähnlichkeit ihrer Formen abhängen. similarity of their forms. similarity of their forms. 5.232 Die interne Relation, die eine Reihe The internal relation which orders a The internal relation by which a series ordnet, ist äquivalent mit der Operation, series is equivalent to the operation by is ordered is equivalent to the operation durch welche ein Glied aus dem anderen which one term arises from another. that produces one term from another. entsteht. 5.233 Die Operation kann erst dort auftre- The first place in which an operation Operations cannot make their appearten, wo ein Satz auf logisch bedeutungs- can occur is where a proposition arises ance before the point at which one propovolle Weise aus einem anderen entsteht. from another in a logically significant sition is generated out of another in a Also dort, wo die logische Konstruktion way; i.e. where the logical construction logically meaningful way; i.e. the point at des Satzes anfängt. of the proposition begins. which the logical construction of propositions begins. 5.234 Die Wahrheitsfunktionen der Elemen- The truth-functions of elementary Truth-functions of elementary propotarsätze sind Resultate von Operationen, proposition, are results of operations sitions are results of operations with eldie die Elementarsätze als Basen haben. which have the elementary propositions ementary propositions as bases. (These (Ich nenne diese Operationen Wahrheits- as bases. (I call these operations, truth- operations I call truth-operations.) operationen.) operations.) 5.2341 Der Sinn einer Wahrheitsfunktion von The sense of a truth-function of p is a The sense of a truth-function of p is a p ist eine Funktion des Sinnes von p. function of the sense of p. function of the sense of p. Verneinung, logische Addition, logi- Denial, logical addition, logical multi- Negation, logical addition, logical mulsche Multiplikation, etc., etc. sind Ope- plication, etc., etc., are operations. tiplication, etc. etc. are operations. rationen. (Die Verneinung verkehrt den Sinn (Denial reverses the sense of a propo- (Negation reverses the sense of a des Satzes.) sition.) proposition.) 5.24 Die Operation zeigt sich in einer Va- An operation shows itself in a vari- An operation manifests itself in a variriablen; sie zeigt, wie man von einer Form able; it shows how we can proceed from able; it shows how we can get from one 65 von Sätzen zu einer anderen gelangen one form of proposition to another. form of proposition to another. kann. Sie bringt den Unterschied der For- It gives expression to the difference It gives expression to the difference men zum Ausdruck. between the forms. between the forms. (Und das Gemeinsame zwischen den (And that which is common the the (And what the bases of an operation Basen und dem Resultat der Operation bases, and the result of an operation, is and its result have in common is just the sind eben die Basen.) the bases themselves.) bases themselves.) 5.241 Die Operation kennzeichnet keine The operation does not characterize An operation is not the mark of a form, Form, sondern nur den Unterschied der a form but only the difference between but only of a difference between forms. Formen. forms. 5.242 Dieselbe Operation, die „q“ aus „p“ The same operation which makes “q” The operation that produces ‘q’ from macht, macht aus „q“ „r“ u. s. f. Dies kann from “p”, makes “r” from “q”, and so on. ‘p’ also produces ‘r’ from ‘q’, and so on. nur darin ausgedrückt sein, dass „p“, „q“, This can only be expressed by the fact There is only one way of expressing this: „r“, etc. Variable sind, die gewisse forma- that “p”, “q”, “r”, etc., are variables which ‘p’, ‘q’, ‘r’, etc. have to be variables that le Relationen allgemein zum Ausdruck give general expression to certain formal give expression in a general way to cerbringen. relations. tain formal relations. 5.25 Das Vorkommen der Operation cha- The occurrence of an operation does The occurrence of an operation does rakterisiert den Sinn des Satzes nicht. not characterize the sense of a proposi- not characterize the sense of a proposition. tion. Die Operation sagt ja nichts aus, nur For an operation does not assert any- Indeed, no statement is made by an ihr Resultat, und dies hängt von den Ba- thing; only its result does, and this de- operation, but only by its result, and this sen der Operation ab. pends on the bases of the operation. depends on the bases of the operation. (Operation und Funktion dürfen nicht (Operation and function must not be (Operations and functions must not miteinander verwechselt werden.) confused with one another.) be confused with each other.) 5.251 Eine Funktion kann nicht ihr eigenes A function cannot be its own argu- A function cannot be its own arguArgument sein, wohl aber kann das Re- ment, but the result of an operation can ment, whereas an operation can take one sultat einer Operation ihre eigene Basis be its own basis. of its own results as its base. werden. 5.252 Nur so ist das Fortschreiten von Glied Only in this way is the progress from It is only in this way that the step zu Glied in einer Formenreihe (von Ty- term to term in a formal series possible from one term of a series of forms to anpe zu Type in den Hierarchien Russells (from type to type in the hierarchy of Rus- other is possible (from one type to another und Whiteheads) möglich. (Russell und sell and Whitehead). (Russell and White- in the hierarchies of Russell and WhiteWhitehead haben die Möglichkeit dieses head have not admitted the possibility of head). (Russell and Whitehead did not Fortschreitens nicht zugegeben, aber im- this progress but have made use of it all admit the possibility of such steps, but mer wieder von ihr Gebrauch gemacht.) the same.) repeatedly availed themselves of it.) 5.2521 Die fortgesetzte Anwendung einer The repeated application of an opera- If an operation is applied repeatedly Operation auf ihr eigenes Resultat tion to its own result I call its successive to its own results, I speak of successive 66 nenne ich ihre successive Anwendung application (“O’O’O’a” is the result of the applications of it. (‘O’O’O’a’ is the result („O’O’O’a“ ist das Resultat der dreima- threefold successive application of “O’ξ” of three successive applications of the opligen successiven Anwendung von „O’ξ“ to “a”). eration ‘O’ξ’ to ‘a’.) auf „a“). In einem ähnlichen Sinne rede ich von In a similar sense I speak of the suc- In a similar sense I speak of succesder successiven Anwendung m e h r e - cessive application of several operations sive applications of more than one operar e r Operationen auf eine Anzahl von to a number of propositions. tion to a number of propositions. Sätzen. 5.2522 Das allgemeine Glied einer Formen- The general term of the formal se- Accordingly I use the sign ‘[a, x, O’x]’ reihe a, O’a, O’O’a, ... schreibe ich da- ries a, O’a, O’O’a, .... I write thus: for the general term of the series of forms her so: „[a, x, O’x]“. Dieser Klammeraus- “[a, x, O’x]”. This expression in brackets a, O’a, O’O’a, .... This bracketed expresdruck ist eine Variable. Das erste Glied is a variable. The first term of the expres- sion is a variable: the first term of the des Klammerausdruckes ist der Anfang sion is the beginning of the formal series, bracketed expression is the beginning of der Formenreihe, das zweite die Form ei- the second the form of an arbitrary term the series of forms, the second is the form nes beliebigen Gliedes x der Reihe und x of the series, and the third the form of of a term x arbitrarily selected from the das dritte die Form desjenigen Gliedes that term of the series which immediately series, and the third is the form of the der Reihe, welches auf x unmittelbar follows x. term that immediately follows x in the folgt. series. 5.2523 Der Begriff der successiven Anwen- The concept of the successive applica- The concept of successive applications dung der Operation ist äquivalent mit tion of an operation is equivalent to the of an operation is equivalent to the condem Begriff „und so weiter“. concept “and so on”. cept ‘and so on’. 5.253 Eine Operation kann die Wirkung ei- One operation can reverse the effect One operation can counteract the efner anderen rückgängig machen. Opera- of another. Operations can cancel one fect of another. Operations can cancel one tionen können einander aufheben. another. another. 5.254 Die Operation kann verschwinden (z. Operations can vanish (e.g. denial in An operation can vanish (e.g. negation B. die Verneinung in „∼∼p“: ∼∼p = p). “∼∼p”. ∼∼p = p). in ‘∼∼p’: ∼∼p = p). 5.3 Alle Sätze sind Resultate von Wahr- All propositions are results of truth- All propositions are results of truthheitsoperationen mit den Elementarsät- operations on the elementary proposi- operations on elementary propositions. zen. tions. Die Wahrheitsoperation ist die Art The truth-operation is the way in A truth-operation is the way in which und Weise, wie aus den Elementarsätzen which a truth-function arises from ele- a truth-function is produced out of eledie Wahrheitsfunktion entsteht. mentary propositions. mentary propositions. Nach dem Wesen der Wahrheitsope- According to the nature of truth- It is of the essence of truth-operations ration wird auf die gleiche Weise, wie operations, in the same way as out of el- that, just as elementary propositions aus den Elementarsätzen ihre Wahrheits- ementary propositions arise their truth- yield a truth-function of themselves, so funktion, aus Wahrheitsfunktionen eine functions, from truth-functions arises a too in the same way truth-functions yield neue. Jede Wahrheitsoperation erzeugt new one. Every truth-operation creates a further truth-function. When a truth- 67 aus Wahrheitsfunktionen von Elemen- from truth-functions of elementary propo- operation is applied to truth-functions of tarsätzen wieder eine Wahrheitsfunkti- sitions, another truth-function of elemen- elementary propositions, it always generon von Elementarsätzen, einen Satz. Das tary propositions i.e. a proposition. The ates another truth-function of elementary Resultat jeder Wahrheitsoperation mit result of every truth-operation on the re- propositions, another proposition. When den Resultaten von Wahrheitsoperatio- sults of truth-operations on elementary a truth-operation is applied to the results nen mit Elementarsätzen ist wieder das propositions is also the result of one truth- of truth-operations on elementary propoResultat E i n e r Wahrheitsoperation operation on elementary propositions. sitions, there is always a single operation mit Elementarsätzen. on elementary propositions that has the same result. Jeder Satz ist das Resultat von Wahr- Every proposition is the result of Every proposition is the result of heitsoperationen mit Elementarsätzen. truth-operations on elementary proposi- truth-operations on elementary propositions. tions. 5.31 Die Schemata No. 4.31 haben auch The Schemata No. 4.31 are also signif- The schemata in 4.31 have a meaning dann eine Bedeutung, wenn „p“, „q“, „r“, icant, if “p”, “q”, “r”, etc. are not elemen- even when ‘p’, ‘q’, ‘r’, etc. are not elemenetc. nicht Elementarsätze sind. tary propositions. tary propositions. Und es ist leicht zu sehen, dass das And it is easy to see that the propo- And it is easy to see that the propoSatzzeichen in No. 4.442, auch wenn „p“ sitional sign in No. 4.442 expresses one sitional sign in 4.442 expresses a single und „q“ Wahrheitsfunktionen von Ele- truth-function of elementary propositions truth-function of elementary propositions mentarsätzen sind, Eine Wahrheitsfunk- even when “p” and “q” are truth-functions even when ‘p’ and ‘q’ are truth-functions tion von Elementarsätzen ausdrückt. of elementary propositions. of elementary propositions. 5.32 Alle Wahrheitsfunktionen sind Resul- All truth-functions are results of the All truth-functions are results of suctate der successiven Anwendung einer successive application of a finite number cessive applications to elementary propoendlichen Anzahl von Wahrheitsoperatio- of truth-operations to elementary propo- sitions of a finite number of truthnen auf die Elementarsätze. sitions. operations. 5.4 Hier zeigt es sich, dass es „logische Here it becomes clear that there are At this point it becomes manifest that Gegenstände“, „logische Konstante“ (im no such things as “logical objects” or “logi- there are no ‘logical objects’ or ‘logical conSinne Freges und Russells) nicht gibt. cal constants” (in the sense of Frege and stants’ (in Frege’s and Russell’s sense). Russell). 5.41 Denn: Alle Resultate von Wahrheits- For all those results of truth-oper- The reason is that the results of truthoperationen mit Wahrheitsfunktionen ations on truth-functions are identical, operations on truth-functions are always sind identisch, welche eine und dieselbe which are one and the same truth-func- identical whenever they are one and the Wahrheitsfunktion von Elementarsätzen tion of elementary propositions. same truth-function of elementary proposind. sitions. 5.42 Dass ∨, ⊃, etc. nicht Beziehungen That ∨, ⊃, etc., are not relations in the It is self-evident that ∨, ⊃, etc. are not im Sinne von rechts und links etc. sind, sense of right and left, etc., is obvious. relations in the sense in which right and leuchtet ein. left etc. are relations. Die Möglichkeit des kreuzweisen Defi- The possibility of crosswise definition The interdefinability of Frege’s and 68 nierens der logischen „Urzeichen“ Freges of the logical “primitive signs” of Frege Russell’s ‘primitive signs’ of logic is und Russells zeigt schon, dass diese kei- and Russell shows by itself that these are enough to show that they are not primine Urzeichen sind, und schon erst recht, not primitive signs and that they signify tive signs, still less signs for relations. dass sie keine Relationen bezeichnen. no relations. Und es ist offenbar, dass das „⊃“, wel- And it is obvious that the “⊃” which And it is obvious that the ‘⊃’ defined ches wir durch „∼“ und „∨“ definieren, we define by means of “∼” and “∨” is iden- by means of ‘∼’ and ‘∨’ is identical with identisch ist mit dem, durch welches wir tical with that by which we define “∨” the one that figures with ‘∼’ in the def„∨“ mit „∼“ definieren, und dass dieses „∨“ with the help of “∼”, and that this “∨” is inition of ‘∨’; and that the second ‘∨’ is mit dem ersten identisch ist. U. s. w. the same as the first, and so on. identical with the first one; and so on. 5.43 Dass aus einer Tatsache p unendlich That from a fact p an infinite num- Even at first sight it seems scarcely viele a n d e r e folgen sollten, nämlich ber of others should follow, namely, ∼∼p, credible that there should follow from ∼∼p, ∼∼∼∼p, etc., ist doch von vornher- ∼∼∼∼p, etc., is indeed hardly to be be- one fact p infinitely many others, namely ein kaum zu glauben. Und nicht weniger lieved, and it is no less wonderful that the ∼∼p, ∼∼∼∼p, etc. And it is no less merkwürdig ist, dass die unendliche An- infinite number of propositions of logic (of remarkable that the infinite number of zahl der Sätze der Logik (der Mathema- mathematics) should follow from half a propositions of logic (mathematics) follow tik) aus einem halben Dutzend „Grundge- dozen “primitive propositions”. from half a dozen ‘primitive propositions’. setzen“ folgen. Alle Sätze der Logik sagen aber das- But the propositions of logic say the But in fact all the propositions of logic selbe. Nämlich nichts. same thing. That is, nothing. say the same thing, to wit nothing. 5.44 Die Wahrheitsfunktionen sind keine Truth-functions are not material func- Truth-functions are not material funcmateriellen Funktionen. tions. tions. Wenn man z. B. eine Bejahung durch If e.g. an affirmation can be produced For example, an affirmation can be doppelte Verneinung erzeugen kann, ist by repeated denial, is the denial—in produced by double negation: in such a dann die Verneinung—in irgend einem any sense—contained in the affirmation? case does it follow that in some sense Sinn—in der Bejahung enthalten? Ver- Does “∼∼p” deny ∼p, or does it affirm p; negation is contained in affirmation? neint „∼∼p“ ∼p, oder bejaht es p; oder or both? Does ‘∼∼p’ negate ∼p, or does it affirm beides? p—or both? Der Satz „∼∼p“ handelt nicht von der The proposition “∼∼p” does not treat The proposition ‘∼∼p’ is not about Verneinung wie von einem Gegenstand; of denial as an object, but the possibility negation, as if negation were an object: wohl aber ist die Möglichkeit der Ver- of denial is already prejudged in affirma- on the other hand, the possibility of neganeinung in der Bejahung bereits präju- tion. tion is already written into affirmation. diziert. Und gäbe es einen Gegenstand, der And if there was an object called “∼”, And if there were an object called ‘∼’, „∼“ hieße, so müsste „∼∼p“ etwas anderes then “∼∼p” would have to say something it would follow that ‘∼∼p’ said something sagen als „p“. Denn der eine Satz wür- other than “p”. For the one proposition different from what ‘p’ said, just because de dann eben von ∼ handeln, der andere would then treat of ∼, the other would the one proposition would then be about nicht. not. ∼ and the other would not. 69 5.441 Dieses Verschwinden der scheinbaren This disappearance of the appar- This vanishing of the apparent loglogischen Konstanten tritt auch ein, wenn ent logical constants also occurs if ical constants also occurs in the case „∼(∃x).∼fx“ dasselbe sagt wie „(x). fx“, “∼(∃x).∼fx” says the same as “(x). fx”, or of ‘∼(∃x).∼fx’, which says the same as oder „(∃x). fx . x = a“ dasselbe wie „fa“. “(∃x). fx . x = a” the same as “fa”. ‘(x). fx’, and in the case of ‘(∃x). fx . x = a’, which says the same as ‘fa’. 5.442 Wenn uns ein Satz gegeben ist, so sind If a proposition is given to us then the If we are given a proposition, then m i t i h m auch schon die Resultate aller results of all truth-operations which have with it we are also given the results of Wahrheitsoperationen, die ihn zur Basis it as their basis are given with it. all truth-operations that have it as their haben, gegeben. base. 5.45 Gibt es logische Urzeichen, so muss If there are logical primitive signs a If there are primitive logical signs, eine richtige Logik ihre Stellung zuein- correct logic must make clear their posi- then any logic that fails to show clearly ander klar machen und ihr Dasein recht- tion relative to one another and justify how they are placed relatively to one anfertigen. Der Bau der Logik a u s ihren their existence. The construction of logic other and to justify their existence will be Urzeichen muss klar werden. out of its primitive signs must become incorrect. The construction of logic out of clear. its primitive signs must be made clear. 5.451 Hat die Logik Grundbegriffe, so müs- If logic has primitive ideas these must If logic has primitive ideas, they must sen sie von einander unabhängig sein. Ist be independent of one another. If a prim- be independent of one another. If a primein Grundbegriff eingeführt, so muss er itive idea is introduced it must be intro- itive idea has been introduced, it must in allen Verbindungen eingeführt sein, duced in all contexts in which it occurs have been introduced in all the combinaworin er überhaupt vorkommt. Man kann at all. One cannot therefore introduce tions in which it ever occurs. It cannot, ihn also nicht zuerst für e i n e Verbin- it for one context and then again for an- therefore, be introduced first for one comdung, dann noch einmal für eine andere other. For example, if denial is introduced, bination and later reintroduced for aneinführen. Z. B.: Ist die Verneinung ein- we must understand it in propositions of other. For example, once negation has geführt, so müssen wir sie jetzt in Sätzen the form “∼p”, just as in propositions like been introduced, we must understand it von der Form „∼p“ ebenso verstehen, wie “∼(p∨ q)”, “(∃x).∼fx” and others. We may both in propositions of the form ‘∼p’ and in Sätzen wie „∼(p ∨ q)“, „(∃x).∼fx“ u. a. not first introduce it for one class of cases in propositions like ‘∼(p ∨ q)’, ‘(∃x).∼fx’, Wir dürfen sie nicht erst für die eine Klas- and then for another, for it would then etc. We must not introduce it first for se von Fällen, dann für die andere ein- remain doubtful whether its meaning in the one class of cases and then for the führen, denn es bliebe dann zweifelhaft, the two cases was the same, and there other, since it would then be left in doubt ob ihre Bedeutung in beiden Fällen die would be no reason to use the same way whether its meaning were the same in gleiche wäre und es wäre kein Grund vor- of symbolizing in the two cases. both cases, and no reason would have handen, in beiden Fällen dieselbe Art der been given for combining the signs in the Zeichenverbindung zu benützen. same way in both cases. (Kurz, für die Einführung der Ur- (In short, what Frege (“Grundgesetze (In short, Frege’s remarks about inzeichen gilt, mutatis mutandis, dassel- der Arithmetik”) has said about the in- troducing signs by means of definitions be, was Frege („Grundgesetze der Arith- troduction of signs by definitions holds, (in The Fundamental Laws of Arithmetic) metik“) für die Einführung von Zeichen mutatis mutandis, for the introduction of also apply, mutatis mutandis, to the intro- 70 durch Definitionen gesagt hat.) primitive signs also.) duction of primitive signs.) 5.452 Die Einführung eines neuen Be- The introduction of a new expedient in The introduction of any new device helfes in den Symbolismus der Logik the symbolism of logic must always be an into the symbolism of logic is necessarily muss immer ein folgenschweres Ereig- event full of consequences. No new sym- a momentous event. In logic a new device nis sein. Kein neuer Behelf darf in die bol may be introduced in logic in brackets should not be introduced in brackets or Logik—sozusagen, mit ganz unschuldi- or in the margin—with, so to speak, an in a footnote with what one might call a ger Miene—in Klammern oder unter dem entirely innocent face. completely innocent air. Striche eingeführt werden. (So kommen in den „Principia Mathe- (Thus in the “Principia Mathematica” (Thus in Russell and Whitehead’s matica“ von Russell und Whitehead De- of Russell and Whitehead there occur Principia Mathematica there occur deffinitionen und Grundgesetze in Worten definitions and primitive propositions in initions and primitive propositions exvor. Warum hier plötzlich Worte? Dies be- words. Why suddenly words here? This pressed in words. Why this sudden apdürfte einer Rechtfertigung. Sie fehlt und would need a justification. There was pearance of words? It would require a muss fehlen, da das Vorgehen tatsächlich none, and can be none for the process is justification, but none is given, or could unerlaubt ist.) actually not allowed.) be given, since the procedure is in fact illicit.) Hat sich aber die Einführung eines But if the introduction of a new expe- But if the introduction of a new device neuen Behelfes an einer Stelle als nötig dient has proved necessary in one place, has proved necessary at a certain point, erwiesen, so muss man sich nun sofort we must immediately ask: Where is this we must immediately ask ourselves, ‘At fragen: Wo muss dieser Behelf nun i m - expedient always to be used? Its position what points is the employment of this dem e r angewandt werden? Seine Stellung in logic must be made clear. vice now unavoidable?’ and its place in in der Logik muss nun erklärt werden. logic must be made clear. 5.453 Alle Zahlen der Logik müssen sich All numbers in logic must be capable All numbers in logic stand in need of rechtfertigen lassen. of justification. justification. Oder vielmehr: Es muss sich heraus- Or rather it must become plain that Or rather, it must become evident that stellen, dass es in der Logik keine Zahlen there are no numbers in logic. there are no numbers in logic. gibt. Es gibt keine ausgezeichneten Zahlen. There are no pre-eminent numbers. There are no privileged numbers. 5.454 In der Logik gibt es kein Nebeneinan- In logic there is no side by side, there In logic there is no co-ordinate status, der, kann es keine Klassifikation geben. can be no classification. and there can be no classification. In der Logik kann es nicht Allgemei- In logic there cannot be a more gen- In logic there can be no distinction neres und Spezielleres geben. eral and a more special. between the general and the specific. 5.4541 Die Lösungen der logischen Probleme The solution of logical problems must The solutions of the problems of logic müssen einfach sein, denn sie setzen den be neat for they set the standard of neat- must be simple, since they set the stanStandard der Einfachheit. ness. dard of simplicity. Die Menschen haben immer geahnt, Men have always thought that there Men have always had a presentiment dass es ein Gebiet von Fragen ge- must be a sphere of questions whose that there must be a realm in which 71 ben müsse, deren Antworten—a priori— answers—a priori—are symmetrical and the answers to questions are symmetrisymmetrisch, und zu einem abgeschlosse- united into a closed regular structure. cally combined—a priori—to form a selfnen, regelmäßigen Gebilde vereint liegen. contained system. Ein Gebiet, in dem der Satz gilt: sim- A sphere in which the proposition, A realm subject to the law: Simplex plex sigillum veri. simplex sigillum veri, is valid. sigillum veri. 5.46 Wenn man die logischen Zeichen rich- When we have rightly introduced the If we introduced logical signs properly, tig einführte, so hätte man damit auch logical signs, the sense of all their combi- then we should also have introduced at schon den Sinn aller ihrer Kombinatio- nations has been already introduced with the same time the sense of all combinanen eingeführt; also nicht nur „p∨ q“ son- them: therefore not only “p ∨ q” but also tions of them; i.e. not only ‘p ∨ q’ but dern auch schon „∼(p∨∼q)“ etc. etc. Man “∼(p ∨ ∼q)”, etc. etc. We should then al- ‘∼(p ∨ ∼q)’ as well, etc. etc. We should hätte damit auch schon die Wirkung aller ready have introduced the effect of all also have introduced at the same time nur möglichen Kombinationen von Klam- possible combinations of brackets; and it the effect of all possible combinations of mern eingeführt. Und damit wäre es klar would then have become clear that the brackets. And thus it would have been geworden, dass die eigentlichen allgemei- proper general primitive signs are not made clear that the real general priminen Urzeichen nicht die „p∨ q“, „(∃x). fx“, “p ∨ q”, “(∃x). fx”, etc., but the most gen- tive signs are not ‘p∨ q’, ‘(∃x). fx’, etc. but etc. sind, sondern die allgemeinste Form eral form of their combinations. the most general form of their combinaihrer Kombinationen. tions. 5.461 Bedeutungsvoll ist die scheinbar un- The apparently unimportant fact that Though it seems unimportant, it is in wichtige Tatsache, dass die logischen the apparent relations like ∨ and ⊃ fact significant that the pseudo-relations Scheinbeziehungen, wie ∨ und ⊃, der need brackets—unlike real relations—is of logic, such as ∨ and ⊃, need brackets— Klammern bedürfen—im Gegensatz zu of great importance. unlike real relations. den wirklichen Beziehungen. Die Benützung der Klammern mit The use of brackets with these appar- Indeed, the use of brackets with these jenen scheinbaren Urzeichen deutet ja ent primitive signs shows that these are apparently primitive signs is itself an inschon darauf hin, dass diese nicht die not the real primitive signs; and nobody dication that they are not primitive signs. wirklichen Urzeichen sind. Und es wird of course would believe that the brackets And surely no one is going to believe doch wohl niemand glauben, dass die have meaning by themselves. brackets have an independent meaning. Klammern eine selbständige Bedeutung haben. 5.4611 Die logischen Operationszeichen sind Logical operation signs are punctua- Signs for logical operations are Interpunktionen. tions. punctuation-marks. 5.47 Es ist klar, dass alles, was sich über- It is clear that everything which can It is clear that whatever we can say in haupt v o n v o r n h e r e i n über die be said beforehand about the form of all advance about the form of all propositions, Form aller Sätze sagen lässt, sich a u f propositions at all can be said on one oc- we must be able to say all at once. e i n m a l sagen lassen muss. casion. Sind ja schon im Elementarsatze alle For all logical operations are already An elementary proposition really conlogischen Operationen enthalten. Denn contained in the elementary proposition. tains all logical operations in itself. For 72 „fa“ sagt dasselbe wie For “fa” says the same as ‘fa’ says the same thing as „(∃x). fx . x = a“. “(∃x). fx . x = a”. ‘(∃x). fx . x = a’. Wo Zusammengesetztheit ist, da ist Where there is composition, there is Wherever there is compositeness, arArgument und Funktion, und wo diese argument and function, and where these gument and function are present, and sind, sind bereits alle logischen Konstan- are, all logical constants already are. where these are present, we already have ten. all the logical constants. Man könnte sagen: Die Eine logische One could say: the one logical con- One could say that the sole logical conKonstante ist das, was a l l e Sätze, ihrer stant is that which all propositions, ac- stant was what all propositions, by their Natur nach, mit einander gemein haben. cording to their nature, have in common very nature, had in common with one anwith one another. other. Das aber ist die allgemeine Satzform. That however is the general form of But that is the general propositional proposition. form. 5.471 Die allgemeine Satzform ist das We- The general form of proposition is the The general propositional form is the sen des Satzes. essence of proposition. essence of a proposition. 5.4711 Das Wesen des Satzes angeben, heißt, To give the essence of proposition To give the essence of a proposition das Wesen aller Beschreibung angeben, means to give the essence of all descrip- means to give the essence of all descripalso das Wesen der Welt. tion, therefore the essence of the world. tion, and thus the essence of the world. 5.472 Die Beschreibung der allgemeinsten The description of the most general The description of the most general Satzform ist die Beschreibung des einen propositional form is the description of propositional form is the description of und einzigen allgemeinen Urzeichens der the one and only general primitive sign the one and only general primitive sign Logik. in logic. in logic. 5.473 Die Logik muss für sich selber sorgen. Logic must take care of itself. Logic must look after itself. Ein m ö g l i c h e s Zeichen muss A possible sign must also be able to If a sign is possible, then it is also caauch bezeichnen können. Alles was in der signify. Everything which is possible in pable of signifying. Whatever is possible Logik möglich ist, ist auch erlaubt. („So- logic is also permitted. (“Socrates is iden- in logic is also permitted. (The reason krates ist identisch“ heißt darum nichts, tical” means nothing because there is no why ‘Socrates is identical’ means nothing weil es keine Eigenschaft gibt, die „iden- property which is called “identical”. The is that there is no property called ‘identisch“ heißt. Der Satz ist unsinnig, weil proposition is senseless because we have tical’. The proposition is nonsensical bewir eine willkürliche Bestimmung nicht not made some arbitrary determination, cause we have failed to make an arbitrary getroffen haben, aber nicht darum, weil not because the symbol is in itself unper- determination, and not because the symdas Symbol an und für sich unerlaubt wä- missible.) bol, in itself, would be illegitimate.) re.) Wir können uns, in gewissem Sinne, In a certain sense we cannot make In a certain sense, we cannot make nicht in der Logik irren. mistakes in logic. mistakes in logic. 5.4731 Das Einleuchten, von dem Russell Self-evidence, of which Russell has Self-evidence, which Russell talked so viel sprach, kann nur dadurch in said so much, can only be discard in logic about so much, can become dispensable der Logik entbehrlich werden, dass die by language itself preventing every logi- in logic, only because language itself 73 Sprache selbst jeden logischen Fehler cal mistake. That logic is a priori consists prevents every logical mistake.—What verhindert.—Dass die Logik a priori ist, in the fact that we cannot think illogically. makes logic a priori is the impossibility besteht darin, dass nicht unlogisch ge- of illogical thought. dacht werden k a n n. 5.4732 Wir können einem Zeichen nicht den We cannot give a sign the wrong We cannot give a sign the wrong unrechten Sinn geben. sense. sense. 5.47321 Occams Devise ist natürlich keine Occam’s razor is, of course, not an arbi- Occam’s maxim is, of course, not an willkürliche, oder durch ihren prakti- trary rule nor one justified by its practical arbitrary rule, nor one that is justified by schen Erfolg gerechtfertigte Regel: Sie be- success. It simply says that unnecessary its success in practice: its point is that unsagt, dass u n n ö t i g e Zeicheneinheiten elements in a symbolism mean nothing. necessary units in a sign-language mean nichts bedeuten. nothing. Zeichen, die E i n e n Zweck erfül- Signs which serve one purpose are log- Signs that serve one purpose are loglen, sind logisch äquivalent, Zeichen, die ically equivalent, signs which serve no ically equivalent, and signs that serve k e i n e n Zweck erfüllen, logisch bedeu- purpose are logically meaningless. none are logically meaningless. tungslos. 5.4733 Frege sagt: Jeder rechtmäßig gebilde- Frege says: Every legitimately con- Frege says that any legitimately conte Satz muss einen Sinn haben; und ich structed proposition must have a sense; structed proposition must have a sense. sage: Jeder mögliche Satz ist rechtmäßig and I say: Every possible proposition is And I say that any possible proposition is gebildet, und wenn er keinen Sinn hat, legitimately constructed, and if it has legitimately constructed, and, if it has no so kann das nur daran liegen, dass wir no sense this can only be because we sense, that can only be because we have einigen seiner Bestandteile keine B e - have given no meaning to some of its con- failed to give a meaning to some of its d e u t u n g gegeben haben. stituent parts. constituents. (Wenn wir auch glauben, es getan zu (Even if we believe that we have done (Even if we think that we have done haben.) so.) so.) So sagt „Sokrates ist identisch“ darum Thus “Socrates is identical” says noth- Thus the reason why ‘Socrates is idennichts, weil wir dem Wort „identisch“ als ing, because we have given no mean- tical’ says nothing is that we have not E i g e n s c h a f t s w o r t k e i n e Be- ing to the word “identical” as adjec- given any adjectival meaning to the word deutung gegeben haben. Denn, wenn es tive. For when it occurs as the sign of ‘identical’. For when it appears as a sign als Gleichheitszeichen auftritt, so sym- equality it symbolizes in an entirely dif- for identity, it symbolizes in an entirely bolisiert es auf ganz andere Art und ferent way—the symbolizing relation is different way—the signifying relation is a Weise—die bezeichnende Beziehung ist another—therefore the symbol is in the different one—therefore the symbols also eine andere,—also ist auch das Symbol two cases entirely different; the two sym- are entirely different in the two cases: the in beiden Fällen ganz verschieden; die bols have the sign in common with one two symbols have only the sign in combeiden Symbole haben nur das Zeichen another only by accident. mon, and that is an accident. zufällig miteinander gemein. 5.474 Die Anzahl der nötigen Grundopera- The number of necessary fundamental The number of fundamental operationen hängt n u r von unserer Notation operations depends only on our notation. tions that are necessary depends solely 74 ab. on our notation. 5.475 Es kommt nur darauf an, ein Zeichen- It is only a question of constructing All that is required is that we should system von einer bestimmten Anzahl von a system of signs of a definite number of construct a system of signs with a particDimensionen—von einer bestimmten ma- dimensions—of a definite mathematical ular number of dimensions—with a parthematischen Mannigfaltigkeit—zu bil- multiplicity. ticular mathematical multiplicity. den. 5.476 Es ist klar, dass es sich hier nicht um It is clear that we are not concerned It is clear that this is not a question of eine A n z a h l v o n G r u n d b e g r i f - here with a number of primitive ideas a number of primitive ideas that have to f e n handelt, die bezeichnet werden müs- which must be signified but with the ex- be signified, but rather of the expression sen, sondern um den Ausdruck einer Re- pression of a rule. of a rule. gel. 5.5 Jede Wahrheitsfunktion ist ein Resul- Every truth-function is a result of the Every truth-function is a result of tat der successiven Anwendung der Ope- successive application of the operation successive applications to elementary ration (−−−−−W)(ξ, . . . . .) auf Elemen- (−−−−−T)(ξ, . . . . .) to elementary propo- propositions of the operation ‘(−−−−−T) tarsätze. sitions. (ξ, . . . . .)’. Diese Operation verneint sämtliche This operation denies all the proposi- This operation negates all the propoSätze in der rechten Klammer, und ich tions in the right-hand bracket and I call sitions in the right-hand pair of brackets, nenne sie die Negation dieser Sätze. it the negation of these propositions. and I call it the negation of those proposi- tions. 5.501 Einen Klammerausdruck, dessen Glie- An expression in brackets whose When a bracketed expression has der Sätze sind, deute ich—wenn die Rei- terms are propositions I indicate—if the propositions as its terms—and the orhenfolge der Glieder in der Klammer order of the terms in the bracket is der of the terms inside the brackets is gleichgültig ist—durch ein Zeichen von indifferent—by a sign of the form “(ξ)”. “ξ” indifferent—then I indicate it by a sign of der Form „(ξ)“ an. „ξ“ ist eine Variable, is a variable whose values are the terms the form ‘(ξ)’. ‘ξ’ is a variable whose valderen Werte die Glieder des Klammer- of the expression in brackets, and the line ues are terms of the bracketed expression ausdruckes sind; und der Strich über der over the variable indicates that it stands and the bar over the variable indicates Variablen deutet an, dass sie ihre sämtli- for all its values in the bracket. that it is the representative of all its valchen Werte in der Klammer vertritt. ues in the brackets. (Hat also ξ etwa die 3 Werte P, Q, R, (Thus if ξ has the 3 values P, Q, R, (E.g. if ξ has the three values P, Q, R, so ist (ξ) = (P, Q, R).) then (ξ) = (P, Q, R).) then (ξ) = (P, Q, R). ) Die Werte der Variablen werden fest- The values of the variables must be What the values of the variable are is gesetzt. determined. something that is stipulated. Die Festsetzung ist die Beschreibung The determination is the description The stipulation is a description of the der Sätze, welche die Variable vertritt. of the propositions which the variable propositions that have the variable as stands for. their representative. Wie die Beschreibung der Glieder des How the description of the terms of How the description of the terms of Klammerausdruckes geschieht, ist unwe- the expression in brackets takes place is the bracketed expression is produced is 75 sentlich. unessential. not essential. Wir k ö n n e n drei Arten der Be- We may distinguish 3 kinds of descrip- We can distinguish three kinds of deschreibung unterscheiden: 1. Die direk- tion: 1. Direct enumeration. In this case scription: 1. direct enumeration, in which te Aufzählung. In diesem Fall können we can place simply its constant values in- case we can simply substitute for the variwir statt der Variablen einfach ihre kon- stead of the variable. 2. Giving a function able the constants that are its values; 2. stanten Werte setzen. 2. Die Angabe ei- fx, whose values for all values of x are giving a function fx whose values for all ner Funktion fx, deren Werte für alle the propositions to be described. 3. Giv- values of x are the propositions to be deWerte von x die zu beschreibenden Sätze ing a formal law, according to which those scribed; 3. giving a formal law that govsind. 3. Die Angabe eines formalen Ge- propositions are constructed. In this case erns the construction of the propositions, setzes, nach welchem jene Sätze gebildet the terms of the expression in brackets in which case the bracketed expression sind. In diesem Falle sind die Glieder des are all the terms of a formal series. has as its members all the terms of a seKlammerausdrucks sämtliche Glieder ei- ries of forms. ner Formenreihe. 5.502 Ich schreibe also statt „(−−−−−W) Therefore I write instead of So instead of ‘(−−−−−T) (ξ, . . . . .)’, (ξ, . . . . .)“ „N(ξ)“. “(−−−−−T) (ξ, . . . . .)”, “N(ξ)”. I write ‘N(ξ)’. N(ξ) ist die Negation sämtlicher Werte N(ξ) is the negation of all the values N(ξ) is the negation of all the values der Satzvariablen ξ. of the propositional variable ξ. of the propositional variable ξ. 5.503 Da sich offenbar leicht ausdrücken As it is obviously easy to express how It is obvious that we can easily läßt, wie mit dieser Operation Sätze gebil- propositions can be constructed by means express how propositions may be condet werden können und wie Sätze mit ihr of this operation and how propositions are structed with this operation, and how nicht zu bilden sind, so muss dies auch not to be constructed by means of it, this they may not be constructed with it; so it einen exakten Ausdruck finden können. must be capable of exact expression. must be possible to find an exact expression for this. 5.51 Hat ξ nur einen Wert, so ist N(ξ) = ∼p If ξ has only one value, then N(ξ) = ∼p If ξ has only one value, then N(ξ) = ∼p (nicht p), hat es zwei Werte, so ist N(ξ) = (not p), if it has two values then N(ξ) = (not p); if it has two values, then N(ξ) = ∼p . ∼q (weder p noch q). ∼p . ∼q (neither p nor q). ∼p . ∼q (neither p nor q). 5.511 Wie kann die allumfassende, welt- How can the all-embracing logic which How can logic—all-embracing logic, spiegelnde Logik so spezielle Haken und mirrors the world use such special which mirrors the world—use such peManipulationen gebrauchen? Nur, indem catches and manipulations? Only because culiar crotchets and contrivances? Only sich alle diese zu einem unendlich feinen all these are connected into an infinitely because they are all connected with one Netzwerk, zu dem großen Spiegel, ver- fine network, to the great mirror. another in an infinitely fine network, the knüpfen. great mirror. 5.512 „∼p“ ist wahr, wenn „p“ falsch ist. “∼p” is true if “p” is false. Therefore ‘∼p’ is true if ‘p’ is false. Therefore, in Also in dem wahren Satz „∼p“ ist „p“ in the true proposition “∼p” “p” is a false the proposition ‘∼p’, when it is true, ‘p’ ein falscher Satz. Wie kann ihn nun der proposition. How then can the stroke “∼” is a false proposition. How then can the Strich „∼“ mit der Wirklichkeit zum Stim- bring it into agreement with reality? stroke ‘∼’ make it agree with reality? 76 men bringen? Das, was in „∼p“ verneint, ist aber That which denies in “∼p” is however But in ‘∼p’ it is not ‘∼’ that negates, it nicht das „∼“, sondern dasjenige, was al- not “∼”, but that which all signs of this is rather what is common to all the signs len Zeichen dieser Notation, welche p ver- notation, which deny p, have in common. of this notation that negate p. neinen, gemeinsam ist. Also die gemeinsame Regel, nach wel- Hence the common rule according to That is to say the common rule that cher „∼p“, „∼∼∼p“, „∼p ∨∼p“, „∼p . ∼p“, which “∼p”, “∼∼∼p”, “∼p∨∼p”, “∼p . ∼p”, governs the construction of ‘∼p’, ‘∼∼∼p’, etc. etc. (ad inf.) gebildet werden. Und etc. etc. (to infinity) are constructed. And ‘∼p ∨∼p’, ‘∼p . ∼p’, etc. etc. (ad inf.). And dies Gemeinsame spiegelt die Verneinung this which is common to them all mirrors this common factor mirrors negation. wieder. denial. 5.513 Man könnte sagen: Das Gemeinsame We could say: What is common to all We might say that what is common to aller Symbole, die sowohl p als q bejahen, symbols, which assert both p and q, is all symbols that affirm both p and q is ist der Satz „p . q“. Das Gemeinsame aller the proposition “p . q”. What is common the proposition ‘p . q’; and that what is Symbole, die entweder p oder q bejahen, to all symbols, which asserts either p or common to all symbols that affirm either ist der Satz „p ∨ q“. q, is the proposition “p ∨ q”. p or q is the proposition ‘p ∨ q’. Und so kann man sagen: Zwei Sätze And similarly we can say: Two propo- And similarly we can say that two sind einander entgegengesetzt, wenn sie sitions are opposed to one another when propositions are opposed to one another nichts miteinander gemein haben, und: they have nothing in common with one if they have nothing in common with one Jeder Satz hat nur ein Negativ, weil es another; and every proposition has only another, and that every proposition has nur einen Satz gibt, der ganz außerhalb one negative, because there is only one only one negative, since there is only one seiner liegt. proposition which lies altogether outside proposition that lies completely outside it. it. Es zeigt sich so auch in Russells No- Thus in Russell’s notation also it ap- Thus in Russell’s notation too it is tation, dass „q : p ∨∼p“ dasselbe sagt wie pears evident that “q : p ∨ ∼p” says the manifest that ‘q : p ∨ ∼p’ says the same „q“; dass „p ∨∼p“ nichts sagt. same thing as “q”; that “p∨∼p” says noth- thing as ‘q’, that ‘p ∨∼p’ says nothing. ing. 5.514 Ist eine Notation festgelegt, so gibt es If a notation is fixed, there is in it a Once a notation has been established, in ihr eine Regel, nach der alle p vernei- rule according to which all the proposi- there will be in it a rule governing the connenden Sätze gebildet werden, eine Regel, tions denying p are constructed, a rule struction of all propositions that negate nach der alle p bejahenden Sätze gebil- according to which all the propositions as- p, a rule governing the construction of det werden, eine Regel, nach der alle p serting p are constructed, a rule accord- all propositions that affirm p, and a rule oder q bejahenden Sätze gebildet werden, ing to which all the propositions asserting governing the construction of all proposiu. s. f. Diese Regeln sind den Symbolen p or q are constructed, and so on. These tions that affirm p or q; and so on. These äquivalent und in ihnen spiegelt sich ihr rules are equivalent to the symbols and rules are equivalent to the symbols; and Sinn wieder. in them their sense is mirrored. in them their sense is mirrored. 5.515 Es muss sich an unseren Symbolen It must be recognized in our symbols It must be manifest in our symbols zeigen, dass das, was durch „∨“, „.“, etc. that what is connected by “∨”, “.”, etc., that it can only be propositions that are 77 miteinander verbunden ist, Sätze sein must be propositions. combined with one another by ‘∨’, ‘∼’, etc. müssen. Und dies ist auch der Fall, denn das And this is the case, for the symbols And this is indeed the case, since the Symbol „p“ und „q“ setzt ja selbst das „∨“, “p” and “q” presuppose “∨”, “∼”, etc. If symbol in ‘p’ and ‘q’ itself presupposes ‘∨’, „∼“, etc. voraus. Wenn das Zeichen „p“ in the sign “p” in “p ∨ q” does not stand for ‘∼’, etc. If the sign ‘p’ in ‘p ∨ q’ does not „p ∨ q“ nicht für ein komplexes Zeichen a complex sign, then by itself it cannot stand for a complex sign, then it cannot steht, dann kann es allein nicht Sinn ha- have sense; but then also the signs “p∨p”, have sense by itself: but in that case the ben; dann können aber auch die mit „p“ “p . p”, etc. which have the same sense as signs ‘p ∨ p’, ‘p . p’, etc., which have the gleichsinnigen Zeichen „p∨ p“, „p . p“, etc. “p” have no sense. If, however, “p∨ p” has same sense as p, must also lack sense. keinen Sinn haben. Wenn aber „p∨p“ kei- no sense, then also “p ∨ q” can have no But if ‘p ∨ p’ has no sense, then ‘p ∨ q’ nen Sinn hat, dann kann auch „p∨ q“ kei- sense. cannot have a sense either. nen Sinn haben. 5.5151 Muss das Zeichen des negativen Sat- Must the sign of the negative proposi- Must the sign of a negative proposizes mit dem Zeichen des positiven gebil- tion be constructed by means of the sign tion be constructed with that of the posdet werden? Warum sollte man den nega- of the positive? Why should one not be itive proposition? Why should it not be tiven Satz nicht durch eine negative Tat- able to express the negative proposition possible to express a negative proposition sache ausdrücken können. (Etwa: Wenn by means of a negative fact? (Like: if “a” by means of a negative fact? (E.g. sup„a“ nicht in einer bestimmten Beziehung does not stand in a certain relation to “b”, pose that ‘a’ does not stand in a certain zu „b“ steht, könnte das ausdrücken, dass it could express that aRb is not the case.) relation to ‘b’; then this might be used to aRb nicht der Fall ist.) say that aRb was not the case.) Aber auch hier ist ja der negative Satz But here also the negative proposition But really even in this case the negaindirekt durch den positiven gebildet. is indirectly constructed with the positive. tive proposition is constructed by an indirect use of the positive. Der positive S a t z muss die Existenz The positive proposition must presup- The positive proposition necessarily des negativen S a t z e s voraussetzen pose the existence of the negative propo- presupposes the existence of the negative und umgekehrt. sition and conversely. proposition and vice versa. 5.52 Sind die Werte von ξ sämtliche Werte If the values of ξ are the total values If ξ has as its values all the values einer Funktion fx für alle Werte von x, so of a function fx for all values of x, then of a function fx for all values of x, then wird N(ξ) = ∼(∃x). fx. N(ξ) = ∼(∃x). fx. N(ξ) = ∼(∃x). fx. 5.521 Ich trenne den Begriff A l l e von der I separate the concept all from the I dissociate the concept all from truthWahrheitsfunktion. truth-function. functions. Frege und Russell haben die Allge- Frege and Russell have introduced Frege and Russell introduced genermeinheit in Verbindung mit dem logi- generality in connexion with the logical ality in association with logical product schen Produkt oder der logischen Summe product or the logical sum. Then it would or logical sum. This made it difficult to eingeführt. So wurde es schwer, die Sätze be difficult to understand the propositions understand the propositions ‘(∃x). fx’ and „(∃x). fx“ und „(x). fx“, in welchen beide “(∃x). fx” and “(x). fx” in which both ideas ‘(x). fx’, in which both ideas are embedIdeen beschlossen liegen, zu verstehen. lie concealed. ded. 78 5.522 Das Eigentümliche der Allgemein- That which is peculiar to the “symbol- What is peculiar to the generality-sign heitsbezeichnung ist erstens, dass sie auf ism of generality” is firstly, that it refers is first, that it indicates a logical protoein logisches Urbild hinweist, und zwei- to a logical prototype, and secondly, that type, and secondly, that it gives promitens, dass sie Konstante hervorhebt. it makes constants prominent. nence to constants. 5.523 Die Allgemeinheitsbezeichnung tritt The generality symbol occurs as an The generality-sign occurs as an arguals Argument auf. argument. ment. 5.524 Wenn die Gegenstände gegeben sind, If the objects are given, therewith are If objects are given, then at the same so sind uns damit auch schon a l l e Ge- all objects also given. time we are given all objects. genstände gegeben. Wenn die Elementarsätze gegeben If the elementary propositions are If elementary propositions are given, sind, so sind damit auch a l l e Elemen- given, then therewith all elementary then at the same time all elementary tarsätze gegeben. propositions are also given. propositions are given. 5.525 Es ist unrichtig, den Satz „(∃x). fx“— It is not correct to render the propo- It is incorrect to render the proposiwie Russell dies tut—in Worten durch „fx sition “(∃x). fx”—as Russell does—in the tion ‘(∃x). fx’ in the words, ‘fx is possible’ ist m ö g l i c h“ wiederzugeben. words “fx is possible”. as Russell does. Gewißheit, Möglichkeit oder Unmög- Certainty, possibility or impossibility The certainty, possibility, or impossilichkeit einer Sachlage wird nicht durch of a state of affairs are not expressed by a bility of a situation is not expressed by a einen Satz ausgedrückt, sondern dadurch, proposition but by the fact that an expres- proposition, but by an expression’s being dass ein Ausdruck eine Tautologie, ein sion is a tautology, a significant proposi- a tautology, a proposition with a sense, or sinnvoller Satz oder eine Kontradiktion tion or a contradiction. a contradiction. ist. Jener Präzedenzfall, auf den man sich That precedent to which one would The precedent to which we are conimmer berufen möchte, muss schon im always appeal, must be present in the stantly inclined to appeal must reside in Symbol selber liegen. symbol itself. the symbol itself. 5.526 Man kann die Welt vollständig durch One can describe the world completely We can describe the world completely vollkommen verallgemeinerte Sätze be- by completely generalized propositions, by means of fully generalized proposischreiben, das heißt also, ohne irgend- i.e. without from the outset co-ordinating tions, i.e. without first correlating any einen Namen von vornherein einem be- any name with a definite object. name with a particular object. stimmten Gegenstand zuzuordnen. Um dann auf die gewöhnliche Aus- In order then to arrive at the custom- Then, in order to arrive at the customdrucksweise zu kommen, muss man ein- ary way of expression we need simply say ary mode of expression, we simply need fach nach einem Ausdruck: „Es gibt ein after an expression “there is one and only to add, after an expression like, ‘There und nur ein x, welches . . . “ sagen: Und one x, which . . . ”: and this x is a. is one and only one x such that . . . ’, the dies x ist a. words, ‘and that x is a’. 5.5261 Ein vollkommen verallgemeinerter A completely generalized proposition A fully generalized proposition, like Satz ist, wie jeder andere Satz, zusam- is like every other proposition compos- every other proposition, is composite. mengesetzt. (Dies zeigt sich daran, dass ite. (This is shown by the fact that in (This is shown by the fact that in 79 wir in „(∃x,φ).φx“ „φ“ und „x“ getrennt er- “(∃x,φ).φx” we must mention “φ” and “x” ‘(∃x,φ).φx’ we have to mention ‘φ’ and wähnen müssen. Beide stehen unabhän- separately. Both stand independently in ‘x’ separately. They both, independently, gig in bezeichnenden Beziehungen zur signifying relations to the world as in the stand in signifying relations to the world, Welt, wie im unverallgemeinerten Satz.) ungeneralized proposition.) just as is the case in ungeneralized propo- sitions.) Kennzeichen des zusammengesetzten A characteristic of a composite symbol: It is a mark of a composite symbol that Symbols: Es hat etwas mit a n d e r e n it has something in common with other it has something in common with other Symbolen gemeinsam. symbols. symbols. 5.5262 Es verändert ja die Wahr- oder Falsch- The truth or falsehood of every proposi- The truth or falsity of every proposiheit j e d e s Satzes etwas am allgemei- tion alters something in the general struc- tion does make some alteration in the nen Bau der Welt. Und der Spielraum, ture of the world. And the range which general construction of the world. And welcher ihrem Bau durch die Gesamt- is allowed to its structure by the totality the range that the totality of elementary heit der Elementarsätze gelassen wird, of elementary propositions is exactly that propositions leaves open for its construcist eben derjenige, welchen die ganz all- which the completely general propositions tion is exactly the same as that which gemeinen Sätze begrenzen. delimit. is delimited by entirely general proposi- tions. (Wenn ein Elementarsatz wahr ist, so (If an elementary proposition is true, (If an elementary proposition is true, ist damit doch jedenfalls Ein Elementar- then, at any rate, there is one more ele- that means, at any rate, one more true satz m e h r wahr.) mentary proposition true.) elementary proposition.) 5.53 Gleichheit des Gegenstandes drücke Identity of the object I express by iden- Identity of object I express by idenich durch Gleichheit des Zeichens aus, tity of the sign and not by means of a sign tity of sign, and not by using a sign for und nicht mit Hilfe eines Gleichheitszei- of identity. Difference of the objects by identity. Difference of objects I express by chens. Verschiedenheit der Gegenstände difference of the signs. difference of signs. durch Verschiedenheit der Zeichen. 5.5301 Dass die Identität keine Relation zwi- That identity is not a relation between It is self-evident that identity is not schen Gegenständen ist, leuchtet ein. objects is obvious. This becomes very a relation between objects. This becomes Dies wird sehr klar, wenn man z. B. den clear if, for example, one considers the very clear if one considers, for example, Satz „(x): fx .⊃. x = a“ betrachtet. Was die- proposition “(x): fx .⊃. x = a”. What this the proposition ‘(x): fx .⊃. x = a’. What ser Satz sagt, ist einfach, dass n u r a proposition says is simply that only a sat- this proposition says is simply that only a der Funktion f genügt, und nicht, dass isfies the function f , and not that only satisfies the function f , and not that only nur solche Dinge der Funktion f genü- such things satisfy the function f which things that have a certain relation to a gen, welche eine gewisse Beziehung zu a have a certain relation to a. satisfy the function f . haben. Man könnte nun freilich sagen, dass One could of course say that in fact Of course, it might then be said that eben n u r a diese Beziehung zu a habe, only a has this relation to a, but in order only a did have this relation to a; but in aber, um dies auszudrücken, brauchten to express this we should need the sign of order to express that, we should need the wir das Gleichheitszeichen selber. identity itself. identity-sign itself. 80 5.5302 Russells Definition von „=“ genügt Russell’s definition of “=” won’t do; Russell’s definition of ‘=’ is inadequate, nicht; weil man nach ihr nicht sagen because according to it one cannot say because according to it we cannot say kann, dass zwei Gegenstände alle Eigen- that two objects have all their properties that two objects have all their properties schaften gemeinsam haben. (Selbst wenn in common. (Even if this proposition is in common. (Even if this proposition is dieser Satz nie richtig ist, hat er doch never true, it is nevertheless significant.) never correct, it still has sense.) S i n n.) 5.5303 Beiläufig gesprochen: Von z w e i Din- Roughly speaking: to say of two things Roughly speaking, to say of two things gen zu sagen, sie seien identisch, ist ein that they are identical is nonsense, and that they are identical is nonsense, and Unsinn, und von E i n e m zu sagen, to say of one thing that it is identical with to say of one thing that it is identical with es sei identisch mit sich selbst, sagt gar itself is to say nothing. itself is to say nothing at all. nichts. 5.531 Ich schreibe also nicht „f (a,b) . a = I write therefore not “f (a,b) . a = Thus I do not write ‘f (a,b) . a = b’, but b“, sondern „f (a,a)“ (oder „f (b,b)“). Und b” but “f (a,a)” (or “f (b,b)”). And not ‘f (a,a)’ (or ‘f (b,b)’); and not ‘f (a,b) . ∼a = nicht „f (a,b) . ∼a = b“, sondern „f (a,b)“. “f (a,b) . ∼a = b”, but “f (a,b)”. b’, but ‘f (a,b)’. 5.532 Und analog: Nicht „(∃x, y). f (x, y) . And analogously: not “(∃x, y). f (x, y) . And analogously I do not write x = y“, sondern „(∃x). f (x,x)“; und nicht x = y”, but “(∃x). f (x,x)”; and not “(∃x, y). ‘(∃x, y). f (x, y) . x = y’, but ‘(∃x). f (x,x)’; „(∃x, y). f (x, y) . ∼x = y“, sondern „(∃x, y). f (x, y) . ∼x = y”, but “(∃x, y). f (x, y)”. and not ‘(∃x, y). f (x, y) . ∼x = y’, but f (x, y)“. ‘(∃x, y). f (x, y)’. (Also statt des Russellschen „(∃x, y). (Therefore instead of Russell’s “(∃x, y). (So Russell’s ‘(∃x, y). f (x, y)’ becomes f (x, y)“: „(∃x, y). f (x, y) .∨. (∃x). f (x,x)“.) f (x, y)”: “(∃x, y). f (x, y) .∨. (∃x). f (x,x)”.) ‘(∃x, y). f (x, y) .∨. (∃x). f (x,x)’.) 5.5321 Statt „(x): fx ⊃ x = a“ schreiben wir al- Instead of “(x): fx ⊃ x = a” we there- Thus, for example, instead of ‘(x): fx so z. B. „(∃x). fx .⊃. fa : ∼(∃x, y). fx . f y“. fore write e.g. “(∃x). fx .⊃. fa : ∼(∃x, y). fx . ⊃ x = a’ we write ‘(∃x). fx .⊃. fa : ∼(∃x, y). f y”. fx . f y’. Und der Satz: „n u r Ein x befriedigt And if the proposition “only one x And the proposition, ‘Only one x satf ( )“ lautet: „(∃x). fx .⊃. fa : ∼(∃x, y). fx . satisfies f ( )” reads: “(∃x). fx .⊃. fa : isfies f ( )’, will read ‘(∃x). fx .⊃. fa : f y“. ∼(∃x, y). fx . f y”. ∼(∃x, y). fx . f y’. 5.533 Das Gleichheitszeichen ist also kein The identity sign is therefore not an The identity-sign, therefore, is not an wesentlicher Bestandteil der Begriffs- essential constituent of logical notation. essential constituent of conceptual notaschrift. tion. 5.534 Und nun sehen wir, dass Scheinsät- And we see that the apparent proposi- And now we see that in a correct conze wie: „a = a“, „a = b . b = c .⊃ a = c“, tions like: “a = a”, “a = b . b = c .⊃ a = c”, ceptual notation pseudo-propositions like „(x).x = x“, „(∃x).x = a“, etc. sich in ei- “(x).x = x”. “(∃x).x = a”, etc. cannot be ‘a = a’, ‘a = b . b = c .⊃ a = c’, ‘(x).x = x’, ner richtigen Begriffsschrift gar nicht hin- written in a correct logical notation at ‘(∃x).x = a’, etc. cannot even be written schreiben lassen. all. down. 5.535 Damit erledigen sich auch alle Proble- So all problems disappear which are This also disposes of all the problems me, die an solche Scheinsätze geknüpft connected with such pseudo-propositions. that were connected with such pseudowaren. propositions. 81 Alle Probleme, die Russells „Axiom of This is the place to solve all the prob- All the problems that Russell’s ‘axiom Infinity“ mit sich bringt, sind schon hier lems with arise through Russell’s “Axiom of infinity’ brings with it can be solved at zu lösen. of Infinity”. this point. Das, was das Axiom of Infinity sagen What the axiom of infinity is meant What the axiom of infinity is intended soll, würde sich in der Sprache dadurch to say would be expressed in language by to say would express itself in language ausdrücken, dass es unendlich viele Na- the fact that there is an infinite number through the existence of infinitely many men mit verschiedener Bedeutung gäbe. of names with different meanings. names with different meanings. 5.5351 Es gibt gewisse Fälle, wo man in Ver- There are certain cases in which one There are certain cases in which one suchung gerät, Ausdrücke von der Form is tempted to use expressions of the form is tempted to use expressions of the form „a = a“ oder „p ⊃ p“ u. dgl. zu benützen. “a = a” or “p ⊃ p”. As, for instance, when ‘a = a’ or ‘p ⊃ p’ and the like. In fact, Und zwar geschieht dies, wenn man von one would speak of the archetype Propo- this happens when one wants to talk dem Urbild: Satz, Ding, etc. reden möchte. sition, Thing, etc. So Russell in the Prin- about prototypes, e.g. about proposition, So hat Russell in den „Principles of Ma- ciples of Mathematics has rendered the thing, etc. Thus in Russell’s Principles of thematics“ den Unsinn „p ist ein Satz“ in nonsense “p is a proposition” in symbols Mathematics ‘p is a proposition’—which Symbolen durch „p ⊃ p“ wiedergegeben by “p ⊃ p” and has put it as hypothesis is nonsense—was given the symbolic renund als Hypothese vor gewisse Sätze ge- before certain propositions to show that dering ‘p ⊃ p’ and placed as an hypothesis stellt, damit deren Argumentstellen nur their places for arguments could only be in front of certain propositions in order von Sätzen besetzt werden könnten. occupied by propositions. to exclude from their argument-places everything but propositions. (Es ist schon darum Unsinn, die Hypo- (It is nonsense to place the hypoth- (It is nonsense to place the hypothesis these p ⊃ p vor einen Satz zu stellen, um esis p ⊃ p before a proposition in order ‘p ⊃ p’ in front of a proposition, in order ihm Argumente der richtigen Form zu si- to ensure that its arguments have the to ensure that its arguments shall have chern, weil die Hypothese für einen Nicht- right form, because the hypotheses for a the right form, if only because with a nonSatz als Argument nicht falsch, sondern non-proposition as argument becomes not proposition as argument the hypothesis unsinnig wird, und weil der Satz selbst false but meaningless, and because the becomes not false but nonsensical, and bedurch die unrichtige Gattung von Argu- proposition itself becomes senseless for cause arguments of the wrong kind make menten unsinnig wird, also sich selbst arguments of the wrong kind, and there- the proposition itself nonsensical, so that ebenso gut, oder so schlecht, vor den un- fore it survives the wrong arguments no it preserves itself from wrong arguments rechten Argumenten bewahrt wie die zu better and no worse than the senseless just as well, or as badly, as the hypothesis diesem Zweck angehängte sinnlose Hypo- hypothesis attached for this purpose.) without sense that was appended for that these.) purpose.) 5.5352 Ebenso wollte man „Es gibt keine Similarly it was proposed to express In the same way people have wanted D i n g e“ ausdrücken durch „∼(∃x).x = x“. “There are no things” by “∼(∃x).x = x”. to express, ‘There are no things’, by writAber selbst wenn dies ein Satz wäre— But even if this were a proposition— ing ‘∼(∃x).x = x’. But even if this were a wäre er nicht auch wahr, wenn es zwar would it not be true if indeed “There were proposition, would it not be equally true „Dinge gäbe“, aber diese nicht mit sich things”, but these were not identical with if in fact ‘there were things’ but they were selbst identisch wären? themselves? not identical with themselves? 82 5.54 In der allgemeinen Satzform kommt In the general propositional form, In the general propositional form der Satz im Satze nur als Basis der Wahr- propositions occur in a proposition only propositions occur in other propositions heitsoperationen vor. as bases of the truth-operations. only as bases of truth-operations. 5.541 Auf den ersten Blick scheint es, als At first sight it appears as if there At first sight it looks as if it were also könne ein Satz in einem anderen auch were also a different way in which one possible for one proposition to occur in auf andere Weise vorkommen. proposition could occur in another. another in a different way. Besonders in gewissen Satzformen Especially in certain propositional Particularly with certain forms of der Psychologie, wie „A glaubt, dass p forms of psychology, like “A thinks, that p proposition in psychology, such as ‘A beder Fall ist“, oder „A denkt p“, etc. is the case”, or “A thinks p”, etc. lieves that p is the case’ and A has the thought p’, etc. Hier scheint es nämlich oberflächlich, Here it appears superficially as if the For if these are considered superfials stünde der Satz p zu einem Gegen- proposition p stood to the object A in a cially, it looks as if the proposition p stood stand A in einer Art von Relation. kind of relation. in some kind of relation to an object A. (Und in der modernen Erkenntnis- (And in modern epistemology (Russell, (And in modern theory of knowledge theorie (Russell, Moore, etc.) sind jene Moore, etc.) those propositions have been (Russell, Moore, etc.) these propositions Sätze auch so aufgefasst worden.) conceived in this way.) have actually been construed in this way.) 5.542 Es ist aber klar, dass „A glaubt, dass But it is clear that “A believes that It is clear, however, that ‘A believes p“, „A denkt p“, „A sagt p“ von der Form p”, “A thinks p”, “A says p”, are of the that p’, ‘A has the thought p’, and ‘A says „‚p‘ sagt p“ sind: Und hier handelt es sich form “‘p’ says p”: and here we have no p’ are of the form ‘“p” says p’: and this nicht um eine Zuordnung von einer Tatsa- co-ordination of a fact and an object, but does not involve a correlation of a fact che und einem Gegenstand, sondern um a co-ordination of facts by means of a co- with an object, but rather the correlation die Zuordnung von Tatsachen durch Zu- ordination of their objects. of facts by means of the correlation of ordnung ihrer Gegenstände. their objects. 5.5421 Dies zeigt auch, dass die Seele—das This shows that there is no such thing This shows too that there is no such Subjekt etc.—wie sie in der heutigen ober- as the soul—the subject, etc.—as it is con- thing as the soul—the subject, etc.—as it flächlichen Psychologie aufgefasst wird, ceived in superficial psychology. is conceived in the superficial psychology ein Unding ist. of the present day. Eine zusammengesetzte Seele wäre A composite soul would not be a soul Indeed a composite soul would no nämlich keine Seele mehr. any longer. longer be a soul. 5.5422 Die richtige Erklärung der Form des The correct explanation of the form of The correct explanation of the form Satzes „A urteilt p“ muss zeigen, dass the proposition “A judges p” must show of the proposition, ‘A makes the judgees unmöglich ist, einen Unsinn zu urtei- that it is impossible to judge a nonsense. ment p’, must show that it is impossible len. (Russells Theorie genügt dieser Be- (Russell’s theory does not satisfy this con- for a judgement to be a piece of nonsense. dingung nicht.) dition.) (Russell’s theory does not satisfy this re- quirement.) 5.5423 Einen Komplex wahrnehmen heißt To perceive a complex means to per- To perceive a complex means to perwahrnehmen, dass sich seine Bestandtei- ceive that its constituents are combined ceive that its constituents are related to 83 le so und so zu einander verhalten. in such and such a way. one another in such and such a way. Dies erklärt wohl auch, dass man die This perhaps explains that the figure This no doubt also explains why there Figur are two possible ways of seeing the figure a a a a b b b b a a a a b b b b a a a a b b b b auf zweierlei Art als Würfel sehen kann; can be seen in two ways as a cube; and as a cube; and all similar phenomena. For und alle ähnlichen Erscheinungen. Denn all similar phenomena. For we really see we really see two different facts. wir sehen eben wirklich zwei verschiede- two different facts. ne Tatsachen. (Sehe ich erst auf die Ecken a und nur (If I fix my eyes first on the corners a (If I look in the first place at the corflüchtig auf b, so erscheint a vorne; und and only glance at b, a appears in front ners marked a and only glance at the b’s, umgekehrt.) and b behind, and vice versa.) then the a’s appear to be in front, and vice versa). 5.55 Wir müssen nun die Frage nach allen We must now answer a priori the ques- We now have to answer a priori the möglichen Formen der Elementarsätze a tion as to all possible forms of the elemen- question about all the possible forms of priori beantworten. tary propositions. elementary propositions. Der Elementarsatz besteht aus Na- The elementary proposition consists Elementary propositions consist of men. Da wir aber die Anzahl der Namen of names. Since we cannot give the num- names. Since, however, we are unable to von verschiedener Bedeutung nicht ange- ber of names with different meanings, we give the number of names with different ben können, so können wir auch nicht die cannot give the composition of the elemen- meanings, we are also unable to give the Zusammensetzung des Elementarsatzes tary proposition. composition of elementary propositions. angeben. 5.551 Unser Grundsatz ist, dass jede Fra- Our fundamental principle is that ev- Our fundamental principle is that ge, die sich überhaupt durch die Logik ery question which can be decided at all whenever a question can be decided by entscheiden läßt, sich ohne weiteres ent- by logic can be decided off-hand. logic at all it must be possible to decide it scheiden lassen muss. without more ado. (Und wenn wir in die Lage kommen, (And if we get into a situation where (And if we get into a position where ein solches Problem durch Ansehen der we need to answer such a problem by look- we have to look at the world for an answer Welt beantworten zu müssen, so zeigt ing at the world, this shows that we are to such a problem, that shows that we are dies, dass wir auf grundfalscher Fährte on a fundamentally wrong track.) on a completely wrong track.) sind.) 84 5.552 Die „Erfahrung“, die wir zum Verste- The “experience” which we need to un- The ‘experience’ that we need in order hen der Logik brauchen, ist nicht die, derstand logic is not that such and such is to understand logic is not that something dass sich etwas so und so verhält, son- the case, but that something is; but that or other is the state of things, but that dern, dass etwas i s t: aber das ist eben is no experience. something is: that, however, is not an k e i n e Erfahrung. experience. Die Logik ist v o r jeder Erfahrung— Logic precedes every experience—that Logic is prior to every experience— dass etwas s o ist. something is so. that something is so. Sie ist vor dem Wie, nicht vor dem It is before the How, not before the It is prior to the question ‘How?’, not Was. What. prior to the question ‘What?’ 5.5521 Und wenn dies nicht so wäre, wie And if this were not the case, how And if this were not so, how could we könnten wir die Logik anwenden? Man could we apply logic? We could say: if apply logic? We might put it in this way: könnte sagen: Wenn es eine Logik gäbe, there were a logic, even if there were no if there would be a logic even if there were auch wenn es keine Welt gäbe, wie könnte world, how then could there be a logic, no world, how then could there be a logic es dann eine Logik geben, da es eine Welt since there is a world? given that there is a world? gibt? 5.553 Russell sagte, es gäbe einfache Rela- Russell said that there were sim- Russell said that there were simple tionen zwischen verschiedenen Anzahlen ple relations between different numbers relations between different numbers of von Dingen (Individuals). Aber zwischen of things (individuals). But between things (individuals). But between what welchen Anzahlen? Und wie soll sich das what numbers? And how should this be numbers? And how is this supposed to be entscheiden?—Durch die Erfahrung? decided—by experience? decided?—By experience? (Eine ausgezeichnete Zahl gibt es (There is no pre-eminent number.) (There is no privileged number.) nicht.) 5.554 Die Angabe jeder speziellen Form wä- The enumeration of any special forms It would be completely arbitrary to re vollkommen willkürlich. would be entirely arbitrary. give any specific form. 5.5541 Es soll sich a priori angeben lassen, How could we decide a priori whether, It is supposed to be possible to answer ob ich z. B. in die Lage kommen kann, for example, I can get into a situation in a priori the question whether I can get etwas mit dem Zeichen einer 27-stelligen which I need to symbolize with a sign of a into a position in which I need the sign Relation bezeichnen zu müssen. 27-termed relation? for a 27-termed relation in order to signify something. 5.5542 Dürfen wir denn aber überhaupt so May we then ask this at all? Can we But is it really legitimate even to ask fragen? Können wir eine Zeichenform auf- set out a sign form and not know whether such a question? Can we set up a form of stellen und nicht wissen, ob ihr etwas ent- anything can correspond to it? sign without knowing whether anything sprechen könne? can correspond to it? Hat die Frage einen Sinn: Was muss Has the question sense: what must Does it make sense to ask what there s e i n, damit etwas der-Fall-sein kann? there be in order that anything can be the must be in order that something can be case? the case? 5.555 Es ist klar, wir haben vom Elementar- It is clear that we have a concept of Clearly we have some concept of el- 85 satz einen Begriff, abgesehen von seiner the elementary proposition apart from its ementary propositions quite apart from besonderen logischen Form. special logical form. their particular logical forms. Wo man aber Symbole nach einem Sy- Where, however, we can build symbols But when there is a system by which stem bilden kann, dort ist dieses System according to a system, there this system we can create symbols, the system is what das logisch wichtige und nicht die einzel- is the logically important thing and not is important for logic and not the individnen Symbole. the single symbols. ual symbols. Und wie wäre es auch möglich, dass And how would it be possible that I And anyway, is it really possible that ich es in der Logik mit Formen zu tun should have to deal with forms in logic in logic I should have to deal with forms hätte, die ich erfinden kann; sondern mit which I can invent: but I must have to that I can invent? What I have to deal dem muss ich es zu tun haben, was es mir deal with that which makes it possible for with must be that which makes it possible möglich macht, sie zu erfinden. me to invent them. for me to invent them. 5.556 Eine Hierarchie der Formen der Ele- There cannot be a hierarchy of the There cannot be a hierarchy of the mentarsätze kann es nicht geben. Nur forms of the elementary propositions. forms of elementary propositions. We can was wir selbst konstruieren, können wir Only that which we ourselves construct foresee only what we ourselves construct. voraussehen. can we foresee. 5.5561 Die empirische Realität ist begrenzt Empirical reality is limited by the to- Empirical reality is limited by the todurch die Gesamtheit der Gegenstände. tality of objects. The boundary appears tality of objects. The limit also makes itDie Grenze zeigt sich wieder in der Ge- again in the totality of elementary propo- self manifest in the totality of elementary samtheit der Elementarsätze. sitions. propositions. Die Hierarchien sind, und müssen un- The hierarchies are and must be inde- Hierarchies are and must be indepenabhängig von der Realität sein. pendent of reality. dent of reality. 5.5562 Wissen wir aus rein logischen Grün- If we know on purely logical grounds, If we know on purely logical grounds den, dass es Elementarsätze geben muss, that there must be elementary proposi- that there must be elementary proposidann muss es jeder wissen, der die Sätze tions, then this must be known by ev- tions, then everyone who understands in ihrer unanalysierten Form versteht. eryone who understands propositions in propositions in their unanalyzed form their unanalysed form. must know it. 5.5563 Alle Sätze unserer Umgangssprache All propositions of our colloquial lan- In fact, all the propositions of our evsind tatsächlich, so wie sie sind, logisch guage are actually, just as they are, log- eryday language, just as they stand, are vollkommen geordnet.—Jenes Einfachste, ically completely in order. That simple in perfect logical order.—That utterly simwas wir hier angeben sollen, ist nicht ein thing which we ought to give here is not a ple thing, which we have to formulate Gleichnis der Wahrheit, sondern die volle model of the truth but the complete truth here, is not an image of the truth, but Wahrheit selbst. itself. the truth itself in its entirety. (Unsere Probleme sind nicht abstrakt, (Our problems are not abstract but (Our problems are not abstract, but sondern vielleicht die konkretesten, die perhaps the most concrete that there are.) perhaps the most concrete that there are.) es gibt.) 5.557 Die A n w e n d u n g der Logik ent- The application of logic decides what The application of logic decides what scheidet darüber, welche Elementarsätze elementary propositions there are. elementary propositions there are. 86 es gibt. Was in der Anwendung liegt, kann die What lies in its application logic can- What belongs to its application, logic Logik nicht vorausnehmen. not anticipate. cannot anticipate. Das ist klar: Die Logik darf mit ihrer It is clear that logic may not conflict It is clear that logic must not clash Anwendung nicht kollidieren. with its application. with its application. Aber die Logik muss sich mit ihrer But logic must have contact with its But logic has to be in contact with its Anwendung berühren. application. application. Also dürfen die Logik und ihre Anwen- Therefore logic and its application Therefore logic and its application dung einander nicht übergreifen. may not overlap one another. must not overlap. 5.5571 Wenn ich die Elementarsätze nicht a If I cannot give elementary proposi- If I cannot say a priori what elemenpriori angeben kann, dann muss es zu tions a priori then it must lead to obvious tary propositions there are, then the atoffenbarem Unsinn führen, sie angeben nonsense to try to give them. tempt to do so must lead to obvious nonzu wollen. sense. 5.6 D i e G r e n z e n m e i n e r S p r a - The limits of my language mean the The limits of my language mean the c h e bedeuten die Grenzen meiner Welt. limits of my world. limits of my world. 5.61 Die Logik erfüllt die Welt; die Grenzen Logic fills the world: the limits of the Logic pervades the world: the limits der Welt sind auch ihre Grenzen. world are also its limits. of the world are also its limits. Wir können also in der Logik nicht We cannot therefore say in logic: This So we cannot say in logic, ‘The world sagen: Das und das gibt es in der Welt, and this there is in the world, that there has this in it, and this, but not that.’ jenes nicht. is not. Das würde nämlich scheinbar voraus- For that would apparently presuppose For that would appear to presuppose setzen, dass wir gewisse Möglichkeiten that we exclude certain possibilities, and that we were excluding certain possibiliausschließen, und dies kann nicht der this cannot be the case since otherwise ties, and this cannot be the case, since it Fall sein, da sonst die Logik über die logic must get outside the limits of the would require that logic should go beyond Grenzen der Welt hinaus müsste; wenn world: that is, if it could consider these the limits of the world; for only in that sie nämlich diese Grenzen auch von der limits from the other side also. way could it view those limits from the anderen Seite betrachten könnte. other side as well. Was wir nicht denken können, das What we cannot think, that we cannot We cannot think what we cannot können wir nicht denken; wir können also think: we cannot therefore say what we think; so what we cannot think we cannot auch nicht s a g e n, was wir nicht denken cannot think. say either. können. 5.62 Diese Bemerkung gibt den Schlüssel This remark provides a key to the This remark provides the key to the zur Entscheidung der Frage, inwieweit question, to what extent solipsism is a problem, how much truth there is in solipder Solipsismus eine Wahrheit ist. truth. sism. Was der Solipsismus nämlich In fact what solipsism means, is quite For what the solipsist means is quite m e i n t, ist ganz richtig, nur lässt es sich correct, only it cannot be said, but it correct; only it cannot be said, but makes nicht s a g e n, sondern es zeigt sich. shows itself. itself manifest. 87 Dass die Welt m e i n e Welt ist, das That the world is my world, shows it- The world is my world: this is manizeigt sich darin, dass die Grenzen d e r self in the fact that the limits of the lan- fest in the fact that the limits of language Sprache (der Sprache, die allein ich ver- guage (the language which I understand) (of that language which alone I understehe) die Grenzen m e i n e r Welt be- mean the limits of my world. stand) mean the limits of my world. deuten. 5.621 Die Welt und das Leben sind Eins. The world and life are one. The world and life are one. 5.63 Ich bin meine Welt. (Der Mikrokos- I am my world. (The microcosm.) I am my world. (The microcosm.) mos.) 5.631 Das denkende, vorstellende, Subjekt The thinking, presenting subject; There is no such thing as the subject gibt es nicht. there is no such thing. that thinks or entertains ideas. Wenn ich ein Buch schriebe „Die Welt, If I wrote a book “The world as I found If I wrote a book called The World as I wie ich sie vorfand“, so wäre darin auch it”, I should also have therein to report found it, I should have to include a report über meinen Leib zu berichten und zu on my body and say which members obey on my body, and should have to say which sagen, welche Glieder meinem Willen un- my will and which do not, etc. This then parts were subordinate to my will, and terstehen und welche nicht, etc., dies ist would be a method of isolating the subject which were not, etc., this being a method nämlich eine Methode, das Subjekt zu iso- or rather of showing that in an important of isolating the subject, or rather of showlieren, oder vielmehr zu zeigen, dass es in sense there is no subject: that is to say, of ing that in an important sense there is einem wichtigen Sinne kein Subjekt gibt: it alone in this book mention could not be no subject; for it alone could not be menVon ihm allein nämlich könnte in diesem made. tioned in that book.— Buche n i c h t die Rede sein.— 5.632 Das Subjekt gehört nicht zur Welt, The subject does not belong to the The subject does not belong to the sondern es ist eine Grenze der Welt. world but it is a limit of the world. world: rather, it is a limit of the world. 5.633 Wo i n der Welt ist ein metaphysi- Where in the world is a metaphysical Where in the world is a metaphysical sches Subjekt zu merken? subject to be noted? subject to be found? Du sagst, es verhält sich hier ganz You say that this case is altogether You will say that this is exactly like wie mit Auge und Gesichtsfeld. Aber das like that of the eye and the field of sight. the case of the eye and the visual field. Auge siehst du wirklich n i c h t. But you do not really see the eye. But really you do not see the eye. Und nichts a m G e s i c h t s f e l d And from nothing in the field of sight And nothing in the visual field allows lässt darauf schließen, dass es von einem can it be concluded that it is seen from an you to infer that it is seen by an eye. Auge gesehen wird. eye. 5.6331 Das Gesichtsfeld hat nämlich nicht For the field of sight has not a form For the form of the visual field is etwa eine solche Form: like this: surely not like this Auge — Eye — Eye — 5.634 Das hängt damit zusammen, dass This is connected with the fact that no This is connected with the fact that no 88 kein Teil unserer Erfahrung auch a priori part of our experience is also a priori. part of our experience is at the same time ist. a priori. Alles, was wir sehen, könnte auch an- Everything we see could also be other- Whatever we see could be other than ders sein. wise. it is. Alles, was wir überhaupt beschreiben Everything we describe at all could Whatever we can describe at all could können, könnte auch anders sein. also be otherwise. be other than it is. Es gibt keine Ordnung der Dinge a There is no order of things a priori. There is no a priori order of things. priori. 5.64 Hier sieht man, dass der Solipsismus, Here we see that solipsism strictly car- Here it can be seen that solipsism, streng durchgeführt, mit dem reinen Rea- ried out coincides with pure realism. The when its implications are followed out lismus zusammenfällt. Das Ich des Solip- I in solipsism shrinks to an extensionless strictly, coincides with pure realism. The sismus schrumpft zum ausdehnungslosen point and there remains the reality co- self of solipsism shrinks to a point withPunkt zusammen, und es bleibt die ihm ordinated with it. out extension, and there remains the rekoordinierte Realität. ality co-ordinated with it. 5.641 Es gibt also wirklich einen Sinn, in There is therefore really a sense in Thus there really is a sense in which welchem in der Philosophie nichtpsycho- which the philosophy we can talk of a non- philosophy can talk about the self in a logisch vom Ich die Rede sein kann. psychological I. non-psychological way. Das Ich tritt in die Philosophie da- The I occurs in philosophy through the What brings the self into philosophy durch ein, dass „die Welt meine Welt ist“. fact that the “world is my world”. is the fact that ‘the world is my world’. Das philosophische Ich ist nicht der The philosophical I is not the man, The philosophical self is not the huMensch, nicht der menschliche Körper, not the human body or the human soul man being, not the human body, or the oder die menschliche Seele, von der die of which psychology treats, but the meta- human soul, with which psychology deals, Psychologie handelt, sondern das meta- physical subject, the limit—not a part of but rather the metaphysical subject, the physische Subjekt, die Grenze—nicht ein the world. limit of the world—not a part of it. Teil—der Welt. 6 Die allgemeine Form der Wahrheits- The general form of truth-function is: The general form of a truth-function funktion ist: [p, ξ, N(ξ)]. [p, ξ, N(ξ)]. is [p, ξ, N(ξ)]. Dies ist die allgemeine Form des Sat- This is the general form of proposi- This is the general form of a proposizes. tion. tion. 6.001 Dies sagt nichts anderes, als dass je- This says nothing else than that ev- What this says is just that every der Satz ein Resultat der successiven An- ery proposition is the result of successive proposition is a result of successive apwendung der Operation N’(ξ) auf die Ele- applications of the operation N’(ξ) to the plications to elementary propositions of mentarsätze ist. elementary propositions. the operation N(ξ). 6.002 Ist die allgemeine Form gegeben, wie If we are given the general form of the If we are given the general form acein Satz gebaut ist, so ist damit auch way in which a proposition is constructed, cording to which propositions are conschon die allgemeine Form davon gege- then thereby we are also given the gen- structed, then with it we are also given ben, wie aus einem Satz durch eine Ope- eral form of the way in which by an oper- the general form according to which one 89 ration ein anderer erzeugt werden kann. ation out of one proposition another can proposition can be generated out of anbe created. other by means of an operation. 6.01 Die allgemeine Form der Operation The general form of the opera- Therefore the general form of an operΩ’(η) ist also: [ξ, N(ξ)]’(η) (= [η, ξ, N(ξ)]). tion Ω’(η) is therefore: [ξ, N(ξ)]’(η) (= ation Ω’(η) is [ξ, N(ξ)]’(η) (= [η, ξ, N(ξ)]). [η, ξ, N(ξ)]). Das ist die allgemeinste Form des This is the most general form of tran- This is the most general form of tranÜberganges von einem Satz zum ande- sition from one proposition to another. sition from one proposition to another. ren. 6.02 Und s o kommen wir zu den Zahlen: And thus we come to numbers: I de- And this is how we arrive at numbers. Ich definiere fine I give the following definitions x = Ω0 ’x Def. und Ω’Ων ’x = Ων+1 ’x Def. x = Ω0 ’x Def. and Ω’Ων ’x = Ων+1 ’x Def. x = Ω0 ’x Def. Ω’Ων ’x = Ων+1 ’x Def. Nach diesen Zeichenregeln schreiben According, then, to these symbolic So, in accordance with these rules, wir also die Reihe rules we write the series which deal with signs, we write the se- ries x, Ω’x, Ω’Ω’x, Ω’Ω’Ω’x, ... x, Ω’x, Ω’Ω’x, Ω’Ω’Ω’x, ... x, Ω’x, Ω’Ω’x, Ω’Ω’Ω’x, ... so: as: in the following way Ω0 ’x, Ω0+1 ’x, Ω0+1+1 ’x, Ω0+1+1+1 ’x, ... Ω0 ’x, Ω0+1 ’x, Ω0+1+1 ’x, Ω0+1+1+1 ’x, ... Ω0 ’x, Ω0+1 ’x, Ω0+1+1 ’x, Ω0+1+1+1 ’x, ... Also schreibe ich statt „[x, ξ, Ω’ξ]“: Therefore I write in place of “[x, ξ, Therefore, instead of ‘[x, ξ, Ω’ξ]’, Ω’ξ]”, „[Ω0 ’x, Ων ’x, Ων+1 ’x]“. “[Ω0 ’x, Ων ’x, Ων+1 ’x]”. I write ‘[Ω0 ’x, Ων ’x, Ων+1 ’x]’. Und definiere: And I define: And I give the following definitions 0+1 = 1 Def. 0+1+1 = 2 Def. 0+1+1+1 = 3 Def. (u. s. f.) 0+1 = 1 Def. 0+1+1 = 2 Def. 0+1+1+1 = 3 Def. and so on. 0+1 = 1 Def., 0+1+1 = 2 Def., 0+1+1+1 = 3 Def., (and so on). 6.021 Die Zahl ist der Exponent einer Ope- A number is the exponent of an opera- A number is the exponent of an operaration. tion. tion. 6.022 Der Zahlbegriff ist nichts anderes als The concept number is nothing else The concept of number is simply what das Gemeinsame aller Zahlen, die allge- than that which is common to all num- is common to all numbers, the general meine Form der Zahl. bers, the general form of a number. form of a number. Der Zahlbegriff ist die variable Zahl. The concept number is the variable The concept of number is the variable number. number. Und der Begriff der Zahlengleichheit And the concept of equality of num- And the concept of numerical equality 90 ist die allgemeine Form aller speziellen bers is the general form of all special is the general form of all particular cases Zahlengleichheiten. equalities of numbers. of numerical equality. 6.03 Die allgemeine Form der ganzen Zahl The general form of the cardinal num- The general form of an integer is ist: [0,ξ,ξ+1]. ber is: [0,ξ,ξ+1]. [0,ξ,ξ+1]. 6.031 Die Theorie der Klassen ist in der Ma- The theory of classes is altogether su- The theory of classes is completely suthematik ganz überflüssig. perfluous in mathematics. perfluous in mathematics. Dies hängt damit zusammen, dass die This is connected with the fact that This is connected with the fact that Allgemeinheit, welche wir in der Mathe- the generality which we need in mathe- the generality required in mathematics is matik brauchen, nicht die z u f ä l l i g e matics is not the accidental one. not accidental generality. ist. 6.1 Die Sätze der Logik sind Tautologien. The propositions of logic are tautolo- The propositions of logic are tautologies. gies. 6.11 Die Sätze der Logik sagen also nichts. The propositions of logic therefore say Therefore the propositions of logic say (Sie sind die analytischen Sätze.) nothing. (They are the analytical proposi- nothing. (They are the analytic propositions.) tions.) 6.111 Theorien, die einen Satz der Logik ge- Theories which make a proposition All theories that make a proposition haltvoll erscheinen lassen, sind immer of logic appear substantial are always of logic appear to have content are false. falsch. Man könnte z. B. glauben, dass false. One could e.g. believe that the One might think, for example, that the die Worte „wahr“ und „falsch“ zwei Ei- words “true” and “false” signify two prop- words ‘true’ and ‘false’ signified two propgenschaften unter anderen Eigenschaf- erties among other properties, and then erties among other properties, and then it ten bezeichnen, und da erschiene es als it would appear as a remarkable fact that would seem to be a remarkable fact that eine merkwürdige Tatsache, dass jeder every proposition possesses one of these every proposition possessed one of these Satz eine dieser Eigenschaften besitzt. properties. This now by no means ap- properties. On this theory it seems to be Das scheint nun nichts weniger als selbst- pears self-evident, no more so than the anything but obvious, just as, for instance, verständlich zu sein, ebensowenig selbst- proposition “All roses are either yellow or the proposition, ‘All roses are either yelverständlich, wie etwa der Satz: „Alle Ro- red” would seem even if it were true. In- low or red’, would not sound obvious even sen sind entweder gelb oder rot“ klänge, deed our proposition now gets quite the if it were true. Indeed, the logical propoauch wenn er wahr wäre. Ja, jener Satz character of a proposition of natural sci- sition acquires all the characteristics of a bekommt nun ganz den Charakter eines ence and this is a certain symptom of its proposition of natural science and this is naturwissenschaftlichen Satzes, und dies being falsely understood. the sure sign that it has been construed ist das sichere Anzeichen dafür, dass er wrongly. falsch aufgefasst wurde. 6.112 Die richtige Erklärung der logischen The correct explanation of logical The correct explanation of the propoSätze muss ihnen eine einzigartige Stel- propositions must give them a peculiar sitions of logic must assign to them a lung unter allen Sätzen geben. position among all propositions. unique status among all propositions. 6.113 Es ist das besondere Merkmal der logi- It is the characteristic mark of logi- It is the peculiar mark of logical proposchen Sätze, dass man am Symbol allein cal propositions that one can perceive in sitions that one can recognize that they 91 erkennen kann, dass sie wahr sind, und the symbol alone that they are true; and are true from the symbol alone, and this diese Tatsache schließt die ganze Philoso- this fact contains in itself the whole phi- fact contains in itself the whole philosophie der Logik in sich. Und so ist es auch losophy of logic. And so also it is one of phy of logic. And so too it is a very imeine derwichtigsten Tatsachen, dass sich the most important facts that the truth or portant fact that the truth or falsity of die Wahrheit oder Falschheit der nicht- falsehood of non-logical propositions can non-logical propositions cannot be recoglogischen Sätze n i c h t am Satz allein not be recognized from the propositions nized from the propositions alone. erkennen lässt. alone. 6.12 Dass die Sätze der Logik Tautolo- The fact that the propositions of The fact that the propositions of gien sind, das z e i g t die formalen— logic are tautologies shows the formal— logic are tautologies shows the formal— logischen—Eigenschaften der Sprache, logical—properties of language, of the logical—properties of language and the der Welt. world. world. Dass ihre Bestandteile s o verknüpft That its constituent parts connected The fact that a tautology is yielded eine Tautologie ergeben, das charakteri- together in this way give a tautology char- by this particular way of connecting its siert die Logik ihrer Bestandteile. acterizes the logic of its constituent parts. constituents characterizes the logic of its constituents. Damit Sätze, auf bestimmte Art und In order that propositions connected If propositions are to yield a tautolWeise verknüpft, eine Tautologie ergeben, together in a definite way may give a tau- ogy when they are connected in a certain dazu müssen sie bestimmte Eigenschaf- tology they must have definite properties way, they must have certain structural ten der Struktur haben. Dass sie s o ver- of structure. That they give a tautology properties. So their yielding a tautology bunden eine Tautologie ergeben, zeigt al- when so connected shows therefore that when combined in this way shows that so, dass sie diese Eigenschaften der Struk- they possess these properties of structure. they possess these structural properties. tur besitzen. 6.1201 Dass z. B. die Sätze „p“ und „∼p“ in That e.g. the propositions “p” and “∼p” For example, the fact that the propoder Verbindung „∼(p . ∼p)“ eine Tautolo- in the connexion “∼(p . ∼p)” give a tau- sitions ‘p’ and ‘∼p’ in the combination gie ergeben, zeigt, dass sie einander wi- tology shows that they contradict one an- ‘∼(p . ∼p)’ yield a tautology shows that dersprechen. Dass die Sätze „p ⊃ q“, „p“ other. That the propositions “p ⊃ q”, “p” they contradict one another. The fact und „q“ in der Form „(p ⊃ q) . (p) :⊃: (q)“ and “q” connected together in the form that the propositions ‘p ⊃ q’, ‘p’, and ‘q’, miteinander verbunden eine Tautologie “(p ⊃ q) . (p) :⊃: (q)” give a tautology shows combined with one another in the form ergeben, zeigt, dass q aus p und p ⊃ q that q follows from p and p ⊃ q. That ‘(p ⊃ q) . (p) :⊃: (q)’, yield a tautology folgt. Dass „(x). fx :⊃: fa“ eine Tautologie “(x). fx :⊃: fa” is a tautology shows that shows that q follows from p and p ⊃ q. ist, dass fa aus (x). fx folgt. etc. etc. fa follows from (x). fx, etc. etc. The fact that ‘(x). fx :⊃: fa’ is a tautology shows that fa follows from (x). fx. Etc. etc. 6.1202 Es ist klar, dass man zu demselben It is clear that we could have used It is clear that one could achieve the Zweck statt der Tautologien auch die Kon- for this purpose contradictions instead of same purpose by using contradictions intradiktionen verwenden könnte. tautologies. stead of tautologies. 6.1203 Um eine Tautologie als solche zu er- In order to recognize a tautology as In order to recognize an expression as 92 kennen, kann man sich, in den Fällen, such, we can, in cases in which no sign of a tautology, in cases where no generalityin welchen in der Tautologie keine All- generality occurs in the tautology, make sign occurs in it, one can employ the folgemeinheitsbezeichnung vorkommt, fol- use of the following intuitive method: lowing intuitive method: instead of ‘p’, gender anschaulichen Methode bedienen: I write instead of “p”, “q”, “r”, etc., ‘q’, ‘r’, etc. I write ‘T pF’, ‘T qF’, ‘TrF’, etc. Ich schreibe statt „p“, „q“, „r“ etc. „W pF“, “T pF”, “T qF”, “TrF”, etc. The truth- Truth-combinations I express by means „W qF“, „WrF“ etc. Die Wahrheitskombi- combinations I express by brackets, e.g.: of brackets, e.g. nationen drücke ich durch Klammern aus, z. B.: W p F W q F T p F T q F T p F T q F, und die Zuordnung der Wahr- oder Falsch- and the co-ordination of the truth or and I use lines to express the correlation heit des ganzen Satzes und der Wahr- falsity of the whole proposition with of the truth or falsity of the whole propoheitskombinationen der Wahrheitsargu- the truth-combinations of the truth- sition with the truth-combinations of its mente durch Striche auf folgende Weise: arguments by lines in the following way: truth-arguments, in the following way W p F W q F F W T p F T q F F T T p F T q F. F T Dies Zeichen würde also z. B. den Satz This sign, for example, would therefore So this sign, for instance, would represent p ⊃ q darstellen. Nun will ich z. B. den present the proposition p ⊃ q. Now I will the proposition p ⊃ q. Now, by way of exSatz ∼(p . ∼p) (Gesetz des Widerspruchs) proceed to inquire whether such a propo- ample, I wish to examine the proposition daraufhin untersuchen, ob er eine Tauto- sition as ∼(p . ∼p) (The Law of Contra- ∼(p . ∼p) (the law of contradiction) in orlogie ist. Die Form „∼ξ“ wird in unserer diction) is a tautology. The form “∼ξ” is der to determine whether it is a tautology. Notation written in our notation In our notation the form ‘∼ξ’ is written as 93 „W ξ F“ W F “T ξ F” T F ‘T ξ F’, T F geschrieben; die Form „ξ . η“ so: the form “ξ . η” thus:— and the form ‘ξ . η’ as W ξ F W η F F W T ξ F T η F F T T ξ F T η F. F T Daher lautet der Satz ∼(p . ∼q) so: Hence the proposition ∼(p . ∼q) runs Hence the proposition ∼(p . ∼q) reads as thus:— follows W q F W p F W F W F F W T q F T p F T F T F F T T q F T p F. T F T F F T Setzen wir statt „q“ „p“ ein und unter- If here we put “p” instead of “q” and ex- If we here substitute ‘p’ for ‘q’ and suchen die Verbindung der äußersten W amine the combination of the outermost T examine how the outermost T and F und F mit den innersten, so ergibt sich, and F with the innermost, it is seen that are connected with the innermost ones, dass die Wahrheit des ganzen Satzes a l - the truth of the whole proposition is co- the result will be that the truth of the l e n Wahrheitskombinationen seines Ar- ordinated with all the truth-combinations whole proposition is correlated with all gumentes, seine Falschheit keiner der of its argument, its falsity with none of the truth-combinations of its argument, 94 Wahrheitskombinationen zugeordnet ist. the truth-combinations. and its falsity with none of the truth- combinations. 6.121 Die Sätze der Logik demonstrieren die The propositions of logic demonstrate The propositions of logic demonstrate logischen Eigenschaften der Sätze, indem the logical properties of propositions, by the logical properties of propositions by sie sie zu nichtssagenden Sätzen verbin- combining them into propositions which combining them so as to form propositions den. say nothing. that say nothing. Diese Methode könnte man auch eine This method could be called a zero- This method could also be called a Nullmethode nennen. Im logischen Satz method. In a logical proposition proposi- zero-method. In a logical proposition, werden Sätze miteinander ins Gleich- tions are brought into equilibrium with propositions are brought into equilibrium gewicht gebracht und der Zustand des one another, and the state of equilibrium with one another, and the state of equiGleichgewichts zeigt dann an, wie diese then shows how these propositions must librium then indicates what the logical Sätze logisch beschaffen sein müssen. be logically constructed. constitution of these propositions must be. 6.122 Daraus ergibt sich, dass wir auch oh- Whence it follows that we can get on It follows from this that we can actune die logischen Sätze auskommen kön- without logical propositions, for we can ally do without logical propositions; for nen, da wir ja in einer entsprechenden recognize in an adequate notation the in a suitable notation we can in fact recNotation die formalen Eigenschaften der formal properties of the propositions by ognize the formal properties of proposiSätze durch das bloße Ansehen dieser Sät- mere inspection. tions by mere inspection of the proposize erkennen können. tions themselves. 6.1221 Ergeben z. B. zwei Sätze „p“ und „q“ If for example two propositions “p” If, for example, two propositions ‘p’ in der Verbindung „p ⊃ q“ eine Tautologie, and “q” give a tautology in the connex- and ‘q’ in the combination ‘p ⊃ q’ yield a so ist klar, dass q aus p folgt. ion “p ⊃ q”, then it is clear that q follows tautology, then it is clear that q follows from p. from p. Dass z. B. „q“ aus „p ⊃ q . p“ folgt, er- E.g. that “q” follows from “p ⊃ q . p” For example, we see from the two sehen wir aus diesen beiden Sätzen selbst, we see from these two propositions them- propositions themselves that ‘q’ follows aber wir können es auch s o zeigen, in- selves, but we can also show it by com- from ‘p ⊃ q . p’, but it is also possible to dem wir sie zu „p ⊃ q . p :⊃: q“ verbinden bining them to “p ⊃ q . p :⊃: q” and then show it in this way: we combine them to und nun zeigen, dass dies eine Tautologie showing that this is a tautology. form ‘p ⊃ q . p :⊃: q’, and then show that ist. this is a tautology. 6.1222 Dies wirft ein Licht auf die Frage, This throws light on the question why This throws some light on the queswarum die logischen Sätze nicht durch logical propositions can no more be empir- tion why logical propositions cannot be die Erfahrung bestätigt werden können, ically confirmed than they can be empiri- confirmed by experience any more than ebensowenig wie sie durch die Erfah- cally refuted. Not only must a proposition they can be refuted by it. Not only must rung widerlegt werden können. Nicht nur of logic be incapable of being contradicted a proposition of logic be irrefutable by muss ein Satz der Logik durch keine mög- by any possible experience, but it must any possible experience, but it must also liche Erfahrung widerlegt werden kön- also be incapable of being confirmed by be unconfirmable by any possible experinen, sondern er darf auch nicht durch any such. ence. 95 eine solche bestätigt werden können. 6.1223 Nun wird klar, warum man oft fühl- It now becomes clear why we often Now it becomes clear why people have te, als wären die „logischen Wahrheiten“ feel as though “logical truths” must be often felt as if it were for us to ‘postulate’ von uns zu „f o r d e r n“: Wir können sie “postulated” by us. We can in fact postu- the ‘truths of logic’. The reason is that nämlich insofern fordern, als wir eine ge- late them in so far as we can postulate an we can postulate them in so far as we can nügende Notation fordern können. adequate notation. postulate an adequate notation. 6.1224 Es wird jetzt auch klar, warum die It also becomes clear why logic has It also becomes clear now why logic Logik die Lehre von den Formen und vom been called the theory of forms and of was called the theory of forms and of inSchließen genannt wurde. inference. ference. 6.123 Es ist klar: Die logischen Gesetze dür- It is clear that the laws of logic cannot Clearly the laws of logic cannot in fen nicht selbst wieder logischen Geset- themselves obey further logical laws. their turn be subject to laws of logic. zen unterstehen. (Es gibt nicht, wie Russell meinte, für (There is not, as Russell supposed, for (There is not, as Russell thought, a jede „Type“ ein eigenes Gesetz des Wider- every “type” a special law of contradiction; special law of contradiction for each ‘type’; spruches, sondern Eines genügt, da es auf but one is sufficient, since it is not applied one law is enough, since it is not applied sich selbst nicht angewendet wird.) to itself.) to itself.) 6.1231 Das Anzeichen des logischen Satzes The mark of logical propositions is not The mark of a logical proposition is ist n i c h t die Allgemeingültigkeit. their general validity. not general validity. Allgemein sein heißt ja nur: zufälli- To be general is only to be acciden- To be general means no more than to gerweise für alle Dinge gelten. Ein unver- tally valid for all things. An ungeneral- be accidentally valid for all things. An allgemeinerter Satz kann ja ebensowohl ized proposition can be tautologous just ungeneralized proposition can be tautotautologisch sein als ein verallgemeiner- as well as a generalized one. logical just as well as a generalized one. ter. 6.1232 Die logische Allgemeingültigkeit Logical general validity, we could call The general validity of logic might be könnte man wesentlich nennen, im Ge- essential as opposed to accidental gen- called essential, in contrast with the acgensatz zu jener zufälligen, etwa des Sat- eral validity, e.g. of the proposition “all cidental general validity of such proposizes: „Alle Menschen sind sterblich“. Sätze men are mortal”. Propositions like Rus- tions as ‘All men are mortal’. Propositions wie Russells „Axiom of Reducibility“ sind sell’s “axiom of reducibility” are not log- like Russell’s ‘axiom of reducibility’ are nicht logische Sätze, und dies erklärt un- ical propositions, and this explains our not logical propositions, and this explains ser Gefühl: Dass sie, wenn wahr, so doch feeling that, if true, they can only be true our feeling that, even if they were true, nur durch einen günstigen Zufall wahr by a happy chance. their truth could only be the result of a sein könnten. fortunate accident. 6.1233 Es lässt sich eine Welt denken, in der We can imagine a world in which the It is possible to imagine a world in das Axiom of Reducibility nicht gilt. Es axiom of reducibility is not valid. But it which the axiom of reducibility is not ist aber klar, dass die Logik nichts mit is clear that logic has nothing to do with valid. It is clear, however, that logic has der Frage zu schaffen hat, ob unsere Welt the question whether our world is really nothing to do with the question whether wirklich so ist oder nicht. of this kind or not. our world really is like that or not. 96 6.124 Die logischen Sätze beschreiben das The logical propositions describe the The propositions of logic describe the Gerüst der Welt, oder vielmehr, sie stellen scaffolding of the world, or rather they scaffolding of the world, or rather they es dar. Sie „handeln“ von nichts. Sie set- present it. They “treat” of nothing. They represent it. They have no ‘subjectzen voraus, dass Namen Bedeutung, und presuppose that names have meaning, matter’. They presuppose that names Elementarsätze Sinn haben: Und dies ist and that elementary propositions have have meaning and elementary proposiihre Verbindung mit der Welt. Es ist klar, sense. And this is their connexion with tions sense; and that is their connexion dass es etwas über die Welt anzeigen the world. It is clear that it must show with the world. It is clear that somemuss, dass gewisse Verbindungen von something about the world that certain thing about the world must be indicated Symbolen—welche wesentlich einen be- combinations of symbols—which essen- by the fact that certain combinations of stimmten Charakter haben—Tautologien tially have a definite character—are tau- symbols—whose essence involves the possind. Hierin liegt das Entscheidende. Wir tologies. Herein lies the decisive point. session of a determinate character—are sagten, manches an den Symbolen, die We said that in the symbols which we use tautologies. This contains the decisive wir gebrauchen, wäre willkürlich, man- something is arbitrary, something not. In point. We have said that some things are ches nicht. In der Logik drückt nur dieses logic only this expresses: but this means arbitrary in the symbols that we use and aus: Das heißt aber, in der Logik drücken that in logic it is not we who express, by that some things are not. In logic it is only nicht w i r mit Hilfe der Zeichen aus, means of signs, what we want, but in logic the latter that express: but that means was wir wollen, sondern in der Logik sagt the nature of the essentially necessary that logic is not a field in which we exdie Natur der naturnotwendigen Zeichen signs itself asserts. That is to say, if we press what we wish with the help of signs, selbst aus: Wenn wir die logische Syn- know the logical syntax of any sign lan- but rather one in which the nature of the tax irgendeiner Zeichensprache kennen, guage, then all the propositions of logic natural and inevitable signs speaks for dann sind bereits alle Sätze der Logik ge- are already given. itself. If we know the logical syntax of geben. any sign-language, then we have already been given all the propositions of logic. 6.125 Es ist möglich, und zwar auch nach It is possible, also with the old con- It is possible—indeed possible even acder alten Auffassung der Logik, von vorn- ception of logic, to give at the outset a cording to the old conception of logic—to herein eine Beschreibung aller „wahren“ description of all “true” logical proposi- give in advance a description of all ‘true’ logischen Sätze zu geben. tions. logical propositions. 6.1251 Darum kann es in der Logik auch n i e Hence there can never be surprises in Hence there can never be surprises in Überraschungen geben. logic. logic. 6.126 Ob ein Satz der Logik angehört, kann Whether a proposition belongs to logic One can calculate whether a proposiman berechnen, indem man die logischen can be calculated by calculating the logi- tion belongs to logic, by calculating the Eigenschaften des S y m b o l s berech- cal properties of the symbol. logical properties of the symbol. net. Und dies tun wir, wenn wir einen lo- And this we do when we prove a log- And this is what we do when we ‘prove’ gischen Satz „beweisen“. Denn, ohne uns ical proposition. For without troubling a logical proposition. For, without botherum einen Sinn und eine Bedeutung zu ourselves about a sense and a meaning, ing about sense or meaning, we construct kümmern, bilden wir den logischen Satz we form the logical propositions out of the logical proposition out of others using 97 aus anderen nach bloßen Z e i c h e n r e - others by mere symbolic rules. only rules that deal with signs. g e l n. Der Beweis der logischen Sätze be- We prove a logical proposition by cre- The proof of logical propositions consteht darin, dass wir sie aus anderen lo- ating it out of other logical propositions sists in the following process: we produce gischen Sätzen durch successive Anwen- by applying in succession certain opera- them out of other logical propositions by dung gewisser Operationen entstehen las- tions, which again generate tautologies successively applying certain operations sen, die aus den ersten immer wieder Tau- out of the first. (And from a tautology that always generate further tautologies tologien erzeugen. (Und zwar f o l g e n only tautologies follow.) out of the initial ones. (And in fact only aus einer Tautologie nur Tautologien.) tautologies follow from a tautology.) Natürlich ist diese Art zu zeigen, dass Naturally this way of showing that Of course this way of showing that the ihre Sätze Tautologien sind, der Logik its propositions are tautologies is quite propositions of logic are tautologies is not durchaus unwesentlich. Schon darum, unessential to logic. Because the proposi- at all essential to logic, if only because the weil die Sätze, von welchen der Beweis tions, from which the proof starts, must propositions from which the proof starts ausgeht, ja ohne Beweis zeigen müssen, show without proof that they are tautolo- must show without any proof that they dass sie Tautologien sind. gies. are tautologies. 6.1261 In der Logik sind Prozess und Re- In logic process and result are equiva- In logic process and result are equivasultat äquivalent. (Darum keine Überra- lent. (Therefore no surprises.) lent. (Hence the absence of surprise.) schung.) 6.1262 Der Beweis in der Logik ist nur ein Proof in logic is only a mechanical ex- Proof in logic is merely a mechanical mechanisches Hilfsmittel zum leichteren pedient to facilitate the recognition of tau- expedient to facilitate the recognition of Erkennen der Tautologie, wo sie kompli- tology, where it is complicated. tautologies in complicated cases. ziert ist. 6.1263 Es wäre ja auch zu merkwürdig, wenn It would be too remarkable, if one Indeed, it would be altogether too reman einen sinnvollen Satz l o g i s c h could prove a significant proposition logi- markable if a proposition that had sense aus anderen beweisen könnte, und einen cally from another, and a logical propo- could be proved logically from others, and logischen Satz a u c h. Es ist von vornher- sition also. It is clear from the begin- so too could a logical proposition. It is ein klar, dass der logische Beweis eines ning that the logical proof of a significant clear from the start that a logical proof of sinnvollen Satzes und der Beweis i n der proposition and the proof in logic must be a proposition that has sense and a proof Logik zwei ganz verschiedene Dinge sein two quite different things. in logic must be two entirely different müssen. things. 6.1264 Der sinnvolle Satz sagt etwas aus, und The significant proposition asserts A proposition that has sense states sein Beweis zeigt, dass es so ist; in der something, and its proof shows that it is something, which is shown by its proof Logik ist jeder Satz die Form eines Bewei- so; in logic every proposition is the form to be so. In logic every proposition is the ses. of a proof. form of a proof. Jeder Satz der Logik ist ein in Zeichen Every proposition of logic is a modus Every proposition of logic is a modus dargestellter modus ponens. (Und den mo- ponens presented in signs. (And the ponens represented in signs. (And one dus ponens kann man nicht durch einen modus ponens can not be expressed by cannot express the modus ponens by 98 Satz ausdrücken.) a proposition.) means of a proposition.) 6.1265 Immer kann man die Logik so auffas- Logic can always be conceived to be It is always possible to construe logic sen, dass jeder Satz sein eigener Beweis such that every proposition is its own in such a way that every proposition is its ist. proof. own proof. 6.127 Alle Sätze der Logik sind gleichberech- All propositions of logic are of equal All the propositions of logic are of tigt, es gibt unter ihnen nicht wesentlich rank; there are not some which are essen- equal status: it is not the case that some Grundgesetze und abgeleitete Sätze. tially primitive and others deduced from of them are essentially derived proposithere. tions. Jede Tautologie zeigt selbst, dass sie Every tautology itself shows that it is Every tautology itself shows that it is eine Tautologie ist. a tautology. a tautology. 6.1271 Es ist klar, dass die Anzahl der „lo- It is clear that the number of “prim- It is clear that the number of the ‘primgischen Grundgesetze“ willkürlich ist, itive propositions of logic” is arbitrary, itive propositions of logic’ is arbitrary, denn man könnte die Logik ja aus Ei- for we could deduce logic from one prim- since one could derive logic from a sinnem Grundgesetz ableiten, indem man itive proposition by simply forming, for gle primitive proposition, e.g. by simply einfach z. B. aus Freges Grundgesetzen example, the logical produce of Frege’s constructing the logical product of Frege’s das logische Produkt bildet. (Frege würde primitive propositions. (Frege would per- primitive propositions. (Frege would pervielleicht sagen, dass dieses Grundgesetz haps say that this would no longer be haps say that we should then no longer nun nicht mehr unmittelbar einleuchte. immediately self-evident. But it is re- have an immediately self-evident primAber es ist merkwürdig, dass ein so exak- markable that so exact a thinker as Frege itive proposition. But it is remarkable ter Denker wie Frege sich auf den Grad should have appealed to the degree of self- that a thinker as rigorous as Frege apdes Einleuchtens als Kriterium des logi- evidence as the criterion of a logical propo- pealed to the degree of self-evidence as schen Satzes berufen hat.) sition.) the criterion of a logical proposition.) 6.13 Die Logik ist keine Lehre, sondern ein Logic is not a theory but a reflexion of Logic is not a body of doctrine, but a Spiegelbild der Welt. the world. mirror-image of the world. Die Logik ist transzendental. Logic is transcendental. Logic is transcendental. 6.2 Die Mathematik ist eine logische Me- Mathematics is a logical method. Mathematics is a logical method. thode. Die Sätze der Mathematik sind Glei- The propositions of mathematics The propositions of mathematics chungen, also Scheinsätze. are equations, and therefore pseudo- are equations, and therefore pseudopropositions. propositions. 6.21 Der Satz der Mathematik drückt kei- Mathematical propositions express no A proposition of mathematics does not nen Gedanken aus. thoughts. express a thought. 6.211 Im Leben ist es ja nie der mathema- In life it is never a mathematical Indeed in real life a mathematitische Satz, den wir brauchen, sondern proposition which we need, but we use cal proposition is never what we want. wir benützen den mathematischen Satz mathematical propositions only in order Rather, we make use of mathematin u r, um aus Sätzen, welche nicht der to infer from propositions which do not cal propositions only in inferences from Mathematik angehören, auf andere zu belong to mathematics to others which propositions that do not belong to mathe- 99 schließen, welche gleichfalls nicht der Ma- equally do not belong to mathematics. matics to others that likewise do not bethematik angehören. long to mathematics. (In der Philosophie führt die Frage: (In philosophy the question “Why do (In philosophy the question, ‘What do „Wozu gebrauchen wir eigentlich jenes we really use that word, that proposition?” we actually use this word or this propoWort, jenen Satz“ immer wieder zu wert- constantly leads to valuable results.) sition for?’ repeatedly leads to valuable vollen Einsichten.) insights.) 6.22 Die Logik der Welt, die die Sätze der The logic of the world which the propo- The logic of the world, which is shown Logik in den Tautologien zeigen, zeigt die sitions of logic show in tautologies, math- in tautologies by the propositions of logic, Mathematik in den Gleichungen. ematics shows in equations. is shown in equations by mathematics. 6.23 Wenn zwei Ausdrücke durch das If two expressions are connected by If two expressions are combined by Gleichheitszeichen verbunden werden, so the sign of equality, this means that they means of the sign of equality, that means heißt das, sie sind durch einander ersetz- can be substituted for one another. But that they can be substituted for one anbar. Ob dies aber der Fall ist, muss sich whether this is the case must show itself other. But it must be manifest in the two an den beiden Ausdrücken selbst zeigen. in the two expressions themselves. expressions themselves whether this is the case or not. Es charakterisiert die logische Form It characterizes the logical form of two When two expressions can be substizweier Ausdrücke, dass sie durch einan- expressions, that they can be substituted tuted for one another, that characterizes der ersetzbar sind. for one another. their logical form. 6.231 Es ist eine Eigenschaft der Bejahung, It is a property of affirmation that it It is a property of affirmation that it dass man sie als doppelte Verneinung auf- can be conceived as double denial. can be construed as double negation. fassen kann. Es ist eine Eigenschaft von „1 + 1 + It is a property of “1+1+1+1” that it It is a property of ‘1+1+1+1’ that it 1 + 1“, dass man es als „(1 + 1) + (1 + 1)“ can be conceived as “(1+1)+(1+1)”. can be construed as ‘(1+1)+(1+1)’. auffassen kann. 6.232 Frege sagt, die beiden Ausdrücke ha- Frege says that these expressions Frege says that the two expressions ben dieselbe Bedeutung, aber verschiede- have the same meaning but different have the same meaning but different nen Sinn. senses. senses. Das Wesentliche an der Gleichung ist But what is essential about equation But the essential point about an equaaber, dass sie nicht notwendig ist, um zu is that it is not necessary in order to tion is that it is not necessary in order to zeigen, dass die beiden Ausdrücke, die show that both expressions, which are show that the two expressions connected das Gleichheitszeichen verbindet, diesel- connected by the sign of equality, have the by the sign of equality have the same be Bedeutung haben, da sich dies aus den same meaning: for this can be perceived meaning, since this can be seen from the beiden Ausdrücken selbst ersehen lässt. from the two expressions themselves. two expressions themselves. 6.2321 Und, dass die Sätze der Mathematik And, that the propositions of mathe- And the possibility of proving the bewiesen werden können, heißt ja nichts matics can be proved means nothing else propositions of mathematics means simanderes, als dass ihre Richtigkeit einzu- than that their correctness can be seen ply that their correctness can be persehen ist, ohne dass das, was sie aus- without our having to compare what they ceived without its being necessary that 100 drücken, selbst mit den Tatsachen auf express with the facts as regards correct- what they express should itself be comseine Richtigkeit hin verglichen werden ness. pared with the facts in order to determine muss. its correctness. 6.2322 Die Identität der Bedeutung zweier The identity of the meaning of two ex- It is impossible to assert the identity of Ausdrücke lässt sich nicht b e h a u p - pressions cannot be asserted. For in order meaning of two expressions. For in order t e n. Denn, um etwas von ihrer Bedeu- to be able to assert anything about their to be able to assert anything about their tung behaupten zu können, muss ich ihre meaning, I must know their meaning, and meaning, I must know their meaning, Bedeutung kennen: und indem ich ihre if I know their meaning, I know whether and I cannot know their meaning withBedeutung kenne, weiß ich, ob sie dassel- they mean the same or something differ- out knowing whether what they mean is be oder verschiedenes bedeuten. ent. the same or different. 6.2323 Die Gleichung kennzeichnet nur den The equation characterizes only the An equation merely marks the point Standpunkt, von welchem ich die beiden standpoint from which I consider the two of view from which I consider the two exAusdrücke betrachte, nämlich vom Stand- expressions, that is to say the standpoint pressions: it marks their equivalence in punkte ihrer Bedeutungsgleichheit. of their equality of meaning. meaning. 6.233 Die Frage, ob man zur Lösung der ma- To the question whether we need in- The question whether intuition is thematischen Probleme die Anschauung tuition for the solution of mathematical needed for the solution of mathematical brauche, muss dahin beantwortet werden, problems it must be answered that lan- problems must be given the answer that dass eben die Sprache hier die nötige An- guage itself here supplies the necessary in this case language itself provides the schauung liefert. intuition. necessary intuition. 6.2331 Der Vorgang des R e c h n e n s ver- The process of calculation brings The process of calculating serves to mittelt eben diese Anschauung. about just this intuition. bring about that intuition. Die Rechnung ist kein Experiment. Calculation is not an experiment. Calculation is not an experiment. 6.234 Die Mathematik ist eine Methode der Mathematics is a method of logic. Mathematics is a method of logic. Logik. 6.2341 Das Wesentliche der mathematischen The essential of mathematical method It is the essential characteristic of Methode ist es, mit Gleichungen zu arbei- is working with equations. On this mathematical method that it employs ten. Auf dieser Methode beruht es näm- method depends the fact that every equations. For it is because of this method lich, dass jeder Satz der Mathematik sich proposition of mathematics must be self- that every proposition of mathematics von selbst verstehen muss. evident. must go without saying. 6.24 Die Methode der Mathematik, zu ih- The method by which mathematics ar- The method by which mathematics arren Gleichungen zu kommen, ist die Sub- rives at its equations is the method of rives at its equations is the method of stitutionsmethode. substitution. substitution. Denn die Gleichungen drücken die Er- For equations express the substi- For equations express the substisetzbarkeit zweier Ausdrücke aus und tutability of two expressions, and we pro- tutability of two expressions and, starting wir schreiten von einer Anzahl von Glei- ceed from a number of equations to new from a number of equations, we advance chungen zu neuen Gleichungen vor, in- equations, replacing expressions by oth- to new equations by substituting differdem wir, den Gleichungen entsprechend, ers in accordance with the equations. ent expressions in accordance with the 101 Ausdrücke durch andere ersetzen. equations. 6.241 So lautet der Beweis des Satzes 2×2 = Thus the proof of the proposition 2× Thus the proof of the proposition 2× 4: 2 = 4 runs: 2 = 4 runs as follows: (Ων )µ ’x = Ων×µ ’x Def. (Ων )µ ’x = Ων×µ ’x Def. (Ων )µ ’x = Ων×µ ’x Def. Ω2×2 ’x = (Ω2 )2 ’x = (Ω2 )1+1 ’x = Ω2 ’Ω2 ’x Ω2×2 ’x = (Ω2 )2 ’x = (Ω2 )1+1 ’x = Ω2 ’Ω2 ’x Ω2×2 ’x = (Ω2 )2 ’x = (Ω2 )1+1 ’x = Ω2 ’Ω2 ’x = Ω1+1 ’Ω1+1 ’x = (Ω’Ω)’(Ω’Ω)’x = Ω1+1 ’Ω1+1 ’x = (Ω’Ω)’(Ω’Ω)’x = Ω1+1 ’Ω1+1 ’x = (Ω’Ω)’(Ω’Ω)’x = Ω’Ω’Ω’Ω’x = Ω1+1+1+1 ’x = Ω4 ’x. = Ω’Ω’Ω’Ω’x = Ω1+1+1+1 ’x = Ω4 ’x. = Ω’Ω’Ω’Ω’x = Ω1+1+1+1 ’x = Ω4 ’x. 6.3 Die Erforschung der Logik bedeutet Logical research means the investiga- The exploration of logic means the exdie Erforschung a l l e r G e s e t z m ä - tion of all regularity. And outside logic all ploration of everything that is subject to ß i g k e i t. Und außerhalb der Logik ist is accident. law. And outside logic everything is accialles Zufall. dental. 6.31 Das sogenannte Gesetz der Indukti- The so-called law of induction cannot The so-called law of induction cannot on kann jedenfalls kein logisches Gesetz in any case be a logical law, for it is ob- possibly be a law of logic, since it is obsein, denn es ist offenbar ein sinnvoller viously a significant proposition.—And viously a proposition with sense.—Nor, Satz.—Und darum kann es auch kein Ge- therefore it cannot be a law a priori ei- therefore, can it be an a priori law. setz a priori sein. ther. 6.32 Das Kausalitätsgesetz ist kein Gesetz, The law of causality is not a law but The law of causality is not a law but sondern die Form eines Gesetzes. the form of a law.* the form of a law. 6.321 „Kausalitätsgesetz“, das ist ein Gat- “Law of Causality” is a class name. ‘Law of causality’—that is a general tungsname. Und wie es in der Mechanik, And as in mechanics there are, for in- name. And just as in mechanics, for examsagen wir, Minimum-Gesetze gibt—etwa stance, minimum-laws, such as that of ple, there are ‘minimum-principles’, such der kleinsten Wirkung—so gibt es in der least actions, so in physics there are as the law of least action, so too in physics Physik Kausalitätsgesetze, Gesetze von causal laws, laws of the causality form. there are causal laws, laws of the causal der Kausalitätsform. form. 6.3211 Man hat ja auch davon eine Ahnung Men had indeed an idea that there Indeed people even surmised that gehabt, dass es e i n „Gesetz der klein- must be a “law of least action”, before there must be a ‘law of least action’ before sten Wirkung“ geben müsse, ehe man ge- they knew exactly how it ran. (Here, as they knew exactly how it went. (Here, as nau wusste, wie es lautete. (Hier, wie im- always, the a priori certain proves to be always, what is certain a priori proves to mer, stellt sich das a priori Gewisse als something purely logical.) be something purely logical.) etwas rein Logisches heraus.) 6.33 Wir g l a u b e n nicht a priori an ein We do not believe a priori in a law of We do not have an a priori belief in a Erhaltungsgesetz, sondern wir w i s s e n conservation, but we know a priori the law of conservation, but rather a priori a priori die Möglichkeit einer logischen possibility of a logical form. knowledge of the possibility of a logical Form. form. 6.34 Alle jene Sätze, wie der Satz vom All propositions, such as the law of All such propositions, including the * [Ogden only] I.e. not the form of one particular law, but of any law of a certain sort (B. R.). 102 Grunde, von der Kontinuität in der Natur, causation, the law of continuity in nature, principle of sufficient reason, the laws of vom kleinsten Aufwande in der Natur etc. the law of least expenditure in nature, continuity in nature and of least effort etc., alle diese sind Einsichten a priori etc. etc., all these are a priori intuitions in nature, etc. etc.—all these are a priüber die mögliche Formgebung der Sätze of possible forms of the propositions of ori insights about the forms in which the der Wissenschaft. science. propositions of science can be cast. 6.341 Die Newtonsche Mechanik z. B. bringt Newtonian mechanics, for example, Newtonian mechanics, for example, die Weltbeschreibung auf eine einheitli- brings the description of the universe to a imposes a unified form on the description che Form. Denken wir uns eine weiße unified form. Let us imagine a white sur- of the world. Let us imagine a white surFläche, auf der unregelmäßige schwar- face with irregular black spots. We now face with irregular black spots on it. We ze Flecken wären. Wir sagen nun: Was say: Whatever kind of picture these make then say that whatever kind of picture für ein Bild immer hierdurch entsteht, I can always get as near as I like to its these make, I can always approximate as immer kann ich seiner Beschreibung be- description, if I cover the surface with a closely as I wish to the description of it liebig nahe kommen, indem ich die Flä- sufficiently fine square network and now by covering the surface with a sufficiently che mit einem entsprechend feinen qua- say of every square that it is white or fine square mesh, and then saying of evdratischen Netzwerk bedecke und nun black. In this way I shall have brought ery square whether it is black or white. von jedem Quadrat sage, dass es weiß the description of the surface to a unified In this way I shall have imposed a unioder schwarz ist. Ich werde auf diese Wei- form. This form is arbitrary, because I fied form on the description of the surface. se die Beschreibung der Fläche auf eine could have applied with equal success a The form is optional, since I could have einheitliche Form gebracht haben. Die- net with a triangular or hexagonal mesh. achieved the same result by using a net se Form ist beliebig, denn ich hätte mit It can happen that the description would with a triangular or hexagonal mesh. Posdem gleichen Erfolge ein Netz aus drei- have been simpler with the aid of a tri- sibly the use of a triangular mesh would eckigen oder sechseckigen Maschen ver- angular mesh; that is to say we might have made the description simpler: that wenden können. Es kann sein, dass die have described the surface more accu- is to say, it might be that we could deBeschreibung mit Hilfe eines Dreiecks- rately with a triangular, and coarser, than scribe the surface more accurately with a Netzes einfacher geworden wäre; das with the finer square mesh, or vice versa, coarse triangular mesh than with a fine heißt, dass wir die Fläche mit einem grö- and so on. To the different networks cor- square mesh (or conversely), and so on. beren Dreiecks-Netz genauer beschreiben respond different systems of describing The different nets correspond to different könnten als mit einem feineren quadra- the world. Mechanics determine a form systems for describing the world. Mechantischen (oder umgekehrt) usw. Den ver- of description by saying: All propositions ics determines one form of description schiedenen Netzen entsprechen verschie- in the description of the world must be of the world by saying that all proposidene Systeme der Weltbeschreibung. Die obtained in a given way from a number tions used in the description of the world Mechanik bestimmt eine Form der Welt- of given propositions—the mechanical ax- must be obtained in a given way from a beschreibung, indem sie sagt: Alle Sätze ioms. It thus provides the bricks for build- given set of propositions—the axioms of der Weltbeschreibung müssen aus einer ing the edifice of science, and says: What- mechanics. It thus supplies the bricks Anzahl gegebener Sätze—den mechani- ever building thou wouldst erect, thou for building the edifice of science, and it schen Axiomen—auf eine gegebene Art shalt construct it in some manner with says, ‘Any building that you want to erect, und Weise erhalten werden. Hierdurch these bricks and these alone. whatever it may be, must somehow be 103 liefert sie die Bausteine zum Bau des wis- constructed with these bricks, and with senschaftlichen Gebäudes und sagt: Wel- these alone.’ ches Gebäude immer du aufführen willst, jedes musst du irgendwie mit diesen und nur diesen Bausteinen zusammenbrin- gen. (Wie man mit dem Zahlensystem jede (As with the system of numbers one (Just as with the number-system we beliebige Anzahl, so muss man mit dem must be able to write down any arbitrary must be able to write down any number System der Mechanik jeden beliebigen number, so with the system of mechan- we wish, so with the system of mechanSatz der Physik hinschreiben können.) ics one must be able to write down any ics we must be able to write down any arbitrary physical proposition.) proposition of physics that we wish.) 6.342 Und nun sehen wir die gegenseitige And now we see the relative posi- And now we can see the relative poStellung von Logik und Mechanik. (Man tion of logic and mechanics. (We could sition of logic and mechanics. (The net könnte das Netz auch aus verschieden- construct the network out of figures of might also consist of more than one kind artigen Figuren etwa aus Dreiecken und different kinds, as out of triangles and of mesh: e.g. we could use both trianSechsecken bestehen lassen.) Dass sich hexagons together.) That a picture like gles and hexagons.) The possibility of deein Bild, wie das vorhin erwähnte, durch that instanced above can be described by scribing a picture like the one mentioned ein Netz von gegebener Form beschreiben a network of a given form asserts noth- above with a net of a given form tells us lässt, sagt über das Bild n i c h t s aus. ing about the picture. (For this holds of nothing about the picture. (For that is (Denn dies gilt für jedes Bild dieser Art.) every picture of this kind.) But this does true of all such pictures.) But what does Das aber charakterisiert das Bild, dass es characterize the picture, the fact, namely, characterize the picture is that it can be sich durch ein bestimmtes Netz von b e - that it can be completely described by a described completely by a particular net s t i m m t e r Feinheit v o l l s t ä n d i g definite net of definite fineness. with a particular size of mesh. beschreiben lässt. So auch sagt es nichts über die Welt So too the fact that it can be described Similarly the possibility of describing aus, dass sie sich durch die Newtonsche by Newtonian mechanics asserts nothing the world by means of Newtonian meMechanik beschreiben lässt; wohl aber, about the world; but this asserts some- chanics tells us nothing about the world: dass sie sich s o durch jene beschrei- thing, namely, that it can be described in but what does tell us something about it ben lässt, wie dies eben der Fall ist. Auch that particular way in which as a matter is the precise way in which it is possible das sagt etwas über die Welt, dass sie of fact it is described. The fact, too, that it to describe it by these means. We are also sich durch die eine Mechanik einfacher can be described more simply by one sys- told something about the world by the beschreiben lässt als durch die andere. tem of mechanics than by another says fact that it can be described more simply something about the world. with one system of mechanics than with another. 6.343 Die Mechanik ist ein Versuch, alle Mechanics is an attempt to construct Mechanics is an attempt to construct w a h r e n Sätze, die wir zur Weltbe- according to a single plan all true proposi- according to a single plan all the true schreibung brauchen, nach Einem Plane tions which we need for the description of propositions that we need for the descrip- 104 zu konstruieren. the world. tion of the world. 6.3431 Durch den ganzen logischen Apparat Through their whole logical apparatus The laws of physics, with all their loghindurch sprechen die physikalischen Ge- the physical laws still speak of the objects ical apparatus, still speak, however indisetze doch von den Gegenständen der of the world. rectly, about the objects of the world. Welt. 6.3432 Wir dürfen nicht vergessen, dass die We must not forget that the descrip- We ought not to forget that any deWeltbeschreibung durch die Mechanik im- tion of the world by mechanics is always scription of the world by means of memer die ganz allgemeine ist. Es ist in ihr quite general. There is, for example, chanics will be of the completely general z. B. nie von b e s t i m m t e n materiel- never any mention of particular material kind. For example, it will never mention len Punkten die Rede, sondern immer nur points in it, but always only of some points particular point-masses: it will only talk von i r g e n d w e l c h e n. or other. about any point-masses whatsoever. 6.35 Obwohl die Flecke in unserem Bild Although the spots in our picture are Although the spots in our picture are geometrische Figuren sind, so kann doch geometrical figures, geometry can obvi- geometrical figures, nevertheless geomeselbstverständlich die Geometrie gar ously say nothing about their actual form try can obviously say nothing at all about nichts über ihre tatsächliche Form und and position. But the network is purely their actual form and position. The netLage sagen. Das Netz aber ist r e i n geo- geometrical, and all its properties can be work, however, is purely geometrical; all metrisch, alle seine Eigenschaften kön- given a priori. its properties can be given a priori. nen a priori angegeben werden. Gesetze wie der Satz vom Grunde, etc. Laws, like the law of causation, etc., Laws like the principle of sufficient handeln vom Netz, nicht von dem, was treat of the network and not what the reason, etc. are about the net and not das Netz beschreibt. network describes. about what the net describes. 6.36 Wenn es ein Kausalitätsgesetz gäbe, If there were a law of causality, it If there were a law of causality, it so könnte es lauten: „Es gibt Naturgeset- might run: “There are natural laws”. might be put in the following way: There ze“. are laws of nature. Aber freilich kann man das nicht sa- But that can clearly not be said: it But of course that cannot be said: it gen: es zeigt sich. shows itself. makes itself manifest. 6.361 In der Ausdrucksweise Hertz’s könn- In the terminology of Hertz we might One might say, using Hertz’s terminolte man sagen: Nur g e s e t z m ä ß i g e say: Only uniform connections are think- ogy, that only connexions that are subject Zusammenhänge sind d e n k b a r. able. to law are thinkable. 6.3611 Wir können keinen Vorgang mit dem We cannot compare any process with We cannot compare a process with ‘the „Ablauf der Zeit“ vergleichen—diesen gibt the “passage of time”—there is no such passage of time’—there is no such thing— es nicht—, sondern nur mit einem an- thing—but only with another process (say, but only with another process (such as deren Vorgang (etwa mit dem Gang des with the movement of the chronometer). the working of a chronometer). Chronometers). Daher ist die Beschreibung des zeit- Hence the description of the temporal Hence we can describe the lapse of lichen Verlaufs nur so möglich, dass wir sequence of events is only possible if we time only by relying on some other prouns auf einen anderen Vorgang stützen. support ourselves on another process. cess. 105 Ganz Analoges gilt für den Raum. Wo It is exactly analogous for space. Something exactly analogous applies man z. B. sagt, es könne keines von zwei When, for example, we say that neither of to space: e.g. when people say that neiEreignissen (die sich gegenseitig aus- two events (which mutually exclude one ther of two events (which exclude one anschließen) eintreten, weil k e i n e U r - another) can occur, because there is no other) can occur, because there is nothing s a c h e vorhanden sei, warum das eine cause why the one should occur rather to cause the one to occur rather than the eher als das andere eintreten solle, da than the other, it is really a matter of other, it is really a matter of our being handelt es sich in Wirklichkeit darum, our being unable to describe one of the unable to describe one of the two events dass man gar nicht e i n e s der beiden two events unless there is some sort of unless there is some sort of asymmetry Ereignisse beschreiben kann, wenn nicht asymmetry. And if there is such an asym- to be found. And if such an asymmetry irgend eine Asymmetrie vorhanden ist. metry, we can regard this as the cause is to be found, we can regard it as the Und w e n n eine solche Asymmetrie vor- of the occurrence of the one and of the cause of the occurrence of the one and the handen i s t, so können wir diese als U r - non-occurrence of the other. non-occurrence of the other. s a c h e des Eintreffens des einen und Nicht- Eintreffens des anderen auffassen. 6.36111 Das Kant’sche Problem von der rech- The Kantian problem of the right and Kant’s problem about the right hand ten und linken Hand, die man nicht zur left hand which cannot be made to cover and the left hand, which cannot be made Deckung bringen kann, besteht schon in one another already exists in the plane, to coincide, exists even in two dimensions. der Ebene, ja im eindimensionalen Raum, and even in one-dimensional space; where Indeed, it exists in one-dimensional space wo die beiden kongruenten Figuren a und the two congruent figures a and b canb auch nicht zur Deckung gebracht wer- not be made to cover one another without den können, ohne aus diesem Raum a × × b a × × b a × × b herausbewegt zu werden. Rechte und lin- moving them out of this space. The right in which the two congruent figures, a and ke Hand sind tatsächlich vollkommen and left hand are in fact completely con- b, cannot be made to coincide unless they kongruent. Und dass man sie nicht zur gruent. And the fact that they cannot be are moved out of this space. The right Deckung bringen kann, hat damit nichts made to cover one another has nothing to hand and the left hand are in fact comzu tun. do with it. pletely congruent. It is quite irrelevant that they cannot be made to coincide. Den rechten Handschuh könnte man A right-hand glove could be put on a A right-hand glove could be put on the an die linke Hand ziehen, wenn man ihn left hand if it could be turned round in left hand, if it could be turned round in im vierdimensionalen Raum umdrehen four-dimensional space. four-dimensional space. könnte. 6.362 Was sich beschreiben lässt, das kann What can be described can happen too, What can be described can happen too: auch geschehen, und was das Kausalitäts- and what is excluded by the law of causal- and what the law of causality is meant to gesetz ausschließen soll, das lässt sich ity cannot be described. exclude cannot even be described. 106 auch nicht beschreiben. 6.363 Der Vorgang der Induktion besteht The process of induction is the process The procedure of induction consists in darin, dass wir das e i n f a c h s t e Ge- of assuming the simplest law that can be accepting as true the simplest law that setz annehmen, das mit unseren Erfah- made to harmonize with our experience. can be reconciled with our experiences. rungen in Einklang zu bringen ist. 6.3631 Dieser Vorgang hat aber keine logi- This process, however, has no logical This procedure, however, has no logische, sondern nur eine psychologische Be- foundation but only a psychological one. cal justification but only a psychological gründung. one. Es ist klar, dass kein Grund vorhan- It is clear that there are no grounds It is clear that there are no grounds den ist, zu glauben, es werde nun auch for believing that the simplest course of for believing that the simplest eventuality wirklich der einfachste Fall eintreten. events will really happen. will in fact be realized. 6.36311 Dass die Sonne morgen aufgehen That the sun will rise to-morrow, is an It is an hypothesis that the sun will wird, ist eine Hypothese; und das heißt: hypothesis; and that means that we do rise tomorrow: and this means that we do wir w i s s e n nicht, ob sie aufgehen wird. not know whether it will rise. not know whether it will rise. 6.37 Einen Zwang, nach dem Eines gesche- A necessity for one thing to happen There is no compulsion making one hen müsste, weil etwas anderes gesche- because another has happened does not thing happen because another has haphen ist, gibt es nicht. Es gibt nur eine exist. There is only logical necessity. pened. The only necessity that exists is l o g i s c h e Notwendigkeit. logical necessity 6.371 Der ganzen modernen Weltanschau- At the basis of the whole modern view The whole modern conception of the ung liegt die Täuschung zugrunde, dass of the world lies the illusion that the so- world is founded on the illusion that the die sogenannten Naturgesetze die Erklä- called laws of nature are the explanations so-called laws of nature are the explanarungen der Naturerscheinungen seien. of natural phenomena. tions of natural phenomena. 6.372 So bleiben sie bei den Naturgesetzen So people stop short at natural laws Thus people today stop at the laws of als bei etwas Unantastbarem stehen, wie as something unassailable, as did the an- nature, treating them as something inviodie Älteren bei Gott und dem Schicksal. cients at God and Fate. lable, just as God and Fate were treated in past ages. Und sie haben ja beide Recht, und Un- And they are both right and wrong. And in fact both are right and both recht. Die Alten sind allerdings insofern but the ancients were clearer, in so far wrong: though the view of the ancients klarer, als sie einen klaren Abschluss an- as they recognized one clear terminus, is clearer in so far as they have a clear erkennen, während es bei dem neuen Sy- whereas the modern system makes it and acknowledged terminus, while the stem scheinen soll, als sei a l l e s erklärt. appear as though everything were ex- modern system tries to make it look as if plained. everything were explained. 6.373 Die Welt ist unabhängig von meinem The world is independent of my will. The world is independent of my will. Willen. 6.374 Auch wenn alles, was wir wünschen, Even if everything we wished were to Even if all that we wish for were to geschähe, so wäre dies doch nur, sozusa- happen, this would only be, so to speak, happen, still this would only be a favour gen, eine Gnade des Schicksals, denn es a favour of fate, for there is no logical granted by fate, so to speak: for there is 107 ist kein l o g i s c h e r Zusammenhang connexion between will and world, which no logical connexion between the will and zwischen Willen und Welt, der dies ver- would guarantee this, and the assumed the world, which would guarantee it, and bürgte, und den angenommenen physika- physical connexion itself we could not the supposed physical connexion itself is lischen Zusammenhang könnten wir doch again will. surely not something that we could will. nicht selbst wieder wollen. 6.375 Wie es nur eine l o g i s c h e Notwen- As there is only a logical necessity, so Just as the only necessity that exists digkeit gibt, so gibt es auch nur eine l o - there is only a logical impossibility. is logical necessity, so too the only imposg i s c h e Unmöglichkeit. sibility that exists is logical impossibility. 6.3751 Dass z. B. zwei Farben zugleich an For two colours, e.g. to be at one place For example, the simultaneous preseinem Ort des Gesichtsfeldes sind, ist in the visual field, is impossible, logically ence of two colours at the same place in unmöglich, und zwar logisch unmöglich, impossible, for it is excluded by the logical the visual field is impossible, in fact logdenn es ist durch die logische Struktur structure of colour. ically impossible, since it is ruled out by der Farbe ausgeschlossen. the logical structure of colour. Denken wir daran, wie sich dieser Wi- Let us consider how this contradic- Let us think how this contradiction apderspruch in der Physik darstellt: Unge- tion presents itself in physics. Somewhat pears in physics: more or less as follows— fähr so, dass ein Teilchen nicht zu glei- as follows: That a particle cannot at the a particle cannot have two velocities at cher Zeit zwei Geschwindigkeiten haben same time have two velocities, i.e. that at the same time; that is to say, it cannot be kann; das heißt, dass es nicht zu gleicher the same time it cannot be in two places, in two places at the same time; that is to Zeit an zwei Orten sein kann; das heißt, i.e. that particles in different places at the say, particles that are in different places dass Teilchen an verschiedenen Orten zu same time cannot be identical. at the same time cannot be identical. Einer Zeit nicht identisch sein können. (Es ist klar, dass das logische Produkt It is clear that the logical product of (It is clear that the logical product of zweier Elementarsätze weder eine Tauto- two elementary propositions can neither two elementary propositions can neither logie noch eine Kontradiktion sein kann. be a tautology nor a contradiction. The be a tautology nor a contradiction. The Die Aussage, dass ein Punkt des Gesichts- assertion that a point in the visual field statement that a point in the visual field feldes zu gleicher Zeit zwei verschiedene has two different colours at the same time, has two different colours at the same time Farben hat, ist eine Kontradiktion.) is a contradiction. is a contradiction.) 6.4 Alle Sätze sind gleichwertig. All propositions are of equal value. All propositions are of equal value. 6.41 Der Sinn der Welt muss außerhalb ih- The sense of the world must lie out- The sense of the world must lie outrer liegen. In der Welt ist alles, wie es ist, side the world. In the world everything is side the world. In the world everything und geschieht alles, wie es geschieht; es as it is and happens as it does happen. In is as it is, and everything happens as it gibt i n ihr keinen Wert—und wenn es it there is no value—and if there were, it does happen: in it no value exists—and if ihn gäbe, so hätte er keinen Wert. would be of no value. it did exist, it would have no value. Wenn es einen Wert gibt, der Wert hat, If there is a value which is of value, it If there is any value that does have so muss er außerhalb alles Geschehens must lie outside all happening and being- value, it must lie outside the whole sphere und So-Seins liegen. Denn alles Gesche- so. For all happening and being-so is acci- of what happens and is the case. For all hen und So-Sein ist zufällig. dental. that happens and is the case is accidental. 108 Was es nichtzufällig macht, kann What makes it non-accidental cannot What makes it non-accidental cannot nicht i n der Welt liegen, denn sonst wäre lie in the world, for otherwise this would lie within the world, since if it did it would dies wieder zufällig. again be accidental. itself be accidental. Es muss außerhalb der Welt liegen. It must lie outside the world. It must lie outside the world. 6.42 Darum kann es auch keine Sätze der Hence also there can be no ethical So too it is impossible for there to be Ethik geben. propositions. propositions of ethics. Sätze können nichts Höheres aus- Propositions cannot express anything Propositions can express nothing that drücken. higher. is higher. 6.421 Es ist klar, dass sich die Ethik nicht It is clear that ethics cannot be ex- It is clear that ethics cannot be put aussprechen lässt. pressed. into words. Die Ethik ist transzendental. Ethics is transcendental. Ethics is transcendental. (Ethik und Ästhetik sind Eins.) (Ethics and æsthetics are one.) (Ethics and aesthetics are one and the same.) 6.422 Der erste Gedanke bei der Aufstellung The first thought in setting up an ethi- When an ethical law of the form, ‘Thou eines ethischen Gesetzes von der Form cal law of the form “thou shalt . . . ” is: And shalt . . . ’ is laid down, one’s first thought „Du sollst . . . “ ist: Und was dann, wenn what if I do not do it? But it is clear that is, ‘And what if I do not do it?’ It is ich es nicht tue? Es ist aber klar, dass die ethics has nothing to do with punishment clear, however, that ethics has nothing Ethik nichts mit Strafe und Lohn im ge- and reward in the ordinary sense. This to do with punishment and reward in the wöhnlichen Sinne zu tun hat. Also muss question as to the consequences of an ac- usual sense of the terms. So our question diese Frage nach den F o l g e n einer tion must therefore be irrelevant. At least about the consequences of an action must Handlung belanglos sein.—Zum Minde- these consequences will not be events. For be unimportant.—At least those consesten dürfen diese Folgen nicht Ereignisse there must be something right in that for- quences should not be events. For there sein. Denn etwas muss doch an jener Fra- mulation of the question. There must be must be something right about the quesgestellung richtig sein. Es muss zwar ei- some sort of ethical reward and ethical tion we posed. There must indeed be ne Art von ethischem Lohn und ethischer punishment, but this must lie in the ac- some kind of ethical reward and ethical Strafe geben, aber diese müssen in der tion itself. punishment, but they must reside in the Handlung selbst liegen. action itself. (Und das ist auch klar, dass der Lohn (And this is clear also that the reward (And it is also clear that the reward etwas Angenehmes, die Strafe etwas Un- must be something acceptable, and the must be something pleasant and the punangenehmes sein muss.) punishment something unacceptable.) ishment something unpleasant.) 6.423 Vom Willen als dem Träger des Ethi- Of the will as the subject of the ethical It is impossible to speak about the will schen kann nicht gesprochen werden. we cannot speak. in so far as it is the subject of ethical at- tributes. Und der Wille als Phänomen interes- And the will as a phenomenon is only And the will as a phenomenon is of siert nur die Psychologie. of interest to psychology. interest only to psychology. 6.43 Wenn das gute oder böse Wollen die If good or bad willing changes the If the good or bad exercise of the will Welt ändert, so kann es nur die Gren- world, it can only change the limits of does alter the world, it can alter only the 109 zen der Welt ändern, nicht die Tatsachen; the world, not the facts; not the things limits of the world, not the facts—not nicht das, was durch die Sprache ausge- that can be expressed in language. what can be expressed by means of landrückt werden kann. guage. Kurz, die Welt muss dann dadurch In brief, the world must thereby be- In short the effect must be that it beüberhaupt eine andere werden. Sie muss come quite another, it must so to speak comes an altogether different world. It sozusagen als Ganzes abnehmen oder zu- wax or wane as a whole. must, so to speak, wax and wane as a nehmen. whole. Die Welt des Glücklichen ist eine an- The world of the happy is quite an- The world of the happy man is a difdere als die des Unglücklichen. other than that of the unhappy. ferent one from that of the unhappy man. 6.431 Wie auch beim Tod die Welt sich nicht As in death, too, the world does not So too at death the world does not aländert, sondern aufhört. change, but ceases. ter, but comes to an end. 6.4311 Der Tod ist kein Ereignis des Lebens. Death is not an event of life. Death is Death is not an event in life: we do Den Tod erlebt man nicht. not lived through. not live to experience death. Wenn man unter Ewigkeit nicht un- If by eternity is understood not end- If we take eternity to mean not infiendliche Zeitdauer, sondern Unzeitlich- less temporal duration but timelessness, nite temporal duration but timelessness, keit versteht, dann lebt der ewig, der in then he lives eternally who lives in the then eternal life belongs to those who live der Gegenwart lebt. present. in the present. Unser Leben ist ebenso endlos, wie Our life is endless in the way that our Our life has no end in just the way in unser Gesichtsfeld grenzenlos ist. visual field is without limit. which our visual field has no limits. 6.4312 Die zeitliche Unsterblichkeit der See- The temporal immortality of the hu- Not only is there no guarantee of the le des Menschen, das heißt also ihr ewiges man soul, that is to say, its eternal sur- temporal immortality of the human soul, Fortleben auch nach dem Tode, ist nicht vival also after death, is not only in no that is to say of its eternal survival afnur auf keine Weise verbürgt, sondern way guaranteed, but this assumption in ter death; but, in any case, this assumpvor allem leistet diese Annahme gar nicht the first place will not do for us what we tion completely fails to accomplish the das, was man immer mit ihr erreichen always tried to make it do. Is a riddle purpose for which it has always been inwollte. Wird denn dadurch ein Rätsel ge- solved by the fact that I survive for ever? tended. Or is some riddle solved by my löst, dass ich ewig fortlebe? Ist denn die- Is this eternal life not as enigmatic as our surviving for ever? Is not this eternal life ses ewige Leben dann nicht ebenso rätsel- present one? The solution of the riddle of itself as much of a riddle as our present haft wie das gegenwärtige? Die Lösung life in space and time lies outside space life? The solution of the riddle of life des Rätsels des Lebens in Raum und Zeit and time. in space and time lies outside space and liegt a u ß e r h a l b von Raum und Zeit. time. (Nicht Probleme der Naturwissen- (It is not problems of natural science (It is certainly not the solution of any schaft sind ja zu lösen.) which have to be solved.) problems of natural science that is re- quired.) 6.432 W i e die Welt ist, ist für das Höhere How the world is, is completely indif- How things are in the world is a matvollkommen gleichgültig. Gott offenbart ferent for what is higher. God does not ter of complete indifference for what is sich nicht i n der Welt. reveal himself in the world. higher. God does not reveal himself in the 110 world. 6.4321 Die Tatsachen gehören alle nur zur The facts all belong only to the task The facts all contribute only to setting Aufgabe, nicht zur Lösung. and not to its performance. the problem, not to its solution. 6.44 Nicht w i e die Welt ist, ist das Mysti- Not how the world is, is the mystical, It is not how things are in the world sche, sondern d a s s sie ist. but that it is. that is mystical, but that it exists. 6.45 Die Anschauung der Welt sub spe- The contemplation of the world sub To view the world sub specie aeterni cie aeterni ist ihre Anschauung als— specie aeterni is its contemplation as a is to view it as a whole—a limited whole. begrenztes—Ganzes. limited whole. Das Gefühl der Welt als begrenztes The feeling that the world is a limited Feeling the world as a limited whole— Ganzes ist das mystische. whole is the mystical feeling. it is this that is mystical. 6.5 Zu einer Antwort, die man nicht aus- For an answer which cannot be ex- When the answer cannot be put into sprechen kann, kann man auch die Frage pressed the question too cannot be ex- words, neither can the question be put nicht aussprechen. pressed. into words. D a s R ä t s e l gibt es nicht. The riddle does not exist. The riddle does not exist. Wenn sich eine Frage überhaupt stel- If a question can be put at all, then it If a question can be framed at all, it is len lässt, so k a n n sie auch beantwortet can also be answered. also possible to answer it. werden. 6.51 Skeptizismus ist n i c h t unwiderleg- Scepticism is not irrefutable, but pal- Scepticism is not irrefutable, but obvilich, sondern offenbar unsinnig, wenn er pably senseless, if it would doubt where a ously nonsensical, when it tries to raise bezweifeln will, wo nicht gefragt werden question cannot be asked. doubts where no questions can be asked. kann. Denn Zweifel kann nur bestehen, wo For doubt can only exist where there is For doubt can exist only where a queseine Frage besteht; eine Frage nur, wo a question; a question only where there is tion exists, a question only where an aneine Antwort besteht, und diese nur, wo an answer, and this only where something swer exists, and an answer only where etwas g e s a g t werden k a n n. can be said. something can be said. 6.52 Wir fühlen, dass, selbst wenn alle We feel that even if all possible scien- We feel that even when all possible m ö g l i c h e n wissenschaftlichen Fra- tific questions be answered, the problems scientific questions have been answered, gen beantwortet sind, unsere Lebenspro- of life have still not been touched at all. the problems of life remain completely bleme noch gar nicht berührt sind. Frei- Of course there is then no question left, untouched. Of course there are then no lich bleibt dann eben keine Frage mehr; and just this is the answer. questions left, and this itself is the anund eben dies ist die Antwort. swer. 6.521 Die Lösung des Problems des Lebens The solution of the problem of life is The solution of the problem of life is merkt man am Verschwinden dieses Pro- seen in the vanishing of this problem. seen in the vanishing of the problem. blems. (Ist nicht dies der Grund, warum Men- (Is not this the reason why men to (Is not this the reason why those who schen, denen der Sinn des Lebens nach whom after long doubting the sense of life have found after a long period of doubt langen Zweifeln klar wurde, warum diese became clear, could not then say wherein that the sense of life became clear to them 111 dann nicht sagen konnten, worin dieser this sense consisted?) have then been unable to say what constiSinn bestand?) tuted that sense?) 6.522 Es gibt allerdings Unaussprechliches. There is indeed the inexpressible. There are, indeed, things that cannot Dies z e i g t sich, es ist das Mystische. This shows itself; it is the mystical. be put into words. They make themselves manifest. They are what is mystical. 6.53 Die richtige Methode der Philosophie The right method of philosophy would The correct method in philosophy wäre eigentlich die: Nichts zu sagen, be this: To say nothing except what can would really be the following: to say nothals was sich sagen lässt, also Sätze der be said, i.e. the propositions of natural sci- ing except what can be said, i.e. proposiNaturwissenschaft—also etwas, was mit ence, i.e. something that has nothing to do tions of natural science—i.e. something Philosophie nichts zu tun hat—, und with philosophy: and then always, when that has nothing to do with philosophy— dann immer, wenn ein anderer etwas someone else wished to say something and then, whenever someone else wanted Metaphysisches sagen wollte, ihm nach- metaphysical, to demonstrate to him that to say something metaphysical, to demonzuweisen, dass er gewissen Zeichen in he had given no meaning to certain signs strate to him that he had failed to give seinen Sätzen keine Bedeutung gegeben in his propositions. This method would be a meaning to certain signs in his propohat. Diese Methode wäre für den anderen unsatisfying to the other—he would not sitions. Although it would not be satisunbefriedigend—er hätte nicht das Ge- have the feeling that we were teaching fying to the other person—he would not fühl, dass wir ihn Philosophie lehrten— him philosophy—but it would be the only have the feeling that we were teaching aber s i e wäre die einzig streng richtige. strictly correct method. him philosophy—this method would be the only strictly correct one. 6.54 Meine Sätze erläutern dadurch, dass My propositions are elucidatory in My propositions serve as elucidations sie der, welcher mich versteht, am Ende this way: he who understands me finally in the following way: anyone who underals unsinnig erkennt, wenn er durch sie— recognizes them as senseless, when he stands me eventually recognizes them as auf ihnen—über sie hinausgestiegen ist. has climbed out through them, on them, nonsensical, when he has used them— (Er muss sozusagen die Leiter wegwerfen, over them. (He must so to speak throw as steps—to climb up beyond them. (He nachdem er auf ihr hinaufgestiegen ist.) away the ladder, after he has climbed up must, so to speak, throw away the ladder on it.) after he has climbed up it.) Er muss diese Sätze überwinden, He must surmount these propositions; He must transcend these propositions, dann sieht er die Welt richtig. then he sees the world rightly. and then he will see the world aright. 7 Wovon man nicht sprechen kann, dar- Whereof one cannot speak, thereof one What we cannot speak about we must über muss man schweigen. must be silent. pass over in silence. 112 Index (Pears/McGuinness) [Original note by Pears and McGuinness.] The translators’ aim has been to include all the more interesting words, and, in each case, either to give all the occurrences of a word, or else to omit only a few unimportant ones. Paragraphs in the preface are referred to as P1, P2, etc. Propositions are indicated by numbers without points [—the points have been restored for the side-by-side-by-side edition—]; more than two consecutive propositions, by two numbers joined by an en-rule, as 202– 2021. In the translation it has sometimes been necessary to use different English expressions for the same German expression or the same English expression for different German expressions. The index contains various devices designed to make it an informative guide to the German terminology and, in particular, to draw attention to some important connexions between ideas that are more difficult to bring out in English than in German. First, when a German expression is of any interest in itself, it is given in brackets after the English expression that translates it, e.g. situation [Sachlage]; also, whenever an English expression is used to translate more than one German expression, each of the German expressions is given separately in numbered brackets, and is followed by the list of passages in which it is translated by the English expression, e.g. reality 1. [Realität], 55561, etc. 2. [Wirklichkeit], 206, etc. Secondly, the German expressions given in this way sometimes have two or more English translations in the text; and when this is so, if the alternative English translations are of interest, they follow the German expression inside the brackets, e.g. proposition [Satz: law; principle]. The alternative translations recorded by these two devices are sometimes given in an abbreviated way. For a German expression need not actually be translated by the English expressions that it follows or precedes, as it is in the examples above. The relationship may be more complicated. For instance, the German expression may be only part of a phrase that is translated by the English expression, e.g. stand in a relation to one another; are related [sich verhalten: stand, how things; state of things]. Thirdly, cross-references have been used to draw attention to other important connexions between ideas, e.g. true, cf. correct; right: and a priori, cf. advance, in. In subordinate entries and cross-references the catchword is indicated by ∼, unless the catchword contains /, in which case the part preceding / is so indicated, e.g. accident; ∼al for accident; accidental, and state of /affairs; ∼ things for state of affairs; state of things. Cross-references relate to the last preceding entry or numbered bracket. When references are given both for a word in its own right and for a phrase containing it, occurrences of the latter are generally not also counted as occurrences of the former, so that both entries should be consulted. about [von etwas handeln: concerned with; deal with; subject-matter], 3.24, 5.44, 6.35; cf. mention; speak; talk. abstract, 5.5563 accident; ∼al [Zufall], 2.012, 2.0121, 3.34, 5.4733, 6.031, 6.1231, 6.1232, 6.3, 6.41 action, 5.1362, 6.422 activity, 4.112 addition, cf. logical. adjectiv/e; ∼al, 3.323, 5.4733 advance, in [von vornherein], 5.47, 6.125; cf. a priori. aesthetics, 6.421 affirmation [Bejahung], 4.064, 5.124, 5.1241, 5.44, 5.513, 5.514, 6.231 affix, [Index], 4.0411, 5.02 agreement 1. [stimmmen: right; true], 5.512 2. [Übereinstimmmung], 2.21, 2.222, 4.2, 4.4, 4.42–4.431, 4.462 analysis [Analyse], 3.201, 3.25, 3.3442, 4.1274, 4.221, 5.5562; cf. anatomize; dissect; resolve. analytic, 6.11 anatomize [auseinanderlegen], 3.261 ; cf. analysis. answer, 4.003, 4.1274, 5.4541, 5.55, 5.551, 6.5–6.52 apparent, 4.0031, 5.441, 5.461; cf. pseudo–. application [Anwendung: employment], 3.262, 3.5, 5.2521, 5.2523, 5.32, 5.5, 5.5521, 5.557, 6.001, 6.123, 6.126 a priori, 2.225, 3.04, 3.05, 5.133, 5.4541, 5.4731, 5.55, 5.5541, 5.5571, 5.634, 6.31, 6.3211, 6.33, 6.34, 6.35; cf. advance, in. arbitrary, 3.315, 3.322, 3.342, 3.3442, 5.02, 113 5.473, 5.47321, 5.554, 6.124, 6.1271 argument, 3.333, 4.431, 5.02, 5.251, 5.47, 5.523, 5.5351; cf. truth-argument. ∼-place, 2.0131, 4.0411, 5.5351 arithmetic, 4.4611, 5.451 arrow, 3.144, 4.461 articulated [artikuliert] 3.141, 3.251; cf. segmented. ascribe [aussagen: speak; state; statement; tell] 4.1241 assert 1. [behaupten], 4.122, 4.21, 6.2322 2. [zusprechen], 4.124 asymmetry, 6.3611 axiom, 6.341 ∼ of infinity, 5.535 ∼ of reducibility, 6.1232, 6.1233 bad, 6.43 basis, 5.21, 5.22, 5.234, 5.24, 5.25, 5.251, 5.442, 5.54 beautiful, 4.003 belief, 5.1361, 5.1363, 5.541, 5.542, 6.33, 6.3631 bound; ∼ary [Grenze: delimit; limit], 4.112, 4.463 brackets, 4.441, 5.46, 5.461 build [Bau: construction], 6.341 calculation, 6.126, 6.2331 cardinal, cf. number. case, be the 1. [der Fall sein], 1, 1.12, 1.21, 2, 2.024, 3.342, 4.024, 5.1362, 5.5151, 5.541, 5.5542, 6.23 2. [So-Sein], 6.41 causality, 5.136–5.1362, 6.32, 6.321, 6.36, 6.3611, 6.362; cf. law. certainty [Gewißheit], 4.464, 5.152, 5.156, 5.525, 6.3211 chain, 2.03; cf. concatenation. clarification, 4.112 class [Klasse: set]. 3.311, 3.315, 4.1272, 6.031 clear, P2, 3.251, 4.112, 4.115, 4.116 make ∼ [erklären: definition; explanation], 5.452 colour, 2.0131, 2.0232, 2.0251, 2.171, 4.123, 6.3751 ∼-space, 2.0131 combination 1. [Kombination], 4.27, 4.28, 5.46; cf. rule, combinatory; truth-∼. 2. [Verbindung: connexion], 2.01, 2.0121, 4.0311, 4.221, 4.466, 4.4661, 5.131, 5.451, 5.515, 6.12, 6.1201, 6.121, 6.1221, 6.124, 6.23, 6.232; cf. sign. common, 2.022, 2.16, 2.17, 2.18, 2.2, 3.31, 3.311, 3.317, 3.321, 3.322, 3.333, 3.341, 3.3411, 3.343–3.3441, 4.014, 4.12, 5.11, 5.143, 5.152, 5.24, 5.47, 5.4733, 5.512, 5.513, 5.5261, 6.022 comparison, 2.223, 3.05, 4.05, 6.2321, 6.3611 complete 1. [vollkommen: folly], 5.156 2. [vollstädig], 5.156; analyse ∼ly, 3.201, 3.25; describe ∼ly, 2.0201, 4.023, 4.26, 5.526, 6.342 complex, 2.0201, 3.1432, 3.24, 3.3442, 4.1272, 4.2211, 4.441, 5.515, 5.5423 composite [zummmengesetzt], 2.021, 3.143, 3.1431, 3.3411, 4.032, 4.2211, 5.47, 5.5261, 5.5421, 5.55 compulsion, 6.37 concatenation [Verkettung], 4.022; cf. chain. concept [Begriff: primitive idea], 4.063, 4.126–4.1274, 4.431, 5.2523, 5.521, 5.555, 6.022; cf. formal ∼; pseudo-∼. ∼ual notation [Begriffsschrift], 3.325, 4.1272, 4.1273, 4.431, 5.533, 5.534 ∼-word, 4.1272 concerned with [von etwas handeln: about; deal with; subject-matter], 4.011, 4.122 concrete, 5.5563 condition, 4.41, 4.461, 4.462; cf. truth-∼. configuration, 2.0231, 2.0271, 2.0272, 3.21 connexion 1. [Verbindung: combination], 6.124, 6.232 2. [Zusammenhang: nexus], 2.0122, 2.032, 2.15, 4.03, 5.1311, 5.1362, 6.361, 6.374 consequences, 6.422 conservation, cf. law. constant, 3.312, 3.313, 4.126, 4.1271, 5.501, 5.522; cf. logical ∼. constituent [Bestandteil], 2.011, 2.0201, 3.24, 3.315, 3.4, 4.024, 4.025, 5.4733, 5.533, 5.5423, 6.12 construct [bilden], 4.51, 5.4733, 5.475, 5.501, 5.503, 5.512, 5.514, 5.5151, 6.126, 6.1271 construction 1. [Bau: build], 4.002, 4.014, 5.45, 5.5262, 6.002 2. [Konstruktion], 4.023, 4.5, 5.233, 5.556, 6.343 contain [enthalten], 2.014, 2.203, 3.02, 3.13, 3.24, 3.332, 3.333, 5.121, 5.122, 5.44, 5.47 content 1. [Gehalt], 6.111 2. [Inhalt], 2.025, 3.13, 3.31 continuity, cf. law. contradiction 1. [Kontradiktion], 4.46–4.4661 , 5.101, 114 5.143, 5.152, 5.525, 6.1202, 6.3751 2. [Widerspruch], 3.032, 4.1211, 4.211, 5.1241, 6.1201, 6.3751; cf. law of ∼. convention 1. [Abmachung], 4.002 2. [Übereinkunft], 3.315, 5.02 co-ordinate, 3.032, 3.41, 3.42, 5.64 copula, 3.323 correct [richtig], 2.17, 2.173, 2.18, 2.21, 3.04, 5.5302, 5.62, 6.2321; cf. incorrect; true. correlate [zuordnen], 2.1514, 2.1515, 4.43, 4.44, 5.526, 5.542, 6.1203 correspond [entsprechen], 2.13, 3.2, 3.21, 3.315, 4.0621, 4.063, 4.28, 4.441, 4.466, 5.5542 creation, 3.031, 5.123 critique of language, 4.0031 cube, 5.5423 Darwin, 4.1122 deal with [von etwas handeln: about; concerned with; subject-matter], 2.0121 death, 6.431–6.4312 deduce [folgern], 5.132–5.134; cf. infer. definition 1. [Definition], 3.24, 3.26–3.262, 3.343, 4.241, 5.42, 5.451, 5.452, 5.5302, 6.02 2. [Erklärung: clear, make; explanation], 5.154 delimit [begrenzen: bound; limit], 5.5262 depiction [Abbildung: form, logico-pictorial; form, pictorial; pictorial], 2.16–2.172, 2.18, 2.19, 2.2, 2.201, 4.013, 4.014, 4.015, 4.016, 4.041 derive [ableiten], 4.0141, 4.243, 6.127, 6.1271; cf. infer. description [Beschreibung], 2.0201, 2.02331, 3.144, 3.24, 3.317, 3.33, 4.016, 4.023, 4.0641, 4.26, 4.5, 5.02 ∼ of the world [Weltb.], 6.341, 6.343, 6.3432 designate [bezeichnen: sign; signify], 4.063 determin/ate [bestimmt], 2.031, 2.032, 2.14, 2.15, 3.14, 3.23, 3.251, 4.466, 6.124; cf. indeterminateness; undetermined. ∼e, 1.11, 1.12, 2.0231, 2.05, 3.327, 3.4, 3.42, 4.063, 4.0641, 4.431, 4.463 difference [Verschiedenheit], 2.0233, 5.135, 5.53, 6.232, 6.3751 display [aufweisen], 2.172, 4.121; cf. show. dissect [zerlegen], 3.26; cf. analysis. doctrine [Lehre: theory], 4.112, 6.13 doubt, 6.51, 6.521 dualism, 4.128 duration, 6.4311 dynamical model, 4.04 effort, least, cf. law. element, 2.13–2.14, 2.15, 2.151, 2.1514, 2.1515, 3.14, 3.2, 3.201, 3.24, 3.42 ∼ary proposition [Elementarsatz], 4.21–4.221, 4.23, 4.24, 4.243–4.26, 4.28–4.42, 4.431, 4.45, 4.46, 4.51, 4.52, 5, 5.01, 5.101, 5.134, 5.152, 5.234, 5.3–5.32, 5.41, 5.47, 5.5, 5.524, 5.5262, 5.55, 5.555–5.5571, 6.001, 6.124, 6.3751 elucidation [Erläuterung], 3.263, 4.112, 6.54 empirical, 5.5561 employment 1. [Anwendung: application], 3.202, 3.323, 5.452 2. [Verwendung: use], 3.327 enumeration, 5.501 equal value, of [gleichwertig], 6.4 equality/, numerical [Zahlengleichheit], 6.022 sign of ∼ [Gleichheitszeichen: identity, sign for], 6.23, 6.232 equation [Gleichung], 4.241, 6.2, 6.22, 6.232, 6.2323, 6.2341, 6.24 equivalent, cf. meaning, ∼ n. [äquivalent], 5.232, 5.2523, 5.47321, 5.514, 6.1261 essence [Wesen], 2.011, 3.143, 3.1431, 3.31, 3.317, 3.34–3.3421, 4.013, 4.016, 4.027, 4.03, 4.112, 4.1121, 4.465, 4.4661, 4.5, 5.3, 5.471, 5.4711, 5.501, 5.533, 6.1232, 6.124, 6.126, 6.127, 6.232, 6.2341 eternity, 6.4311, 6.4312; cf. sub specie aeterni. ethics, 6.42–6.423 everyday language [Umgangssprache], 3.323, 4.002, 5.5563 existence 1. [Bestehen: hold; subsist], 2, 2.0121, 2.04–2.06, 2.062, 2.11, 2.201, 4.1, 4.122, 4.124, 4.125, 4.2, 4.21, 4.25, 4.27, 4.3, 5.131, 5.135 2. [Existenz], 3.032, 3.24, 3.323, 3.4, 3.411, 4.1274, 5.5151 experience [Erfahrung] 5.552, 5.553, 5.634, 6.1222, 6.363 explanation [Erklärung: clear, make; definition], 3.263, 4.02, 4.021, 4.026, 4.431, 5.5422, 6.371, 6.372 exponent, 6.021 expression [Ausdruck: say], P3, 3.1, 3.12, 3.13, 3.142, 3.1431, 3.2, 3.24, 3.251, 3.262, 3.31–3.314, 3.318, 3.323, 3.33, 3.34, 3.341, 3.3441, 4.002, 4.013, 4.03, 4.0411, 4.121, 4.124, 4.125, 4.126, 4.1272, 4.1273, 4.241, 4.4, 4.43, 4.431, 4.441, 4.442, 4.5, 5.131, 5.22, 5.24, 5.242, 5.31, 5.476, 5.503, 5.5151, 5.525, 5.53, 5.5301, 5.535, 5.5352, 6.124, 6.1264, 6.21, 6.23, 6.232–6.2323, 6.24 mode of ∼ [Ausdrucksweise], 4.015, 5.21, 115 5.526 external, 2.01231, 2.0233, 4.023, 4.122, 4.1251 fact [Tatsache], 1.1–1.2, 2, 2.0121, 2.034, 2.06, 2.1, 2.141, 2.16, 3, 3.14, 3.142, 3.143, 4.016, 4.0312, 4.061, 4.063, 4.122, 4.1221, 4.1272, 4.2211, 4.463, 5.156, 5.43, 5.5151, 5.542, 5.5423, 6.2321, 6.43, 6.4321; cf. negative ∼. fairy tale, 4.014 false [falsch: incorrect], 2.0212, 2.21, 2.22, 2.222–2.224, 3.24, 4.003, 4.023, 4.06–4.063, 4.25, 4.26, 4.28, 4.31, 4.41, 4.431, 4.46, 5.512, 5.5262, 5.5351, 6.111, 6.113, 6.1203; cf. wrong. fate, 6.372, 6.374 feature [Zug], 3.34, 4.1221, 4.126 feeling, 4.122, 6.1232, 6.45 finite, 5.32 follow, 4.1211, 4.52, 5.11–5.132, 5.1363–5.142, 5.152, 5.43, 6.1201, 6.1221, 6.126 foresee, 4.5, 5.556 form [Form], 2.0122, 2.0141, 2.022–2.0231, 2.025–2.026, 2.033, 2.18, 3.13, 3.31, 3.312, 3.333, 4.002, 4.0031, 4.012, 4.063, 4.1241, 4.1271, 4.241, 4.242, 4.5, 5.131, 5.156, 5.231, 5.24, 5.241, 5.2522, 5.451, 5.46, 5.47, 5.501, 5.5351, 5.542, 5.5422, 5.55, 5.554, 5.5542, 5.555, 5.556, 5.6331, 6, 6.002, 6.01, 6.022, 6.03, 6.1201, 6.1203, 6.1224, 6.1264, 6.32, 6.34–6.342, 6.35, 6.422; cf. ∼al; general ∼; propositional ∼; series of ∼s. logical ∼, 2.0233, 2.18, 2.181, 2.2, 3.315, 3.327, 4.12, 4.121, 4.128, 5.555, 6.23, 6.33 logico-pictorial ∼ [logische Form der Abbildung], 2.2 pictorial ∼ [Form der Abbildung: depiction; pictorial], 2.15, 2.151, 2.17, 2.172, 2.181, 2.22 representational ∼ [Form der Darstellung: present; represent], 2.173, 2.174 formal [formal], 4.122, 5.501 ∼ concept, 4.126–4.1273 ∼ property, 4.122, 4.124, 4.126, 4.1271, 5.231, 6.12, 6.122 ∼ relation [Relation], 4.122, 5.242 formulate [angeben: give; say], 5.5563 free will, 5.1362 Frege, P6, 3.143, 3.318, 3.325, 4.063, 4.1272, 4.1273, 4.431, 4.442, 5.02, 5.132, 5.4, 5.42, 5.451, 5.4733, 5.521, 6.1271, 6.232 fully [vollkommen: complete], ∼ generalized, 5.526, 5.5261 function [Funktion], 3.318, 3.333, 4.126, 4.1272, 4.12721, 4.24, 5.02, 5.2341, 5.25, 5.251, 5.44, 5.47, 5.501, 5.52, 5.5301; cf. truth-∼. Fundamental Laws of Arithmetic [Grundgesetze der Arithmetik], 5.451; cf. primitive proposition. future, 5.1361, 5.1362 general [allgemein], 3.3441, 4.0141, 4.1273, 4.411, 5.1311, 5.156, 5.242, 5.2522, 5.454, 5.46, 5.472, 5.521, 5.5262, 6.031, 6.1231, 6.3432 ∼ form, 3.312, 4.1273, 4.5, 4.53, 5.46, 5.47, 5.471, 5.472, 5.54, 6, 6.002, 6.01, 6.022, 6.03 ∼-ity-sign, 3.24, 4.0411, 5.522, 5.523, 6.1203 ∼ validity, 6.1231, 6.1232 generalization [verallgemeinerung], 4.0411, 4.52, 5.156, 5.526, 5.5261, 6.1231 ; cf. fully. geometry, 3.032, 3.0321, 3.411, 6.35 give [angeben: formulate; say], 3.317, 4.5, 5.4711, 5.55, 5.554, 6.35 given [gegeben], 2.0124, 3.42, 4.12721, 4.51, 5.442, 5.524, 6.002, 6.124 God, 3.031, 5.123, 6.372, 6.432 good, 4.003, 6.43 grammar, cf. logical happy, 6.374 Hertz, 4.04, 6.361 hierarchy, 5.252, 5.556, 5.5561 hieroglyphic script, 4.016 higher, 6.42, 6.432 hold [bestehen: existence; subsist], 4.014 how [wie], 6.432, 6.44; cf. stand, ∼ things. ∼) (what, 3.221, 5.552 hypothesis, 4.1122, 5.5351, 6.36311 idea, cf. primitive ∼. 1. [Gedanke: thought], musical ∼, 4.014 2. [Vorstellung: present; represent], 5.631 idealist, 4.0412 identical [identisch], 3.323, 4.003, 4.0411, 5.473, 5.4733, 5.5303, 5.5352, 6.3751; cf. difference. identity [Gleichheit], 5.53 sign for ∼ [Gleichheitszeichen: equality, sign of], 3.323, 5.4733, 5.53, 5.5301, 5.533; cf. equation. illogical [unlogisch], 3.03, 3.031, 5.4731 imagine [sich etwas denken: think], 2.0121, 2.022, 4.01, 6.1233 immortality, 6.4312 impossibility [Unmöglichkeit], 4.464, 5.525, 5.5422, 6.375, 6.3751 incorrect 1. [falsch: false], 2.17, 2.173, 2.18 2. [unrichtig], 2.21 independence [Selbständigkeit], 2.0122, 3.261 independent [unabhängig], 2.024, 2.061, 2.22, 116 4.061, 5.152, 5.154, 5.451, 5.5261, 5.5561, 6.373 indeterminateness [Unbestimmtheit] 3.24 indicate 1. [anzeigen], 3.322, 6.121, 6.124 2. [auf etwas zeigen: manifest; show], 2.02331, 4.063 individuals, 5.553 induction, 6.31, 6.363 infer [schließen], 2.062, 4.023, 5.1311, 5.132, 5.135, 5.1361, 5.152, 5.633, 6.1224, 6.211; cf. deduce; derive. infinite, 2.0131, 4.2211, 4.463, 5.43, 5.535, 6.4311 infinity, cf. axiom. inner, 4.0141, 5.1311, 5.1362 internal, 2.01231, 3.24, 4.014, 4.023, 4.122–4.1252, 5.131, 5.2, 5.21, 5.231, 5.232 intuition [Anschauung], 6.233, 6.2331 intuitive [anschaulich], 6.1203 judgement [Urteil], 4.063, 5.5422 ∼-stroke [Urteilstrich], 4.442 Julius Caesar, 5.02 Kant, 6.36111 know 1. [kennen], 2.0123, 2.01231, 3.263, 4.021, 4.243, 6.2322; cf. theory of knowledge. 2. [wissen], 3.05, 3.24, 4.024, 4.461, 5.1362, 5.156, 5.5562 [—the previous entry was mistakenly listed as 5.562 in Pears and McGuinness’s original index—], 6.3211, 6.33, 6.36311 language [Sprache], P2, P4, 3.032, 3.343, 4.001–4.0031, 4.014, 4.0141, 4.025, 4.121, 4.125, 5.4731, 5.535, 5.6, 5.62, 6.12, 6.233, 6.43; cf. critique of ∼; everyday ∼; sign-∼. law 1. [Gesetz: minimum-principle; primitive proposition], 3.031, 3.032, 3.0321, 4.0141, 5.501, 6.123, 6.3–6.3211, 6.3431, 6.35, 6.361, 6.363, 6.422; ∼ of causality [Kausalitätsg.], 6.32, 6.321; ∼ of conservation [Erhaltungsg.], 6.33; ∼ of contradiction [G. des Widerspruchs], 6.1203, 6.123; ∼ of least action [G. der kleinsten Wirkung], 6.321, 6.3211; ∼ of nature [Naturg.], 5.154, 6.34, 6.36, 6.371, 6.372 2. [Satz: principle of sufficient reason; proposition], 6.34; ∼ of continuity [S. von der Kontinuität], 6.34; ∼ of least effort [S. von kleinsten Aufwande], 6.34 life, 5.621, 6.4311, 6.4312, 6.52, 6.521 limit [Grenze: bound; delimit], P3, P4, 4.113, 4.114, 4.51, 5.143, 5.5561, 5.6–5.62, 5.632, 5.641, 6.4311, 6.45 logic; ∼al, 2.012, 2.0121, 3.031, 3.032, 3.315, 3.41, 3.42, 4.014, 4.015, 4.023, 4.0312, 4.032, 4.112, 4.1121, 4.1213, 4.126, 4.128, 4.466, 5.02, 5.1362, 5.152, 5.233, 5.42, 5.43, 5.45–5.47, 5.472–5.4731, 5.47321, 5.522, 5.551–5.5521, 5.555, 5.5562–5.557, 5.61, 6.1–6.12, 6.121, 6.122, 6.1222–6.2, 6.22, 6.234, 6.3, 6.31, 6.3211, 6.342, 6.3431, 6.3631, 6.37, 6.374–6.3751; cf. form, ∼al; illogical. ∼al addition, 5.2341 ∼al constant, 4.0312, 5.4, 5.441, 5.47 ∼al grammar, 3.325 ∼al multiplication, 5.2341 ∼al object, 4.441, 5.4 ∼al picture, 2.18–2.19, 3, 4.03 ∼al place, 3.41–3.42, 4.0641 ∼al product, 3.42, 4.465, 5.521, 6.1271, 6.3751 ∼al space, 1.13, 2.11, 2.202, 3.4, 3.42, 4.463 ∼al sum, 3.42, 5.521 ∼al syntax, 3.325, 3.33, 3.334, 3.344, 6.124 ∼o-pictorial, cf. form. ∼o-syntactical, 3.327 manifest [sich zeigen: indicate; show], 4.122, 5.24, 5.4, 5.513, 5.515, 5.5561, 5.62, 6.23, 6.36, 6.522 material, 2.0231, 5.44 mathematics, 4.04–4.0411, 5.154, 5.43, 5.475, 6.031, 6.2–6.22, 6.2321, 6.233, 6.234–6.24 Mauthner, 4.0031 mean [meinen], 3.315, 4.062, 5.62 meaning [Bedeutung: signify], 3.203, 3.261, 3.263, 3.3, 3.314, 3.315, 3.317, 3.323, 3.328–3.331, 3.333, 4.002, 4.026, 4.126, 4.241–4.243, 4.466, 4.5, 5.02, 5.31 , 5.451, 5.461, 5.47321, 5.4733, 5.535, 5.55, 5.6, 5.62, 6.124, 6.126, 6.232, 6.2322, 6.53 equivalent in ∼ [Bedeutungsgleichheit], 4.243, 6.2323 ∼ful [bedeutungsvoll], 5.233 ∼less [bedeutungslos], 3.328, 4.442, 4.4661, 5.47321 mechanics, 4.04, 6.321, 6.341–6.343, 6.3432 mention [von etwas reden: talk about], 3.24, 3.33, 4.1211, 5.631, 6.3432; cf. about. metaphysical, 5.633, 5.641, 6.53 method, 3.11, 4.1121, 6.121, 6.2, 6.234–6.24, 6.53; cf. projection, ∼ of; zero-∼. 117 microcosm, 5.63 minimum-principle [Minimum-Gesetz: law], 6.321 mirror, 4.121, 5.511, 5.512, 5.514, 6.13 ∼-image [Spiegelbild: picture], 6.13 misunderstanding, P2 mode, cf. expression; signification. model, 2.12, 4.01, 4.463; cf. dynamical ∼. modus ponens, 6.1264 monism, 4.128 Moore, 5.541 multiplicity, 4.04–4.0412, 5.475 music, 3.141, 4.011, 4.014, 4.0141 mystical, 6.44, 6.45, 6.522 name 1. [Name], 3.142, 3.143, 3.144, 3.202, 3.203, 3.22, 3.26, 3.261, 3.3, 3.314, 3.3411, 4.0311, 4.126, 4.1272, 4.22, 4.221, 4.23, 4.24, 4.243, 4.5, 5.02, 5.526, 5.535, 5.55, 6.124; cf. variable ∼. general ∼ [Gattungsn.], 6.321 proper ∼ of a person [Personenn.], 3.323 2. [benennen; nennen], 3.144, 3.221 natur/e, 2.0123, 3.315, 5.47, 6.124; cf. law of ∼e. ∼al phenomena, 6.371 ∼al science, 4.11, 4.111, 4.1121–4.113, 6.111, 6.4312, 6.53 necessary, 4.041, 5.452, 5.474, 6.124; cf. unnecessary. negation 1. [Negation], 5.5, 5.502 2. [Verneinung], 3.42, 4.0621, 4.064, 4.0641, 5.1241, 5.2341, 5.254, 5.44, 5.451, 5.5, 5.512, 5.514, 6.231 negative [negativ], 4.463, 5.513, 5.5151 ∼ fact, 2.06, 4.063, 5.5151 network, 5.511, 6.341, 6.342, 6.35 Newton, 6.341, 6.342 nexus 1. [Nexus], 5.136, 5.1361 2. [Zusammenhang: connexion], 3.3, 4.22, 4.23 non-proposition, 5.5351 nonsense [Unsinn], P4, 3.24, 4.003, 4.124, 4.1272, 4.1274, 4.4611, 5.473, 5.5303, 5.5351, 5.5422, 5.5571, 6.51, 6.54; cf. sense, have no. notation, 3.342, 3.3441, 5.474, 5.512–5.514, 6.1203, 6.122, 6.1223; cf. conceptual ∼. number 1. [Anzahl], 4.1272, 5.474–5.476, 5.55, 5.553, 6.1271 2. [Zahl: integer], 4.1252, 4.126, 4.1272, 4.12721, 4.128, 5.453, 5.553, 6.02, 6.022; cf. equality, numerical; privileged ∼s; series of ∼s; variable ∼. cardinal ∼, 5.02; ∼-system, 6.341 object [Gegenstand], 2.01, 2.0121, 2.0123–2.0124, 2.0131–2.02, 2.021, 2.023–2.0233, 2.0251–2.032, 2.13, 2.15121, 3.1431, 3.2, 3.203–3.221, 3.322, 3.3411, 4.023, 4.0312, 4.1211, 4.122, 4.123, 4.126, 4.127, 4.1272, 4.12721, 4.2211, 4.431, 4.441, 4.466, 5.02, 5.123, 5.1511, 5.4, 5.44, 5.524, 5.526, 5.53–5.5302, 5.541, 5.542, 5.5561, 6.3431 ; cf. thing. obvious [sich von selbst verstehen: say; understand], 6.111; cf. self-evidence. Occam, 3.328, 5.47321 occur [vorkommen], 2.012–2.0123, 2.0141, 3.24, 3.311, 4.0621, 4.1211, 4.23, 4.243, 5.25, 5.451, 5.54, 5.541, 6.1203 operation, 4.1273, 5.21–5.254, 5.4611, 5.47, 5.5, 5.503, 6.001–6.01, 6.021, 6.126; cf. sign for a logical ∼; truth-∼. oppos/ed; ∼ite [entgegengesetzt], 4.0621, 4.461, 5.1241, 5.513 order, 4.1252, 5.5563, 5.634 paradox, Russell’s, 3.333 particle, 6.3751 perceive, 3.1, 3.11, 3.32, 5.5423 phenomenon, 6.423; cf. natural ∼. philosophy, P2, P5, 3.324, 3.3421, 4.003, 4.0031, 4.111–4.115, 4.122, 4.128, 5.641, 6.113, 6.211, 6.53 physics, 3.0321, 6.321, 6.341, 6.3751 pictorial 1. [abbilden: depict; form, logico-∼], 2.15, 2.151, 2.1513, 2.1514, 2.17, 2.172, 2.181, 2.22; cf. form, ∼. 2. [bildhaftig], 4.013, 4.015 picture [Bild: mirror-image; tableau vivant], 2.0212, 2.1–2.1512, 2.1513–3.01, 3.42, 4.01–4.012, 4.021, 4.03, 4.032, 4.06, 4.462, 4.463, 5.156, 6.341, 6.342, 6.35; cf. logical ∼; prototype. place [Ort], 3.411, 6.3751; cf. logical ∼. point-mass [materieller Punkt], 6.3432 positive, 2.06, 4.063, 4.463, 5.5151 possible, 2.012, 2.0121, 2.0123–2.0141, 2.033, 2.15, 2.151, 2.201–2.203, 3.02, 3.04, 3.11, 3.13, 3.23, 3.3421, 3.3441, 3.411, 4.015, 4.0312, 4.124, 4.125, 4.2, 4.27–4.3, 4.42, 4.45, 4.46, 4.462, 4.464, 4.5, 5.252, 5.42, 5.44, 5.46, 5.473, 5.4733, 5.525, 5.55, 5.61, 6.1222, 6.33, 6.34, 6.52; cf. impossibility; truth-possibility. postulate [Forderung: requirement], 6.1223 predicate, cf. subject. 118 present 1. [darstellen: represent], 3.312, 3.313, 4.115 2. [vorstellen: Idea; represent], 2.11, 4.0311 presuppose [voraussetzen], 3.31, 3.33, 4.1241, 5.515, 5.5151, 5.61, 6.124 primitive idea [Grundbegriff] 4.12721, 5.451, 5.476 primitive proposition [Grundgesetz], 5.43, 5.452, 6.127, 6.1271; cf. Fundamental Laws of Arithmetic; law. primitive sign [Urzeichen], 3.26, 3.261, 3.263, 5.42, 5.45, 5.451, 5.46, 5.461, 5.472 Principia Mathematica, 5.452 principle of sufficient reason [Satz vom Grunde: law; proposition], 6.34, 6.35 Principles of Mathematics, 5.5351 privileged [ausgezeichnet], ∼ numbers, 4.128, 5.453, 5.553 probability, 4.464, 5.15–5.156 problem 1. [Fragestellung: question], P2, 5.62 2. [Problem], P2, 4.003, 5.4541, 5.535, 5.551, 5.5563, 6.4312, 6.521 product, cf. logical. project/ion; ∼ive, 3.11–3.13, 4.0141 method of ∼ion, 3.11 proof [Beweis], 6.126, 6.1262, 6.1263–6.1265, 6.2321, 6.241 proper, cf. name. property [Eigenschaft], 2.01231, 2.0231, 2.0233, 2.02331, 4.023, 4.063, 4.122–4.1241, 5.473, 5.5302, 6.111, 6.12, 6.121, 6.126, 6.231, 6.35; cf. formal ∼. proposition [Satz: law; principle], 2.0122, 2.0201, 2.0211, 2.0231, 3.1 (& passim thereafter); cf. non-∼; primitive ∼; pseudo-∼; variable, ∼al; variable ∼. ∼al form, 3.312, 4.0031, 4.012, 4.5, 4.53, 5.131, 5.1311, 5.156, 5.231, 5.24, 5.241, 5.451, 5.47, 5.471, 5.472, 5.54–5.542, 5.5422, 5.55, 5.554, 5.555, 5.556, 6, 6.002 ∼al sign, 3.12, 3.14, 3.143, 3.1431, 3.2, 3.21, 3.332, 3.34, 3.41, 3.5, 4.02, 4.44, 4.442, 5.31 prototype [Urbild], 3.24, 3.315, 3.333, 5.522, 5.5351; cf. picture. pseudo-, cf. apparent. ∼-concept, 4.1272 ∼-proposition, 4.1272, 5.534, 5.535, 6.2 ∼relation, 5.461 psychology, 4.1121, 5.541, 5.5421, 5.641, 6.3631, 6.423 punishment, 6.422 question [Frage: problem], 4.003, 4.1274, 5.4541, 5.55, 5.551, 5.5542, 6.5–6.52 range [Spielraum], 4.463, 5.5262; cf. space. real [wirklich], 2.022, 4.0031, 5.461 realism, 5.64 reality 1. [Realität], 5.5561, 5.64 2. [Wirklichkeit], 2.06, 2.063, 2.12, 2.1511, 2.1512, 2.1515, 2.17, 2.171, 2.18, 2.201, 2.21, 2.222, 2.223, 4.01, 4.011, 4.021, 4.023, 4.05, 4.06, 4.0621, 4.12, 4.121, 4.462, 4.463, 5.512 reducibility, cf. axiom. relation 1. [Beziehung], 2.1513, 2.1514, 3.12, 3.1432, 3.24, 4.0412, 4.061, 4.0641, 4.462 4.4661, 5.131, 5.1311, 5.2–5.22, 5.42, 5.461, 5.4733, 5.5151, 5.5261, 5.5301; cf. pseudo-. 2. [Relation], 4.122, 4.123, 4.125, 4.1251, 5.232, 5.42, 5.5301, 5.541, 5.553, 5.5541 ; cf. formal. 3. stand in a ∼ to one another; are related [sich verhalten: stand, how things; state of things], 2.03, 2.14, 2.15, 2.151, 3.14, 5.5423 represent 1. [darstellen: present], 2.0231, 2.173, 2.174, 2.201–2.203, 2.22, 2.221, 3.032, 3.0321, 4.011, 4.021, 4.031, 4.04, 4.1, 4.12, 4.121, 4.122, 4.124, 4.125, 4.126, 4.1271, 4.1272, 4.24, 4.31, 4.462, 5.21, 6.1203, 6.124, 6.1264; cf. form, ∼ational. 2. [vorstellen: idea; present], 2.15 representative, be the ∼ of [vertreten], 2.131, 3.22, 3.221, 4.0312, 5.501 requirement [Forderung: postulate], 3.23 resolve, cf. analysis. 1. [auflösen], 3.3442 2. [zerlegen], 2.0201 reward, 6.422 riddle, 6.4312, 6.5 right [stimmen: agreement; true], 3.24 rule [Regel], 3.334, 3.343, 3.344, 4.0141, 5.47321, 5.476, 5.512, 5.514 combinatory ∼ [Kombinationsr.], 4.442 ∼ dealing with signs [Zeichenr.] 3.331, 4.241, 6.02, 6.126 Russell, P6, 3.318, 3.325, 3.331, 3.333, 4.0031, 4.1272–4.1273, 4.241, 4.442, 5.02, 5.132, 5.252, 5.4, 5.42, 5.452, 5.4731, 5.513, 5.521, 5.525, 5.5302, 5.532, 5.535, 5.5351, 5.541, 5.5422, 5.553, 6.123, 6.1232 say 1. [angeben: give], 5.5571 119 2. [audrücksen: expression], 5.5151 3. [aussprechen: words, put into], ∼ clearly, 3.262 4. [sagen], can be said, P3, 3.031, 4.115, 4.1212, 5.61 5.62, 6.36, 6.51, 6.53; said) (shown, 4.022, 4.1212, 5.535, 5.62, 6.36; ∼ nothing, 4.461, 5.142, 5.43, 5.4733, 5.513, 5.5303, 6.11, 6.121, 6.342, 6.35 5. [sich von selbst verstehen: obvious; understand], ∼ing, go without, 3.334, 6.2341 scaffolding, 3.42, 4.023, 6.124 scepticism, 6.51 schema, 4.31, 4.43, 4.441, 4.442, 5.101, 5.151, 5.31 science, 6.34, 6.341, 6.52; cf. natural ∼. scope, 4.0411 segmented [gegliedert], 4.032; cf. articulated. self, the [das Ich], 5.64, 5.641 self-evidence [Einleuchten], 5.1363, 5.42, 5.4731, 5.5301, 6.1271; cf. obvious. sense [Sinn; sinnvoll], P2, 2.0211, 2.221, 2.222, 3.11, 3.13, 3.142, 3.1431, 3.144, 3.23, 3.3, 3.31, 3.326, 3.34, 3.341, 3.4, 4.002, 4.011, 4.014, 4.02–4.022, 4.027–4.031, 4.032, 4.061, 4.0621–4.064, 4.1211, 4.122, 4.1221, 4.1241, 4.126, 4.2, 4.243, 4.431, 4.465, 4.52, 5.02, 5.122, 5.1241, 5.2341, 5.25, 5.2521, 5.4, 5.42, 5.44, 5.46, 5.4732, 5.4733, 5.514, 5.515, 5.5302, 5.5542, 5.631, 5.641, 6.124, 6.126, 6.232, 6.41, 6.422, 6.521 have the same ∼ [gleichsinnig], 5.515 have no ∼; lack ∼; without ∼ [sinnlos], 4.461, 5.132, 5.1362, 5.5351; cf. nonsense. ∼ of touch [Tastsinn], 2.0131 series [Reihe], 4.1252, 4.45, 5.1, 5.232, 6.02 ∼ of forms [Formenr.], 4.1252, 4.1273, 5.252, 5.2522, 5.501 ∼ of numbers [Zahlenr.], 4.1252 set [Klasse: class], 3.142 show [zeigen: indicate; manifest], 3.262, 4.022, 4.0621, 4.0641, 4.121–4.1212, 4.126, 4.461, 5.1311, 5.24, 5.42, 5.5261, 5.5421, 5.5422, 5.631, 6.12, 6.1201, 6.1221, 6.126, 6.127, 6.22, 6.232; cf. display; say. sign [Zeichen], 3.11, 3.12, 3.1432, 3.201–3.203, 3.21, 3.221, 3.23, 3.261–3.263, 3.315, 3.32–3.322, 3.325–3.334, 3.3442, 4.012, 4.026, 4.0312, 4.061, 4.0621, 4.126, 4.1271, 4.1272, 4.241–4.243, 4.431–4.441, 4.466, 4.4661, 5.02, 5.451, 5.46, 5.473, 5.4732–5.4733, 5.475, 5.501, 5.512, 5.515, 5.5151, 5.53, 5.5541, 5.5542, 6.02, 6.1203, 6.124, 6.126, 6.1264, 6.53; cf. primitive ∼; propositional ∼; rule dealing with ∼s; simple ∼. be a ∼ for [bezeichnen: designate; signify], 5.42 combination of ∼s [Zeichenverbindung], 4.466, 5.451 ∼ for a logical operation [logisches Operationsz.], 5.4611 ∼-language [Zeichensprache], 3.325, 3.343, 4.011, 4.1121, 4.1213, 4.5, 6.124 signif/y 1. [bedeuten: meaning], 4.115 2. [bezeichnen: designate: sign], 3.24, 3.261, 3.317, 3.321, 3.322, 3.333, 3.334, 3.3411, 3.344, 4.012, 4.061, 4.126, 4.127, 4.1272, 4.243, 5.473, 5.4733, 5.476, 5.5261, 5.5541, 6.111; mode of ∼ication [Bezeichnungsweise], 3.322, 3.323, 3.325, 3.3421, 4.0411, 5.1311 similarity, 4.0141, 5.231 simple, 2.02, 3.24, 4.21, 4.24, 4.51, 5.02, 5.4541, 5.553, 5.5563, 6.341, 6.342, 6.363, 6.3631; ∼ sign, 3.201, 3.202, 3.21, 3.23, 4.026 simplex sigillum veri, 5.4541 situation [Sachlage], 2.0121, 2.014, 2.11, 2.202, 2.203, 3.02, 3.11, 3.144, 3.21, 4.021, 4.03, 4.031, 4.032 4.04, 4.124, 4.125, 4.462, 4.466, 5.135, 5.156, 5.525 Socrates, 5.473, 5.4733 solipsism, 5.62, 5.64 solution, P8, 5.4541, 5.535, 6.4312, 6.4321, 6.521 soul, 5.5421, 5.641, 6.4312 space [Raum], 2.0121, 2.013, 2.0131, 2.0251, 2.11, 2.171, 2.182, 2.202, 3.032–3.0321, 3.1431, 4.0412, 4.463, 6.3611, 6.36111, 6.4312; cf. colour-∼; logical ∼; range. speak/ about [von etwas sprechen], 3.221, 6.3431, 6.423, 7; cf. about. ∼ for itself [aussagen: ascribe; state; statement; tell], 6.124 stand/, how things [sich verhalten: relation; state of things], 4.022, 4.023, 4.062, 4.5 ∼ for [für etwas stehen], 4.0311, 5.515 state [aussagen: ascribe; speak; statement; tell], 3.317, 4.03, 4.242, 4.442, 6.1264 statement [Aussage], 2.0201, 6.3751 make a ∼ [aussagen: ascribe; speak; state; tell], 3.332, 5.25 state of/ affairs [Sachverhalt: ∼ things], 2–2.013, 2.014, 2.0272- 2.062, 2.11, 2.201, 3.001, 3.0321, 4.023, 4.0311, 4.1, 4.122, 120 4.2, 4.21, 4.2211, 4.25, 4.27, 4.3 ∼ things 1. [Sachverhalt: ∼ affairs], 2.01 2. [sich verhalten: relation; stand, how things], 5.552 stipulate [festsetzen], 3.316, 3.317, 5.501 structure [Struktur], 2.032–2.034, 2.15, 4.1211, 4.122, 5.13, 5.2, 5.22, 6.12, 6.3751 subject 1. [Subjekt], 5.5421, 5.631–5.633, 5.641; ∼-predicate propositions, 4.1274 2. [Träger], 6.423 3. ∼-matter [von etwas handeln: about; concerned with; deal with], 6.124 subsistent [bestehen: existence; hold], 2.024, 2.027, 2.0271 sub specie aeterni, 6.45; cf. eternity. substance [Substanz], 2.021, 2.0211, 2.0231, 2.04 substitut/e, 3.344, 3.3441, 4.241, 6.23, 6.24 ∼ion, method of, 6.24 successor [Nachfolger], 4.1252, 4.1273 sum, cf. logical. sum-total [gesamt: totality; whole], 2.063 superstition, 5.1361 supposition [Annahme], 4.063 survival [Fortleben], 6.4312 symbol [Symbol], 3.24, 3.31, 3.317, 3.32, 3.321, 3.323, 3.325, 3.326, 3.341, 3.3411, 3.344, 4.126, 4.24, 4.31, 4.465, 4.4661, 4.5, 5.1311, 5.473, 5.4733, 5.513–5.515, 5.525, 5.5351, 5.555, 6.113, 6.124, 6.126 ∼ism [Symbolismus], 4.461, 5.451 syntax, cf. logical. system, 5.475, 5.555, 6.341, 6.372; cf. number-∼. tableau vivant [lebendes Bild: picture], 4.0311 talk about [von etwas reden: mention], P2, 5.641, 6.3432; cf. about. tautology, 4.46–4.4661, 5.101, 5.1362, 5.142, 5.143, 5.152, 5.525, 6.1, 6.12–6.1203, 6.1221, 6.1231, 6.124, 6.126, 6.1262, 6.127, 6.22, 6.3751 tell [aussagen: ascribe; speak; state; statement], 6.342 term [Glied], 4.1273, 4.442, 5.232, 5.252, 5.2522, 5.501 theory 1. [Lehre: doctrine], 6.1224; ∼ of probability, 4.464 2. [Theorie], 4.1122, 5.5422, 6.111; ∼ of classes, 6.031; ∼ of knowledge, 4.1121, 5.541; ∼ of types, 3.331, 3.332 thing, cf. object; state of affairs; state of ∼s. 1. [Ding], 1.1, 2.01–2.0122, 2.013, 2.02331, 2.151, 3.1431, 4.0311, 4.063, 4.1272, 4.243, 5.5301, 5.5303, 5.5351, 5.5352, 5.553, 5.634, 6.1231 2. [Sache], 2.01, 2.15, 2.1514, 4.1272 think [denken: imagine], P3, 3.02, 3.03, 3.11, 3.5, 4.114, 4.116, 5.4731, 5.541, 5.542, 5.61, 5.631 ∼able [denkbar] P3, 3 3.001, 3.02, 6.361; cf. unthinkable. thought [Gedanke: idea], P3, 3, 3.01, 3.02, 3.04–3.1, 3.12, 3.2, 3.5, 4, 4.002, 4.112, 6.21 ∼-process [Denkprozeß], 4.1121 time, 2.0121, 2.0251, 6.3611, 6.3751, 6.4311, 6.4312 totality [Gesamtheit: sum-total; whole], 1.1, 1.12, 2.04, 2.05, 3.01, 4.001, 4.11, 4.52, 5.5262, 5.5561 transcendental, 6.13, 6.421 translation, 3.343, 4.0141, 4.025, 4.243 tru/e 1. [Faktum], 5.154 2. [wahr], 2.0211, 2.0212, 2.21, 2.22, 2.222–2.225, 3.01, 3.04, 3.05, 4.022–4.024, 4.06–4.063, 4.11, 4.25, 4.26, 4.28, 4.31, 4.41, 4.43, 4.431, 4.442, 4.46, 4.461, 4.464, 4.466, 5.11, 5.12, 5.123, 5.13, 5.131, 5.1363, 5.512, 5.5262, 5.5352, 5.5563, 5.62, 6.111, 6.113, 6.1203, 6.1223, 6.1232, 6.125, 6.343; cf. correct; right. come ∼e [stimmmen: agreement; right], 5.123 ∼th-argument, 5.01, 5.101, 5.152, 6.1203 ∼th-combination, 6.1203 ∼th-condition, 4.431, 4.442, 4.45–4.461, 4.463 ∼th-function, 3.3441, 5, 5.1, 5.101, 5.234, 5.2341, 5.3, 5.31, 5.41, 5.44, 5.5, 5.521, 6 ∼th-ground, 5.101–5.121, 5.15 ∼th-operation, 5.234, 5.3, 5.32, 5.41, 5.442, 5.54 ∼th-possibility, 4.3–4.44, 4.442, 4.45, 4.46, 5.101 ∼th-value, 4.063 type, 3.331, 3.332, 5.252, 6.123; cf. prototype. unalterable [fest], 2.023, 2.026–2.0271 understand [verstehen: obvious; say], 3.263, 4.002, 4.003, 4.02, 4.021, 4.024, 4.026, 4.243, 4.411, 5.02, 5.451, 5.521, 5.552, 5.5562, 5.62; cf. misunderstanding. make oneself understood [sich verständigen], 4.026, 4.062 undetermined [nicht bestimmt], 3.24, 4.431 121 unit, 5.155, 5.47321 unnecessary, 5.47321 unthinkable, 4.123 use 1. [Gebrauch], 3.326, 4.123, 4.1272, 4.241, 6.211; ∼less [nicht gebraucht], 3.328 2. [Verwendung: employment], 3.325, 4.013, 6.1202 validity, 6.1233; cf. general ∼. value [Wert], 6.4, 6.41 ; cf. truth-∼. ∼ of a variable, 3.313, 3.315–3.317, 4.127, 4.1271, 5.501, 5.51, 5.52 variable, 3.312–3.317, 4.0411, 4.1271, 4.1272, 4.1273, 4.53, 5.24, 5.242, 5.2522, 5.501, 6.022 propositional ∼ [Satzvariable], 3.313, 3.317, 4.126, 4.127, 5.502 ∼ name, 3.314, 4.1272 ∼ number, 6.022 ∼ proposition [variabler Satz], 3.315 visual field, 2.0131, 5.633, 5.6331, 6.3751, 6.4311 Whitehead, 5.252, 5.452 whole [gesamt: sum-total; totality], 4.11, 4.12 will [Wille; wollen] 5.1362, 5.631, 6.373, 6.374, 6.423, 6.43 wish [wünschen], 6.374 word [Wort], 2.0122, 3.14, 3.143, 3.323, 4.002, 4.026, 4.243, 6.211; cf. concept-∼. put into ∼s [aussprechen; unausprechlich: say], 3.221, 4.116, 6.421, 6.5, 6.522 world, 1–1.11, 1.13, 1.2, 2.021–2.022, 2.0231, 2.026, 2.063, 3.01, 3.12, 3.3421, 4.014, 4.023, 4.12, 4.2211, 4.26, 4.462, 5.123, 5.4711, 5.511, 5.526–5.5262, 5.551, 5.5521, 5.6–5.633, 5.641, 6.12, 6.1233, 6.124, 6.22, 6.342, 6.3431, 6.371, 6.373, 6.374, 6.41, 6.43, 6.431, 6.432, 6.44, 6.45, 6.54; cf. description of the ∼. wrong [nicht stimmen: agreement; true], 3.24; cf. false. zero-method, 6.121 pLudwig Wittgenstein’s Tractatus Logico-Philosophicus is in the Public Domain. See http://creativecommons.org/licenses/publicdomain/ cbaThis typesetting (including LATEX code), by Kevin C. Klement, is licensed under a Creative Commons Attribution—Share Alike 3.0 United States License. See http://creativecommons.org/licenses/by-sa/3.0/us/ Latest version available at: http://people.umass.edu/klement/tlp/