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l Series Foreword I

The arts, science, and technology are experiencing a period of profound
change. Explosive challenges to the institutions and practices of engineering,
art making, and scientific research raise urgent questions of ethics, craft, and
care for the planet and its inhabitants. Unforeseen forms of beauty and under-
standing are possible, but so too are unexpected risks and threats. A newly
global connectivity creates new arenas for interaction between science, art, and
technology but also creates the preconditions for global crises. The Leonardo
Book series, published by the MIT Press, aims to consider these opportunities,
changes, and challenges in books that are both timely and of enduring value.

Leonardo books provide a public forum for research and debate; they con-
tribute to the archive of art-science-technology interactions; they contribute to
understandings of emergent historical processes; and they point toward future
practices in creativity, research, scholarship, and enterprise.

To find more information about Leonardo/ISAST and to order our publica-
t1ons, go to Leonardo Online at heep://Ibs.mit.edu/ or e-mail leonardobooks@

mitpress.mit.edu.

Sean Cubitt
Editor-in-Chief, Leonardo Book series

Leonardo Book Series Advisory Committee: Sean Cubitt, Chazr; Michael Punt;
Eugene Thacker; Anna Munster; Laura Marks; Sundar Sarrukai; Annick Bureaud
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Doug Sery, Acquiring Editor

Joel Slayton, Editorial Consultant

Leonardo/International Society for the Arts, Sciences,
and Technology (ISAST)

Leonardo, the International Society for the Arts, Sciences, and Technology,
and the affiliated French organization Association Leonardo have two very

simple goals:

1. to document and make known the work of artists, researchers, and schol-
ars interested in the ways that the contemporary arts interact with science and
technology, and |

2. to create a forum and meeting places where artists, scientists, and engineers

can meet, exchange ideas, and, where appropriate, collaborate.

When the journal Leonardo was started some forty years ago, these creative
disciplines existed in segregated institutional and social networks, a situa-
tion dramatized at that time by the “Two Cultures” debates initiated by C. P.
Snow. Today we live in a different time of cross-disciplinary ferment, collabo-
ration, and intellectual confrontation enabled by new hybrid organizations,
new funding sponsors, and the shared tools of computers and the Internet.
Above all, new generations of artist-researchers and researcher-artists are now
at work individually and in collaborative teams bridging the art, science, and
technology disciplines. Perhaps in our lifetime we will see the emergence of
“new Leonardos,” creative individuals or teams that will not only develop a
meaningful art for our times but also drive new agendas in science and stimu-
late technological innovation that addresses today’s human needs.

For more information on the activities of the Leonardo organizations and
networks, please visit our Web sites at <hctp://www.leonardo.info/> and

<http://www.olats.org>.

Roger F. Malina
Chair, Leonardo/ISAST

ISAST Governing Board of Directors: Martin Anderson, Michael Joaquin
Grey, Larry Larson, Roger Malina, Sonya Rapoport, Beverly Reiser, Christian
Simm, Joel Slayton, Tami Spector, Darlene Tong, Stephen Wilson

Series Foreword
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Introduction, the Stuff of Software

Matthew Fuller

This project is entitled software studies' for two reasons. First, it takes the
form of a series of short studies: speculative, expository, and critical texts on
particular digital objects, languages, and logical structures. Additional terms
touch on some of the qualities software is supposed to possess and ideas by
which to approach it. Together, at certain scales of interpretation, these con-
stitute the “stuft” of software. Software structures and makes possible much of
the contemporary world. This collection proposes an exercise in the rapid pro-
totyping of transversal and critical approaches to such stuff.

W hat is covered here includes: algorithms; logical functions so fundamental
that they may be imperceptible to most users; ways of thinking and doing that
leak our of the domain of logic and into everyday life; the judgments of value
and aesthetics that are built into computing; programming’s own subcultures
and its implicit or explicit politics; or the tightly formulated building blocks
working to make, name, multiply, control, and interrelate reality. Does Soft-
ware Studies offer a pair of super X-ray specs for the standardized user, allowing
them to see behind the screen, through the many layers of software, logic,
visualization, and ordering, right down to the electrons bugging out in the
microcircuitry and on, into the political, cultural and conceptual formations
of their software, and out again, down the wires into the world, where software
migrates into and modifies everything it touches? Does it offer even a diagram
of such a vision? Not quite. That would take a second volume. What we can
achieve though, is to show the stuff of software in some of the many ways that

it exists, in which it is experienced and thought through, and to show, by the
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interplay of concrete examples and multiple kinds of accounts, the conditions
of possibility that software establishes.

Secondly, Software Studies proposes that software can be seen as an object of
study and an area of practice for kinds of thinking and areas of work that have
not historically “owned” software, or indeed often had much of use to say about
it. Such areas include those that are currently concerned with culture and me-
dia from the perspectives of politics, society, and systems of thought and aes-
thetics or those that renew themselves via cricicism, speculation, and precise
attention to events and to matter among others. In a famous anecdote, com-
puting pioneer Alan Kay is said to have said of the first Macintosh that despite
its limitations it was the first computer really worthy of criticism.” By this,
one imagines he means a computer that deserves a reciprocation of the richness
of thought that went into it, with the care to pay attention to what 1t says
and what it makes palpable or possible, and the commitment to extend such
attention into its continuing development. The texts written for this volume
suggest their use as a handbook of supplements to some of the key standard
objects of computer science, programming, and software culture. As such, our
question here is: Where is the rest of that criticism? Indeed, criticism with
its undertones of morality or imperious knowledge might be better phrased
as a questioning or setting in play. Yes, there is plenty of studiousness being
dished up about what people do with software; there are big, fat, and rapidly
remaindered books about how to write or use software. But we can’t ind much
of it that takes things at more than face value, or not nearly enough of it to
understand the world as it is. There’s only one thing to do in such a situation:

get on and write what you need to read.
Software’s Roots and Reverherations

Recent etymological research’ credits John W. Tukey with the first published
use of the term “software.” In a 1958 article for American Mathematical Monthly
he described how the mathematical and logical instructions for electronic cal-
culators had become increasingly important, “Today the ‘software’ comprising
the carefully planned interpretive routines, compilers, and other aspects of au-
tomative programming are at least as important to the modern electronic cal-
culator as its ‘hardware’ of tubes, transistors, wires, tapes and the like.™
Another crucial moment was the decision by IBM in 1968, prompted in no

small part by antitrusc court actions, to split its software section off from its
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hardware section. Software was no longer to be bundled as a service or gratuity.
As a result, according to Martin Campbell-Kelly, “IBM liberated the industry
by unbundling.” At the point of software’s legal reordering as a separate kind
of entity, it became a commodity, an entity the prime or sole motive for the
production of which is to generate a monetary profit for those who own the
entities, such as companies, by which it is made.® This description allows it to
circulate in different ways, such as markets, while occluding others. For vari-
ous reasons, software has always had a parallel geneology including the ama-
teur, academic, gratuitous, experimental, and free. This lexicon, it is hoped,
provides useful access to all of these trajectories.

Beyond these beginnings, as software becomes a putatively mature part of
societal formations (or at least enters a phase where, in the global north, genera-
tions are now born into it as an infrastructural element of daily life), we need to
gather and make palpable a range of associations and interpretations of software
to be understood and experimented with. While applied computer science and
related disciplines such as those working on computer-human interface have
now accreted around half a century of work on this domain, software is often
a blind spot in the wider, broadly cultural theorization and study of computa-
tional and networked digital media. This is not simply because the disciplinary
cookie-cutter for the arts and humanities is incompetent with the daily fabric of
contemporary working lives, which includes word processors, websites, search
engines, email, databases, image editors, sound software and so on; software
as a field is largely seen as a question of realized instrumentality. As viewed
through the optic of applied logic, software exists as something that has gone
through a “threshold of formalization” and now exists only in terms devoid of
any reference other than itself. Software is seen as a tool, something that you do
something with. It is neutral, grey, or optimistically blue. On the one hand,
this ostensive neutrality can be taken as its ideological layer, as deserving of
critique as any such myth. But this interpretation itself one that emphasizes
only critique can block a more inventive engagement with software’s particular
qualities and propensities. Working with the specificities of software at the
multiple scales at which it occurs 1s a way to get past this dichotomy.

Recognition of the synthetic power of computing should not block the
understanding that much software comprises simply and grimly of a social
relacion made systematic and unalterable.” (Consider, for instance, the ulti-
mately abitrary informational regimes governing who is inside or outside of a

national population.) It may not work or offer a rich field of bugs and loopholes
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of course, but this structuration is often imperceptible,” actuated with little
public debate or even platforms capable of achieving such debate with mean-
ingful effect. or in a way that is culturally rich enough to bocher taking part
in. Technologisation of the senses and structuring of relations by technology is
often carried out by naturalized means, lessening our ability to understand and
engage with such changes. Many accounts have been made of how such natu-
ralization occurs through the technologization of a problem. The optimal solu-
tion becomes the one that is most amenable to technical description, usually a
description that is only in terms of certain already normalized precursors. By
contrast, when technology is used in a way that is interrogable or hackable,” it
allows and encourages those networked or enmeshed within it to gain traction
on its multiple scales of operation. Hackability is not in itself a magic bullet; it
relies on skills, knowledge, and access, of making such things public and chang-
ing them in the process. Gathering together forms of knowledge that couple
software with other kinds of thinking is hopefully a way of enlarging the ca-
pacity of hackability itself to be hacked from all directions.

Another theoretical blockage that this collection seeks to overcome 1s the
supposed “immaterialicy” of software. While this formulation has been de-
ployed by many writers to explain software’s distinction from things that have
a straightforward physicality at the scale of human visual perception, or the way
in which its production differs from industrial or craft forms of fabrication the
idea of software’s “immateriality” is ultimately trivializing and debilitating."’

The new lexicon relies upon an understanding of the materiality of software
being operative at many scales: the particular characteristics of a language or
other form of interface—how it describes or enables certain kinds of program-
mability or use; how its compositional terms inflect and produce certain kinds
of effects such as glitches, cross-platform compatibility, or ease of sharing and
distribution; how, through both artifact and intent, events can occur at the level
of models of user subjectivity or forms of computational power, that exceed
those of pre-existing social formatting or demand new figures of knowledge.

Whereas much work published in the area of new media largely adopts an
Information and Communications Technology model (the shunting of ‘con-
tent’ from point A to point B) for its understanding of phenomena such as the
internet or even games, and aims its critical faculties at what happens around
or through software, this project differs by, among other things, emphasizing
the neglected aspect of computation, which involves the possibilities of virtual-

ity, simulation, abstraction, feedback, and autonomous processes.
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The purpose of this lexicon then is not to stage some revelation of a sup-
posed hidden technical truth of software, to unmask its esoteric reality, but to
see what it is, what it does and what it can be coupled with. In doing so we
hope also to construct multiple entry points into the field. Racher than simply
watch and make notes on the humans lit by the glow of their monitors it aims
to map a rich seam of conjunctions in which the speed and rationality, or slow-
ness and irrationality, of computation meets with its ostensible outside (users,
culture, aesthetics) but is not epistemically subordinated by it.

At the same time, the contents of this lexicon acknowledge that software
exists at many scales. It is increasingly discributed as an embedded part of socio-
technical infrastructures; manifest as the “semantic sugar” and operational con-
straints of user-friendly interface elements or higher level languages; integrated
into patterns of work and communication so thoroughly chat it is desirable to
describe all of these in order to account for any; and operative at a low level in
interaction with the physical properties of conductive and nonconductive ma-
terials. Finding a way of accounting for, understanding, and crucially, working
with cthis multiscalar reality is an important challenge requiring new tools for
thought, and ways of holding different kinds of account together.

Software marks another of its beginnings in Alan Turing’s desire to chart
the computable, arising as a response to David Hilbert’s assertion that all
mathematical problems are decidable (solvable by means of a definite universal
method) within the terms of mathematics."” Computation establishes a toy
world in conformity with its axioms, but at the same time, when it becomes
software, it must, by and large (except for autonomous processes, such as Cron,
the demon to execute commands to a schedule in a Unix system, or as exempli-
fied in work such as Artificial Paradises'®) come into combination with what lies
outside of code. Just as science, under the admirably empirical plan drawn up
by Karl Popper,'* is a 'Pataphysical machine driven by the accumulation of
finer and finer grained errors, which are in turn surpassed by better and better
miscomprehensions, software is computation, which, whether it is as useful and
mundane as a word-processor, or as brilliant and simple as a cellular automaton,
gains its power as a social or cultural artifact and process by means of a better
and better accommodation to behaviors and bodies which happen on its out-
side. Whether these are writing or evolutionary models, the terms by which
they are understood have to be grafted, and hence modified and filtered, back
into the limited but paradoxical domain of computation. And it is this para-

dox, the ability to mix the formalized with the more messy—non-mathematical
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formalisms, linguistic, and visual objects and codes, events occurring at every
scale from the ecological to the erotic and political—which gives computa-
tion its powerful effects, and which folds back into software in its existence as
culture. This folding in does not only happen to software, but with which it
couples. Hardware, with its rich panoply of sensors and triggering devices, its
mixture of the analog and digital, is perhaps still the finest purveyor of messi-
ness, but as several texts here attest, it finds its complement in software. Once
things have become modeled, replicated, and reified, they can be intensifed,
copied, multiplied, and stretched or subject to a host of other functions that
have become familiar from the basic grammars of applications."

The development of software is in many cases simply not subject to the
rigor of the requirement for the “better and better” typical of technologies
aimed at consumers. Its self-sufficiency, which has allowed computer science
to maintain its status as a closed world,'® allows the plainly dysfunctional and
imaginary to roam free. This freedom applies as much to the bizarre fruits of
business plans gorged on the tragedy of imagined or “intellectual” property
as to the whimsical, inventive, or deranging entities stored in software art re-
positories. (A whole separate volume of the vocabulary of the anxious, deluded,
and mendacious could be drawn up for large-scale private or governmental
software projects.) The rise of software and of computational and networked
digital media in general has in many ways depended upon massive amounts
of investment in institutions, training, and the support of certain kinds of ac-
tors. One other strand of the development of software over its history has often
depended upon individuals or small groups of people finding a breathable
pocket of time and resources in the intestines of larger hierarchically ordered
organizations, or acting on their own cobbled-together means. Since the de-
velopment of computer networks, such pockets of differentiated pressure have
been able to be assembled across space, in smaller chunks, and asynchronously.
Since the massification of computing they have in some small ways also been
able to construct themselves in relation to other forms of life. (In the sense
that Ludwig Wittgenstein means when he says, “To imagine a language 1s to
imagine a form of life.”'”) This “self-sufficiency” of software, in such a context,
allows (in much the same way as it allows a programmer to think he or she is
working on the formulation of a particularly interesting and chewy algorithm
when working at another scale, perhaps more determining, on an insurance
program to more finely exclude the poor from public services) a certain dis-

tance from social or cultural norms. Things can be done in software that don’t
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require much dependence on other factors. The range of articulation software
allows due to the nature of the joints it forms with other layers of reality means
that this freedom (that of a closed world), while somewhat paralyzing, has also

guaranteed it a space for profound and unfinishable imagination.
Parallels and Precursors

While this book proposes a set of approaches to thinking about software, it is
not alone in this work. It comes out of a wider set of interlocking areas of activity
in digital culcures, but two other key areas, historical research into the genesis
of computing and the discourse associated with free and open source soft-
ware, have provided a context for the work here.

Computing is beginning to be recognized as something having a history,
rather than just being permanently in a state of improvement. Computing
history thus becomes discursive, and opens computing in the present day up
to the consideration of palpable alternatives. Several of the key texts in the
history of computing are called upon here and it i1s an area from which one
anticipates further revealing developments.

Of special interest for this lexicon is the way in which free software, and
associated currents such as open source have set off ripples in the way people
talk and think about software. This discussion has often taken place on blogs,
mailing lists, and in the opinion pieces of industry pundits.'® While it is often
short on historical memory or connection to thought outside of its own do-
main, this discussion can be lively and insightful. Neal Stephenson suggests
that, “Linux per se is not a specific set of ones and zeroes, but a self-organizing
net subculture.”" Because free and open soutce software opens up the process
of writing software in certain ways its also opens up the process of talking and
thinking about it.

Two other currents have also fed into this project. While art and design have
for a reasonably long period had something of an inkling that objects, devices,
and other material entities have a politic—that they engage in the arrange-
ment and composition of energies, allow, encourage or block certain kinds of
actions—these concerns have also more recently been scrutinized by the inter-
disciplinary area of science and technology studies. Shifting from an emphasis
on epistemologies to also encompass the way in which things are embedded
with and produce certain kinds of knowledge and possibility of interaction

with the world (and indeed make worlds) has been extremely fruitful. Such
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work has also contributed to this book because, among other things, it pro-
vides a means of talking about the materiality of abstraction, the interplay
between formalization and the heterogenous stuff it mobilizes.

The area that has become known as software art® is perhaps the most di-
rect feed into this lexicon. This current of work, along with hacker culture,
provides a means for bringing the generative, reflexive, and anarchist intel-
ligence of art into compositional entanglement with the ostensibly ordered
and self-sufficiently technical language, working patterns, and material of
software. Art understands that the style of thought is crucial—style not sim-
ply as a metric for the deposition of flourishes and tricks, but as a way of ac-
cessing multiple universes of reference. Software Studies also proposes another
set of potential interactions between art and other inventive cultural prac-
tices and domains such as mathematics and logic. Significant work has been
done in the overlap between the two fields utilizing conceptual figures such
as “beauty” or “symmetry.” Other, non-idealist interactions are also possible,
and indeed, necessary. The project provides a space for interactions between
art and mathematics outside of clean-room purity in dirtier interactions with
cultures, economies, hardware, and life. Mathematics becomes applied, not to
the cleanly delineated sets of problems set it by productivity and efficiency
goals in software projects, but to the task of inventing and laughing with 1ts
own goofily serene self and in doing so regaining its “pure” task of establishing

systems and paroxysms of understanding.
What Is a Lexicon?

Finding a mode of writing capable of inducing experiment is tricky. In what
way does a lexicon provide a useful structure for this form of software study?
A lexicon is a vocabulary of terms used in a particular subject. Rather than an
encyclopedia, which is too universal, or a dictionary or glossary, which offer
too short descriptions or readings of terms, a lexicon can be provisional and is
scalable enough a form to adapt to any number of terms and lengths of text.
In producing a lexicon for an area that is as wide, deep, and fast moving as
software, one can easily make a virtue out of the necessary incompleteness of
the work. Indeed, Software Studies cannot claim to be a summa of terms, ob-
jects, structures, and ideas. Although we refer often to monumental works
such as Donald Knuth's A7t of Computer Programming,”' a systematic and good

humored survey and exposition of algorithms and data structures, other forms
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of encyclopedia and glossary also influenced the adoption of this structure. 7he
Jargon File** is a lengthy and wry catalogue of early North American hackers’
argot displaying readily the way in which something can be at once both tech-
nically informative, enjoying word-play or double, if not infinitely recursive,
meaning, and also reflexive upon its own working culture. Another strand of
work that informs Software Studies is the trajectory of dictionaries and folios
of terms and keywords, which recognize the ridiculousness of attempting to
catalogue, name, and explain reality. These supplementary explanations inves-
tigate our culture as if it requires an interpretative account. They try to cap-
cure the language of a possible future, actual language at the cusp of where it
intersects the possible and the unspeakable. These works, among them such
dark jewels as the “Dictionary” supplements to the magazine Documents ed-
ited by Georges Bataille, capture through their many facets a pattern out of
which an approach to life can be sensed and articulated.”” Racher more hopeful
of the possibility of lucid communication is Raymond Williams’s Keywords, a
book established as a personal “enquiry into a vocabulary.”?* Both of these use
the way in which a lexicon can establish alliances between words, texts, and
ideas without necessarily agglutinating them as a whole, thus effacing a more
complex reality. A normal dictionary comes to a point of momentary stability
when it defines all the words which it uses to define all the words that it con-
tains. Each definition, then, reaches out to all the terms used to establish its
meaning in a beautiful, recursively interwoven networking of language. Soft-
ware Studies 1s not quite so mature, but an astute reader will find many path-
ways between the different texts.

Words bind thinking and acting together, providing a means for the con-
junction and differentiation of work and other dynamics between persons, across
groups of ideas, and ways of doing things. Collections of words build up a consis-

tency, becoming a population teeming with the qualities that Ronald Sukenick

ascribes to narrative: “agonistic, sophistic, sophisticated, fluid, unpredictable,
rhizomatic, affective, inconsistent and even contradictory, improvisational and
provisional.”*> At the same time, in the case of software studies, words work in
relation to another set of dynamics, a technical language that is determined by
its relation to constants that are themselves underpinned by a commitment to
an adequately working or improved description. That is, at a certain, software
demands an engagement with its technicity and the tools of realist description.
As software becomes an increasingly significant factor in life, it is important to

recognize this tension and to find the means for doing so.
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Stuff behind Stuff

One rule of thumb for the production of this book is that the contributors had
to be involved in some way in the production of software as well as being en-
gaged in thinking about it in wider terms. It is perhaps a sign of an underly-
ing shift that this project is possible now, that this many people who can work
within this format and topic could be brought together.

Part of this underlying shift is that software is now, unevenly, a part of mass
and popular cultures. It forms a component, if not the largest part, of more and
more kinds of work. Knowledge about how to make it, to engage with pro-
gramming and how to use software more generally, circulates by an increasing
number of formal and informal means. The experience and understanding of
software is undergoing a change in both quantity and quality. This book aims
to make available some of the mixed intelligences thinking through these con-
ditions. The authors are artists, computer scientists, designers, philosophers,
cultural theorists, programmers, historians, media archaeologists, mathema-
ticians, curators, feminists, musicians, educators, radio hams, and other fine
things, and most straddle more than one discipline. The voices collected here
bring more than one kind of intelligence to software because software makes
more sense understood transversally. |

There’s another rule of thumb: In order to program, you have to understand
something so well that you can explain it to something as stonily stupid as a
computer. While there 1s some painful truth in this, programming is also the
result of a live process of engagement between thinking with and working on
materials and the problem space that emerges. Intelligence arises out of inter-
action and the interaction of computational and networked digital media with
other forms of life conjugate new forms of intelligence and new requirements
for intelligence to unfold. As a result, a number of authors collected in this
book have called for a renewed understanding of what literacy should mean
contemporarily. Amongst others, Michael Mateas has made an important call
for what he describes as Procedural Literacy.*® Those whose working practice
involves education, and the need to address the tension between education and
knowledge,”” know that the question of what such a literacy might be returns
always as a question, and not as a program. In order to ask that question well,
however, it 1s useful to have access to vocabularies which allow one to do so.

Returning to the question of the lexicon, the investigation of such a prob-

lem space requires an adequate form of description for computational processes
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and digital objects. For this, we look at what is most familiar.*® There is a dual
danger here: What 1s more pretentious than an attempt to interpret the banal,
to see in the stuff of everyday life something more than what is seen by those
who made it, use it, or live it? Do we just offer up a banality from another field
of work (say, those that have currently and partially settled out as economics,
philosophy or art) plonking it down as a reference to software, stating that
the subject is now “complex” and somehow therefore familiarly sublime in its
difticulty?*” On the other hand, should we limit ourselves to repeating, using,
and abjectly loving that which is given, or limit ourselves only to the language
of specialists where “questions and differences about words™*’ are erased and
terminologies are owned?

What is important is not to settle for either of these traps. Friedrich
Nietzsche suggests that the need for knowledge is often founded on the fear of
the unfamiliar, and the refusal to face the familiar, that which we are the most
habituated to, as the most potentially unknown or disturbing. He suggests that
when we look at what seems strange, and then find behind it something “that
is unfortunately quite familiar to us, such as our multiplication tables or our
logic, or our willing and desiring,”" we are doing so as a way of avoiding more
difficult processes of questioning and revaluation. Software has become our
familiar. The stuff of software is what excites the writers gathered here. I hope
that in setting out a few terms for discussion that we have not left either the
unfamiliar or the familiar in the same state and that we enhance for the users

of these texts the capacity, by any means, to become strange.
Notes

1. “Software studies” is a conjunction of words describing a possible field of activ-
ity in Lev Manovich’s The Language of New Media and is further commented upon in
N. Kactherine Hayles’'s My Mother was a Computer. A useful follow-up text to Manovich
is Matcthew G. Kirschenbaum, “Virtualicy and VRML: Software Studies After Mano-
vich,” Electronic Book Review, 8/29/2003, available at heep://www.electronicbookreview
.com/thread/technocapitalism/morememory. Software Studies itself, and the various
components it draws from, 1s a wide field with a history, and perhaps a counter-history,

running back to the various beginnings of computing.

2. Alan Kay, “Would you buy a Honda with a one-gallon gas rank?” memo, 1984,
cited in Steven Levy, Insanely Great, 192.
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3. Fred R. Shapiro, “Origin of the Term Software: Evidence from the JSTOR Elec-

tronic Journal Archive.”

4. John W. Tukey, “The Teaching of Concrete Mathematics.”

5. Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, 13. See pp.

109—114 of that volume for a detailed account.
6. See Ellen Meiskins Wood, The Origins of Capitalism: A Longer View.

7. Michel Foucault, The Archaeology of Knowledge. For commentary on this formulation,

see Gilles Deleuze, Foucault, 90.

8. For instance, see the accounts of Call Centre “masks,” software that prescribes the

use of the computer to a certain set of delimited task sequences, in Kolinko, Hot/ines:

Call Centre Inquiry Communism.

9. A simple example: When booking your next flight, try selecting “Palestine” as your

country of citizenship in the scrollable, alphabetical menu provided by the website.

10. See the panel description for “Design for Hackability” at ACM SIG-CHI conference,
2004, including Jonah Brucker-Cohen, Anne Galloway, Layla Gaye, Elizabeth Good-
man, and Dan Hill, available at http://www.sigchi.org/DIS2004/Documents/Panels/

DIS2004_Design_for_Hackability.pdf/.

11. For one account of why this is so, see Ursula Huws, “Material World: The Myth of
the Weightless Economy,” in The Making of a Cybertariat: Virtual Work in a Real World.

12. For an accessible account, see Andrew Hodges and Alan Turing, The Enigma of

Intelligence.

13. Artificial Paradises, available at http://www.1010.co.uk/ap0202.html/.

14. As succinctly stated in the lecture, “Science as Falsification,” in Karl Popper, Conyec-
tures and Refutations, pp. 33-39. See also Karl Popper, The Logic of Scientific Discovery.

15. See Matthew Fuller, Softness, Interrogability, General Intellect: Art Methodologies in
Software.
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16. Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold War

America.
17. Ludwig Wittgenstein, Philosophical Investigations, §19.

18. See, for instance, Joel Spolsky, ed., The Best Software Writing 1: Selected and Intro-
duced by Joel Spolsky.

19. Neal Stephenson, In the Beginning was the Command Line, 93. See also, http://www
spack.org/wiki/InTheBeginningWasTheCommandLine.

20. For numerous texts, scripts, applications, and sites, see the RunMe.org repository
of software art, available at hetp://www.runme.org/, and the catalogs for the Read_Me
testivals, edited by Olga Goriunova and Alexei Shulgin.

21. Donald Knuth, The Art of Computer Programming.

22. The Jargon File, available at hetp://www.dourish.com/goodies/jargon.html/.

23. These texts and others are collected as Georges Bataille, Isabelle Waldberg, and
lain White, Encyclopaedia Acephalica.

24. Raymond Williams, Keywords: A Vocabulary of Culture and Society, 15.
25. Ronald Sukenick, Narralogues: Truth in Fiction, 1.

26. Michael Mateas, “Procedural Literacy: Educating the New Media Practitioner,” also
available at heep://www.lcc.gatech.edu/~mateas/publications/MateasOTH2005.pdt/.

27. McKenzie Wark, A Hacker Manifesto.
28. Friedrich Nietzsche, The Gay Science, §355.

29. For a call to go beyond such a lazy acceptance of “complexity,” see the introduction

to John Law and Annemarie Mol, eds., Complexities: Social Studies of Knowledge Practices.
30. Francis Bacon, The Advancement of Learning, Second Book.

31. Nietzsche, The Gay Science, §355.
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Algorithm
Andrew Goffey

Algorithm = Logic + Control’

The importance of the algorithm for software studies is indicated with admi-
rable succinctness by Les Goldschlager and Andrew Lister in their textbook,
Computer Science: A Modern Introduction. The algorithm “is the unifying concept
for all the activities which computer scientists engage 1n.” Provisionally a “de-
scription of the method by which a task 1s to be accomplished,” the algorithm
is thus the fundamental entity with which computer scientists operate.” It is
independent of programming languages and independent of the machines that
execute the programs composed from these algorithms. An algorithm is an ab-
straction, having an autonomous existence independent of whar compurter sci-
entists like to refer to as “implementation details,” that is, its embodiment in a
particular programming language for a particular machine architecture (which
particularicies are thus considered irrelevant).

But the algorithm is not simply the theoretical entity studied by computer

scientists. Algorithms have a real existence embodied in the class libraries of
programming languages, in the software used to render web pages in a browser
(indeed, in the code used to render a browser itself on a screen), in the sorting
of entries in a spreadsheet and so on. Specialized fields of research, such as artifi-
cial life or connectionism in cognitive science, utilize genetic algorithms, back-
propagation algoricthms, least mean square algorithms for the construction of
models to simulate evolutionary processes or the learning capacities of neural
networks. Algorithms have material effects on end users—and not just when
a commercial website uses data-mining techniques to predict your shopping
preferences..

In short, both theoretically and practically, ideally and materially, algo-
rithms have a crucial role in software. But none of this tells us much about
the social, cultural, and political role algorithms play, it anything. Nor does
it tell us much about the strata of material reality algorithmic abstractions
might be correlated with: glowing configurations of pixels on a screen? mouse
movements? the flow of electrons around an integrated circuit? Locating itself
squarely on the side of the reductionist strategies of the exact sciences, society,

culture, and politics are very much marginal to the concerns of computing
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science. Software engineering, on the other hand, concerned as it is with the
pragmaric efficacy of building software for particular purposes, might appear
to offer a better starting point for factoring culture back into software. How-
ever, it 1s unlikely that software engineering will allow us to view culture as
anything other than something that software plugs into, as long as we fail to
arrive at a better understanding of some of its basic building blocks. The key
question then is what, if anything, a study of algorithms as such can tell us
about the place of culture in software.

Historically, the algorithm occupies the central position in computing sci-
ence because of the way that it encapsulates the basic logic behind the Turing
machine. Alan Turing’s concept of a machine that could be used to determine
whether any particular problem is susceptible to being solved mechanically was
a highly original interpretation of the aim of David Hilbert’s famous project of
formally deciding whether or not any mathematical proposition can be proved
true. The algorithm, which Turing understood as an effective process for solv-
ing a problem, is merely the set of instructions fed into the machine to solve
that problem.” Without the algorithm then, there would be no computing.

Although computer scientists work with them as if they were purely formal
beings of reason (with a little bit of basic mathematical notation, it is possible
to reason about algorithms, their properties and so on, the way one can reason
about other mathematical entities), algorithms bear a crucial, if problematic, re-
lationship to material reality. This was tacit in the way that the Turing machine
was envisaged in terms of effective processes: A computer is a machine, after all,
and while the Turing machine is an imaginative abstraction, its connotations
of materiality are entirely real. Robert Rosen has suggested that the tempta-
tion to excrapolate from formal procedures to material processes was practically
inherent in the enterprise of the early computing scientists.” Such a temptation
implies a confusion between the mathematics of algorithms and the physics of
real processes, of which Stephen Wolfram'’s bold speculation that the universe is
itself a giant computer is one possible outcome.” The rest of this article explores
another possibility, equally speculative but perhaps more mundane.

One of the implications of characterizing the algorithm as a sum of logic
and control is that it is suggestive of a link between algorithms and action.
Despite the formal-logical framework of the theory of algorithms and the fact
that programming languages are syntactic artifacts, the construction of al-
gorithms as a precisely controlled series of steps in the accomplishment of a

task is a clear indication of what might be called the pragmatic dimension of
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programming. Algorithms do things, and their syntax embodies a command
structure to enable this to happen. After all, the Turing machine as an imagi-
native abstraction had as a material correlate a series of real computers. And
dumb though they may be, missile guidance systems, intelligence databases,
and biometric testing are all perfectly real. Without this effective existence
in concrete machinery, algorithms would only ever have a paper reality as the
artifacts of a formal language.

In the field of linguistics, the existence of a pragmatic dimension to lan-
guage—rthe fact that words do things—has created enormous problems for
attempts to formalize the structure of natural language. Because pragmatics
connects language to extrinsic factors, it becomes impossible to conceptualize
a language as a self-sufficient system closed in on itself. Perhaps attempting to
conceptualize the pragmatic dimension of the algorithm might yield a simi-
lar result? However, while formalization comes afterwards with natural lan-
guages, with algorithms, formalization comes first, the express aim being to
divorce (formal) expression from (material) content completely. Understand-
ably then, the study of computation has tended to concentrate on issues of
syntax and semantics, the assumption being that what algorithms do can be
appropriately grasped within such a framework. This has tended to result in
making the leap from the theoretical world to the practical world a difficult
one to accomplish. Always the trivia of implementation details.

A conception of the algoritchm as a statement as Michel Foucault used the
term might allow us to understand this approach a lictle better. For Foucaulr,
the statement is not analytically reducible to the syntactic or semantic features
of a language; it refers instead to its historical existence and the way that this
historical existence accomplishes particular actions. The statement is a sort
of diagonal line tracing out a function of the existence of language, which is
in excess of its syntactic and semantic properties. In this way, the concept of
the statement acts as a reminder that the categorical distinction between form
and content is, paradoxically, insufficiently abstract to grasp the intelligence
of concretely singular constellations of language in their effective existence.
As Foucault puts it in The Archaeology of Knowledge, “to speak is to do some-
thing—something other than to express what one thinks, to translate what
one knows, and something other than to play with the structure of language.”®
For Foucault, these actions are restricted to the human sphere, as is only to be
expected from an analysis which focuses on the historical existence of natural
languages. Appropriately translated into the field of software studies, however,
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focusing on the development and deployment of algorithms and an analysis of
the actions they accomplish both within software and externally might lead us
to view the lacter as a sort of machinic discourse, which addresses the ways in
which algorithms operate transversally, on themselves, on machines, and on
humans. (Alternatively, we might want to start to think about cultural analy-
sis as a process of software engineering.)

Viewing algorithms in this way as statements within a machinic discourse
would problematize their existence in a way which undercuts the “pure/applied”
or “theory/practice” dichotomies which crop up when the distinction between
computing science and software engineering is too hastily made. The formalist
aim at complete abstraction from content not only relays the theory/practice
divide, it also tends to preclude an analysis of the link between the crucial enti-
ties of computing science and historical context. Just because the development
of an algorithm requires a level of de facto formal abstraction, which then al-
lows that algorithm to be applied to other kinds of content, does not mean that
we have exhausted everything that we need to know to understand the processes
of which it is a part. To borrow an expression from Gilles Deleuze and Félix
Guattari, whose analysis of the place of pragmatics in language is part of the
inspiration for this discussion, the problem with the purely formal conception
of the algorithm as an abstract machine is not that it is abstract. It s that it is
not abstract enough. That is to say, it is not capable of understanding the place
of the algorithm in a process which traverses machine and human.’

Algorithms obviously do not execute their actions in a void. It is difficult
to understand the way they work without the simultaneous existence of data
structures, which is also to say data. Even the simplest algorithm for sorting a
list of numbers supposes an unsorted list as input and a sorted list as output (as-
suming the algorithm is correct). Although computer scientists reason about
algorithms independendently of data structures, the one is pretty near useless
without the other. In other words, the distinction between the two 1s formal.
However, from a practical point of view, the prerequisite that structured data
actually exist in order for algorithms to be operable is quite fundamental, be-
cause it is indicative of a critical operation of translation that is required for a
problem to be tractable within software. That operation of translation might be
better understood as an incorporeal transformation, a transformation that, by
recoding things, actions, or processes as information, fundamentally changes
their status. This operation can be accomplished in myriad ways, but generally

requires a structuring of data, whether by something as innocuous as the use of
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a form on a web page or by social processes of a more complex form: the knowl-
edge extraction practiced by the developers of expert systems, the restructur-
ing of an organization by management consultants, and so on.

[t would be easy to leave the analysis of algorithms at this point;: We are
back on familiar territory for culcural analysis, that of the critique of abstrac-
tion. Within cultural studies and many other fields of research in the human
sciences, abstraction is often thought of as the enemy. Many movements of
philosophical chought, literary and artistic endeavor, and human-scientific re-
search set themselves up against the perceived dehumanizing and destructive
consequences of the reductionism of mathematics, physics, and allied disci-
plines, as the perennial debates about the differences between the human and
the exact sciences suggests. We could even understand major elements of the
concept of culture as a response to the abstract machinery of industrial capital-
ism and the bifurcated nature modern rationality is built upon. Understand-
ing things, activities, tasks, and events in algorithmic terms appears only to
exacerbate this situation. What is an algorithm if not the conceprual embodi-
ment of instrumental rationality within real machines?

However, to simply negate abstraction by an appeal to some other value
supposedly able to mitigate the dehumanizing consequences of reductionism
misses a crucial point. It fails to adequately question the terms by which the
algorithm, as a putatively self-sufficient theoretical construct, maintains its
hierarchizing power. In questioning the self-sufficiency of the algorithm as a
formal notion by drawing attention to its pragmatic functioning, however, it
becomes possible to consider the way that algorithms work as part of a broader
set of processes. Algorithms act, but they do so as part of an ill-defined network
of actions upon actions, part of a complex of power-knowledge relations, in
which unintended consequences, like the side effects of a program’s behavior,
can become critically important.® Certainly the formal quality of the algorithm
as a lngicalljf consistent construction bears with it an enormous power— par-
ticularly in a techno-scientific universe—but there is sufficient equivocation
about the purely formal nature of this construct to allow us to understand that
there 1s more to the algorichm than logically consistent form.

Lessig has suggested that “code is law,” but if code is law it is law as a
“management of infractions.”” Formal logics are inherently incomplete and
indiscernibles exist. Machines break down, programs are buggy, projects are
abandoned and systems hacked. And, as the philosopher Alfred North White-

head has shown, humans are literally infected by abstractions.'® This no bad
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thing, because like the virus which produced variegated tulips of a rare beauty,

infection can be creative too.

Notes

1. Robert Kowalski, “Algorithm = logic + control.”

2. Les Goldschlager and Andrew Lister, Computer Science: A Modern Introduction, 2nd
ed.; 12.

3. See Rolf Herken, ed., The Universal Turing Machine: A Half-Century Survey for an

excellent collection of appraisals of the Turing machine.
4. Robert Rosen, “Effective Processes and Natural Law” in Herken, ibid.

5. Stephen Wolfram, A New Kind of Science.

6. Replace the word “speak” with the word “program” and one might begin to get a sense

of what is being suggested here. See Michel Foucault, The Archaeology of Knowledge.

7. Gilles Deleuze and Félix Guattari, “November 20, 1923: Postulates of Linguistics,”
in A Thousand Plateaus.

8. See Philip Agre, Computation and Human Experience on the crucial role of side effects
in software. Max Weber's essay The Protestant Ethic and the Spirit of Capitalism 1s the

classic text on the fundamental role of unintended consequences in human action.
9. Gilles Deleuze, Foucault, p. 39.

10. See for example, Alfred North Whitehead, Science and the Modern World, and the

extended commentary by Isabelle Stengers, Penser avec Whitehead.

Algorithm

20

Skenovano pro studijni ucely



i
Analog

Derek Robinson

Now the analogy between reasons, causes, forces, principles, and
moral rules i1s glaring, but dazzling.
—JAMES CLERK MAXWELL'

The term “analog” has come to mean smoothly varying, of a piece with the
apparent seamless and inviolable veracity of space and time; like space and
time admitting infinite subdivision, and by association with them connoting
something authentic and natural, against the artificial, arbitrarily truncated
precision of the digital (e.g., vinyl records vs. CDs). This twist in the cradi-
tional meaning of “analog” is a linguistic relic of a short-lived and now little-
remembered blip in the history of technology.

Electronic analog computers, based on technologies developed in the
1930s—1940s and sold commercially from the mid-1950s onward, were used
by scientists and engineers to create and explore simulation models, hence
their name: A model is something standing in analogical relationship to the
thing being modeled. The medium of the analogy was voltage, the electro-
motive force flowing and varying continuously through a circuit. Electronic
amplifers would allow any varying quantity sensed by instruments to be input
to and transformed through an analog computer’s “program” (i.e., its circuit),

fitting it for use in ballistics computations and real time process control.

General purpose analog computers were anticipated in certain exotic me-
chanical devices dating from the 1870s, but these were costly specialized ma-
chines, never widely deployed. Only twenty or so Bush Differential Analyzers
were ever built, and a similar number of Kelvin’s Tidal Predictor and Har-
monic Analysers installed worldwide. The final iteration of the Bush Differen-
tial Analyzer was operational by 1942; it had 2000 vacuum tubes, 200 miles of
wire, 150 electric motors, thousands of relays, and weighed 100 tons.? Of the
mechanical analog computers (barring the slide rule) the Norden bombsight
probably saw widest service, being used in U.S. bombers from World War I1
until the end of the Vietnam War. Given airspeed and altitude, the bombsight
calculated a bomb’s trajectory through a complex assembly of electric motors,
gyros, levels, gears, and optical parts.

Much of the early work on electronic computing, both analog and digital,

was carried out under the shroud of wartime secrecy, and it would be decades
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before detailed accounts of projects like the Colossus computers used by British
codebreakers began to emerge. It turns ourt that the first general purpose ana-
log electronic computer was built in 1941 at Peenemunde, the German mil-
itary’s top-secret rocket facility. Helmut Hoelzer's “Mischgerat” was used as
an onboard flight controller in V-2 ballistic missiles and as a programmable
launch dynamics simulator on the ground. At the war’s close, Hoelzer was
one of the German scientists spirited away by Operation Paperclip to develop
guided missiles for the U.S. military. He became head of the Marshall Space
Flight Center Computation Lab and contributed to the Saturn V rocket used
in the Apollo and Skylab missions.”

In the decade following World War II, a number of American, English,
Dutch, and German electronics firms got into the business of manufacturing
analog computers. These were large handsome objects in enameled sheetmetal
cases, sporting delicate vernier dials, glowing nixie tubes, rows of black bakelite
knobs and colorful patch-cords hanging in braids—an epitome of the modern
instcrument-maker’s art. Rapidly adopted by research labs due to their versatility
and relatively modest cost, by the end of the 1960s they had been replaced in
most areas by digital software. One noteworthy exception was computers made
for music synthesis. Analog synthesizers, a special breed of analog computer,
didn’t yield to digital synths like the Yamaha DX-7 until the 1980s." And simi-
larly to realtime video synthesizers used by avant garde cineastes, their palette
wouldn’t be reproducible in software until the 2000s (whence came the laptop
V]).> Certain kinds of embedded analog controllers might also be seen as spe-
cial purpose analog computers, however analog control system design 1s i1ts own
branch of engineering, which both contributed to and outlasted the brief apogee
of analog computing.

It might have been initially unclear which type of giant electronic brain
would prevail, but with the advent of mainframes (the Remington-Rand type-
writer company began commercial development of the UNIVAC in 1951)
the balance tipped in favor of digital machines for general purpose number
crunching. Analog computers by their nature were unsuited to the preparation
of the National Census; almost before getting underway the analog era entered

a lengthy decline into its present obscurity.
Analogies and Amplifications

The term “analog,” as indicated above, was an allusion to a body of physical

and geometric “analogies” and their corresponding systems of equations, es-
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tablished by mathemaricians from Newton’s time forward. The differential
equations of physics represent, in a bristlingly arcane syntax, common spatio-
temporal patterns occurring across the panoply of chemical, hydraulic, ther-
mal, mechanical, acoustic, electrical, and biological phenomena. Electronic
analog computers, arriving as and when they did, imbued the standard physi-
cal analogs with a new concreteness and gravitas, and made tangible the ab-
stract dynamics hidden behind the mathematics. Researchers could quickly
construct a working system (indeed a system of equations, but now “in the
metal”) whose transient and long-term behaviors they could observe and re-
cord oscillographically and freely tweak with sliders and knobs. An analog
computer was functionally an oversize, precision manufactured, rocket-age
version of the home circuit hobbyist’s electronic breadboard.

The basic unit of analog computing was the operational amplifier, so named
because it could be configured to mimic, by changing the values of resistors
and capacitors attached to its inputs, all the basic operations of mathematics
(negation, addition, subtraction, multiplication, division, differentiation, in-
tegration) and so emulate in circuitry virtually anything that could be mod-
eled in a system of equations. Unlike a digital CPU, whose speed is limited by
a fixed clock cycle and the efficiency or otherwise of the code being executed,
and which operates on binary 1s and Os rather than continuous voltages and
can execute only one instruction at a time, analog computation takes place ef-
fectively instantaneously, at every point in a circuit at once.

The op amp was a refinement and elaboration of the negative feedback am-
plifier developed by Harold Black, and patented in his name by Bell Labs in
1937. It 1s 1n large part owed to Black’s invention, placed in the hands of war-
time electronics engineerﬁ, that the term “feedback” entered into common use.
Black’s negative feedback amplifier revolutionized scientific instrumentation
in the 1940s, and a generation of scientists (at the time scientists were neces-
sarily also analog hackers, just as today’s scientists are trained to be fluent in
Unix, C programming, and LaTEX) were exposed to the sometimes startling
consequences attendant on feeding a system’s outputs back as its inputs.®

Mapped into electronic engineering schematics and circuit symbols, the
scientist’s analogies formed a highly compressed picture language of systems
in general, applicable to very nearly any focus of scientific inquiry. What made
electronic analog computation possible is that circuits and circuit elements in-
trinsically embody a common mathematics and physicogeometrical metaphor
of force, flow, and circular feedback. The root metaphor and lasting legacy

of the analog era is therefore this concept of “system” itself, as an assembly of
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elements in relations of interdependence, altogether constituting a complex

organized whole.’

Owing to the connective tissue of intervening dependencies, 1n a system
every part ultimately depends upon every other part, and the temporal linear
chain of causes and effects is made circular. It becomes a “circuit.” The snake
swallows its tail, the world is round. Effects fed back become the causes of
their own causes, and the mutual constraint of part upon part ensures that any
imbalance or error (which physicists term the “energy”) is immediately relayed
to adjacent parts, and by these to the parts adjoining and being acted upon
by them, driving the entire system to equilibrium, an energy minimum. It
might not be the lowest such minimum, and the system might never stabilize.
Instead it may endlessly oscillate (oscillators are handy things to engineers) or
jitter and careen about madly in so-called mathematical chaos. Without cor-
rective negative feedback, amplifier circuits immediately saturate, solutions

take off for infinity, speaker-cones and eardrums are easily blown.
Feedhack

This picture of circularly dependent systems, bound together in dynamic feed-
back loops, in many ways marked a return to ideas current two centuries be-
fore. The image of electricity as a strangely sexed fluid circulating endlessly in
closed loops had been advanced by Volta, Franklin, Ampere, and other late-
eighteenth-century natural philosophers.® A hydraulic or pneumatic analogy
was already present in Descartes’s diagrams of fiery ethers conveying sensation
and volition by nerves going to and from the brain, and in Harvey’s tamous
demonstration of the circulation of blood by the action of the heart. Simon
Stevin, a Flemish contemporary of Galileo, had revived Archimedean hydrostat-
ics, framed the parallelogram law of forces, and advised the use of double-entry
bookkeeping for national accounts. By 1760 the Physiocrats were proposing a
circulatory model of the French economy: Quesnay’s Tableau Economique was
the prototype “spreadsheet model,” with money and goods charted as recip-
rocal flows through the demographic sectors of pre-revolutionary France. The
scientific enlightenment of the Early Modern period thus saw the union of a
philosophical apperception of universal cyclical flow, with precise new labo-
ratory procedures and instruments, and a rigorous, newly minted accounting
system where input and output quantities must necessarily balance.
Philosopher-scientists in the time of Leibniz and Newton were readier to

see in the laws of dynamics evidence for a divine or even panpsychical’ pur-

Analog

24

Skenovano pro studijni ucely



pose that with seeming prescience is able to discern paths of least resistance to
achieve its ends using the least action, the least effort, the greatest economy of
means. With the discovery of the “conservation laws” or “action principles,”
as they later came to be known, it seemed to savants like Fermat, Mauper-
tuis, Leibniz, and Euler as though all physical phenomena could be explained
as the unfolding consequences of one universal necessity. We should have to
recurn to pre-Socratic philosophy, or to Lao-Tzu's mysterious “valley spirit”*
to find as like an image of the entire cosmos as a living, questing, even a cog-
nizant being: fluid, active, elastic, responsive, self-regulating, self-repairing,
optimizing.

"All equations equal zero” is the cardinal rule of mathematics. It is equally

and profoundly true of physics, and one needn’t look further to find reasons for
what Eugene Wigner called the “unreasonable effectiveness of machematics”
in modeling nature.”” A corollary is this: whenever in nature we see an object
or a substance moving or flowing from one place to another, the motion can be
interpreted as an attempt to return to a state of balance, or “zero difference.”
Any displacement from equilibrium elicits an equivalent compensating mo-
tion and force. Bodies at rest will spontaneously adopt a configuration that
minimizes the total potential energy. The trajectory of a body subject to ex-
ternal forces is that for which its kinetic energy over the duration of the mo-
tion is minimal. The energy expended pumping water up a hill is paid back
when the water is released to flow down a channel to turn a wheel and grind
the corn. Even the small but perplexing differences between the energies paid
and reclaimed, observed once there were instruments to measure things finely
enough, were at the close of the nineteenth century finally resolved into a com-

mon accountancy of heat, work, and statistical entropy.
Feedback Everywhere

By the 1950s researchers in a growing number of fields had tripped over the
now suddenly ubiquitous feedback loop, and were seeking opportunities to
share their discoveries with other scholars. Thus were enjoined the new, syncre-
tistic sciences of cybernetics and systems theory, which were to enjoy a couple
of decades’ vogue before losing their lustre. (They wouldn’t remain lost for
long however. In the 1980s and 1990s, remarkably similar investigations were
being presented under the banners of mathematical chaos, artificial neural
nets, nonlinear dynamics, and complexity theory, even if some of their authors

seemed unaware of precedent studies scarcely a generation removed.)
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Feedback is one of the grand unifying concepts of intellectual history. Once
it had been named and witnessed and felt in fingers and elbows it became pos-
sible to apprehend earlier appearances of the same 1dea: Elmer Sperry’s auto-
pilot of 1912, Claude Bernard and Walter B. Cannon’s notions of biological
“homeostasis,” James Watt's 1788 development of the centrifugal steam gov-
ernor, the unknown inventor of the float valves found in ancient Greek water
clocks, Rene Descartes’s canny elucidation of the reflex arc, even the bimetallic
“brain” inside the humble household thermostat. James Clerk Maxwell had,
in 1868, written a mathematical analysis of Watt’s governor, which failed to
find readers able to appreciate the scope and subtlety of the idea. But once the
notion had gelled and circulated widely enough, anyone could readily see in
Darwin’s theory of evolution, for example, a cybernetic feedback loop linking
organisms and their environments. Cybernetics made what takes place at the
laboratory bench philosophically interesting again, and reatfirmed science’s
relevance to the life-world.'”

The difficulty of designing electronic circuits and devices that will exhibit
specified behaviors attests to the vastly greater complexity observed in the in-
terdependent cycles and flows in natural systems. The classic ecosystem model
is the tidal pool; marine biologists are still searching for it bottom. We living
creatures apparently weren’t made with a purpose in mind (evolutionary the-
ory offers an elegant account of how we could have arisen spontaneously) but
living matter is distinguished from the nonliving by a future-directed “telos”
or purposiveness. The cyclic-AMP motor inside every cell is an electrochemi-
cal “ratchet-and-pawl” for storing energy against future need, in a way similar
to though far more complex than how the windmill exploits fickle winds to
pump water into a reservoir from which its motive force may later, at human
discretion, be tapped.

The icons and circuit diagrams of the analog engineers were in fairly short
order picked up by ecologists and planners to aid in visualizing the complex
loops of energy, matter, and information flowing through ecological, economic,
and industrial systems. Bill Phillips’s famous hydraulic analog computer, the
“MONIAC,” was an extraordinary example of analog model building built in
1949 while he was a student at the London School of Economics. Circular flows
of money through the UK economy (household and government expenditures,
business investments, export revenues, losses due to imports, all tweaked via
policy measures aimed at controlling unemployment and stimulating growth,

e.g., through setting tax rates or issuing new currency) were physically em-
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bodied 1n tanks and streams of water of various colors, their levels charted by
fele-tipped pens as the system attempted to restore equilibrium following eco-
nomic shocks and corrections. With each change, the impacts could be traced
kinetically through the coupled lags and loops of its nine differential equa-
tions. Even hardened mathematical economists were surprised and at times
dismayed to see the system demonstrating consequences unanticipated in their
favorite theories. '’

In the 1960s, an emergent systems ecology'" used the graphic language
of analog computing to synoptically map the interlinking systems of feed-
backs upon which industrial civilization depends. Simulation programming
languages like MIT’s Dynamo (used to program the World Dynamics models
of the influential “Limits to Growth” report,” helping fuel the environmen-
tal battles of the 1970s) were expressly created to emulate analog computers
in the more flexible medium of software. The simulation languages would
in turn give way, except in specialized areas like circuit design, to electronic
spreadsheets running on desktop computers, so completing and democritizing

a cycle begun with the Tableau Economique.
Analog Again

Systems modeling has for the most part retired from the public’s gaze, back
to the university and industrial laboratories from whence it came. And while
op amps are the trusty mainstay of analog IC design, nowadays it would be
unusual to use or describe them as “computing elements.” One area in which
the old-style systems models continue to play a role behind the scenes is in
computer games like “Age of Empires,”'® which are basically system dynam-
1cs simulations recast in historical fantasy worlds, where functional relations
between variables of state (the “stocks and flows” of ecological and economics
modeling) are hardwired by the game’s designers. (An earlier incarnation of
the genre, which readers of a certain age may recall fondly, is the game “Lem-
onade Stand.”'’)

Recently, there have been intriguing reports of new excitement stirring up the
cold grey ashes of the analog. Carver Mead, the distinguished CalTech physicist
who 1n 1980 established the rules for silicon compiling of VLSI (Very Large Scale
Integrated) digital circuits, has been turning his hand to bending and breaking
those very rules to engineer a new generation of analog circuits from the same

VL3I technology used to manufacture ultra high density CPUs and memory
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chips. Mead and his students have in effect been building analog computers on a
silicon substrate with digital technology.'® They have built and tested an artifi-
cial cochlea, analog neural networks, and several varieties of synthetic retina (one
of which has been incorporated into a high-end electronic camera).

Following Mead’s lead, a number of small initiatives were undertaken in
the 1990s to create flexible hybrid arrays of field-programmable analog blocks
within a digital interconnection matrix on a single chip. While uptake by sys-
tem designers and manufacturers hasn’t yet lived up to expectations, it seems
that fifty years after its brief golden age, analog computing has at least to this
extent returned. And while it is probably too early to say, its revival might be
an occasion to reevaluate our concepts of what “computation” 1s, or might in

time become.
Notes

1. J. C. Maxwell, “Are There Real Analogies in Nature?” (Essay read to the Apostles
Club in Cambridge, 1856; the entire text is given in: L. Campell and W. Garnet, Lzfe
of James Clerk Maxwell.)

2. The Tidal Predictor and Harmonic Analyzer machines were based on the wheel-and-
disc integrator invented by Lord Kelvin’s brother, James Thomson, in 1876, which
could mechanically solve a first order linear differential equation. Kelvin saw that a
second integrator linked to the first might solve equations of second order by an itera-
tive process, where results obtained from passing through the dual mechanism could
be manually copied as inputs for another iteration, thus generating a series of functions,
each closer to an exact solution than its predecessor. Some time later he realized that
if the second integrator’s output were mechanically fed back to drive the first integra-
tor, convergence would take place “rigorously, continuously, and in a single process.”
As it happened, the disc integrator’s torque was too weak; his plan would be realized
only fifty years later with Vannevar Bush's Differential Analyzer, completed 1930. (All
credit was owed to its electric Torque Amplifier, which would find its way into big
American cars as “power steering.”) Where digital computers can simulate feedback
processes through stepwise iteration (comparable to Kelvin's first scheme) electronic

analog computers embody dynamic feedback intrinsically (as in Kelvin's second).

3. The story is told by Thomas Lange, “Helmut Hoelzer, Inventor of the Electronic

Analog Computer.” As for the interesting question of which side actually won World
War II, see Thomas Pynchon, Gravity's Rainbow and Philip K. Dick, The Man in the

High Castle, and Hawthorne Abendsen, The Grasshopper Lies Heavy, (n.d.).
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4. Digital music synthesis was realized in 1957 by Max Matthews at Bell Labs on an
IBM 704 mainframe. Despite its theoretical virtues, the technique would for decades
be limited to lugubrious and painstakingly assembled tape-based studio compositions.
Realtime digital music premiered with a 1977 concert by David Behrman and the
League of Automated Music Composers, using networked $200 KIM-1 single board

microcomputers.

5. Gene Youngblood, Expanded Cinema. As of this writing, a PDF file is available online
from ubuweb http://www.ubu.com/ and elsewhere (highly recommended). Also see
the “Radical Software” archives hosted at http:// www.radicalsoftware.org /—published
by the New York—based Raindance Collective, this was the print organ of American

experimental video art in the 1970s.

6. Henry Paynter, ed., A Palimpsest on the Electronic Analog Art. (In 1937 George Phil-
brick had built an electronic Auromatic Control Analyzer for process-control sim-
ulation, but it was hardwired. After the war Philbrick went into business making
electronic flight control computers for military aircraft, and in 1952 the Philbrick
company produced the first (tube-based) stand-alone op amp component for electronic
design. Within a decade op amps were solid-state (i.e., transistor-based) and their price

had dropped to a small fraction of what the original vacuum tube models cost.)
7. Harry F. Olson, Dynamical Analogies; also see Olson’s, Music, Physics and Engineering.

8. J. H. Heilbron, Electricity in the 17th and 18th Centuries. Also see Hankins and Silver-
man, Instruments and the Imagination for a lively and inspiring history of the sometimes

porous boundary separating scientific demonstration and theatrical spectacle.

9. Panpsychism: the philosophical doctrine that all matter is in some degree conscious.

Among its subscribers are Leibniz, Spinoza, Berkeley, Gustav Fechner, William James,
Ernst Haeckel, A. N. Whitehead and J. A. Wheeler.

10. Compare Heraclitus: “The concord of the universe is like that of a lyre or bow,
resilient if disturbed” with Lao-Tzu: “Is not the way of heaven like the stretching of a
bow? The high it presses down, the low it lifts up; the excessive it takes from, the de-

ficient it gives to.”
11. E. P. Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences.”

12. The manifesto is Norbert Wiener, Cybernetics, or Control and Communication in Ani-

mals and Machines. A rather more practical and reliable guide is W. Ross Ashby’s
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Introduction to Cybernetics, which is available online at Principia Cybernetica: hetp://
pespmcl.vub.ac.be/ ASHBBOOK. .html/.

13. Bill Phillipss MONIAC or “Financephalograph” was constructed largely from
scrounged parts (including bits of a war surplus Lancaster bomber) in his landlady’s
garage, for about 400 GBP. Upwards of a dozen were built and sold; a recently refur-
bished MONIAC, on loan from the New Zealand Institute of Economics, was featured
in an installation by artist Michael Stevenson at the 2003 Venice Biennale and one is

on display at the Science Museum in London.

14. Systems Ecology got underway with the 1953 publication of E. P. and H. T.
Odum’s Fundamentals of Ecology. Howard Odum’s Systems Ecology is the most in-depth
account of graphical model construction;, Robert Ulanowicz Ecosystems Phenomenology is
a contemporary treatment based on information theory principles. Robert Axelrod’s
Structure of Decision in the area of political science, developed a similar approach to

modelmaking with simple feedback diagrams.

15. Donella Meadows, Dennis L. Meadows, and Jergens Randers, The Limits to Growth.
(Also see Meadows, Meadows, and Randers, Limits to Growth: The 30 Year Update.) The
Systems Dynamics approach was developed by MIT professor Jay Forrester between
1961 and 1973 in a series of books on Industrial Dynamics, Urban Dynamics and
World Dynamics. Forrester also invented random access magnetic core memory, used

before the introduction of semiconductor RAM.

16. “Age of Empires,” first published in 1997, developed by Ensemble Studios and
published by Microsoft; AOE is now its own empire with several popular sequels, add-
ons, and spinoffs. A sense of the continuity between system dynamics modeling and
video games is developed by Chris Crawford in The Art of Computer Game Design. The

following passage touches on the complex modeling decisions which inform the design
of a so-called “God Game™:

To help keep the system balanced, each differential equation should have a damping fac-
tor that musc be empirically adjusted:

new value = old value + (driving factor / damping factor)

A small damping factor produces lively systems that bounce around wildly. A large
damping factor yields sluggish systems that change slowly. Unfortunately, recourse to
simple damping factors can backfire when a relationship of negative feedback exists be-
tween the “new value” and the “driving force.” In this case, large damping inhibits the

negative feedback, and one of the variables goes wild.
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17. “Lemonade Stand,” a text game created by Bob Jamison in 1973 for use on time-
shared teletype terminals, ported to the Apple II computer in 1979. A copy of “Lemon-
ade Stand” was included with every Apple system sold throughout most of the 1980s.

18. Carver Mead, Analog VLSI and Neural Systems.

Button
Sdren Pold

Butrons are everywhere in software interfaces, they “initiate an immediate ac-
tron” and are an essential part of the controls in the modern graphical user
interface (GUI). An intensive design effort has gone into the sculpting of but-
tons, they have become sonified, texturized, sculpted, and various kinds are
developed with distinct functionality and signification: push buttons, metal
buttons, bevel buttons, round buttons, help buttons, and radio buttons.! They
appeared from the moment of the earliest graphical user interfaces such as in
Xerox’s SmallTalk and the Xerox Star computer from the 1970s and early
1980s.” Buttons are a cornerstone in contemporary software interfaces. But why
and what do they signify, and why are buttons so important and seductive?

Buttons signity a potential for interaction. When the mouse was invented
by Douglas Engelbart’s team in the 1960s, it was used to click on text and hy-
pertext links. These gfadually changed into buttons when the GUI became es-
tablished. Already ASCII interfaces like DOS shells and the notorious Norton
Commander (figure 1) had button-like text boxes to click on when the mouse
became a standard interface with PCs. The GUI introduced icons and its but-
tons gradually became reactive, inverting the black and white colors when they
were clicked. Later, in the 1990s, they became increasingly three-dimensional
in style as the available screen resolution increased. The interface designer
Susan Kare, who had earlier worked on the Macintosh, worked for Microsoft in
the late 1980s on what was to become Windows 3.0 (1990), where she replaced
“black rectangles with images that looked like three-dimensional ‘pressable’
buttons.”” By the mid-1990s 3—D buttons were a fully fledged standard in, for
example, Windows 95 (1995) and Mac OS 8.0 (1997).

A button indicates a functional control; something well defined and pre-
dictable will happen as a result of the user pressing it. The fact that it is often

rendered in 3—D simulates a physical, mechanical cause-and-effect relationship
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Figure 1 Norton Commander (1986)

which is often emphasized by the system event sound of a mechanical button
being pressed. This is a simulation of how we know buttons from old machin-
ery and electronics, where the buttons are in fact the mechanical interface,
which might switch a relay through a mechanical lever, followed by an audible
click and noise from the machinery and electronics. Since the connection 1s
mechanical and not symbolic, such buttons are trustworthy, and one can feel
them working tactilely. They do not change functionality; they always pre-
cipitate the same action. There is an analog connection berween pressing the
button and, by the force of one’s finger transmitted through a lever, changing
the state of the apparatus—as in old tape recorders, where one actually pushed
the tape head into place with the button. The computer interface does away
with the analog mechanical functionality, but the function of buttons here is
to signify the same stable denotation, even though its material basis is gone.
That is, interface buttons disguise the symbolic arbitrariness of the digital
mediation as something solid and mechanical in order to make it appear as if
the functionality were hardwired: they aim to bring the old solid analog ma-
chine into the interface. In this sense butrons are a part of a remediation® of the
machine in the computer interface, a way of dressing it up as something well
known and well understood, but there is more to it than this. It points directly
to our limited understanding of the computer as a machine and as a medium
and how it functions in culture and society.

One pioneer of computer graphics, computer art, and semiotics, Frieder

Nake, has described the computer as an instrumental medium that we use in-
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strumentally as a tool while communicating with it as a medium, thus it is
both machine and mediation simultaneously.’ Following Nake’s concept of the
instrumental medium, the computer is a new kind of media-machine that me-
diates the instrumental or functional and functionalizes the representational
medium. That is, function becomes mediated and the mediated representation
becomes functional. This chimerical quality, though difficult to grasp from
both a functional perspective (e.g., engineering) and from a media perspective
(e.g., postmodern media studies and aesthetic theory) has become a standard
mode of expression in software interfaces, with the button as a central element
of expression.

When pushing a button in an interface——thart is, by movement of the mouse,
directing the representation of one’s hand onto the representation of a button
in the interface and activating a script by clicking or double-clicking—we
somehow know we are in fact manipulating several layers of symbolic repre-
sentation and, as such, interacting with a complex mediation of a functional
expression, engaging with what Steven Johnson characterizes as the “strange
paradoxical quality” of direct manipulation.® But we nevertheless see and in-
terpret 1t as something that triggers a function—and for good reason, since
it is designed to perform in this way. It is a software simulation of a function,
and this simulation aims to hide its mediated character and acts as if the func-
tion were natural or mechanical in a straight cause-and-effect relation. Yet it
1s anything but this: it is conventional, coded, arbitrary, and representational,
and as such also related to the cultural.

Just think about how many codes and values—from programming, com-
merce, and ideology—are mobilized when you click “buy,” pay with your
credit card, and download a tune in a proprietary file format with technically
and juridically imposed restrictions on how you can use, play, and copy it. The
cultural, conventional, and representational elements are disguised or “black-
boxed” as pure technical functionality; you do not even realize the conse-
quences of the copy protection technology, the money transfer via your credit
card company, or the way the music is produced, commercialized, and regu-
lated by the recording company, the outlet, and the artist. The functional
spell is only broken when the software crashes, or when the software becomes
reflexive: either through artistic means as in net- and software art, in order
to surprise, criticize, or inform; or through juridical necessities such as when
submitting to licenses, etc. The installation screens where, before installing

the software, one has to accept a lot of restrictions and modes of conduct by
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pressing a button are perhaps some of the most perverse examples of using but-
tons in software. The long intricate message and the easy accept button seem
contradictory, and even though you are asked in capitals to read the agreement
carefully before using the software, it only seems symptomatically to point to
the contradiction. For example when installing Apple’s iTunes player, it states
that by clicking the button you accept a 4000-word contract stating that you
are only licensing the software, that you may only use it to reproduce material
which is not in violation of copyright, that you will not use iTunes to develop
nuclear missiles, chemical or biological weapons(!), and, among other things,
that you will be solely responsible for any damages to your computer or data.

This example highlights how buttons force decisions into binary choices.
There is no way of answering that one partially agrees, has not realized the
consequences of accepting, or does not care, even though these would probably
be franker answers from most users. Buttons are verbs that rule out tenses other
than present tense, and rule out modal auxiliary, subjunctive, and other more
sophisticated ways in which our language expresses activity. Buttons also des-
ignate you as a masterful subject in full control of the situation, which obvi-
ously is problematic in many cases, such as the one above, where one cannot
oversee, predict, or even understand the consequences of ‘clicking “I accept,”
or in other examples where the buttons effectively hide the scripts enacted by
pressing it, such as in the “buy” example.

Bur as manufacturers of technological consumer goods from cars and hi-fi
equipment to computer hardware and software know, buttons have seductive
aesthetic qualities and should provide a satistying response to the desire to push
them. They should evoke confidence by returning a smooth response, not plas-
tickey or cheap, even though it might have nothing to do with functionality.
Buttons are tempting—just watch kids in technical museums. Their magne-
tism may reflect a desire for control or for the capacity to have an effect, and this
is combined with a tactile desire that is emphasized by the adding of simulated
textures (e.g., metal, shadows, lighting, grooves, 3-D, etc., shown in higure 2),
as in the Mac OS 7.5.3 CD-Player. That buttons still are important for the suc-
cess of a product is demonstrated by the iPod’s Apple ClickWheel, which is the
tactical icon for the extremely successful iPod.

In fact the ClickWheel points out how software buttons have increasingly
become hardware. The C/ickWheel is a button on the iPod hardware designed
to control specific functions of the software, thus materializing the software

into the hardware. Other and older examples of software buttons migrating
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Figure 2 CD-player from Mac 0S System 7.5.3 (1996)

back to hardware are the mouse itself, buttons on a computer for controlling
sound volume or various functions of the operating system (home, end, search)
or the function buttons (F1-F12) on the computer keyboard. These kind of
soft-hardware buttons are often seen when the universal computer is custom-

ized for special use, such as in mobile phones, iPods, game consoles, etc., and

they seem to be flourishing currently as seductive branding on fashionable
electronic gadgets. A special case is touch screens, where one interacts with the
intertace by touching the screen and tapping its buttons. Here the interface
becomes directly touchable though it is only an illusion which does not exactly
feel right—instead of actually touching the interface it feels as if one’s finger
becomes a mouse. Still, even if next generation touch screen producers feel
tempted to produce screens that could automatically sculpt 3-D buttons with
a tactile feel to them, it would not solve the paradox of the button as an ex-
pression of the interface’s mediation of the functional and instrumentation of
the representational, as pointed out previously. Software buttons incarnate this
paradox. As exemplified by the function buttons, software buttons turned into
hardware are often reconfigurable, programmable, and, as such, they reverse
the logic of mechanical buttons from giving the interface a hardwired func-
tional trustworthiness to softening the buttons on the box. This both leads
to frustration (as when your keyboard layout is accidentally changed) and an
at least momentary frisson (e.g., playing computer games or handling SMS’s).

Powerful buttons have an unmistakably “trigger happy” feel to them. They
make the world feel controllable, accessible, and conquerable, providing “In-
formation at your fingertips” as the slogan goes, or, more broadly, the reduc-
tion of society, culture, knowledge, its complexity, countless mediations, and
transformations to a “double-click” information society,” where everything

becomes packaged in manageable and functional scripts activated by buttons
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offering easy rewards. From this perspective, the interface button becomes an
emblem of our strong desire to handle the increasingly complex issues of our
societies by efficient technical means—what one may call the “buttonization”
of culture, in which our reality becomes clickable.

In Adrian Ward’s artistic software, Signwave Auto-I/lustrator,® there is a big,
tempting button in the preferences palette with the caption “Don’t push this
button,” which paradoxically pinpoints and heightens the desire to push it.
One could say that by its apparent denial of functional purpose the button self-
consciously tempts our desire for the functional experience of tactical control
and mastery—a strong ingredient in the aesthetics of the functional interface,

even when denied.”

Notes
1. Apple Computer, Apple Human Interface Guidelines, Cupertino, CA, Apple Com-
puter, Inc. Retrieved March 20, 2006 from http://developer.apple.com/documentation/
UserExperience/Conceptual/OSXHIGuidelines/.
2. See Steven Johnson, Interface Culture: How New Technology Transforms the Way We
Create and Communicate, N. Lineback, “GUI Gallery”; J. Petersen and J. H. Hansen,
“MacLab Danmark”; M. Wichary, “GUIdebook, Graphical User Interface Gallery”;
M. Tuck, “The Real History of the GUI”; J. Reimer, “A History of the GUIL”"
3, Susan Kare, “Design Biography.” http://www.kare.com/design_bio.html/.

4, J. David Bolter and R. Grusin, Remediation: Understanding New Media.

5. Frieder Nake, Der Computer als Automat, Werkzeug und Medium und unser Verndltnis

2u ihm.

6. Johnson, Interface Culture.

7. Bruno Latour, E. Hermant, et al. Paris Ville Invisible.
8. Adrian Ward, Signwave Auto-1llustrator.

0. Sgren Pold, “Interface Realisms: The Interface as Aesthetic Form,” in Postmodern
Culture, vol. 15 no. 2, January 2005.

Button

36

Skenovano pro studijni ucely



]
Class Library

Graham Harwood

use Poetic::Violence:

# Software for the aggressive assault on society.

# Thank GOD It’s all right now — we all want egquality -—
use constant EQUALITY_FOR_ALL

5 8

“the money to be i1n the right place at the right time”;
uge constant. NEVER = ‘for;:;’:

use constant SATISFIED => NEVER;
# It's time to liposuck the fat from the thighs of the bloated

# bloke society—smear it on ourselves and become invisible.
# We are left with no option but to construct code that

# concretizes its opposition to this meagre lifestyle.

package DON’T: :CARE;
use strict; use warnings;

sub aspire {

my Sclass POOR;

GET_RICHER;

my Srequested_type
my Saspliration = “Srequested_type.pm”;

my Sclass

“POOR: : Srequested_tvype”;
reguire Saspifétimn;

return Sclass->new({@d_) ;

# bought off with $40 dvd playvers

sub bought_off{
my Sself = shift;
$self->{gain} = shift;

for( Sme = 0;
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Sme <= SATISFIED:

Sme += EQUALITY_ FOR_ALL ) {

SExploit
push (@poverty_on_someone_else, $self->{gain});
die “poor™ if SExploit
=~ m/ ‘I feel better about Sme’ /qg;

}

foreach my S$self_worth ( @poverty on_someone_else) {
wait 10;

&Environmental catastrophe (CHINA, $self_worth)

TODO: we need to seek algorithmic grit
for the finely oiled wheels of capital.
Perl Routines for the redistribution of the world’s wealth

Take the cash from the rich and turn it into clean

H = = H HE

drinking water

# Constants

use constant SKINT => 0;

use constant TO MUCH => SKINT + 1;

# This is an anonymous hash record to be filled with

# the Names and Cash of the rich

% {The Rich} = {
0 => {
Name => '?2777,

Cash => 2?27/,

# This 1s an anonymous hash record to be filled
# with the Price Of Clean Water

# for any number of people without clean water
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% {The_Poor} = {
0 =>{
#the place name were to build a well
PlaceName = WE2AL
PriceOfCleanWater => ‘27?77?77,

Cash = “WRR .

# for each of the rich, process them one at a time passing

#them by reference to RedistributeCash.

foreach my $RichBastardIndex (keys %{The_Rich}) {
&ReDisdributeCash (\%{The_Rich->{$RichBastardIndex}});

# This 1s the core subroutine designed to give away

# cash as fast as possible.

sub ReDisdributeCash {
my S$RichBastard_REFERENCE = @_;

# go through each on the poor list
# giving away Cash until each group
# can afford clean drinking water
while{$RichBas£ard_REFERENCE ->{CASH} >= TO_MUCH) {
foreach my $Index (keys @{Poor}) {
SRichBastard REFERENCE->{CASH}-;
SPoor->{SIndex}->{Cash}++;
1f( SPoor->{SIndex}->{Cash}
=%
SPoor->{$Index}->{PriceOfCleanWater} ) {
&BuildWell ($Poor->{$SIndex}->{PlaceName}) ;

}
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Code (or, How You Can Write Something Differently)
Friedrich Kittler

Codes—Dby name and by matter—are what determine us today, and what we
must articulate if only to avoid disappearing under them completely. They are
the language of our time precisely because the word and the matter code are
much older, as I will demonstrate with a brief historical regression. And have

no fear: I promise to arrive back at the present.
Imperium Romanum

Codes materialize in processes of encryption, which is, according to Wolfgang
Coy’s elegant definition, “from a mathematical perspective a mapping of a fi-
nite set of symbols of an alphabet onto a suitable signal sequence.”' This defini-
tion clarifies two facts. Contrary to current opinion, codes are not a peculiarity
of computer technology or genetic engineering; as sequences of signals over
time they are part of every communications technology, every transmission
medium. On the other hand, much evidence suggests that codes became con-
ceivable and feasible only after true alphabets, as opposed to mere ideograms
or logograms, had become available for the codification of natural languages.
Those alphabets are systems of identically recurring signs of a countable quan-
tity, which map speech sounds onto letters more or less one-to-one and, hope-
fully, completely. A vocalic alphabet of a type such as Greek,” justly praised
for being the “first total analysis of a language,”™ does appear to be a prereq-
uisite for the emergence of codes, and yet, not a sufficient one. For what the
Greeks lacked (leaving out of consideration sporadic allusions in the work of
Aischylos, Aenas, Tacticus, and Plutarch to the use of secret writing® was that
second prerequisite of all coding, namely, developed communications technol-
ogy. It is anything but coincidental that our reports of the first secret message
systems coincide with the rise of the Roman Empire. In his Lzves of the Caesars,
Suetonius—who himself served as secret scribe to a great emperor—recounts
discovering encrypted letters among the personal files left behind by both the
divine Caesar and the divine Augustus. Caesar contented himself with mov-
ing all the letters of the Latin alphabet by four places, thus writing D instead
of A, E instead of B, and so forth. His adoptive son Augustus, by contrast, is

Code

40

Skenovano pro studijni ucely




reported to have merely skipped one letter, but a lack of mathematical dis-
cernment led him to replace the letter X, the last in his alphabet, by a double
A.” The purpose was obvious: When read aloud by those not called upon to
do so (and Romans were hardly the most literate of people), a stodgy jumble
of consonants resulted. And as if such innovations in matters of encryption
were not sufficient, Suetonius attributes to Caesar another invention immedi-
ately beforehand—thar of having written in several columns, or even separate
pages, reports to the Roman Senate on the Gallic campaign. Augustus is cred-
ited with the illustrious deed of creating, with riders and relay posts, Europe’s
first strictly military express-mail system.® In other words, the basis on which
command, code, and communications technology coincided was the Empire,
as opposed to merely the Roman Republic or shorthand writers like Cicero.
Imperium is the name of both the command and its effect: the world empire.
“Command, control, communications, intelligence” was also the Pentagon’s
imperial motto until very recently, when, due to the coincidence of communi-
cation technologies and Turing machines it was swapped for C*—"“command,
control, communication, computers”—from Orontes to the Scottish headland,
from Baghdad to Kabul.

It was the case, however, that imperia, the orders of the Emperor, were also
known as codicilla, the word referring to the small tablets of stripped wood
coated with wax in which letters could be inscribed. The etymon codex for its
part—rcaudex in Old Latin and related to the German verb hauen (to hew)—in
the early days of the'Empire assumed the meaning of “book,” whose pages
could, unlike papyrus scrolls, for the first time be leafed through. And that
was how the word that interests us here embarked on its winding journey to
the French and English languages. From Imperator Theodosius to Empereur
Napoleon, “code” was simply the name of the bound book of law, and codi-
fication became the word for the judicial-bureaucratic act needed to arrest in
a single collection of laws the torrents of imperial dispatches or commands
that for centuries had rushed along the express routes of the Empire. Message
transmission turned into data storage,” pure events into serial order. And even
today the Codex Theodosius and Codex Iustinianus continue to bear a code
of ancient European rights and obligations in those countries where Anglo-
American common law does not happen to be sweeping the board. In the
Corpus luris, after all, copyrights and trademarks are simply meaningless, re-

gardless of whether they protect a codex or a code.
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Nation-States

The question that remains is why the technical meaning of the word “code”
was able to obscure the legal meaning to such a degree. As we know, contem-
porary legal systems regularly fail to grasp codes in the first place and, in con-
sequence, to protect them, be it from robbers and purchasers or, conversely,
from their discoverers and writers. The answer seems to be simple. What we
have been calling a code since the secret writings of Roman emperors to the
arcana imperii of the modern age was known as a “cipher” from the late Middle
Ages onward. For a long time the term code was understood to refer to very
different cryptographic methods whereby words could still be pronounced,
but obscure or innocuous words simply replaced the secret ones. Cipher, by
contrast, was another name for the zero, which at that time reached Europe
from India via Baghdad and put sifr (Arabic: “emptiness”) into mathematical-
technical power. Since that time, completely different sets of characters have
been devised (in sharp contrast to the invention of Greek for speech sounds
and numbers: on one side of language the alphabet of the people, on the other
the numbers of the bearers of secrets—the name of which spelled the Arabic
sifr once again. Separate character sets, however, are productive. Together they
brew wondrous creatures that would never have occurred to the Greeks or Ro-
mans. Without modern algebra there would be no encoding; without Guten-
berg’s printing press, no modern cryptology. In 1462 or 1463, Battista Leone
Alberti, the inventor of linear perspective, was struck by two plain faces. First,
that the frequency of occurrence of phonemes or letters varies from language to
language, a fact which is proved, according to Alberti, by Gutenberg's letter
case. From the frequency of shifted letters as they were written by Caesar and
Augustus, cryptanalysis can heuristically derive the clear text of the encrypted
message. Second, it is therefore insufficient to encrypt a message by shifting
all the lecters by the same number of places. Alberti’s proposal that every new
letter in the clear text be accompanied by an additional place-shift in the se-
cret alphabet was followed up until World War II.® One century after Alberti,
Francois Viete, the founder of modern algebra, and also a cryptologist in the
service of Henry IV, intertwined number and letter more closely still. Only
since Viete have there been equations containing unknowns and universal coef-
ficients written with numbers encoded as letters.” This is still the work method
of anybody who writes in a high-level programming language that likewise al-

locates variables (in a mathematically more or less correct manner) to alpha-
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numeric signs, as in equations. On this basis—Alberti’s polyalphabetic code,
Viete's algebra, and Leibniz’” differential calculus—rthe nation-states of the

modern age were able to technically approach modernity.
Global Message Traffic

Modernity began, however, with Napoleon. As of 1794, messengers on horse-
back were replaced by an optical telegraph which remote-controlled France’s
armies with secret codes. In 1806, the laws and privileges surviving from the
old days were replaced by the cohesive Code Napoléon. In 1838, Samuel Morse
is said to have inspected a printing plant in New York in order—taking a
leaf from Alberti’s book—to learn from the letter case which letters occurred
most frequently and cherefore required the shortest Morse signals.'” For the
first time a system of writing had been optimized according to technical crite-
ria—that is, with no regard to semantics—but the product was not yet known
as Morse code. The name was bestowed subsequently in books known as Uni-
versal Code Condensers, which offered lists of words that could be abbreviated
for global cable communications, thus reducing the length, and cost, of tele-
grams, and thereby encrypting the sender’s clear text for a second time. What
used to be called deciphering and enciphering has since then been referred to
as decoding and encoding. All code processed by computers nowadays is there-
fore subject to Kolmogorov’s test: Input is bad if it 1s longer than its output;
both are equally long in the case of white noise; and a code is called elegant
if its output is much longer than itself. The twentieth century thus turned a
thoroughly capitalist money-saving device called “code condenser” into high-

est mathematical stringency.
The Present Day — Turing

All that remains to ask is how the status quo came about or, in other words,
how mathematics and encryption entered that inseparable union that rules our
lives. That the answer is Alan Turing should be well known today. The Turing
machine of 1936, as the principle controller of any computer, solved a basic
problem of the modern age: how to note with finitely long and ultimately whole
numbers the real, and theretore typically infinitely long, numbers on which
technology and engineering have been based since Viete’s time. Turing’s ma-

chine proved that although this task could not be accomplished for all real

Code

43
Skenovano pro studijni ucely



numbers, it was achievable for a crucial subset, which he dubbed computable
numbers."' Since then a finite quantity of signs belonging to a numbered al-
phabet which can, as we know, be reduced to zero and one, has banished the
infinity of numbers.

No sooner had Turing found his solution than war demanded its cryptana-
Iytical application. As of spring 1941 in Britannia’s Code and Cipher School,
Turing's proto-computers almost decided the outcome of the war by success-
fully cracking the secret codes of the German Wehrmacht, which, to its own
detriment, had remained faithful to Alberti. Today, at a time when computers
are not far short of unravelling the secrets of the weather or the genome—phys-
ical secrets, that is to say, and increasingly often biological ones, too—we all
too often forget that their primary task is something different. Turing himself
raised the question of the purpose for which computers were actually created,

and initially stated as the primary goal the decoding of plain human language:

Of the above possible fields the learning of languages would be the most impressive,
since it 1s the most human of these activities. This field seems, however, to depend
rather too much on sense organs and locomotion to be feasible. The field of cryptogra-
phy will perhaps be the most rewarding. There is a remarkably .close parallel between
the problems of the physicist and those of the cryptographer. The system on which a
message is enciphered corresponds to the laws of the universe, the intercepted messages
to the evidence available, the keys for a day or a message to important constants which
have to be determined. The correspondence is very close, but the subject matter of

cryptography is very easily dealt with by discrete machinery, physics not so easily."?
Conclusions

Condensed into telegraphic style, Turing’s statement thus reads: Whether ev-
erything in the world can be encoded is written in the stars. The fact that
computers, since they too run on codes, can decipher alien codes 1s seemingly
guaranteed from the outset. For the past three-and-a-half millennia, alphabets
have been the prototype of everything that is discrete. But it has by no means
been proven that physics, despite its quantum theory, is to be compurted solely
as a quantity of particles and not as a layering of waves. And the question re-
mains whether it is possible to model as codes, down to syntax and seman-
tics, all the languages that make us human and from which our alphabet once

emerged in the land of the Greeks.
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This means that the notion of code is as overused as it is questionable. If
every historical epoch is governed by a leading philosophy, then the philoso-
phy of code is what governs our own, and so code—harking back to its root,
“codex”—Ilays down the law for one and all, thus aspiring to a function that
was, according to the leading philosophy of the Greeks, exercised exclusively
by Aphrodite.'” But perhaps code means nothing more than codex did at one
cime: the law of precisely that empire which holds us in subjection and for-
bids us even to articulate chis sentence. At all events, the major research in-
stitutions that stand to profit most from such announcements proclaim with
triumphant certainty that there is nothing in the universe, from the virus to
the Big Bang, which is not code. One should therefore be wary of metaphors
that dilute the legitimate concept of code, such as when, for instance, in the
case of DNS, it was not possible to find a one-to-one correspondence between
material elements and information units as Lily Ray discovered in the case of
bioengineering. As a word that in its early history meant “displacement” or
“transferral"—from letter to letter, from digit to letters, or vice versa—code is
the most susceptible of all to faulty communication. Shining in the aura of the
word code one now finds sciences that do not even master their basic arithmetic
or alphabet, let alone cause something to turn into something different as op-
posed to merely, as in the case of metaphors, go by a different name. Therefore,
only alphabets in the literal sense of modern mathematics should be known as
codes, namely one-to-one, finite sequences of symbols, kept as short as possible

but gifted, thanks to a grammar, with the incredible ability to infinitely re-

produce themselves: Semi-Thue groups, Markov chains,'* Backus-Naur forms,
and so forth. That, and that alone, distinguishes such modern alphabets from
the familiar one that admittedly spelled out our languages and gave us Ho-
mer’s poetry"’ but cannot get the technological world up and running the way
computer code now does. For while Turing’s machine was able to generate real
numbers from whole numbers as required, its successors have—in line with
Turing’s daring prediction—taken command.'® Today, technology puts code
into the practice of realities, that is to say: it encodes the world.

I cannot say whether this means that language has already been vacated as
the House of Existence. Turing himself, when he explored the technical fea-
sibility of machines learning to speak, assumed that this highest art, speech,
would be learned not by mere computers but by robots equipped with sensors,

effectors, that is to say, with some knowledge of the environment. However,

this new and adaptable environmental knowledge in robots would remain
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obscure and hidden to the programmers who started them up with initial
codes. The so-called “hidden layers” in today’s neuronal networks present a
good, if still trifling, example of how far computing procedures can stray from
their design engineers, even if everything works out well in the end. Thus,
either we write code that in the manner of natural constants reveals the deter-
minations of the matter itself, but at the same time pay the price of millions
of lines of code and billions of dollars for digital hardware; or else we leave the
task up to machines that derive code from their own environment, alchough
we then cannot read—that is to say: articulate—this code. Ultimately, the
dilemma between code and language seems insoluble. And anybody who has
written code even only once, be it in a high-level programming language or
assembly, knows two very simple things from personal experience. For one, all
words from which the program was by necessity produced and developed only
lead to copious errors and bugs; for another, the program will suddenly run
properly when the programmer’s head is emptied of words. And in regard to
interpersonal communications, that can only mean that self-written code can
scarcely be passed on with spoken words. May myself and my audience have

been spared such a fate in the course of this essay.

Translated by Tom Morrison, with Florian Cramer
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B
Codecs

Adrian Mackenzie

Codecs (coder-decoders) perform encoding and decoding on a data stream or
signal, usually in the interest of compressing video, speech, or music. They
scale, reorder, decompose, and reconstitute perceptible images and sounds so
that they can get through information networks and electronic media. Codecs
are intimately associated with changes in the “spectral density,” the distribu-
tion of energy, radiated by sound and image in electronic media.

Software such as codecs poses several analytical problems. Firstly, they are
monstrously complicated. Methodologically speaking, coming to grips with
them as technical processes may entail long excursions into labryinths of
mathematical formalism and machine architecture, and then finding ways of
backing out of them bringing the most relevant features. In relation to video
codecs, this probably means making sense of how transform compression and
motion estimation work together. Second, at a phenomenological level, they
deeply influence the very texture, flow, and materiality of sounds and images.
Yet the processes and paramerters at work in codecs are quite counterintuitive.
Originating in problems of audiovisual perception, codecs actually lie quite a
long way away from commonsense understandings of perception. Third, from
the perspective of political economy, codecs structure contemporary media
economies and cultures in important ways. This may come to light occasion-
ally, usually in the form of an error message saying that something 1s missing:
the right codec has not been installed and the file cannot be played. Despite
or perhaps because of their convoluted obscurity, codecs catalyze new relations

between people, things, spaces, and times in events and form:s.
Patent Pools and Codec Floods

Video codecs such as MPEG-1, MPEG-2, MPEG-4, H.261, H.263, the im-
portant H.264, theora, dirac, DivX, XviD, MJPEG, WMV, RealVideo, etc.,
are strewn across networked electronic media. Roughly a hundred different au-
dio and video codecs are currently in use, some in multiple implementations.
Because codecs often borrow techniques and strategies of processing sound and

image, they have tangled geneologies.
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Leaving aside the snarled relations between different codecs and video tech-
nologies, even one codec, the well-established and uncontentious MPEG-2 cod-
ing standard, is extraordinarily complex in its treatment of images. MPEG-2
(a.k.a. H.262) designates a well-established set of encoding and decoding proce-
dures for digital video formalized as a standard.! The standards for MPEG-2 are
widely described. Many diagrams, definitions, and explanations of coding and
decoding the bitstream are available in print and online.? Open source software
implementations of the MPEG-2 standard offer a concrete path into its imple-
mentation. For instance, ffmpeg, “is a complete solution to record, convert and
stream audio and video.” It handles many different video and audio codecs, and
is widely used by many other video and audio projects (VLC, mplayer, etc.).

Economically, MPEG-2 is a mosaic of intellectual property claims (640 pat-
ents held by entertainment, telecommunications, government, academic, and
military owners according to Wikipedia.* The large patent pool attests to the
economic significance of MPEG-2 codecs. As the basis of commercial DVDs, the
transmission format for satellite and cable digital television (DVB and ATSC),
as the platform for HDTV as well as the foundation for many internet stream-
ing formats such as RealMedia and Windows Media, MPEG-2 forms a pri-
mary technical component of contemporary audiovisual culture. It participates
in geopolitical codec wars (e.g., China’s AVC codec, versus the increasingly
popular H.264, versus other versions such as Microsoft Windows VC-1—
Windows Media 9).

Many salient events in the development of information and digital cul-
tures (for instance, MP3-based file-swapping, or JPEG-based photography)
derive from the same technological lineage as MPEG-2 (lossy compression us-
ing transforms). At a perceptual level, what appears on screen is colored by the
techniques of “lossy compression” that MPEG-2 epitomizes. Codecs affect at a

deep level contemporary sensations of movement, color, light, and time.
Trading Space and Time in Transforms

The MPEG standard is complex. Digital signal processing textbooks caution
against trying to program it at home (which immediately suggests the desir-
ability of doing so). They suggest buying someone else’s implementation of
the standard.” Where does this complexity come from? The purpose of the
MPEG-2 standard developed in the early 1990s is generic:
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This part of this specification was developed in response to the growing need for a
generic coding method of moving pictures and of associated sound for various ap-
plications such as digital storage media, television broadcasting and communication.
The use of this specification means that motion video can be manipulated as a form of

computer data.’

How does a “generic coding method” end up being so complex that “it 1s
one of the most complicated algorithms in DSP [digital signal processing}”?’
MPEG-2 defines a bitstream thart tries to reconcile the complicated psycho-
physical, technocultural, and political-economic processes of seeing. MPEG-2
puts more pictures, more often, in more places. It moves images further and
faster in media networks than they would otherwise.

To do that, the code in MPEG-2 codecs reorganizes images at many scales.
The code works to reorganize relations within and between images. Algo-
rithmically, MPEG-2 combines several distinct compression techniques (con-
verting signals from time domain to frequency domatn using discrete cosine
transforms, quantization, Huffman and Run Length Encoding, block motion
compensation), timing and multiplexing mechanisms, retrieval and sequenc-
ing techniques, many of which are borrowed from the earlier, low-bitrate stan-
dard, MPEG-1.2 |

From the standpoint of software studies, how can these different algorithms
be discussed without assuming a technical background knowledge? The tech-
nical intricacies of these compression techniques are rarely discussed outside
signal processing textbooks and research literature. Yet these techniques
deeply affect the life of images and media today. One strategy is to begin by
describing the most distinctive algorithmic processes present, and then ask to
what constraints or problems these processes respond. From there we can start
to explore how software transtorms relations.

For instance, we could concentrate on what happens at the lowest levels of
the picture, the “block™ (8 x 8 pixels). Digital video typically arrives at the co-
dec as a series of frames (from a camera, from a film or television source). Each
frame or static digital image comprises arrays of pixels defined by color (chro-
minance) and brightness (luminance) values. Each frame then undergoes sev-
eral phases of cutting and reassembling. These phases probe and re-structure
the image quite deeply, almost to the pixel level. Digiral video pictures are
composed of arrays of pixels that have much spatial redundancy. Many adja-

cent pixels in an image of a landscape will be very similar, and it wastes stor-
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age space (on a DVD) or bandwidch (on satellite transmitters or internet) to
repeat the same pixel over and over. A sky could be mostly blue. Rather than
transmit an exact replica of the sky, why not use an algorithmic process that
cransforms the blue sky into a quasi-statistical summary of the spatial distri-
bution of blueness?

The so-called I-Picture or Intra-Picture is the product of one phase of en-
coding, transform compression. It 1s applied to selected frames. The I-Pictures
effectively become key-frames in the MPEG videostream. This phase relies
on spectral analysis carried out using Fourier transtorms. What does spectral
analysis do? Broadly speaking, it breaks a complex waveform into a set of com-
ponent waveforms of difterent amplitude or energy. Many computational pro-
cesses today rely on Fourier Transforms or on a particular variant of the Fourier
Transform, the Discrete Cosine Transform (DCT). The DCT, implemented in
silicon or C code, encodes complex signals that vary over time or space into a
series of discrete component frequencies. They can be added together to recon-
stitute the original signal during decoding. Nearly all video codecs transform
spatially extended images into sets of simple frequencies. This allows them to
isolate those components of an image that are most perceptually salient to hu-
man eyes. These would include the brightest or most colorful components.

There i1s something quite counter-intuitive in transtorm compression ap-
plied to images. In what way can a videoframe be seen as a waveform? The
notion of the transform is mathematical: It is a function that takes an arbitrary
waveform and expresses it as a series of simple sine waves of different frequen-
cies and amplitudes. Added together, these sine or cosine waves reconstitute the
original signal. Practically, in encoding a given frame ot video, the MPEG-2
code divides the 720 x 576 pixel DVD image into 8 x 8 pixel blocks. So ap-
plication of the transform compression is not general or global. The image has
been turned into in an array of small blocks that can be quickly transtormed
separately. This can be seen by freeze-framing a complex visual scene ona DVD.
It will appear “blocky.” The DCT sees each of these blocks as spatial distribu-
tion of brightness and color. [t delivers a series of coefficients (or multiplicative
factors) of different frequency cosine waves.

The decomposition of a spatial or temporal signal into a series of different
frequency components allows correlation with the neurophysiological measure-
ments of human hearing and sight. For instance, because the transform treats
blocks as spectra of values, some of which are more significant to human eyes

than others, it converts the spectrum values 1nto a sequence in which the most
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important come first. Components of the series that have small coethcients can
be discarded because they will not be visually salient. In this way, a block can
be compressed, transmitted or stored, and decompressed without ever sending
any information about individual pixels. The cosine wave coefficients represent
amplitudes of different frequency cosine waves. When the block is decoded
(for instance, during display of a video frame on screen), the coefhcients are
reattached to corresponding cosine waves, and these are summed together to
reconstitute arrays of color and brightness values comprising the block.
What stands out in transform compression is decomposition of the framed
images through densely complex matrix manipulations occurring on the thou-
sands of blocks. In contrast to film’s use of linear sequences of whole frames, or
television and video's interlacing of scan-lines to compose images, transforms
such as DCT deal with grids of blocks in highly counterintuitive spectral
analysis that has little to do with space. Blocks themselves are not fragments
of pictures, but rather distributions of luminosity and chrominance that are

packed into the bit stream.
Motion Prediction — Forward and Backward in Time

What does it mean to say that codecs catalyze new relations between people,
things, spaces, and times in events and forms? Software has long been un-
derstood as closely linked to ideation or thought, particularly mathematical
thought. Despite the mathematical character of the DCT compression just
discussed, the thinking present in software cannot be reduced to mathemati-
cal thought, or not to mathematical thought as it is usually conceived. Codecs
perhaps challenge cinematic and televisual perception even as they participate
in making the world more cinematic or televisual. They deviate radically from
the normal cinematic or televisual production of frames in a linear sequence.
Video codecs are very preoccupied with reordering relations between frames
rather than just keeping a series of frames in order. Indeed just as frames them-
selves are individually reconfigured as blocks of luminance and chrominance,
the relation between frames is subject to calculated reordering in the interests
of accelerated or compressed transport.

In order to gain purchase on the relation between frames, the MPEG co-
dec again breaks the frame into an array of discrete “macroblocks” (usually
four blocks put together). It compares successive frames to see how a spe-

cific macroblock shifts between frames. The working assumption behind the
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motion-predicted encoding of video in MPEG-2 is that nothing much happens
between successive frames that can’t be understood as macroblocks undergoing
geometric manipulations (translation, rotation, skewing, etc.). The fact that
nothing much happens between frames apart from spatial transformation is
the basis of the interframe compression and the generation of P and B pictures
(forward and backward motion prediction, respectively). P (Predicted) and B
(Backward) pictures, the pictures that accompany the I-Picture in a MPEG-2
bitstream are, therefore, really nothing like film frames. There will never be
a flicker in an MPEG video because the boundaries between pictures are not
constructed in the same way they are in film or even in television with its
interlaced scanned images.

If intrapicture compression is the first major component of MPEG-2, mo-
tion prediction between frames is the second. Interpicture motion prediction
compression relies on forward and backward correlations, and in particular
on the calculation of motion vectors for blocks. In the process of encoding a
video sequence, the MPEG-2 codec analyzes for each picture how blocks have
moved, and only transmits lists of motion vectors describing the movement of
blocks in relation to a reference picture or keyframe, itself coded using DCT
transform compression. This fundamentally alters the framing of images. We
have already seen that rather than the raw pixel being the elementary material
of the image, the block becomes the elementary component. Here the picture
itself is no longer the elementary component of the sequence, but an object to
be analyzed in terms of sets of motion vectors describing relative movements
of blocks and then discarded. The P and I pictures, after encoding, are nothing
but a series of vectors describing how and where macroblocks move. Decod-
ing the MPEG stream means turning these vectors back into arrangements of
blocks animated across frames.

Motion prediction takes time to work out, but heavily compresses the video-
stream. Transform compression is fast to calculate, but yields quite a large
amount of data. Hence, the actual ratio of intraframe and interframe pictures
in a given bitstream is heavily weighted toward motion prediction. In an
MPEG datastream, the precise mixture of different frame-types (I, P-forward,
and B-backward) is defined at encoding time in the Group of Pictures (GOP)

structure. It 1s usually 12 or 15 frames in a sequence such as I BB_P BB __
P_BB_P_BB_P_BB_. One intracoded frame is followed by a dozen or so

block motion-compensation frames. The combination of forward-prediction
and backward-prediction found in the GOP means that the MPEG bitstream
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effectively treats the video stream as a massive doubly linked list.” Each item
in the list is itself a list describing where and how (rotated, translated, skewed)
each block should be placed on screen.

The ratio of different frame types to each other affects the encoding time
because motion compensation is much slower to encode than the highly op-
timized block transforms. Codecs must make direct tradeotffs between com-
putational time and space. The tradeoffs sometimes result in artifacts visible
on screen as, for example, blocking and mosaic etfects. At times, motion pre-
diction does not work. A change in camera shot, the effect of an edit, might
mean that no blocks are shared between adjacent frames. In that case, a well-

designed codec falls back on intraframe encoding.
From Complicated to Composite

Many of the complications and counterintuitive orderings of the MPEG-2
codecs arise because they try to negotiate a fit between network bandwidth
constraints (a commercially marketed service), viewing conventions (the rect-
angular frame of cinema and television), embodied perception (sensations of
motion, light, and color), and cultural forms (fast-moving images or action).
They respond to the economic and technical need to reduce the bandwidth
required to circulate high-resolution digital pictures and sounds. As a con-
vention, the MPEG-2 standard refers implicitly to a great number of material
entities ranging from screen dimensions through network and transmission
infrastructures to semiconductor and data storage technologies. The generic
method of encoding and decoding images for transmission relates very closely
to the constraints and conditions of telecommunications and media networks.
And the codec more or less performs the function of displaying light, color,
and sound on screen within calibrated psycho-perceptual parameters.
However, the way the MPEG-2 codec pulls apart and reorganizes moving
images goes further than simply transporting images. Transform compres-
sion and motion estimation profoundly alter the materiality of images, all the
while preserving much of their familiar cinematic or televisual appearance.
Like so much software it institutes a relational ordering that articulates reali-

ties together that previously lay furcher apart.
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Computing Power
Ron Eglash

Computational power plays an accelerating role in many powerful social loca-
tions. Simulation models, for example, sneak into our medical decisions, speak
loudly in the global warming debate, invisibly determine the rates we pay for
insurance, locate the position of a new bridge in our city, plot the course of our
nation’s wars, and testify in the courtroom both for and against the defense.
Other applications in which computing power matters are molecular biology,
communication surveillance, and nanotechnology. Social scientists concerned
with the relations of power and society commonly examine who has money,

who owns property, and who owns the means of production. But the ownership

Computing Power

, 55 s oV
Skenovano pro studijni ucely



of computing power is more evasive, and far less probed. This paper will out-
line some of the ways in which we might begin to examine the relations be-

tween computing power and social authority.
The Need for Alternatives to the Realist Critique

One of the most common analyses of the relations between computing power
and social power is what I call the “realist critique.” This analysis goes some-
thing like the following: The computer representation of X is used to substitute
for the real X, but since it’s an artificial version it has certain bad effects (prevents
us from seeing injustice, from being in touch with people or narure, etc.). There
are indeed moments in which some form of such realist critiques are applicable.
But the critique has been overused in ways that are quite problematic.

When we blindly start purting categories of the Real on the ethical side,
and categories of the Unreal on the unethical side, we imply a system of moral-
ity which mimics the Christian story of the fall from the Garden, or Rousseau’s
dichotomy between nobility of the natural and the evils of artifice. We imply

that computer simulations are unethical simply because they are unnatural.

Similar moral assumptions have been used in attacks on the civil rights of gays
and lesbians (“unnatural sex” is a violation of God’s plan), nr-arguments used
for purging Germany of its Jews (because they were not “natural” to Germany),
or denying citizens the right to birth control. Notions of the Real or Authentic
have been used in colonialism to differentiate between the “real natives” who
stayed on their reservation, versus “inauthentic natives” who could thus be im-
prisoned for their disruptions (seen again in recent times during the American
Indian Movement of the 1960s, when activists were criticized as being “ur-
ban indians”). Thus, when we read critiques that condemn digital activities
as “masturbation,”! we need to think not about artificial worlds as pathologies,
but rather about how innocent sexual activity has been used to pathologize and
control individuals.

Even in cases where scholars of computing have been very aware of the sus-
pect ethics of realism, it can creep in. Take, for example, computer graphics
representations of the human body, such as the Visible Man project. Investiga-
tions of such anatomical simulations are immediately queried for all the right
reasons: how the social construction of the technical happened, who benefits,
how it influences the viewer’s experience, and so on. But inevitably there rises

what Wahneema Lubiano calls “the ghost of the real”; we are haunted by some
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element of the pre-virtual past (almost literally in this case by the donor of the
body, a 39-year-old prisoner who was executed by lethal injection in Texas).’
Despite the best intentions of the writers, in the end simulation critiques often
imply an ethics of the Real. Even Sandy Stone, well known for her commit-
ment to virtual communities and identities, ends her oft-cited essay wich the
line, “No refigured virtual body, no matter how beautiful, will slow the deatch
of a cyberpunk with AIDS.” Again the real haunts us; critiques of simulation
accuracy or realism tend to move us toward an organicist framework.

Even when a realism critique is warranted—in the case, for example, of a
corporate sponsored simulation that attempts to dupe the public into a false
sense of environmental or health security—exclusive concern with issues of
accuracy can be problemartic in that they focus on symptom rather than cause.
Ostensibly one could correct the inaccuracy, and then we would have noth-
ing to complain about. But most critics have a loftier goal in mind: They are
really trying to show how social elites have managed to manipulate the power
of computing to support thetr own interests. By focusing on the accuracy or
realism of the simulation, we lose sight of the original goal: We focus on get-
ting the American Petroleum Institute to use the right equations rather than
asking how they managed to control the truthmaking abilities of computing
in the first place. How can we get at a more fundamental understanding of the
relationship between social power and computing power, and how might we

change those relations?

Three Dimensions of Computing Power:
Speed, Interactivity, and Memory

Let us begin with the technical definitions for computing power. On the one
hand, the mathemarical theory of computation has precisely defined what we
mean by saying that one system is computationally more powerful than an-
other. The least powerful system is a finite state automaton, the greatest in
bower is a Turing machine, and in between we find machines such as the

bush-down automaton. But such formal definitions for computing power, col-

lectively termed the Chomsky hierarchy, are essentially absent in the world
of commercial computing. There are two reasons for this disconnection. First,
there is the quite sensible and responsible distinction thart real-world comput-
ing systems have multiple physical constraints that are poorly represented by

such abstract assessment; in fact features that matter a great deal for the real
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world, such as the amount of time it takes to complete a calculation, are absent
in the traditional computational models of the Chomsky hierarchy.” But there
1s also the racher suspect way in which the social authority of computing power
requires an unfettered ability to make its claims. Let us now look at three cat-

egories for this slippage: speed, interactivity, and memory.

Speed
Consider the simulations which produce special eftects for Hollywood movies
and television commercials. Computing power here is almost entirely a question
of processing speed, due to the computational requirements of high-resolution
graphic simulation. Movies like Terminator Il and Jurassic Park were milestones
in visual simulations of physical movement, so much so that they are treated
like NASA projects whose “spin-offs” are for the general benefit of humanity.
Special effects wizards have now become frequent speakers at machematics con-
ferences; for example, the creator of the wave in the movie T7tanic was a featured
speaker for National Mathematics Awareness Week. Often the visual spectacle
of their virtual realism is a much greater audience selling point than plots or
acting; in fact, it is precisely this uncanny ability to (apparently) manipulate re-
ality that becomes the proof of computing power. When the Coca-Cola corpo-
ration spends 1.6 million dollars on thirty seconds of airtime during the super
bowl, it is no surprise that supercomputing is at the center of their message. Like
the Marxist observation that “money is congealed labor,” special effects are con-
gealed computing. The power to command reality to do your bidding is sexy,
even if it is only a virtual reality. Marshal McLuhan’s theme that “the medium
1s the message” was always too deterministic for my taste, but I am willing to
make an exception in the case of compurtational advertising, where the cliché

that “sex sells” has been augmented by the sexiness of simulacra.

Interactivity
We can find a similar account of simulation’s sex appeal in the rise of multimedia
compurting, particularly for websites. Here the measure of computing power
is most often presented in terms of “interactivity.” Yet formal assessments for
interactivity, as could be produced through the Chomsky hierarchy, are never
brought to bear. To understand this, it is useful to first examine similar ques-
tions about the assessment of intricate behavior in simple biological organ-
1sms. Spiders are not taught how to spin a web; the behavior is genetically

programmed. Even semi-learned behaviors such as bird songs are often charac-
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terized as the result of a “serial pattern generator.” Tightly sequenced behaviors
such as spider webs and bird songs can be modeled as finite state automata,’
because they require little adaptive interaction with their environment. They
may appear to be complicated but they are in fact a “preprogrammed” se-
quence of actions. This stands in strong contrast to animal behaviors that re-
quire spontaneous interaction, as we see for example in the social cooperation
of certain mammals (wolves, orca, primates, etc.). Even lone animals can show
this kind of deep interactivity: A raccoon learning to raid lidded trash cans is
clearly not clocking through a sequence of prepared movements.

In the same way, our interactions with websites can vary from “canned”
interactions with a limited number of possible responses—pressing on various

buttons resulting in various image or sound changes—to truly interactive ex-

periences in which the user explores constructions in a design space or engages
in other experiences with near-infinite variety. Such deep interactivity does
not depend on the sophistication of the media. The 1970s video game of Pong,
with its primitive low-resolution graphics, has far greater interactivity than
a website in which a button press launches the most sophisticated 3-D fly-
though animation. As Fleischmann’ points out in his analysis of web media,
rather than measure interactivity in terms of two-way mutual dependencies,
commerctal claims for interactivity depend on an “interrealism eftect” that
substitutes flashy video streaming or other one-way gimmicks for user control
of the simulation. Such multimedia attempts to create the effect of interactive
experience without relinquishing the producer’s control over the simulation.
At least speed, for all its elitist ownership, has a quantitative measure that
allows us to compare machines; for interactivity we have only the rhetoric of
public relations. Even in cases in which we are not duped by this interrealism
effect, and strive for deep interactivity, the informational limits of interactive
computing power (the bandwidth of the two-way communication pipeline) is
carefully doled out in accordance to social standing, with the most powerful
using high-speed fiberoptic conduits of Internet II, lesser citizens using cable
connections on Internet I, and the poorest segments of society making do with

copper telephone wires—truly a “crickle-down” economy of interactivity.

Memory
Third and finally, we must evaluate computing power in terms of access to
memory. Increasingly the users’ local hard drive memory has become aug-

mented or even superfluous as internet companies such as MySpace or YouTube
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shift to the “Web 2.0” theme of internet as operating system. In terms of in-
dividual use this is a move toward democratization through lay access, but in
terms of business ownership it is a move toward monopolization, as only large
scale corporations such as Google can afford the economy of scale that such mem-
ory demands place on hardware.®* Memory also plays a constraining/enabling
role in the professional utilization of large databases. Consider, for example,
the agent-based simulations that allow massively parallel interactions, such as
genetic algorithms based on Darwinian or Lamarckian evolution. The epicen-
ter for this activity has been the Santa Fe Institute, where mathematicians like
James Crutchfield have been admonishing researchers in the field of Artificial
Life for their supposed willingness to put public acclaim over formal results.”
Crutchfield is on the losing side of the battle: He is forgetting that science i1s

a social construction, and thus those who are able to best exploit computing

power—in this case the artificial life folks—will be able to exploit the social
power that can define the contours of the field. To take another example, science
historian Donna Haraway expressed great surprise when she learned thar criti-
cal sections of the Human Genome Project were being run out of Los Alamos
Labs: What in the world was the modernist location for transuranic elements
doing with the postmodern quest for trans-species organisms? The answer was
computing power: Whether modeling nuclear reactions or nucleic acid, the so-
cial authority of science requires the computational authority of machines.
From the MySpace of layusers to the gene space of molecular biologists, mem-
Ory matters.

In sum, these three factors—computing speed, computing interactivity,
and computing memory—both define the technical dimensicns of simulation’s
computing power, as well as its social counterparts. Indeed, we can think about
them in terms of information equivalents: Computing memory is comparable
to social memory, interactivity is comparable to social discourse, and comput-
ing speed is comparable to social rhetoric. Thus we see the rhetorical power of
special effects, the discursive power of interactive websites, and the mnemonic

power of large-scale lay constructions and professional simulations.
Elite versus Lay Public Access to Computing Power

What can be done about this alliance between computing power and social
authority? Looking at the changes in computing power over time, we can see

both stable and unstable elements. For example, the public face of comput-
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ing power 1s typically portrayed as the steady increase in computing speed
per dollar, often encapsulated in Moore’s Law, which posits that the number
of components (i.e., transistors) on a chip will double every eighteen months.
But privately chip manufacturing companies agonize over strategies to main-
tain this pace.'

Contrasting elite versus lay public access to computing power through time
makes this precarious stability even more apparent. The earlier modeling ef-
forts secured elite access through expertise: Even if laypersons were offered
access to a timesharing system, they preferred the shallow learning curve of a
wordprocessor—it was the user-unfriendly interface of text-based UNIX that
separated the hackers from the hacks. This barrier did not become compro-
mised until the advent of the graphical user interface (GUI) in the late 1970s.
During the mid-1980s this sparked an unusual moment of lay access; thus the
creation of popular “toy” simulations such as SimCity during that time. But
by the early 1990s a gradient of computing power began to resolidify in which
the “cutting edge” of elite computer simulations could leverage truth claims in
ways unavailable to the “trailing shadow” of the lay public’s computer power
(hgure 3). The introduction of techniques such as agent-based modeling and
genetic algorithms have established trajectories which tend to restabilize this
relation between the cutting edge and trailing shadow. Yet new technological
opportunities continue to arise. We have recently seen the birth of the Free

and Open Source Software movement, of Napster's challenge to the recording

Figure 3 The Cutting Edge and the Trailing Shadow
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industry, Wikipedia, and other quasi-popular appropriations. How might
similar challenges to the social authority of the cutting edge rake place in the
domain of computing power?

In the early 1990s I had lunch one day with some graduate students in
computational mathematics at the University of California at Santa Cruz. They
were abuzz with excitement over the use of supercomputers for the design of a
yacht that might win the Americas Cup. For them, this was an exciting “popu-
lar” application; one that was neither military nor academic big science. But
I was struck by the ways in which computing power and financial power had
managed to stick together, even in this ostensibly nonprofessional exception.
What did the yacht owners have that made their problem more attractive than
poverty, racism, sexism, and other pressing humanitarian problems? The an-
swer, I believe, is that they had good problem definition. Yes it is true that the
people associated with the Yachting Club of America are generally more flush

with cash than, say, those of the Southern Poverty Law Center, but half the

challenge is getting problems defined in ways that high-end computing power
can address. We need organizations like the National Science Foundation to
support research specifically directed to the challenge of problem definition in
the application of supercomputing power to nonelite humanitarian causes."'

The other half of the challenge is computing access. A breakthrough in ac-
cess to supercomputing power came as a result of the Berkeley Open Infrastruc-
ture for Network Computing (BOINC). The system was originally created for
SETI@home, which analyzed darta from the Arecibo radio telescope in hopes of
finding evidence of radio transmissions from extraterrestrial intelligence. Or-
dinary lay users installed software that allows the BOINC system to run in the
background, or run while their computer is not in use, providing spectral anal-
ysis for small chunks of the 35 gigabyte daily tapes from Arecibo, and uploading
the results back to BOINC where they are integrated together. With over five
million participants worldwide, the project is the world’s largest distributed
computing system to date. In upgrading to the BOINC system the program-
mers also called for broadening applications to include humanitarian projects.
However none of the current projects seem directed at humanitarian causes
for specifically nonelite groups, with the possible exception of Africa@home’s
Malaria Control Project, which makes use of stochastic modeling of the clini-
cal epidemiology and natural history of Plasmodium falciparum malaria.

What other kinds of problem definition might allow greater computing

power to be applied to the challenges of survival and sustainability for those
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at the margins of social power? Consider, for example, flexible economic net-
works (FENSs). First observed in the revitalization of regional European econo-
mies,'” FENs allow small-scale businesses to collaborate in the manufacture
of products and services that they could not produce independently. These
networks rapidly form and re-form in response to market variations, creating
spinoff businesses in the process, which then give rise to further FEN growth.
More recently the Appalachian Center for Economic Networks (ACENet) has
demonstrated that this approach can be successfully applied in a low-income
area of the US. But ACENet found that they were hampered by lack of in-
formation about both the resources of potential participants and the poten-
tial market niches to be exploited. Similar problems in establishing “virtual
enterprise” cooperatives for large-scale industrial production—collaboration
between multiple organizations and companies for the design and manufac-
ture of large, complex, mechanical systems such as airframes, automobiles,
and ships—has been addressed through the application of cutting-edge com-
puting.’” Why not apply similar techniques to generate FENs for low-income
areas in either first or third world contexts?

In conclusion, the social authority of computing power follows the gradi-
ent of cutting edge and trailing shadow, stabilizing what might be gains for
popular use by always putting that promise for equality in the near future.
But we can also see ruptures in both technical and social dimensions of these
relations, which create new opportunities to reconfigure both social and com-

putational power.
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Concurrent Versions System

Simon Yuill

The highest perfection of software 1s found in the union of order
and anarchy.

—PIERRE-JOSEPH PROUDHON (patched)’

Concurrent Versions System (CVS) is a tool for managing collaborative soft-
ware development. It enables groups of coders working on the same set of
source files to coordinate and integrate the changes they make to the code, and

acts as a repository to store all those changes. If, for example, two ditterent pro-
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grammers alter the same section of code, CVS can compare both versions and
show that there is a difference between them (known as a “conflict” in CVS)
that needs resolved or “merged.” Another feature of the system is to keep an
historical record of the project’s development over time, enabling people to re-
trieve earlier versions. It also supports the possibility of the code “branching,”
meaning that alternative versions of the same code can be split off from the

main project and maintained in parallel without causing conflicts. If someone

wants to experiment with re-writing a certain section of a project, they can do
so in a new branch while everyone else continues to use the main branch unaf-
fected by the experiment.

The repository is a set of files in a directory structure that is maintained by
the CVS server. Programmers submit updates and new files to the repository
through a CVS client. This enables them to work remotely, with the CVS
server acting as a central coordination point. Each entry in the CVS repository
is represented by an individual file that maintains a record of both its content
and changes. Other information relating to the project’s development wichin
the repository is stored as metadata. These enable logs of who has done what
to be retrieved from the repository.

CVS was originally developed as a set of UNIX shell scripts by Dick Grune
in 1984 as part of the Amsterdam Compiler Kit (ACK), a cross-platform C
compiler developed at the Free University in Amsterdam. It was made public
in 1986 and converted into C by Brian Berliner, from whose code the current
version of CVS derives.” Other tools providing similar functionality, such as
BitKeeper, also exist, and the new Subversion system is emerging as a pos-
sible replacement for CVS; however, CVS is currently the most widely used code
management system.’ In many ways CVS has been essential to the success of
FLOSS (Free/Libre Open Source Software), as it facilitates the collaboration of
the widely dispersed individuals who contribute to such projects. This facilita-
tion, however, is restricted solely to the archiving of the code and its changes.
Other aspects of development, such as communication between developers, are
managed through tools such as mailing lists and IRC (Internet Relay Chat, or
other online chat systems). Savane, used by the GNU project’s Savannah reposi-
tory, and Trac, are examples of larger toolsets that have been developed to pull
these different components together.® Because CVS focuses on cohering code
implementations, it is arguably not well suited to facilitating discussion of more
abstract, conceptual aspects of a particular project. While mailing lists and IRC

are often the forums for such discussions, they do not, by the very temporality
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of their nature, allow for such discussions to be built into identifiable docu-
ments. Similarly, comments in source code, while also facilitating this, can be-
come too diffuse to gather such ideas together. The Wiki emerged as a response
to this need, adapting the version control of CVS into a simpler web-based sys-
tem in which the more conceptual modeling of projects could be developed and
archived, exemplihed in the very first Wiki, the Portland Pattern Repository,
which gathered different programming “design patterns” together.” CVS, never-
theless, remains a central plenum within which the material origination of soft-
ware is performed.®

Code creation is an inherently social act. It involves processes of collabora-
tion, consensus, and conflict resolution, and embodies social processes such as
normalization and differentiation. Software development tools such as CVS
implicitly formalize such processes and, in doing so, potentially provide means
of tracking them. As a result of this, forms of sociological analysis have devel-
oped based around “archaeological” studies of CVS repositories.” These studies
revolve around questions of how FLOSS development actually works, especially
given that it runs counter to many conventional models of product creation
and production management. There is, for example, a lack of clearly delineated
team structures in FLOSS projects; people can choose what they work on rather
than being assigned jobs, there are frequently no project roadmaps or contrac-
tual deadlines, and you have a mixture of professional and amateur contribu-
tors, some working from within a paid capacity (such as in commercially or
institutionally supported projects), others in their spare time.

Rather than following predefined managerial models, the practices and
tools of FLOSS development facilitate emergent organizational structures.
These can vary from one project to another, and may reflect aspects of che so-
cial situatedness of a given project, such as whether it is driven by institutional
research, commercial development, or people with shared interests but no of-

i

ficial affiliation. One recurrent form is described as an “onion structure,” in

which a reasonably stable core team of developers who are the main contribu-
tors and maintainers for a project is surrounded by layers of more occasional
contributors and users. In some projects this may give a highly centralized
shape to the overall social structure of the project, but in others there may be
several such “core nodes” with an organizational form that is characterized by
multiple interacting clusters. This latter formation is particularly evident in
large-scale projects with many subareas, such as the KDE or GNOME desktop

systems, or those that are largely driven by shared interest racher than institu-
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tional or commercial bodies.” Other studies describe a kind of guild structure,
in which newcomers to a project have to serve a kind of apprenticeship and
prove their capabilities before becoming accepted within the core development
group.'’ Shadow networks might also influence the social structures of a proj-
ect, such as secondary afhiliations constructed through ideological, institutional
or corporate links."" These kinds of studies provide an understanding of agency
and governance within FLOSS, and clarify how software development operates
as a form of discursive formation.

As Foucault describes it, a discursive formation arises through the relations
“established between institutions, economic and social processes, behavioural
patterns, systems of norms, techniques, types of classification, modes of charac-
terization”'? that are not inherent within an object of discourse or practice itself,
such as a piece of software, but is that which “enables it to appear, to juxtapose
itself with other objects, to situate itself in relation to them.”'” All software is in-
herently discursive, it exists not as a set of discrete, stable artifacts, but rather as
interrelated components, entering into various combinations with one another.
This is evident both in the user experience of software and in how software is
constructed. At a user level we can see this in the way in which a web browser,
for example, will interact with various web server systems and the content tools
they support, which may in turn feed into other pieces of software or computer-
mediated processes. If I buy an air ticket online this will connect with other
processes such as the management of my bank account and that of the airline com-
pany, and then in making my journey, the check-in process and management of
the airport and air flight itself will utilize various software systems, all of which
construct and articulate different relations “between 1nstitutions, economic and
social processes, behavioural patterns . . ." etc. Similarly, no piece of software is
a singular entity. The simple act of writing a piece of code involves the use of
multiple software tools, such as text editors and compilers, but also issues such
as which specific language the code is written in, whether it uses external code li-
braries and, if so, which choice of libraries, and what design patterns are followed
in its construction. These derive not solely from pragmatic issues of functional-
ity but also factors such as institutional alignment, the distribution and use of
the final software, whether it operates by itself or as part of a larger system, and
whether or not the source code will be made available for others to develop into
and upon. Numerous decisions underlie the development of a software project:
which language to develop in—whether to use Python, C or Microsoft’s .Net, for

example; what external code libraries to use (e.g., Apple’s QuickTime library or
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the open source Simple Direct Media library); what kind of license to use—rto
distribute the code under an open source license that prohibits any commercial

use, or one that allows the code to be used but not altered by others; and issues

such as what file formats the software will support and what protocols 1t uses
to interact with other software—will these be based on open standards such as
SVG and HTTP, or on closed systems? The outcomes of such decisions are all
influenced by the wider relations in which the production of the software is situ-
ated. The ways in which tools such as CVS are used will carry a residue of these
factors, and the CVS repository can become a territory in which these issues and
debates are inscribed. CVS is not simply a tool to manage the production of code

therefore, but as “the space in which code emerges and is continuously trans-

formed” (to paraphrase Foucault), also an embodiment and instrument of its

discursive nature.
Notes

1. Proudhon’s original statement was: “The highest perfection of society is found in the
union of order and anarchy.” Pierre-Joseph Proudhon, What Is Property? An Inguiry into
the Principle of Right and of Government, 286, translated from the French by Benjamin R.
Tucker. The translation in the Dover edition has a slightly different phrasing from

that used here.

2. For historical documents on the development of CVS see: Wikipedia, Concurrent Ver-

sions System, available at http://en.wikipedia.org/wiki/Concurrent_Versions_System
(accessed March 31, 2006), and Dick Grune, “Concurrent Versions System CVS.”
htep://www.cs.vu.nl/~dick/CVS.html (accessed March 31, 20006).

3. The main websites for the different tools are http://www.cvshome.org, http://www

bitkeeper.com, http://subversion.tigris.org.

4. For information on Savane see https://gna.org/projects/savane (accessed April 11,
2007). Savannah is the GNU project’s main repository for free software development:
htep://savannah.gnu.org (accessed April 11, 2007). Trac is documented at hetp://trac
.edgewall.org (accessed April 11, 2007).

5. The Portland Pattern Repository is available at http://c2.com/ppr (accessed April 11,
2007). Design Patterns are high-level descriptions of how particular structures of code
can be built, or problems in the design of software systems addressed. The notion of

design patterns was derived from the architect Christopher Alexander’s work on pat-
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tern languages in building design, see Christopher Alexander, et al., A Pattern Language:

Towns, Buildings, Construction.

6. A plenum can be a “fully attended meeting” or a “space filled with material.” In
relation to CVS it carries both meanings: the gathering point of developers, and the

space in which code is most evident in its material form.
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Structure of Open Source Software development teams,” available at http://crowston
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Copy

Jussi Parikka

The process of copying is a key cultural technique of modernity. The mechani-
zation of imitatio awed even the hailed Renaissance artist Leon Battista Alberti
at the dawn of the Gutenberg era: “Daro and I were strolling in the Supreme
Pontiff's gardens at the Vatican and we got talking about literature as we so of-
ten do, and we found ourselves greatly admiring the German inventor who to-
day can take up to three original works of an author and, by means of movable
type characters, can within 100 days turn out more than 200 coptes. In a single
contact of his press he can reproduce a copy of an entire page of a large manu-
script.”’ In Alberti’s time, the spiritual concept of mitatio (Latin) or mimesis
(remediated from the philosophy of Ancient Greece) became the cornerstone of
art theory, which lasted for hundreds of years, but also turned at the same time
into a material process of copying: especially the texts of the ancients.

From the printing press that replaced the meticulous work of monks copy-
ing texts to the technique of mass production of photographs and other techni-
cal media objects, “copy” has become a central command.routine of modernity.

Modern media can be understood as products of a culture of the copy as Walter

Benjamin has analyzed in relation to film. Paraphrasing Benjamin, mechanical
reproduction is an internal condition for mass distribution. In contrast to liter-
ature and painting, film production is about mechanical reproduction, which
Benjamin claims “virtually causes mass distribution.”” This coupling of copy-
ing and mass distribution is not, however, restricted to the media technology
of cinema, but also characterizes networked and programmable media such as
computers. I will return to this point at the end of the text.
Nineteenth-century enthusiasm for the copy was tied to the possibility of
producing low-cost photographs and films, and the commercial prospects of
such a process. Similarly the mass production and distribution of printed ma-
terial was inherently connected to material principles of production, notably
the rotation press, and other factors such as the cheapening of paper. Even the
Gutenberg printing machine is fundamentally a copy machine, ingenious in
its use of standardized modular parts for individualized signs. During the nine-
teenth century the first copy machines entered offices due to the rising need
for archiving and distributing documents. Such machines slowly replaced the

work done by scribes, or copy clerks, such as Bob Cratchit in Charles Dickens’s
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A Christmas Carol from 1843 or the dysfunctional copy-man in Herman Mel-
ville's Bartleby the Scrivener from 1853 (who would “rather not” do his work).’

To guarantee obedience and efhiciency, the copy routine was technologically
automated and also integrated as part of computing systems fairly early on.
The early punch card machines used standardized copy processes in the form
of special reproducing punch-machines (i.e., the IBM 514) to copy the cards
used as templates for turther data processing purposes. Some reproduction ma-
chines apparently also incorporated special control programs. The data fields
of the specific cards to be copied were fed to a control panel, and were then du-
plicated onto blank cards.” In other words, the instructions for making copies
were in themselves part of the mass-production of copies: recursive algorithms
are at the heart of modernity. With digital computers, the mechanical process
is substituted for the informationalization of modular entities and creation of
abstract mathematical patterns that are the focus of copying and reproduction.’
This in itself has eased the copying of cultural products and consequently led
to new techniques of copy protection and consumer surveillance.

In digital software culture “copy” is used in two different ways (1) in the
context of file-management and as a new phase of cultural reproduction and
(2) as part of copy/paste—a culcural technique and aesthetic principle. The two
lineages constantly overlap in the modern history of media technologies, where
copying, the verb, designates a shift in the cultural techniques of reproduction
from humans to machines, and copy, as a noun, presents itself as the key mode
of becoming-object of digital culture—as easily reproducible and distributed
packages of cultural memory.

W ith the early computers that used core memory, copy routines were a source
of maintenance as well as amusement. The cleaning programs used copying
routines to move themselves from one memory location to the next one. This
was to fill the memory space with a known value, allowing it to be programmed
with a new application.® As Ken Thompson recollects, the FORTRAN lan-
guage was employed for the competitive fun of a “three-legged race of the pro-
gramming community : to write the shortest program that “when compiled
and executed, will produce as output an exact copy of its source.”’” Several kinds
of “rabbit” and “bacteria” programs were used to clog up systems with mul-
tiple copies of the original program code. The general idea was to make the pro-
gram spread to as many user accounts as possible on the IBM 360 system. This
“constipated” the system. The rabbit program could input itself back into the

jobstream over and over again.” Such self-referential procedures connect with
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recursive algorithms, which are part of every major programming language.
Recursion can be understood as a subroutine that calls (or invokes) itself. The
very basic memory functions of a computer involve copying in the sense of data
being continuously copied between memory registers (from cache memory to
core storage, for example.) Such operations can be termed “copying” but can
equally justifiably be given names such as “read” and “write” or “load” and “store
register” operations.’

With the move from the mechanical programming of computers to infor-
mational patterns, the copy command became integrated as an organic part of
file management and programming languages in the 1960s.'"” The UNIX sys-
tem, developed at Bell Labs, was one of the pioneers with its “CP” command.
The CP command was a very basic file management tool, similar to, for in-
stance, the use of the “copy” command in the later DOS environment.

The emerging trends and demands of network computing underlined the
centrality of the copy command. Instead of mere solitary number crunchers,
computers became networked and communicatory devices where resource
sharing was one of the key visions driving the design of, among other things,
the ARPANET."" During the same time as the early computer operating sys-
tems for wider popular use were developed, meme theory, originally conceived
by Richard Dawkins in the mid-1970s, depicted the whole of culture as based
on the copy routine. Memes as replicators are by definition abstract copy ma-
chines “whose activity can be recognized across a range of material instan-
tiations.”'? Informatics is coupled with meme copying; media technological
evolution can be seen as moving toward more precise copy procedures, as Susan
Blackmore suggested. Copying the product (mechanical reproduction tech-
nologies of modernity) evolves into copying the instructions for manufactur-
ing (computer programs as such recipes of production).'’ In other words, not
only copying copies, but more fundamentally copying copying itself. What
makes meme theory interesting is not whether or not it is ultimately an ac-
curate description of the basic processes of the world, but that it expresses well
this “cult of the copy” of the digital era while it abstracts “copying” from its
material contexts into a universal principle.

During the 1990s, copy routines gained ground with the Internet being
the key platform for copying and distributing audiovisual cultural products.
Of course, such techniques were already present in early fax machines. Since

the latter half of the nineteenth century, these routines allowed for the trans-
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mission of ones “own handwriting” over distances. Soon images also followed.
(Technically, mid-nineteenth-century phototelegraphy already allowed the
encoding of data into patterns and the transmission of this copy via telegraph
lines.) Hence, facsimile, faccum simile, should be seen as “a copy of anything
made, either so as to be deceptive or so to give every part and detail of the orig-
inal; an exact copy likeness.”" Of course, no copy is an exact reproduction of
the original but an approximation chat satisfies, for example, the expectations
of the consumer. To guarantee such consumer satistaction, especially since the
1970s, with the help of engineers at Philips and Sony, digital optical archiving
techniques have presented us with a material memetic technology of cultural
reproduction that happens via a simple command routine: copy.

The material processes of copy routines have often been neglected in cultural
analysis, but the juridical issue of copyright has had its fair share of attention.
Yet the issues are intimately tied, both being part of the same key thematics of
modernization that spring from the fact that automated machines can reproduce
culture (a major change of the mode of cultural reproduction when compared
to, e.g., the nineteenth-century emphasis on civilization). Copy routines that
originated with medieval monks are integrated in special copy/ripper programs
with easy point-click routines and CSS interpretation possibilities. Hermeneu-
tic questions of meaning are put aside and attention is paid to the minuscule
routines of reproduction: “Thus, it was only after the fall of the Roman Empire
that writing fell as an obligation on monks, nuns, and finally male students. Of
all forms of manual labor, mechanical copying, just as in present day comput-
ers, most closely corresponded to Saint Benedict's diccum: ora et labora. Even if
the writer, simply because his tongue knew only some vernacular dialect, had
no understanding of the Latin or even Greek words he was supposed to preserve,
his handicap augmented the monastery library.”"

The difference between such earlier forms of preserving and reproducing
cultural memory and contemporary digital archiving techniques has to be em-
phasized. Contemporary forms of copy are intimately tied to the consumer
market and the commercial milieu of the digital culture (especially the inter-
net), whereas the work done by monks was part of the theological networks
where God, in theory, played the key mediator (and the final guarantor of
mimesis) instead of, for example, Sony BMG or Microsoft. Theological issues
defined the importance of what was copied and preserved, whereas nowadays

the right to copy and to reproduce culture is to a large extent owned by global
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media companies. This illustrates how copying is an issue of politics in the
sense that by control of copying (especially with technical and juridical power)
cultural production is also hierarchized and controlled.

The high fidelities of consumer production connect to the other key area of
copy within computer programming: the copy/paste routine that is part and
parcel of graphic user interfaces (GUI). Aptly, the Xerox Company, now a kind
of cultural symbol of the modern culture of copy, and especially its Palo Alto
research center (PARC), are responsible for the original ideas of graphic user
interfaces and point-click user control using the mouse. The Gypsy graphical
interface system from 1974/1975 was probably the first to incorporate the cut
and paste command as part of its repertoire (although Douglas Engelbart and
the “Augmentation Research Center” had introduced the idea in 1968). The
command was designed as a remediation of the paper-and-scissors era, keeping
nonprofessionals especially in mind. The interface was designed for efficient
office work, where adjustments could be done on screen while always hav-
ing a clean copy in store for backup. The idea at PARC was to create an office
workstation that would seem as invisible to the lay user as possible. This was
effected by providing a set of generic commands.'

The Xerox Star (1981) was hailed as the software system of the future, de-
signed as a personal workspace for networks. The Star office system incorporated
key commands (Move, Copy, Open, Delete, Show Properties, and Same {Copy
Properties}) as routines applicable “to nearly all the objects on the system: text,
graphics, file folders and file drawers, records files, printers, in and out bas-
kets, etc.”'” Being generic, such commands were not tied to specific objects. In
addition, the commands were accessible using special function keys on Star’s
keyboard. Star’s design transferred, then, responsibilities from the user to the
machine. The user no longer had to remember commands, but could find them
either in special function keys or in menus.'® The desktop became for the firsc
time the individualized Gutenberg machine, or the hard-working and pious
medieval monk that followed the simple commands universalized as generic.

The very familiar point-click copy-paste routine originates from those sys-
tems, and is now integrated into everyday consumer culture. This, as Lev Man-
ovich suggests, is perhaps how Fredric Jameson's ideas of postmodernization
should be understood: Copy production as the dominant mode of cultural pro-
duction culminated in the digital production techniques of GUI operating sys-
tems that originated in 1980s. Manovich notes that “IElndless recycling and

quoting of past media content, artistic styles and forms became the new "in-
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ternational style’ and the new cultural logic of modern society. Rather than
assembling more media recordings of reality, culture is now busy reworking,
recombining, and analyzing already accumulated media material.”"” In addi-
tion, recycling is also incorporated as part of the actual work routines of pro-
gramming in the sense of reusing already existing bits and pieces of code, and
pasting them into novel collages (so-called copy and paste programming). Since
the 1960s, copying has been elevated into an art practice but it is more likely to
be articulated in monotonous office work context or as pirate activity.*

In general, “CTRL + C” functions as one of the key algorithmic order-words
piloting the practices of digital culcure. This returns focus on the key economic-
political point: who owns and controls the archives from which content is
quoted and remediated? The question does not only concern the software pro-
ducers who are in a key position to define the computer environment but also
the large media conglomerates, which have increasingly purchased rights to
the audiovisual archives of cultural memory. Purchasing such rights means
also purchasing the right to copying (as a source of production) and the right
to the copy as an object of commercial distribution. The archive functions as
the key node in the cultural politics of digital culture. One alarming trend is
how such key nodes are being defined in commercial interests, such as in the
1996 Copy Protection Technical Working Group, in which technical manufac-
turers (Panasonic, Thomson, Philips), content producers (Warners Bros, Sony
Pictures), Digital Rights Management (Macrovision, Secure Media), telecom-
munications (Viacom, Echostar Communications) and the computer industry
(Intel, IBM, Microsoft) are represented.”’ The issue under consideration is not
only about content that is archived in private corporate collections but about
how copying is subject to technical, commercial, and political restrictions.

“Postmodernization” should be understood as a media technological condi-
tion. Aesthetic and consumer principles have been intimately intermingled
with the Eﬂgineering and programming routines of modern operating systems
that are part of the genealogy of modern technical media. For Friedrich Kittler,
the Turing machine as the foundation of digital culture acts as a digital ver-
sion of the medieval student, “a copying machine at almost no cost, but a
perfect one.” Similarly for Kittler, “The internet is a point-to-point transmis-
sion system copying almost infallibly not from men to men, but, quite to the
contrary, from machine to machine.”** Hence we move from the error-prone
techniques of monks to the celluloid-based cut and paste of film, and on to the

copy machines of contemporary culture, in which digitally archived routines
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replace and remediate the analog equivalents of prior discourse networks.
With computers, copying becomes an algorithm and a mode of discrete-state
processing. Digital copying is much more facile (if not totally error-free) than
mechanical copying, and copies are more easily produced as mass-distribution
global consumer products. In digital products the tracking and control of the
objects of copying is easier, and there is the added capability to tag the copies
as copyright of the producer or the distributor. The novelty of the digiral copy
system is in the capability to create such copy management systems or digital
rights management (DRM) techniques, which act as microcontrollers of user
behavior: Dara is endowed with an inherent control system, which tracks the
paths of software (for example, restricting the amount of media players a digi-
tally packed audiovision product can be played on).

In addition, copying is intimately entwined with communication as a cen-
tral mode of action of network culture. Such sociotechnological innovations
as nineteenth-century magnetic recording, the modem (1958), the c-cassette
(1962), the CD-disc (1965), the Ethernet local network (1973), and Napster
(1999) and subsequent file-sharing networks can be read from the viewpoint of
the social order words, “copy” and “distribution.” The act of copying includes
in a virtual sphere the idea of the copy being shared and distributed. What
happens in copying is first the identification or framing of the object to be cop-
ied, followed by the reproduction of a similar object whose mode of existance
is predicated upon its being distributed. There is no point in making copies
without distributing them. Copying is not merely reproducing the same as
discrete objects, but coding cultural products into discrete data and commu-
nicating such coded copies across networks: seeding and culturing. Similar to
how Benjamin saw mechanical reproduction and distribution as inherent to
the media technology of cinema, copy routines and distribution channels are
intimate parts of the digital network paradigm: connecting people, but also

copying machines.
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Data Visualization
Richard Wright

Any transformation of digital material into a visual rendering can arguably
be called a visualization, even the typographic treatment of text in a termi-
nal window. Conventionally, however, “data visualization” is understood as a
mapping of digital data onto a visual image. The need for visualization was
first recognized in the sciences during the late 1980s as the increasing power
of compurting and the decreasing cost of digital storage created a surge in the
amount and complexity of data needing to be managed, processed, and under-
stood. In 1987 the US National Science Foundation published their “Visual-
ization in Scientific Computing” report (ViSC) that warned about the “firehose
of data” that was resulting from computational experiments and electronic
sensing.' The solution proposed by the ViSC report was to use visualization to
quickly spot patterns in the data that could then be used to guide investiga-

tions toward hypotheses more likely to yield results. By using these “intuitive
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perceptual qualities as a basis for evaluation, verification and understanding,”
the ViSC panelists intended to put “the neurological machinery of the visual
cortex to work.”

In a book published in 2000, visualization scientist Colin Ware concisely
summed up the main advantages of modern visualization techniques.” As men-
tioned above, visualization permits the apprehension of large amounts of data.
The flexibility of human vision can perceive emergent properties such as subtle
patterns and structures. It can compare small scale and large scale features at
the same time. It can also help with the discernment of artifacts or mistakes in
the gathering of the data itself. Yet despite these observations being at the in-
cuitive level it is still possible to use them to suggest more formal hypotheses
about the data in question. The early criticism that “pictures don’t prove any-

thing” has gradually been mitigated by the promise that apparent relation-

ships can be later confirmed by applying more exact analytical methods.

Visualizations are created for people rather than for machines—they imply
that not all computational processes can be fully automated and left to run
themselves. Somewhere along the line a human being will need ro evaluate or
monitor the progress of the computation and make decisions about what to
do next. Yet despite the fact that the material operations of software and data
processing ate perfectly objective and describable, they are rarely directly ac-
cessible to us. One of the fundamental properties of software is that once it 1s
being executed it rakes place on such a fine temporal and symbolic scale and
across such a vast range of quantities of data that it has an intrinsically differ-
ent materiality than that with which we are able to deal with unaided. Visu-
alization is one of the few techniques available for overcoming this distance.
In the visualization pmcéss, the transformations that lead from data to digital
image ate defined chrough software, often in a direct or “live” relationship
with it, yet aim to be apprehended at a level of human sensibility far beyond
it. A visualization is therefore distinguished by its algorithmic dependence on
its source data and its perceptual independence from it.

Early writers on visualization such as Edward Tufte developed guidelines
and examples for how to design information graphics that are still influen-
tial today. Tufte’s main concern is now referred to as the principle of being
“expressive’: to remove all unnecessary graphical ornamentation and show as
much data as possible; to “let the data speak for itself.”” To some extent, when
we use computer graphics we can often “express” so much data that we do

not have to choose which is the most significant. But even if we are @ble to
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show everything we may still not know Aow to show it—how do we order the
variables into an image in a way that expresses their interrelationships? The
semiologist Jacques Bertin did important early work during the 1970s on how
to organize a “visual structure” that reflects the features and relations between
the data.” The usual approach is to start from some basic knowledge about the
data’s internal scructure. In theory the data we start with is raw and uninter-
preted, but in practice there is always some additional information about its
composition, usually derived from the means by which it was gathered. For
instance, if the data has up to three variables it can be directly mapped into a
three-dimensional graph of x, y, z values (or by transforming it using an inter-
mediate stage called a “data table”). Ware provides a typical example of such a
visualization from oceanography—a multibeam echo sounder scanning of the
tides at Passamoquoddy Bay in Canada, which produces a three-dimensional
array of height fields, rendered as a color image (figure 4).” This data used to be
sampled and rendered as a set of contour lines, but the continuous computer-
generated image allows us to clearly see the more subtle features, textures, and
artifacts in all the millions of measurements made. Of course, we do not have
to render it in this way—if we chose to we could unravel the array into a one-
dimensional sequence of values, interpret each one as a frequency and “play”
the data as a series of tones. But this would be to ignore the variables™ posi-
tional structure and we would almost certainly not be able to “see” the ripples
and pockmark patterns that we can in the image. Ordering the values into a
linear sequence might also imply precedence or ranking not in the original
data. The internal structure of the data is spatial rather than temporal.

If we are using visualization to forage for particular known pieces of infor-
mation such as which stocks are rising most steeply or in creating a graphic
notation for structuring conceptual propositions, then we are dealing with
more explicit functions of data catered to by specialized fields of informartion
visualization, “data mining,” or knowledge visualization. These disciplines are
often closer to interface design, employing popular techniques such as interac-
tive “fisheye” views, “table lens” document graphs, or spatial “mind mapping”
tools.® But in a more general context, if the properties of the data are yet to
be discovered, then visualization has less to do with retrieval, monitoring, or
communication and is more of an experimental technique. In contrast to a dia-
gram that is constructed on the basis of a preestablished set of significances, a
visualization is about finding connections (or disconnections) between dataset

atcributes like amounts, classes, or intervals that were previously unknown.
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Figure 4 Three dimensional array of height fields from a multibeam echo sounder scanning of

tides at Passamoquoddy Bay, Canada.

Visualizations are always partial and provisional and they may entail the ap-

plication of a number of different methods until the data gives up its secrets.

The images frequently exhibit the continuous qualities of the familiar visual
world despite the fact that they are utterly constructed. It is these implicit
visual properties that are valued for their openness to perceptual inference—a
continuous interplay of surface features rather than discrete graphic elements
or symbols. At this end of the spectrum, visualization is nonrepresentational
because it is speculatively mapped from the raw, isolated data or equations and
not with respect to an a[réady validated representational relation. A visualiza-
tion is not a representation but a means to a representation.

As recently as 2004, visualization scientist Chaomei Chen described visual-
ization as still being an art rather than a science.” There is still no taxonomy of
techniques that might help designers select one that is more effective for their
requirements, and no generic criteria with which to assess the value of a visu-
alization once they have. In the absence of guidance, there has been a tendency
by some scientists to seize upon the underlying code of a successful visualiza-
tion and make it a de facto standard. Colin Ware has tried to remedy this by
grounding visualization as a specifically scientific discipline by combining the
fields of physiology, human perception, and cognitive studies.® This feeds into

a desire among many scientists to conform visualization to scientific method
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by treating visual perception and cognition in terms of computation itself, to
be harnessed as an instrumental resource. For instance, the ability of the eye
to instantly see that one visual feature is bigger than another is referred to as
“computational offloading” in some places: “a diagram may allow users to avoid
having to explicitly compute information because users can extract information
‘at a glance.””” There is now a push to try to streamline visualization by design-
ing it for the faster “automatic processing” stage of human vision that deals
with the unconscious detection of light, pattern, orientation, and movement. If
the abilities of this retinal level of processing can be defined and standardized
then the hope is that visualization can be freed of the inetficiencies and contin-
gencies of learned visual conventions, that it can promise a fast and universal
“understanding without training” that crosses all cultural boundaries."

In the literature there is little emphasis on how to see visualizations, only
on how they are seen. Despite the fact that low level perceptual mechanics
may not be formally learned, they can still be exercised, sensitized, tuned, and
focused as an acquired skill. The editor of a film can se¢ a hair on an individual
frame chat appears far too briefly for his audience to be conscious of it. Visual-
ization as a practice is not just a question of designing for human perception
but of being perceptive. In fact, some people’s eyes have been “retrained” by
visualization itself until it has altered their apprehension of the world. Some
of the earliest and most ubiquitous forms of scientific visualization were 1m-
ages of fractals, chaos theory, and complex systems of the late 1980s."" De-
spite the fact that, as media theorists such as Vilém Flusser pointed out, these
pictures were “images of equations” rather than “images of the world,” they
were frequently used to model the appearance of natural phenomena such as
mountains, plants, and marble textures.'” Some scientists working with fractal
modeling, such as Michael Barnsley, found that after a while they began to
“see” the rivers, trees, and clouds around them in terms of fractal mathemat-
ics,!” internalizing concepts of self-similarity and strange attractors until they
had become a way of thinking and perceiving itself, as though turning the
whole world into a “natural” visualization. Both algorithm and sensory vision
are thus finally reunited in the cortex, in an endless circularity of computation
and perception.

Visualization is usually separated out as a tool for knowledge formation
rather than a visual form of knowledge itself. Although forms such as “analogi-
cal representation” (which preserves some structural features of the object such

as visual resemblance) or “enactive knowledge” (which is bound to actions
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such as a certain skill) are recognized as valid forms of knowledge, scientists
still mainly characterize their aims in terms of “conceptual knowledge”: that
which can be symbolically represented or discursively expressed.'® This causes
some uncertainty in the status of visuality; the literature frequently switches
between statements like “using vision to think,” “using visual computation to
think,” and “visual sense making.”" Michel Foucault described a similar situ-
ation in his study of the origins of modern systems of knowledge at the end of
the Renaissance.'® He pointed out how the principle of “resemblance,” which
had previously been so important, became relegated to a preliminary stage on
the borders of knowledge during the Enlightenment. This was despite the
fact that at the dawn of representational knowledge, as now, no order could be
established between two things until a visual similaricy had occasioned their
comparison. The use of memory and imagination in the discovery of a latent
resemblance is what makes the creation of knowledge possible. Whether such
visual relations will continue to be restricted to the rudimentary status of per-
ceptual pre-processing under the reign of visualization will define one of the
most important characteristics of knowledge in the age of computer software.

Although initially applied to imagery, visualization has now become a more
generic term that covers the sensory presentation of data and processing using
interactive techniques, animation, sonics, haprics, and multi-user VR environ-
ments. Over the course of the 1990s, visualization has spread from the sciences
into engineering disciplines, marketing, law, policy making, and art and en-
tertainment, indeed to any field that has found its object of interest replaced
by datasets or computer models. It helps make visible the fluctuations in the
international money market, defends the innocent through accident recon-
struction, discloses network traffic in order to detect telephone fraud, and re-
ports the proportion of files consolidated by one’s disk defragmenter.

These new fields obviously exceed the original scientific aims of visualiza-
tion, yet even in art and design applications some form of cognitive knowledge
may still be the intention. Christian Nold is an artist who has been building

“bio maps” of communities using a mixture of consciously and unconsciously

recorded data.'” For the “Greenwich Emotion Map” (figure 5), groups of local
residents each received a Galvanic Skin Response unit which measured their
emotional arousal as they went for a walk around the neighbourhood. Every
four seconds their level of excitation was recorded along with their geographi-
cal location as they reacted or failed to react to whatever coincidence of en-

counters, sights, and smells the city channelled to them that day. When they
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Figure 5 Christian Nold, detail from Greenwich Emotion Map, 2006.

returned, their data was uploaded and plotted onto a map of Greenwich and
annotated with written notes and photos they made at the time. When up-
loaded and rendered as an overlay of nervous peaks and troughs, markers, and
pop-ups over a Google Earth satellite image, we are able to pick apart Google’s
naturalistic photographic image of Greenwich in terms of a mass of individual
responses and rejoinders. “BioMapping” recreates the urban crowd using data
visualization to become a dynamic object of fluctuating emotional intensities,
informal commentaries, and subjective trajectories.

There also exist many noncognitive “visualizations” in common use. In
some cases this is because they move so far from their source data that the data
disappear from relevance entirely. For example, it is easy to take any arbitrary
data including random, unstructured data and contrive a rich pattern from it
using elaborate visualization tools. Noise functions are widely used in media
production software as the starting point for synthetic image generation. By
repeatedly applying a barrage of frequency filters, scalings, and interpolation
methods it is routinely possible to design the convincing appearance of natural
phenomena such as marble, wood, smoke, or fire, or the vertiginous synaes-
thetic abstractions familiar to users of the Windows Media Player. In these
cases we move away from “data visualization™ as such to the more general cat-

egory of computer generated “visualization.”
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Figure 6 Graham Harwood, Lungs: Slave Labour, 2005.

But there are other noncognitive visualizations whose power is derived from

the very strain of stretc
base. “Lungs: Slave La

affective visualization

hing yet maintaining a connection to their original data-

bour,” (figure 6), by Graham Harwood, is an acoustic,

based on Nazi records of the foreign laborers that were

forced to work in the ex-munitions factory that now houses the Centre tor Me-

dia Art in Karlsruhe.'® By interrogating their age, sex, and height, “Lungs” is

able to calculate their

vital lung capacity and emit a “breath” of air for each

worker through a speaker system. The general aim of the “Lungs” project is to

take computer records

of local events or communities that have been reduced

or demeaned to the status of information and to allow people to re-experience

and recover their own

value. This attempt to give a database a pair of lungs
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reconnects people with a political atrocity in a very visceral way that seems to
belie the muteness of the bureaucratic records themselves.

This last example might be seen as highly tendentious, but it factually
elaborates the politics involved in any representation of data. It still meets the
central requirement for data visualization of algorithmically deriving a sensory
expression from the structures implicit in digital data, even when, and espe-
cially when, that expression takes us far from the realm of computer code. The
greatest material distance between human senses and computer code, when
compared to the simplest material connections between them, delineates the
imaginative possibilities of data visualization. Within this area we can explore
the most extreme perspectives that software can create of itself. It is its ability
to put cognitive and affective modes of perception into creative tension with
data structures and with each other, and to articulate the gap between the pro-
cessing of data, social life, and sensory experience, that will allow visualization

to reach its full potential, both as a scientific and as an artistic technique.
Notes

1. Bill H. McCormick, Tom A. DeFanti, and Maxine D. Brown, “Visualization in

Scientific Computing,” Computer Graphics, 21, no. 6 (November 1987).
2. Colin Ware, Information Visualization: Perception for Design, 2.

3. Edward Tufte, Visual Explanations, 45.

4. Jacques Bertin, Graphics and Graphic Information Processing.

5. Ware, Information Visualization, 2.

6. Sigmar-Olaf Tergan and Tanja Keller, eds., Knowledge and Information Visualization:

Searching for Synergies (Lecture Notes in Computer Science), 5.
7. Chaomei Chen, Information Visualization, 2nd edition, 1.
8. Ware, Information Visualization, 5.

9. Mike Scaife and Yvonne Rogers, “External Cognition how do graphical representa-

tions work?,” International Journal of Human-Computer Studies, vol. 45, no. 2, 185-213.

Data Visualization

86

Skenovano pro studijni ucely



10. Ware, Information Visualization, 10.

11. Hans Otto Peitgen and Peter Richter, The Beauty of Fractals: Images of Complex
Dynamical Systems.

12. Vilém Flusser, “Curie’s Children: Vilém Flusser on an Unspeakable Future,” Arz-
Jorum (March 1990).

13. Michael Barnsley, Fractals Everywhere: The First Course in Deterministic Fractal Ge-

ometry, 1.
14. Tergan and Keller, Knowledge and Information Visualization, 4.

15. Stuart Card, Jock Mackinlay, and Ben Schneiderman, eds., Readings in Information
Visualization: Using Vision to Think, 33, 34, 579.

16. Michel Foucault, The Order of Things, 67—68.

17. Christian Nold, “Greenwich Emotion Map,” 2006, available at http://www.emotion

map.net.

18. Graham Harwood, “Lungs: Slave Labour,” 2005. Permanent collection, ZKM,

Karlsruhe, Germany, available at http://www.mongrel.org.uk/lungs.

Elegance
Matthew Fuller

In Literate Programming,' Donald Knuth suggests that the best programs can
be said to possess the quality of elegance. Elegance is defined by four criteria:
the leanness of the code; the claricy with which the problem is defined; spare-
ness of use of resources such as time and processor cycles; and, implementation
in the most suitable language on the most suitable system for its execution.
Such a definition of elegance shares a common vocabulary with design and en-
gineering, where, in order to achieve elegance, use of materials should be the

barest and cleverest. The combination is essential—too much emphasis on one

of the criteria leads to clunkiness or overcomplication.
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Such a view of elegance is supported by Gregory Chaitin’s formulation of
program-size definition of complexity: A measure of the complexity of an an-
swer to a question is the size of the smallest program required to compute it.
The resulting drive to terse programs produces a definition of elegance being
found in a program “with the property that no program written in the same
programming language that produces the same output is smaller than it 1s.”

The benefit of these criteria of elegance in programming is that they estab-
lish a clear grounding for the evaluation of approaches to a problem. This set
of criteria emerging from programming as a self-referent discipline it works on
the level of disciplinary formalization, as a set of metrics that allow for a scale
of abstraction. This formalization can also be politically crucial as a rhetorical
and intellectual device that allows programmers to stake their ground in con-
texts where they might be asked to compromise the integrity of their work,
and something that allows them to derive satisfaction from work that might
otherwise be banal.

When writing code to test compilers, Knuth takes the opposite route. He
writes test programs that are, “Intended to break the system, to push it to its
extreme limits, to pile complication on complication, in ways that the system
programmer never consciously anticipated.” He continues, “To prepare such
test data, I get into the meanest, nastiest frame of mind that I can manage,
and I write the cruelest code I can think of; then I turn round and embed that
and embed it in even nastier constructions that are almost obscene.”” There is
a clear counter-position between code that contains as much vileness as one
could want and model code that is good. For users of software configured as
consumers such “metaphysical” questions aren’t often the most immediately
apparent, although questions of elegance, as will be suggested below are also
recapitulated at the scale of interface.

To return to the politics of elegance at the level of programming practice it
is also useful to think about those contexts where paradoxically, in order to be-
come more adequately self-referent, the process of writing software finds itself
constituted in combination with other elements. In working conditions where
programmers might be concerned with conserving elegance against other im-
peratives, such as the cutting of costs, the criteria are often posed in terms of
benign engineering common sense, ot the ethics of satisfying the needs of the
user in the clearest way possible, or the onus of clarity to one’s collaborators.

Elegance is often invoked defensively. In each case however, elegance remains

a set of parameters against which a program can be measured.
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In the four criteria proposed by Knuth, elegance is constructed between the
machine and the talents of the programmer, with the context of the program
occurring as something already filtered into a problem definition. Elegance in
this sense is defined by its containment within programming as a practice that
is internally self-referent and stable.

Knuth'’s criteria for elegance are immensely powerful when evaluating pro-
gramming as an activity in and of itself. It might be useful, however, to think
about the terms against which they might be modifiable, or for the context
of elegance to be allowed to roam, to make obscene couplings, to find other
centers of gravity. In such cases, software is not simply software, and it in turn
conjugates those other realities with which it mixes with computation. Difter-
ent criteria for elegance pour into the domain of software, and those of software
begin to manifest in combination with other scales of reality.

At the same time, something interesting happens to stability at the level
of software. Further work by Gregory Chaitin has revealed that the decision as
to whether a program is the shortest possible is complicated by a fundamen-
tal incompleteness.” As a program’s complexity increases, and concomitantly
that of the problem it deals wich, there is an increasing difficulty in accurately
stating the most concise means of answering it. At a certain threshold, the
possibility of stating the tersest formula for arriving at an answer is undecid-
able. The elegance of software then, by at least one of the above criteria, is not
absolutely definable at a mathematical level. This is not the same as saying,
as of software debugging, “If you don’t have an automated test for a feature,
that feature doesn’t really exist.”” Elegance, because it cannot be proven, comes
down to a rule of thumb, something that emerges out of the interplay of such
constraints, or as something more intuitively achievable as style (in Knuth'’s
terminology, an “art”). Like William Burroughs’ proposal for an informal self-
discipline of movement, “Do Easy,” it is something that can be practiced and
learned, the dimensions, weights, capacities of objects dancing in an endless
dynamic geometry incorporating the body ot the adept and the repositories
of heuristics that have gone before in the form of languages, institutions, ar-
chives, books, and techniques. Eventually, a certain effortlessness is achieved.

Effortlessness is offered straight out of the box in the vision of computing
which sees interaction with information as being best achieved through simple
appliances that are easy to use and which operate with defined, comprehen-
sible scopes. At this point, elegance gives way to another set of criteria, which

provide powerful, occasionally even fundamental constraints. Such constraints
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act as limiting devices that force a piece of software toward elegance. A condi-
tion of elegance, however, is that it charts a trajectory, often an unlikely one,
through possible conditions of failure. Finding a way of aligning one’s capaci-
ties and powers in a way that arcs through the interlocking sets of constraints
and criteria, the material qualities of software, and the context in which it 1s
forged and exists is key to elegance.

Achieving striking effects with an economy of means has been crucial to for-
mulating elegance within software, particularly within the domain of graphic
interaction. To produce a convincing animated sprite within a tiny cluster of
pixels, to develop a bitmapped font working at multiple scales, or to develop a
format allowing for the fast transfer and calculation of vector graphics over lim-
ited bandwidth requires a variation in criteria from those Knuth set for elegance
at the level of programming. (For instance, one might be working for a pre-
defined platform or a range of them, or within a particular protocol.) Equally, at
the level of the operating system, a language, a data-structure, or within a pro-
gram, defining the core grammars of conjunction and differentiation of digital
objects each provide scalar layers wherein elegance might be achieved or made
difficult. In such cases, elegance can be found in the solutions that allow a user
to get as close to the bare bones of the underlying layer of the system, without
necessarily having to go a layer deeper. In proprietary software, a good example
of such elegance is the formulation of the Tool Kit, built into the ROM of the

early Macintoshes, which defined the available vocabulary of actions, such as

cut, paste, save, copy, and so on that were able to work powertully across many

different applications.” Such work builds upon the particularity of digital and

computational materials. Crucially, however, it also abstracts from the many
potential kinds of interaction with data that might be desirable to produce a
limited range of operations that can be deployed across many different kinds
of information. While the range of such a vocabulary of functions might be
constrained, the concrete power that arises from the conjoint and recursive use
of these operations elegantly directs the power of computation in a trajectory
toward its conjugation with its outside. The outside in this case consists of the
multiple uses of these functions in programs aimed at the handling of multiple
kinds of data. Elegance then is also the capacity to make leaps from one set of
material qualities and constraints to another in order to set off a combinatorial
explosion generated by the interplay between their previously discrete powers.
Elegance can also be seen in the way in which a trajectory can be extended,

developing the reach of an abstraction, or by finding connections with do-
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mains previously understood as being “outside” of computation or software. A
fine example of such elegance would be achieved if a way was found to conjoin
the criteria of elegance in programming with constraints on hardware design
consonant with ecological principles of nonpollution, minimal energy usage,
recyclability or reusability, and the health requirements of hardware fabrica-
tion and disposal workers.” Good design increasingly demands that elegance
follows or at least makes itself open to such a trajectory. The criteria of mini-
mal use of processor cycles already has ecological implications.

While elegance, then, demands that we step outside of software, keep com-
bining it with other centers of gravity, computation also suggests a means by
which we can think it through, prior to its formulation. The virtual has be-
come an increasingly significant domain for philosophical thought, but it is
also one that is always simultaneously mathematical. Steven Wolfram'’s figure
of the “computational universe” suggests that it is possible to map out every
possible algorithm, and every possible result of every algorithm. A concept of
the virtual reminiscent of Linneas’s attempts to graph the entirety of specia-
tion, this is a decisive imaginal figure, if not quite a mapping, of the constraint
of computability itself. It follows from Emile Borel's idea that it would be
possible to construct a table containing every possible statement in the French
language, and indeed from Turing's formalization of all possible computa-
tions. Needless to say, Borel’s table did not account for irony, that multiple
semantic layers can be embedded in the same string of characters. If an ironic
computational universe is not the one we currently inhabit, it will inevitably
occur as soon as computation snuggles up to its outstde. The condensation of
multiple meanings into one phrase or statement turns elegance from a set of
criteria into a, necessarily skewed, way of life.

Here we can see a further clue to elegance within multiscalar domains, that
is to say, how it is produced in most actual computing work. The transversal
leap or arc characteristic of elegance does not necessarily depend on a struc-
tural, ethical, or aesthetic homomorphy between code, the problem it creats,
and the materials it allies itself with (such as hardware, language and people).
Elegance also manifests by means of disequilibrium, the tiny doses of poison,
doping, required to make a chip functional, to make it hum: a hack can be el-
egant, a good hack is inherently so. Elegance exists in the precision madness of
axioms thart cross categories, in software that observes terseness and clarity of
design, and in the leaping cracks and shudders that zigzag scales and domains

together.
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Ethnocomputing
Matti Tedre and Ron Eglash

Social studies of the relations between culture and knowledge in science and
technology have in general been approached from three directions. First, in
the ethnosciences approach, the study of the knowledge of indigenous so-
cieties has been given terms such as ethnobotany, ethnomathematics, and
ethno-astronomy.' Second, in the social constructionist approach, the cultural
dimensions of contemporary science and technology have been analyzed as a
“seamless web” of both social and natural constraining and enabling factors.”
Third, in the interactionist approach, the researchers take into account that
after technology has been designed and produced, its use may vary depending

on cultural context, adaptation, appropriation, and reinvention.” Ethnocom-
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puting is an umbrella term that encompasses all three of these approaches to
examine the relations between computing and culture.

The technical elements of ethnocomputational practices include (formal or
non-formal) (a) data structures: organized structures and models that are used

to represent information, (b) algorithms: ways of systematically manipulating

organized information, and (c) physical and linguistic realizations of data struc-
tures and algorithms: devices, tools, games, art, or other kinds of realizations
of computational processes.” Non-Western examples of the first element can
be found in, for instance, Inca Quipu’; examples of the second element include

6. examples of the third ele-

techniques for calculating textile lengths and costs
ment can be found in, for instance, the Owari game.’

The foregoing examples are manifestations of computational ideas in indig-
enous cultures, and they exemplify the diversity of computational ideas. There
are two central arguments in ethnocomputing: a design/social justice argu-
ment and a theoretical/academic argument. The first argument is that a better
understanding of the cultural dimensions of computing can improve the de-
sign of computational devices and practices in disadvantaged groups and third
world populations. The second argument is that an understanding of the cul-
tural dimensions of computing can enrich the disciplinary self-understanding

of computer science at large.
Theory: Conceptual Starting Points

One of the most difficult barriers to the research of ethnocompurational ideas
is the unequal assessment of knowledge in locations of high social power (e.g.,
Western, first-world, high-tech) and knowledge at the margins of social power
(e.g., indigenous, third-world, vernacular). By using the term ecthnocomputing
to encompass both domains, the tendency to privilege the Western version as
the universal, singularly correct answer is avoided: all computing can be seen
as equally cultural, and cultural variation should be seen as a resource for di-
versity in theory, design, and modeling.

Stressing the sociocultural construction of computing does not mean advo-
cating ontological or epistemological relativism, that is, it does not mean ques-
tioning the existence of the real world or its underlying principles of physics
and mathematics. However, all human attempts to derive these laws and ex-
ploit them through technology are done through culrural lenses. Compurting 1s

a field in which sociocultural factors play a big role. Unlike the natural sciences,
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where most theoretical and practical problems arise from the complexity of the
physical world, in computer science the difficulties usually stem from computer
scientists’ earlier work—computer scientists have created the complexity of
their own discipline. Earlier design choices in control structures, architectures,
languages, techniques, data structures, syntax, semantics, etc., atfect future de-
sign choices.

However, the sociocultural influences in computing—whether in the first
world or third world—should not be considered to be a problem, but rather
means for the design and understanding of effective computing technologies
and practices. For instance, Andrew Pickering® has argued that science pro-
ceeds by accommodations, not by replacement. He argued that scientists ac-
commodate for whatever anomalies experiments may reveal, by reconfiguring
various elements of a model’s technical, social, and natural relations. There
are undoubtedly universal physical laws that govern the operation of compu-
tational devices, but only through a multiplicity of experiments—whether
carried out by silicon chips, carved African game boaids, or the generation of

theorems and proofs—can one learn those principles.
Research Directions

As an umbrella term, echnocomputing entails a number of active research di-
rections, of which three examples are presented here. Firstly, there is the project
that focuses on the history of computer science. Compared to the millennia-
long history of mathematics, the standard history of computer science is very
short. As a discipline, computer science is typically thought of as having arisen
only with the advent of electronic computers. From the small group of coun-
tries that have led the computer revolution, an even smaller segment of people
have set the development trends of Information and Communication Technol-
ogy (ICT). The early development of computer science was mostly determined
by military and industrial priorities. Not surprisingly, home computers are also
designed for the Western knowledge worker.”

Computers are cultural artifacts in which a Western understanding of logic,
inference, quantification, comparison, representation, measurement, and con-
cepts of time and space are embedded at a variety of levels. That 1s not to say
that all aspects of the computer should be redesigned to aid its cultural fit but

that one needs to be aware of the underlying viewpoints of computing. Because
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of a lack of knowledge about the sociocultural history of computing, the lack
of cultural diversity in its teaching material, literature, and problems are more
easily overlooked. One project of ethnocomputing is to reassess the history of
computer science,'” just as ethnomathemarics has inspired a reconsideration
of the influence of non-Western cultures in macthematics.

Secondly, there is the project of ethnocomputing that focuses on cultural is-
sues 1n human-computer interaction. It has been argued that there 1s an ongo-
ing shift from computer-centered computer science to user-centered computer
science.!" At the same time, computers, ICT in general, and the internet are
spreading to the developing countries. The ongoing diffusion of computing
technology in developing countries is increasingly diversifying the user base.'?
Consequently, there is a clear motivation for learning more about users rather
than cthinking of them as superficial “cultural markers,” and to take more re-
sponsibility for the effects modern ICT may have on people’s everyday lives.

Thirdly, there is the project of ethnocomputing that focuses on translations
between indigenous/vernacular and high-tech representations of computing.
For example, Ron Eglash describes a project that began with modeling tradi-
tional African architecture using fractal geometry. Field work in Africa showed
that these architectural fractals result from intentional designs, not simply
unconscious social dynamics, and that such iterative scaling structures can be
found in other areas of African material culture—art, adornment, religion,
construction, games, and so forth—often as a result of geometric algorithms
known (implicitly or explicitly) by the artisans.

Computational models of these fractals have been developed into a suite
of interactive tools in which grade 4—-12 students could control simulation
parameters (such as geometric transformations and iterative levels) and create
not only simulations of the original indigenous designs, but also new creations
of their own making. The tools also include modeling computational aspects
of Native American design (such as iterative patterns in beadwork, basketry,
and weaving), Latino design (such as least common multiple relations in tra-
ditional drumming patterns and the iterative construction of pyramids), and
youth subculture designs (linear and nonlinear curves in graffiti). The collec-
tive website, titled “Culturally Situated Design Tools”'’ has been successfully
used in math, art, and technology education classes, primarily with minor-
ity students from African American, Native American, and Latino cultures
(hgure 7).
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Figure 7 Cornrow curves design tool.

Applications in ICT Education

Information and Communication Technology research has created many gains
for majority populations in Western countries. But both students from dis-
advantaged groups in the West and the general population in non-Western
nations have had substantially fewer gains from ICT research. Some of this is
attributable to economic factors. Schools with concentrations of disadvantaged
groups in Western nations tend to have fewer ICT resources, and non-Western
general populations have much less computer access. There are also cultural
factors that hinder ICT education and its use in developing countries. ICTs are
not culturally-neutral objects and concepts.

The cultural specificity of ICTs is perhaps most evident in the case of peda-
gogy. Different kinds of curricula, textbooks and other study material, the ex-
amples used, the choice of pedagogical approaches, and even what is considered
a “valid problem” in ICT education often have a heavy Western bias. This bias
sets expectations that only the students with a Western cultural background
can meet without extra cognitive overhead. Students from other cultures expe-
rience more difficulties than Western students when trying to adapt to cultur-

ally specific examples and applications that the current ICT education exhibits,

Ethnocomputing

96

Skenovano pro studijni ucely



and when the non-Western students’ own mental imagery is not supported.
The problem with the cultural specificity of ICT education in developing coun-
tries has been addressed on a number of levels ranging from mere importing of

technology, to technology transfer, application, and contextualization.'
Applications in Innovation and Diffusion

Technological decisions are often made on grounds other than technical limi-
tations: for instance, on economic, political, ideological, or cultural grounds."
Several motivations can be attributed, for example, to the development of
GNU/Linux and its introduction into use.'® Arguably, GNU/Linux is advanced
(technical motivation), free of initial investment (economical motivation), its
roots are in hacker ethics and the free software movement (ideological and social
motivacions), and sometimes it can emphasize a cultural or political message
(e.g., IMPI Linux in South Africa and RedFlag Linux in China). If one wants to
really understand why GNU/Linux has developed as it has, these motivations
cannot be ignored, and the same applies to all other computational systems.

Modern ICT tools are not detached from other technologies, but because

complete systems are bound to and based on the design decisions of pre-existing
tools,'” they have to be relevant to the existing infrastructure.'® ICT can be im-
plemented in highly variable situations, as long as the local infrastructure (e.g.,
electricity, phone lines, or OSI layers) is known. Second, the ICT systems have
to be relevant to local needs. Technologies that are not advantageous from the
viewpoint of the users are not easily taken into use, no matter how great their
“objective” advantage is.'” Third, ICT systems have to be relevant to the local
users. Systems that are hard to use are adopted more slowly than those that are
easy to use, or they may be rejected altogether. Fourth, ICT systems have to be
relevant to the local culture and society. The structure of a social system may
facilitate or impede the diffusion of technologies. Technology transfer from

Western countries to developing countries often ignores aspects of relevance.
Other Ethnocomputing Exemplars

Examples of ethnocomputational phenomena are numerous and they range
from social to technical, from theoretical to practical, from low-tech to high-
tech, and so forth. A number of different ethnocomputing projects are pre-

sented below.
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Cellular Automata Model for Owari
Aspects of the Ghanaian game Owari have been modeled in computational terms
such as one-dimensional cellular automata.”” But cellular automata have their
own history and cultural dimensions. For example, John von Neumann, the
founder of cellular automata, was motivated by his interest in self-reproducing
robots; his interest has been attributed to the uncertain environment of his child-
hood as a Jew in Eastern Europe.?! The particular form of cellular automata that
von Neumann chose—two-dimensional cells with only four nearest-neighbors
that are oriented vertically and horizontally—was a result of the compurta-
tional restrictions of his day. Later models utilized eight nearest-neighbors (the
additional four at each corner), hexagonal cells, one-dimensional and three-
dimensional arrays, and even (e.g., in the case of Sugarscape, one of the first
artificial society models) a return to von Neumann’s four nearest-neighbor con-
figuration. Each of the varieties of cellular automata, including the Ghanaian

game Owari, is the result of a combination of technical and soctal features.

Simputer and the $100 Laptop

The famous Simputer project provides an example of the hardware side of ethno-
computing. Conceived during the organization of the International Seminar on
Information Technology for Developing Countries (Bangalore, October 1998),
the original Simputer (simple, inexpensive, multilingual computer) plan dis-
cussed the need for a low-cost device that will bring local-language IT to the
masses. Another technology-oriented project, the OLPC (one laptop per child)
project (also dubbed “the $100 laptop”), developed by researchers at MIT, uses
open-source software focused on education, and is connected with several in-
dustrial partners. However, at a UN conference in Tunisia, several African offi-
cials were suspicious of the motives of the project, suggesting it was excessively
influenced by an American framework for development. The important point
here is not the outcomes of Simputer and OLPC projects, but that such designs

must be considered from a wide range of socio-technical intersections.

IAAEC Alternative to the Desktop Metaphor Project
Brian Smith from MIT Media Lab and Juan Gilbert from Auburn University
have explored culturally-specific alternatives to the desktop metaphor. They
note that prior attempts to redesign the graphical user interface (GUI) by re-
placing the desktop with spatial metaphors (e.g., rooms, buildings, villages)

had largely failed—they were more cumbersome than the desktop metaphor.
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The aim of Smich and Gilbert is to focus on African-American populations and
to explore the various approaches to information manipulation that are already
in use in these communities. While replacing the desktop GUI is one pos-
sible outcome, it is not necessarily the ultimate goal. Rather the aim is to use
the metaphor research as a spring board for broader research that aims to cap-
ture aspects of use that have been neglected by the dominance of the desktop

metaphor.

Culturally Embedded Computing Group
Headed by computer scientist Phoebe Sengers, this Cornell University group
has been generating collaborations between the Department of Information Sci-
ences and the Department of Science and Technology Studies. They emphasize
critical technical practice (a term coined by Phil Agre) as a means of integrat-
ing IT design wich cultural, philosophical, and social analysis. Many of their
projects make use of culturally and individually unique home environments,
fusing various I'T devices with new modes of communication and self-reflection.
For example, a mailbox that responds to the affective content of postcards (via a

hidden barcode) becomes a social probe for various human interactions.

Native American Language Acquisition Toys
With the support of the Cherokee Nation tribal council, ilmmaker Don
Thorton teamed with the Neurosmith Corporation to create a version of their
educational toy for Native American languages. Neurosmith provided the pro-
prietary software, and Thorton himself digitized the script. The resulting toy,
“Little Linguist,” became commercially available in 2001. It is physically the
same toy used for all the languages; the only ditference is the cartridge con-
taining the digitized script. A similar project is planned for the Cree language
from an MIT team headed by Vinay Prabhakar and Carlos French, with the aim
of providing a more culturally-specific physical device as well as its digital

scripting.
Conclusion

The multidimensional approach that ethnocomputing promotes encourages a
partnership between computer science and social science. The common goal
is to bring the historical and societal constructions of the compurational prac-

tices of different cultural groups to bear on technological design and practice.
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Function

Derek Robinson

A word is a box containing words.
—GERTRUDE STEIN'

A function in programming is a self-contained section of code (one still comes
across the term “subroutine,” which is the same thing) that 1s laid out in
a standard way to enable deployment and re-use at any number of different
points within a program. It's a way of minimizing the duplication of intel-
lectual effort, of making things routine, and as Alfred North Whitehead
remarked, “Civilization advances by extending the number of important op-
erations which we can perform without thinking about them.”*

Functions are usually small and limited to performing a single task. They
are active, they do things to things. Some typical examples of functions would
be arithmetic operators like “plus,” “times,” and “square root,” which can be
combined with other arithmetic operations to compose expressions. If they
might be useful in the future, these expressions can be named and turned into
functions. Programmers will often keep personal files of utility functions for
importing into projects; collections of greater breadth and size are made into
libraries and maintained in repositories for use by other coders. It wasn’t so
long ago that libraries of machine code subroutines, with a light dusting of

syntactic sugar, formed the basis of the first high level computer languages.’
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Programming is a civic-minded activity. Politeness counts. Intense thought
is expended in the hope that others, including most importantly one’s future
self, will not have to keep repeating the same tired phrases again and again.
We try to be smart about parameterizing and abstracting, about dignifying
as Variables those parts of things that vary, and as Functions the parts that do
not, and which are to this degree redundant, vulnerable to automation, ripe
for refactoring or removal. The activity of programming, like Jean Tinguely’s
famous self-destroying automaton (“Homage to New York,” 1960), occupies
the peculiar position, part teleological and part topological, of existing, ulti-
mately, to obviate its own existence. (Q: “If computers are so smart, why don’t
they program themselves?” A: “Somebody would first have to write the pro-
gram, and no-one has yet been that smart.”)

When defining a function, there is some sort of preamble establishing its
identity (usually a name, although sometimes not) and declaring any arguments
or parameters that it will require. Something like “function defunknose
(x,y) —defunknose here being the name and x and y the arguments—tfol-
lowed by the function’s “body,” the block of code that actually carries out the
compurtation the function was designed to perform. When later this function
is called (by invoking “defunknose (5,6)” for example) each instance of an ar-
gument found in the function’s body gets replaced by its cafrespﬁnding value.
In general, calling a function with different argument values produces differ-
ent results. In the more sophisticated languages like Lisp or JavaScript, func-
tions can be passed as arguments to functions (it might well be an anonymous
“lambda” function that is passed). Finally it is customary (but not obligatory)
for functions to return results to their callers. The code that invokes a function
should have no reason to care how the result was produced.

A function’s definition is a symbolic expression built up recursively from
previously defined functions. The regressus of expressions composed of func-
tions whose definitions are expressions composed of functions ultimately bot-
toms out in a small and irreducible set of atomic elements, which we may call
the “axioms” or “ground truths” of the symbol system. In a computer these are
the CPU'’s op-codes, its hardwired instruction set. In the system of arithmetic
they would be the primitives “identity” and “successor,” from which the four
basic arithmetic operations can be derived and back into which they can be re-
duced. Such radical atomism was a favorite pastime of analytical philosophers
of the mid-twentieth century, prefiguring the development of electronic giant

brains designed to tirelessly carry out just this sort of task (which our little
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human brains have difficulty keeping straight). (This is why writing software
1s so hard.)

Functional Programming

Functional Programming 1s an approach to programming and programming
language design that uses only functions. It abjures any assignment of values to
variables on the grounds that this can lead to unexpected side effects and thus
compromise correct execution of programs. A function ought not, according to
this philosophy, affect anything outside its scope; consequences shall owe only
to results returned, and the only proper way to interact with a tunction is by
means of the values passed to it as arguments when the function is invoked.

The first functional programming language was GEORGE, created in 1957
by Charles Hamblin for use on DEUCE, an early Australian computer. (Every-
thing was upper case in those days.) The design was termed a zero-address
architecture, because no memory was allocated for named, persistent variables;
thus no symbol table was needed either. Any argument values needed by a
function were accessed though a special dynamically growing and shrinking
range of addresses called the “stack.” (Imagine a stack of plates: the last plate
added is the first removed.) A function could count on its arguments having
been the last things pushed onto the stack before it was called; a stack pointer
kept track of the current “top” cell as data were added to and removed from it.
All calculaciens used the stack to store intermediate results, and the final result
would be left on top of the stack as an argument for the next function in line.
GEORGE programs used Reverse Polish Notation, a strange-looking syntax
where operands precede their operators. Today’s programming languages will
often translate their code into RPN internally, and use a data stack for expres-
sion evaluation. Again, functions are recursively constructed symbolic expres-
sions, and stacks are essential to their unraveling.’

Purely functional programs, despite or because of their elegant construc-
tion, are rarely found outside computer science textbooks. Most programming
jobs involve states of atfairs and making changes thereto conditional thereupon,
but functions of the purer stripe don’t acknowledge the concept of “mem-
ory"—rtor them there is only a continual process of transformation. It’s very
Zen, very committed, very macrobiotic. A function-ish style of programming,
on the other hand, is encouraged in languages like Lisp, Forth, or JavaScript;

it is empirically, programmer-lines-of-code-measurably a very productive way
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to realize interesting and useful things in software. It’s about writing many
lictle functions that you then get to reuse inside the definitions of not yet de-
fined little functions, and so on, and so on, bootstrapping one’s way up a per-
sonal tower of metalinguistic abstraction until at the very top there is perched
one final function: the program itself. (Think of a bathtub full of mousetraps,
and yourself poised there, ping-pong ball in hand. Think cascades, fusillades,

think detonations of denotations. Now let go, let fly.)
Functions as Mappings

But real mathematical functions aren’t executable subroutines. A function is
an ideal abstract consensual cerebration, and the code a programmer commuits
is only one out of indefinitely many possible materializations, each a pale sub-
lunary reflection of the ideal. A function proper is propaedeutic, telling how
the thing should behave, giving the theory but not concerning itself with how
it is to be implemented. The “real” sine function, for example, defined over the
real numbers, would require infinite-precision arithmetic—demanding an in-
finite supply of memory to inscribe its unscrolling digits, and asking all eter-
nity for its satisfaction. |

Our familiarity with functions like the sine curve shouldn’t get in the way of
a more general, modern conception of functions as mappings. Functions as un-
derstood by programmers are pretty close to the modern idea. That computers
can’t represent continuous values isn't really a big deal; human mathematicians,
after all, share the same limitation. (Even if by dint of drill and long contempla-
tion they learn to conceive in themselves a supple, subtle, logical intuition of the
infinitely great and the vanishingly small, to the point where they may indeed
come to see their occult fictions as Reality. As actually the realer Reality. As in-
deed, gone far and deep enough into their cups, the very thoughts of God.)’

A function can be regarded as a look-up table (often enough it may be
implemented as one too) which is to say a mapping from a certain symbol, the
look-up key, to a value associated with this key. Modern scripting languages
typically include as a native data type the “associative array” (also known as

hash table, dictionary, or map) for managing look-up tables of arbitrary com-

slexity. In JavaScript associative arrays are at the same time “objects,” the
main building blocks (as “lists” are in Lisp) out of which all other entities are
constructed. Associative arrays, as the name suggests, can, with a bit of coding

cleverness, give software an associative capability, permitting programmers
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to emulate (after a fashion) the more flexible, soft-edged categories of narural
cognition,® against the all-or-nothing, true-or-false Boolean logic, which many
people still seem to think is all that computers are capable of.

To briefly pursue the organic analogy: individual neurons, while glacially
slow by comparison with CPU switching speeds, in their imprecise massively
parallel way still vastly “outcompute” (buying the theory that computations are
what brains do) the swiftest supercomputers. It's a version of the classic algo-
rithmic trade-off between processing time and memory space, first essayed by
the nineteenth-century computing pioneer Charles Babbage.” It may often be
advantageous to precompute a function and save having to recalculate it later
by compiling the results into a table of key-value pairs (with its argument vec-

tor as the look-up key and the result returned as the key’s value), perhaps with a

rule for interpolating (or “connecting the dots”) between tabulated data values
at look-up time. In cases where all one has is a collection of discrete samples—
where the function that generated the data isn't known a priori, for example
measurements of things and events taking place in the world-—a look-up table
and a rule for smoothing the data belonging to nearby or similar points is hard
to beat. (Many of the techniques used in statistics and neural network modeling
can be seen as wrinkles on this “nearest neighbors” idea.) Such numerical meth-
ods date back to the Ptolemys, when trigonometric tables were first compiled

for use by astronomers, navigators, and builders.
Functions and Logic

A function is an abstract replica of causality. It’s what it is to be a simple, de-
terministic machine: the same input must always map to the same output.
This intuition is at the heart of logic. If repeating the same operation with che
same input gives a different output, you know without a doubt that something
changed: it isn't the function you thought it was, it isn’t a simple machine. Or
perhaps one’s measuring instcrument was faulty; maybe you blinked. Still you
will know for certain that something went sideways since (it is of our human-
ness to believe) nothing happens without a reason. This inferential form was
anciently termed “modus tollens.” It says that “A implies B; bur not B; hence
not A.” In other words, there is some theory “A” with testable consequence “B,”
but when the experiment is performed the predicted outcome wasn’t observed,
so we must conclude (assuming that the twin constancies of nature and reason

haven't fatled us) that the theory was wrong.”
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There’s a one-wayness to functions, an asymmetry. They can be one-to-one,
where a single input value (which could be an argument list or vector made up
of several values) is associated with a single output value. Or they can go from
many-to-one: two or more inputs arrive at the same output. But they can never
go from one-to-many. The same input must always—if this thing is rational,
if it’s a machine—produce the same result. One can’t in general simply replace
a function’s inputs by its outputs, run the function backwards and expect to
get the inputs back as the result; that isn’t deterministic, it’s not a function,
it will not work.

The exception to the above would be a class of reversible logic functions that
at some point might emerge from pure theory to find practical uses 1n cryptog-
raphy and/or quantum computing.

Theoretically, a universal computer could be made entirely out of reversible
logic gates; in principle therefore any irreversible function can be replaced by
a reversible function having certain nice theoretical properties like extremely
low or even nonexistent power dissipation. It will certainly be interesting to
see what comes of it. There are a few well-known examples of simple reversible
functions: multiplication by —1, which toggles the sign of a number; the Bool-
ean NOT (turning O into 1, and 1 into 0); and EXCLUSIVE OR. This last-
named is a personal favorite: given two equal-length bit-patterns as inputs,
XOR will yield a bit-pattern which XORed with either of the two original
bit-patterns reproduces the other one. But these simple reversible functions
are not sufficient for universal reversible computation.”

A corollary of the asymmetry of functions is that observing a function’s out-
put, even when we know its internal mechanism, doesn’t allow inferring with
certainty the input that caused the output. What is past s past, nor is it logi-
cally valid to adduce absent causes from present signs: a moment’s reflection will
reveal that any state of affairs could be a consequence of many different possible
causes. How odd then, that this native forensic mode of reasoning, in real life
so relied upon, should be logically invalid. Aristotle called it the “enthymeme”
or “logically fallacy” of “affirming the consequent.” (An unfortunate transla-

tion: logical fallacies though fallible need not always lead to false conclusions.)

To affirm the consequent reverses the deductive syllogism (“modus ponens”)
which states, “If A implies B, and A, then B.” It is to say racher, “If A implies
B, and B, then A.” The American philosopher C. S. Peirce thought athrming

the consequent (which he termed “abduction”) was after deduction and induc-

tion, the missing but vital third form of reasoning without which any account
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of logic or science would remain incomplete. It’s whart the palaeontologist does
in reconstructing a whole brontosaurus from a brontosaur’s toe-bone; or the de-
tective, in reconstructing a crime. It is the fallible anti-logic, the “analogic,” of
sense perception, pattern recognition, diagnosis: how we read the signs and in-
between the lines."” Computer science rediscovered abductive inference in the
1980s; it had been neglected since Al broke with cybernetics and information
theory some twenty years before.

Abductive or analogical pattern-matching is easily realized by means of an
inverted index, a variant form of look-up table where rather than having keys
mapped to single values they are mapped to sets or lists of values. (An inverted
index therefore isn't a function but rather a “relation.”) Nothing too com-
plicated, it’s how a book index or search engine works. The words given in a
search query will have already been associated by the search engine wich lists
of spidered web pages where these terms have occurred. The best matching
pages are identified by superimposing the result lists belonging to the given
terms, so that the more times a page is cited in the aggregated multiset, then
the higher, all else being equal (indexes also employ statistical methods that
assign numeric “weights” to terms and items to better reflect their probable
relevance) it will be placed in the outcome."

The index, as it were, “reverses time.”' It is 