
Spreadsheet Engineering

Jácome Cunha1,2, João Paulo Fernandes1,3, Jorge Mendes1,2,
and João Saraiva1(B)

1 HASLab/INESC TEC, Universidade do Minho, Braga, Portugal
{jacome,jpaulo,jorgemendes,jas}@di.uminho.pt

2 CIICESI, ESTGF, Instituto Politécnico do Porto, Porto, Portugal
{jmc,jcmendes}@estgf.ipp.pt

3 Reliable and Secure Computation Group ((rel)ease),
Universidade da Beira Interior, Covilhã, Portugal

jpf@di.ubi.pt

Abstract. These tutorial notes present a methodology for spreadsheet
engineering. First, we present data mining and database techniques to
reason about spreadsheet data. These techniques are used to compute
relationships between spreadsheet elements (cells/columns/rows), which
are later used to infer a model defining the business logic of the spread-
sheet. Such a model of a spreadsheet data is a visual domain specific
language that we embed in a well-known spreadsheet system.

The embedded model is the building block to define techniques for
model-driven spreadsheet development, where advanced techniques are
used to guarantee the model-instance synchronization. In this model-
driven environment, any user data update has to follow the model-instance
conformance relation, thus, guiding spreadsheet users to introduce cor-
rect data. Data refinement techniques are used to synchronize models and
instances after users update/evolve the model.

These notes briefly describe our model-driven spreadsheet environment,
the MDSheet environment, that implements the presented methodology.
To evaluate both proposed techniques and the MDSheet tool, we have con-
ducted, in laboratory sessions, an empirical study with the summer school
participants. The results of this study are presented in these notes.

1 Introduction

Spreadsheets are one of the most used software systems. Indeed, for a non-
professional programmer, like for example, an accountant, an engineer, a manager,
etc., the programming language of choice is a spreadsheet. These programmers are
often referred to as end-user programmers [53] and their numbers are increasing

This work is part funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT - Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) within projects
FCOMP-01-0124-FEDER-010048, and FCOMP-01-0124-FEDER-020532. The first author
was funded by FCT grant SFRH/BPD/73358/2010.

c© Springer International Publishing Switzerland 2015
V. Zsók et al. (Eds.): CEFP 2013, LNCS 8606, pp. 246–299, 2015.
DOI: 10.1007/978-3-319-15940-9 6

Spreadsheet Engineering 247

rapidly. In fact, they already outnumber professional programmers [68]! The
reasons for the tremendous commercial success that spreadsheets experience
undergoes continuous debate, but it is almost unanimous that two key aspects
are recognized. Firstly, spreadsheets are highly flexible, which inherently guaran-
tees that they are intensively multi-purpose. Secondly, the initial learning effort
associated with the use of spreadsheets is objectively low. These facts suggest that
the spreadsheet is also a significant target for the application of the principles of
programming languages.

As a programming language, and as noticed by Peyton-Jones et al. [45],
spreadsheets can be seen as simple functional programs. For example, the fol-
lowing (spreadsheet) data:

A1 = 44
A2 = (A1-20)* 3/4
A3 = SUM(A1,A2)

is a functional program! If we see spreadsheets as a functional program, then
it is a very simple and flat one, where there are no functions apart from the
built-in ones (for example, the SUM function is a predefined one). A program
is a single collection of equations of the form “variable = formula”, with no
mechanisms (like functions) to structure our code. When compared to modern
(functional) programming languages, spreadsheets lack support for abstraction,
testing, encapsulation, or structured programming. As a result, they are error-
prone: numerous studies have shown that existing spreadsheets contain too many
errors [57,58,62,63].

To overcome the lack of advanced principles of programming languages, and,
consequently the alarming rate of errors in spreadsheets, several researchers
proposed the use of abstraction and structuring mechanisms in spreadsheets:
Peyton-Jones et al. [45] proposed the use of user-defined functions in spread-
sheets. Erwig et al. [29], Hermans et al. [39], and Cunha et al. [19] introduced
and advocate the use of models to abstractly represent the business logic of the
spreadsheet data.

In this tutorial notes, we build upon these results and we present in detail a
Model-Driven Engineering (MDE) approach for spreadsheets. First, we present
the design of a Visual, Domain Specific Language (VDSL). In [29] a domain
specific modeling language, named ClassSheet, was introduced in order to allow
end users to reason about their spreadsheets by looking at a concise, abstract
and simple model, instead of looking into large and complex spreadsheet data.
In fact, ClassSheets offer to end users what API definitions offer to program-
mers and database schemas offer to database experts: an abstract mechanism to
understand and reason about their programs/databases without having to look
into large and complex implementations/data. ClassSheets have both a textual
and visual representation, being the later very much like a spreadsheet! In the
design of the ClassSheet language we follow a well-know approach in a func-
tional setting: the embedding of a domain specific language in a host functional
language [44,70]. To be more precise, we define the embedding of a visual, domain
specific modeling language in a host spreadsheet system.

248 J. Cunha et al.

Secondly, we present the implementation of this VDSL. To provide a full MDE
environment to end users we use data refinement techniques to express the type-
safe evolution of amodel (after an end-user update) and the automatic co-evolution
of the spreadsheet data (that is, the instance) [28]. This novel implementation of
the VDSL guarantees the model/instance conformance after the model evolves.
Moreover, we also use principles from syntax-based editors [27,30,47] where an
initial spreadsheet instance is generated from the model, that has some knowl-
edge about the business logic off the data. Using such knowledge the spreadsheet
instance guides end users introducing correct data. In fact, in these generated
spreadsheets only updates that conform to the model are allowed.

Finally, we present the results of the empirical study we conducted with
the school participants in order to realize whether the use of MDE approach
is useful for end users, or not. In the laboratory sessions of this tutorial, we
taught participants to use our model-driven spreadsheet environment. Then, the
students were asked to perform a set of model-driven spreadsheet tasks, and to
write small reports about the advantages/disadvantages of our approach when
compared to a regular spreadsheet system.

The remaining of this paper is organized as follows. In Sect. 2 we give a brief
overview of the history of spreadsheets. We also present some horror stories that
recently had social and financial impact. In Sect. 3 we present data mining and
database techniques that are the building blocks of our approach to build mod-
els for spreadsheets. Section 4 presents models for defining the business logic
of a spreadsheet. First, we present in detail ClassSheet models. After that, we
present techniques to automatically infer such a model from (legacy) spread-
sheet data. Next, we show the embedding of the ClassSheet models in a widely
used spreadsheet system. Section 5 presents a framework for the evolution of
model-driven spreadsheets in Haskell. This framework is expressed using data
refinements where by defining a model-to-model transformation we get for free
the forward and backward transformations that map the data (i.e., the instance).
In Sect. 6 we present MDSheet: a MDE environment for spreadsheets. Finally,
in Sect. 7 we present the results of the empirical study with the school partici-
pants where we validate the use of a MDE approach in spreadsheet development.
Section 8 presents the conclusions of the tutorial paper.

2 Spreadsheets: A History of Success?

The use of a tabular-like structure to organize data has been used for many
years. A good example of structuring data in this way is the Plimpton 322
tablet (Fig. 1), dated from around 1800 BC [65]. The Plimpton 322 tablet is an
example of a table containing four columns and fifteen rows with numerical data.
For each column there is a descriptive header, and the fourth column contains
a numbering of the rows from one to fifteen, written in the Babylonian number
system. This tablet contains Pythagorean triples [14], but was more likely built
as a list of regular reciprocal pairs [65].

A tabular layout allows a systematic analysis of the information displayed
and it helps to structure values in order to perform calculations.

Spreadsheet Engineering 249

Fig. 1. Plimpton 322 – a tablet from around 1800 BC (A good explanation of the
Plimpton 322 tablet is available at Bill Casselman’s webpage http://www.math.ubc.
ca/∼cass/courses/m446-03/pl322/pl322.html).

The terms spreadsheet and worksheet originated in accounting even before
electronic spreadsheets existed. Both had the same meaning, but the term work-
sheet was mostly used until 1970 [16]. Accountants used a spreadsheet or work-
sheet to prepare their budgets and other tasks. They would use a pencil and
paper with columns and rows. They would place the accounts in one column,
the corresponding amount in the next column, etc. Then they would manually
total the columns and rows, as in the example shown in Fig. 2. After 1970 the
term spreadsheet became more widely used [16].

This worked fine, except when the accountant needed to make a change to
one of the numbers. This change would result in having to recalculate, by hand,
several totals!

The benefits make (paper) tables applicable to a great variety of domains,
like for example on student inquiries or exams, taxes submission, gathering and

Fig. 2. A hand-written budget spreadsheet.

http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html
http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html

250 J. Cunha et al.

Fig. 3. Paper spreadsheet for a multiplication table.

Fig. 4. Chess boards have a tabular layout, with letters identifying columns and num-
bers identifying rows.

analysis of sport statistics, or any purpose that requires input of data and/or
performing calculations. An example of such a table used by students is the
multiplication table as displayed in Fig. 3.

This spreadsheet has eleven columns and eleven rows, where the first row
and column work as a header to identify the information, and the actual results
of the multiplication table are shown in the other cells of the table.

Tabular layouts are also common in games. The chess game is a good example
of a tabular layout game as displayed in Fig. 4.

Electronic Spreadsheets. While spreadsheets were very used on paper, they
were not used electronically due to the lack of software solutions. During the
1960s and 1970s most financial software bundles were developed to run on main-
frame computers and time-sharing systems. Two of the main problems of these
software solutions were that they were extremely expensive and required a techni-
cal expertise to operate [16]. All that changed in 1979 when VisiCal was released
for the Apple II system [13]. The affordable price and the easy to use tab-
ular interface made it a tremendous success, mainly because it did not need

Spreadsheet Engineering 251

any programming knowledge to be operated. VisiCal was the first spreadsheet
software to include a textual interface composed by cells and established how
the graphical interface of every other spreadsheet software that came after it
would be like. It consisted of a column/row tabulation program with an WYSI-
WYG interface, providing cell references (format A1, A3..A6). Other important
aspect included the fast recalculation of values every time a cell was changed,
as opposed to previous solutions that took hours to compute results under the
same circumstances [16]. VisiCal not only made spreadsheets available to a wider
audience, but also led to make personal computers more popular by introducing
them to the financial and business communities and others.

In 1984, Lotus 1-2-3 was released for MS-DOS with major improvements,
which included graphics generation, better performance, and user friendly inter-
face, which led it to dethrone VisiCal as the number one spreadsheet system.
It was only in 1990, when Microsoft Windows gained significant market share,
that Lotus 1-2-3 lost the position as the most sold spreadsheet software. At that
time only Microsoft Excel1 was compatible with Windows, which raised sales by
a huge amount making it the market leading spreadsheet system [16].

In the mid eighties the free software movement started and soon free open
source alternatives can be used, namely Gnumeric2, OpenOffice Calc3 and deriv-
atives like LibreOffice Calc4.

More recently, web/cloud-based spreadsheet host systems have been devel-
oped, e.g., Google Drive5, Microsoft Office 3656, and ZoHo Sheet7 which are mak-
ing spreadsheets available in different type of mobile devices (from laptops, to
tablets and mobile phones!). These systems are not dependent on any particular
operating system, allow to create and edit spreadsheets in an online collaborative
environment, and provide import/export of spreadsheet files for offline use.

In fact, spreadsheet systems have evolved into powerful systems. However, the
basic features provided by spreadsheet host systems remain roughly the same:

– a spreadsheet is a tabular structure composed by cells, where the columns are
referenced by letters and the rows by numbers;

– cells can contain either values or formulas;
– formulas can have references for other cells (e.g., A1 for the individual cell in

column A and row 1 or A3:B5 for the range of cells starting in cell A3 and
ending in cell B5);

– instant automatic recalculation of formulas when cells are modified;
– ease to copy/paste values, with references being updated automatically.

1 Microsoft Excel: http://office.microsoft.com/en-us/excel.
2 Gnumeric: http://projects.gnome.org/gnumeric.
3 OpenOffice: http://www.openoffice.org.
4 LibreOffice: http://www.libreoffice.org.
5 Google Drive: http://drive.google.com.
6 Microsoft Office 365: http://www.microsoft.com/en-us/office365/online-software.

aspx.
7 ZoHo Sheet: http://sheet.zoho.com.

http://office.microsoft.com/en-us/excel
http://projects.gnome.org/gnumeric
http://www.openoffice.org
http://www.libreoffice.org
http://drive.google.com
http://www.microsoft.com/en-us/office365/online-software.aspx
http://www.microsoft.com/en-us/office365/online-software.aspx
http://sheet.zoho.com

252 J. Cunha et al.

Spreadsheets are a relevant research topic, as they play a pivotal role in modern
society. Indeed, they are inherently multi-purpose and widely used both by indi-
viduals to cope with simple needs as well as by large companies as integrators of
complex systems and as support for business decisions [40]. Also, their popularity
is still growing, with an almost impossible to estimate but staggering number of
spreadsheets created every year. Spreadsheet popularity is due to characteristics
such as their low entry barrier, their availability on almost any computer and their
simple visual interface. In fact, being a conventional language that is understood
by both professional programmers and end users [53], spreadsheets are many times
used as bridges between these two communities which often face communication
problems. Ultimately, spreadsheets seem to hit the sweet spot between flexibility
and expressiveness.

Spreadsheets have probably passed the point of no return in terms of impor-
tance. There are several studies that show the success of spreadsheets:

– it is estimated that 95 % of all U.S. firms use them for financial reporting [60];
– it is also known that 90 % of all analysts in industry perform calculations in

spreadsheets [60];
– finally, studies show that 50 % of all spreadsheets are the basis for deci-

sions [40].

This importance, however, has not been achieved together with effective
mechanisms for error prevention, as shown by several studies [57,58]. Indeed,
spreadsheets are known to be error-prone, a claim that is supported by the long
list of real problems that were blamed on spreadsheets, which is compiled, avail-
able and frequently updated at the European Spreadsheet Risk Interest Group
(EuSpRIG) web site8.

One particularly sad example in this list involves our country (and other
European countries), which currently undergoes a financial rescue plan based
on intense austerity whose merit was co-justified upon [64]. The authors of that
paper present evidence that GDP growth slows to a snail’s pace once the sov-
ereign debt of a nation exceeds 90 % of GDP, and it was precisely this evidence
that was several times politically used to argue for austerity measures.

Unfortunately, the fact is that the general conclusion of [64] has been pub-
licly questioned given that a formula range error was found in the spreadsheet
supporting the authors’ calculations. While the authors have later re-affirmed
their original conclusions, the public pressure was so intense that a few weeks
later they felt the need to publish an errata of their 2010 paper. It is further-
more unlikely that the concrete social and economical impacts of that particular
spreadsheet error will ever be determined.

Given the massive use of spreadsheets and the their alarming number of
errors, many researcher have been working on this topic. Burnett et al. studied
the use of end-users programming principles to spreadsheets [15,36,66,67], as
well as the use of software engineering techniques [35,37]. Erwig et al. applied

8 This list of horror stories is available at: http://www.eusprig.org/horror-stories.htm.

http://www.eusprig.org/horror-stories.htm

Spreadsheet Engineering 253

several techniques from software engineering to spreadsheets, such as testing
and debugging [3,4,7,8], model-driven approaches [5,9,29,32,33,50]. Erwig also
studied the use in spreadsheets of programming languages techniques such as
type systems [1,2,6,34]. Hermans et al. studied how to help users better under-
stand the spreadsheets they use [40–42]. In this context, Cunha et al. proposed a
catalog of smells for spreadsheets [21] and a tool to detect them [22]. Panko et al.
have been developing very interesting work to understand the errors found in
spreadsheets [56–59].

3 Spreadsheet Analysis

Spreadsheets, like other software systems, usually start as simple, single user
software systems and rapidly evolve into complex and large systems developed
by several users [40]. Such spreadsheets become hard to maintain and evolve
because of the large amount of data they contain, the complex dependencies and
formulas used (that very often are poor documented [41]), and finally because
the developers of those spreadsheets may not be available (because they may
have left the company/project). In these cases to understand the business logic
defined in such legacy spreadsheets is a hard and time consuming task [40].

In this section we study techniques to analyze spreadsheet data using tech-
nology from both the data mining and the database realms. This technology is
used to mine the spreadsheet data in order to automatically compute a model
describing the business logic of the underlying spreadsheet data.

3.1 Spreadsheet Data Mining

Before we present these techniques, let us consider the example spreadsheet
modeling an airline scheduling system which we adapted from [51] and illustrated
in Fig. 5.

The labels in the first row have the following meaning: PilotId represents
a unique identification code for each pilot, Pilot-Name is the name of the
pilot, and column labeled Phone contains his phone number. Columns labeled
Depart and Destination contain the departure and destination airports, res-
pectively. The column Date contains the date of the flight and Hours defines
the number of hours of the flight. Next columns define the plain used in the
flight: N-Number is a unique number of the plain, Model is the model of the
plane, and Plane-Name is the name of the plane.

Fig. 5. A spreadsheet representing pilots, planes and flights.

254 J. Cunha et al.

This spreadsheet defines a valid model to represent the information for sche-
duling flights. However, it contains redundant information. For example, the
displayed data specifies the name of the plane Magalhães twice. This kind of
redundancy makes the maintenance and update of the spreadsheet complex and
error-prone. In fact, two well-known database problems occur when organizing
our data in a non-normalized way [71]:

– Update Anomalies: this problem occurs when we change information in one
tuple but leave the same information unchanged in the others. In our example,
this may happen if we change the name of the plane Magalhães on row 2, but
not on row 3. As a result the data will become inconsistent!

– Deletion Anomalies: problem happens when we delete some tuple and we lose
other information as a side effect. For example, if we delete row 3 in the spread-
sheet all the information concerning the pilot Mike is eliminated.

As a result, a mistake is easily made, for example, by mistyping a name and
thus corrupting the data. The same information can be stored without redun-
dancy. In fact, in the database community, techniques for database normalization
are commonly used to minimize duplication of information and improve data
integrity. Database normalization is based on the detection and exploitation of
functional dependencies inherent in the data [51,72].

Exercise 1. Consider the data in the following table and answer the questions.

movieID title language renterNr renterNm rentStart rentFinished rent totalToPay

mv23 Little Man English c33 Paul 01-04-2010 26-04-2010 0.5 12.50

mv1 The Ohio English c33 Paul 30-03-2010 23-04-2010 0.5 12.00

mv21 Edmond English c26 Smith 02-04-2010 04-04-2010 0.5 1.00

mv102 You, Me, D English c3 Michael 22-03-2010 03-04-2010 0.3 3.60

mv23 Little Man English c26 Smith 02-12-2009 04-04-2010 0.5 61.50

mv23 Little Man English c14 John 12-04-2010 16-04-2010 0.5 2.00

1. Which row(s) can be deleted without causing a deletion anomaly?
2. Identify two attributes that can cause update anomalies when editing the cor-

responding data.

3.2 Databases Technology

In order to infer a model representing the business logic of a spreadsheet data,
we need to analyze the data and define relationships between data entities.
Objects that are contained in a spreadsheet and the relationships between them
are reflected by the presence of functional dependencies between spreadsheet
columns. Informally, a functional dependency between a column C and another
column C ′ means that the values in column C determine the values in column

Spreadsheet Engineering 255

C ′, that is, there are no two rows in the spreadsheet that have the same value
in column C but differ in their values in column C ′.

For instance, in our running example the functional dependency between
column A (Pilot-Id) and column B (Pilot-Name) exists, meaning that the identi-
fication number of a pilot determines its name. That is to say that, there are no two
rows with the same id number (column A), but differ in their names (column B).
A similar functional dependency occurs between identifier (i.e., number) of a plane
N-Number and its name Plane-Name.

This idea can be extended to multiple columns, that is, when any two rows
that agree in the values of columns C1, . . . , Cn also agree in their value in columns
C ′

1, . . . , C
′
m, then C ′

1, . . . , C
′
m are said to be functionally dependent on C1, . . . , Cn.

In our running example, the following functional dependencies hold:

Depart ,Destination ⇀ Hours

stating that the departure and destination airports determines the number of
hours of the flight.

Definition 1. A functional dependency between two sets of attributes A and
B, written A ⇀ B, holds in a table if for any two tuples t and t′ in that table
t[A] = t′[A] =⇒ t[B] = t′[B] where t[A] yields the (sub)tuple of values for the
attributes in A. In other words, if the tuples agree in the values for attribute set
A, they agree in the values for attribute set B. The attribute set A is also called
antecedent, and the attribute set B consequent.

Our goal is to use the data in a spreadsheet to identify functional depen-
dencies. Although we use all the data available in the spreadsheet, we con-
sider a particular instance of the spreadsheet domain only. However, there may
exist counter examples to the dependencies found, but these just happen not to
be included in the spreadsheet. Thus, the dependencies we discover are always
an approximation. On the other hand, depending on the data, it can happen
that many “accidental” functional dependencies are detected, that is, functional
dependencies that do not reflect the underlying model.

For instance, in our example we can identify the following dependency that
just happens to be fulfilled for this particular data set, but that does certainly
not reflect a constraint that should hold in general: Model ⇀ Plane Name, that
is to say that the model of a plane determines its name! In fact, the data con-
tained in the spreadsheet example supports over 30 functional dependencies.
Next we list a few more that hold for our example.

Pilot-ID ⇀ Pilot-Name
Pilot-ID ⇀ Phone
Pilot-ID ⇀ Pilot-Name,Phone
Depart ,Destination ⇀ Hours
Hours ⇀ Model

256 J. Cunha et al.

Exercise 2. Consider the data in the following table.

proj1 John New York 30-03-2010 50000 Long Island Richy 34 USA Mike inst3 36 6

proj1 John New York 30-03-2010 50000 Long Island Tim 33 JP Anthony inst1 24 4

proj1 John New York 30-03-2010 50000 Long Island Mark 30 UK Alfred inst3 36 6

proj2 John Los Angels 02-04-2010 3000 Los Angels Richy 34 USA Mike inst2 30 5

proj3 Paul Chicago 01-01-2009 12000 Chicago Tim 33 JP Anthony inst1 24 4

proj3 Paul Chicago 01-01-2009 12000 Chicago Mark 30 UK Alfred inst1 24 4

Which are the functional dependencies that hold in this case?

Because spreadsheet data may induce too many functional dependencies, the
next step is therefore to filter out as many of the accidental dependencies as pos-
sible and keep the ones that are indicative of the underlying model. The process
of identifying the “valid” functional dependencies is, of course, ambiguous in
general. Therefore, we employ a series of heuristics for evaluating dependencies.

Note that several of these heuristics are possible only in the context of spread-
sheets. This observation supports the contention that end-user software engi-
neering can benefit greatly from the context information that is available in a
specific end-user programming domain. In the spreadsheet domain rich context
is provided, in particular, through the spatial arrangement of cells and through
labels [31].

Next, we describe five heuristics we use to discard accidental functional
dependencies. Each of these heuristics can add support to a functional depen-
dency.

Label semantics. This heuristic is used to classify antecedents in functional depen-
dencies. Most antecedents (recall that antecedents determine the values of conse-
quents) are labeled as “code”, “id”, “nr”, “no”, “number”, or are a combination
of these labels with a label more related to the subject. functional dependency
with an antecedent of this kind receives high support.

For example, in our property renting spreadsheet, we give high support to the
functional dependency N-Number ⇀ Plane-Name than to the Plane-Name ⇀
N-Number one.

Label arrangement. If the functional dependency respects the original order of the
attributes, this counts in favor of this dependency since very often key attributes
appear to the left of non-key attributes.

In our running example, there are two functional dependencies induced by
columns N-Number and Plane-Name, namely N-Number ⇀ Plane-Name and
Plane-Name ⇀ N-Number. Using this heuristic we prefer the former dependency
to the latter.

Antecedent size. Good primary keys often consist of a small number of attributes,
that is, they are based on small antecedent sets. Therefore, the smaller the number
of antecedent attributes, the higher the support for the functional dependency.

Ratio between antecedent and consequent sizes. In general, functional dependen-
cies with smaller antecedents and larger consequents are stronger and thus more

Spreadsheet Engineering 257

likely to be a reflection of the underlying data model. Therefore, a functional
dependency receives the more support, the smaller the ratio of the number of
consequent attributes is compared to the number of antecedent attributes.

Single value columns. It sometimes happens that spreadsheets have columns that
contain just one and the same value. In our example, the column labeled country
is like this. Such columns tend to appear in almost every functional dependency’s
consequent, which causes them to be repeated in many relations. Since in almost
all cases, such dependencies are simply a consequence of the limited data (or
represent redundant data entries), they are most likely not part of the underlying
data model and will thus be ignored.

After having gathered support through these heuristics, we aggregate the
support for each functional dependency and sort them from most to least sup-
port. We then select functional dependencies from that list in the order of their
support until all the attributes of the schema are covered.

Based on these heuristics, our algorithm produces the following dependencies
for the flights spreadsheet data:

Pilot-ID ⇀ Pilot-Name,Phone
N-Number ⇀ Model ,Plane-Name
Pilot-ID,N-Number,Depart ,Destination,Date,Hours ⇀ ∅

Exercise 3. Consider the data in the following table and answer the next ques-
tions.

project nr manager location delivery date budget employee name age nationality

proj1 John New York 30-03-2010 50000 Richy 34 USA

proj1 John New York 30-03-2010 50000 Tim 33 JP

proj1 John New York 30-03-2010 50000 Mark 30 UK

proj2 John Los Angels 02-04-2010 3000 Richy 34 USA

proj3 Paul Chicago 01-01-2009 12000 Tim 33 JP

proj3 Paul Chicago 01-01-2009 12000 Mark 30 UK

1. Which are the functional dependencies that hold in this case?
2. Was this exercise easier to complete than Exercise 2? Why do you think this

happened?

Relational Model. Knowledge about the functional dependencies in a spread-
sheet provides the basis for identifying tables and their relationships in the data,
which form the basis for defining models for spreadsheet. The more accurate we
can make this inference step, the better the inferred models will reflect the actual
business models.

It is possible to construct a relational model from a set of observed functional
dependencies. Such a model consists of a set of relation schemas (each given

258 J. Cunha et al.

by a set of column names) and expresses the basic business model present in
the spreadsheet. Each relation schema of such a model basically results from
grouping functional dependencies together.

For example, for the spreadsheet in Fig. 5 we could infer the following rela-
tional model (underlined column names indicate those columns on which the
other columns are functionally dependent).

Pilots (Pilot-Id, Pilot-Name, Phone)
Planes (N-Number, Model, Plane-Name
Flights (Pilot-ID, N-Number, Depart, Destination, Date, Hours)

The model has three relations: Pilots stores information about pilots; Planes
contains all the information about planes, and Flights stores the information on
flights, that is, for a particular pilot, a specific number of a plane, it stores the
depart and destination airports and the data ans number of hours of the flights.

Note that several models could be created to represent this system. We have
shown that the models our tool automatically generates are comparable in qual-
ity to the ones designed by database experts [19].

Although a relational model is very expressive, it is not quite suitable for
spreadsheets since spreadsheets need to have a layout specification.

In contrast, the ClassSheet modeling framework offers high-level, object-
oriented formal models to specify spreadsheets and thus present a promising
alternative [29].

ClassSheets allow users to express business object structures within a spread-
sheet using concepts from the Unified Modeling Language (UML). A spreadsheet
application consistent with the model can be automatically generated, and thus
a large variety of errors can be prevented.

We therefore employ ClassSheet as the underlying modeling approach for
spreadsheets and transform the inferred relational model into a ClassSheet model.

Exercise 4. Use the HaExcel libraries to infer the functional dependencies from
the data given in Exercise 3.9 For the functional dependencies computed, create
the corresponding relational schema.

4 Model-Driven Spreadsheet Engineering

The use of abstract models to reason about concrete artifacts has successfully
and widespreadly been employed in science and in engineering. In fact, there
are many fields for which model-driven engineering is the default, uncontested
approach to follow: it is a reasonable assumption that, excluding financial or
cultural limitations, no private house, let alone a bridge or a skyscraper, should
be built before a model for it has been created and has been thoroughly analyzed
and evolved.

9 HaExcel can be found at http://ssaapp.di.uminho.pt.

http://ssaapp.di.uminho.pt

Spreadsheet Engineering 259

Being itself a considerably more recent scientific field, not many decades
have passed since software engineering has seriously considered the use of mod-
els. In this section, we study model-driven approaches to spreadsheet software
engineering.

4.1 Spreadsheet Models

In an attempt to overcome the issue of spreadsheet errors using model-driven app-
roaches, several techniques have been proposed, namely the creation of spread-
sheet templates [9], the definition of ClassSheet [29] models and the use of class
diagrams to specify spreadsheets [39]. These proposals guarantee that users may
safely perform particular editing steps on their spreadsheets and they introduce
a form of model-driven software development: a spreadsheet business model is
defined from which a customized spreadsheet application is generated guarantee-
ing the consistency of the spreadsheet with the underlying model.

Despite of its huge benefits, model-driven software development is sometimes
difficult to realize in practice. In the context of spreadsheets, for example, the
use of model-driven software development requires that the developer is familiar
both with the spreadsheet domain (business logic) and with model-driven soft-
ware development. In the particular case of the use of templates, a new tool is
necessary to be learned, namely Vitsl [9]. By using this tool, it is possible to
generate a new spreadsheet respecting the corresponding model. This approach,
however, has several drawbacks: first, in order to define a model, spreadsheet
model developers will have to become familiar with a new programming envi-
ronment. Second, and most important, there is no connection between the stand
alone model development environment and the spreadsheet system. As a result,
it is not possible to (automatically) synchronize the model and the spreadsheet
data, that is, the co-evolution of the model and its instance is not possible.

The first contribution of our work is the embedding of ClassSheet spreadsheet
models in spreadsheets themselves. Our approach closes the gap between creat-
ing and using a domain specific language for spreadsheet models and a totally
different framework for actually editing spreadsheet data. Instead, we unify these
operations within spreadsheets: in one worksheet we define the underlying model
while another worksheet holds the actual data, such that the model and the data
are kept synchronized by our framework. A summarized description of this work
has been presented in [23,26], a description that we revise and extend in this
paper, in Sect. 4.5.

ClassSheet Models. ClassSheets are a high-level, object-oriented formalism
to specify the business logic of spreadsheets [29]. This formalism allows users to
express business object structures within a spreadsheet using concepts from the
UML [69].

ClassSheets define (work)sheets (s) containing classes (c) formed by blocks
(b). Both sheets and classes can be expandable, i.e., their instances can be
repeated either horizontally (c→) or vertically (b↓). Classes are identified by

260 J. Cunha et al.

labels (l). A block can represent in its basic form a spreadsheet cell, or it can
be a composition of other blocks. When representing a cell, a block can contain
a basic value (ϕ, e.g., a string or an integer) or an attribute (a = f), which is
composed by an attribute name (a) and a value (f). Attributes can define three
types of cells: ‘ (1), an input value, where a default value gives that indication,
(2), a named reference to another attribute (n.a, where n is the name of the
class and a the name of the attribute) or (3), an expression built by applying
functions to a varying number of arguments given by a formula (ϕ(f, . . . , f)).

ClassSheets can be represented textually, according to the grammar presented
in Fig. 6 and taken directly from [29], or visually as described further below.

f ∈ Fml ::= ϕ | n.a | ϕ(f, . . . , f) (formulas)
b ∈ Block ::= ϕ | a = f | b|b | bˆb (blocks)
l ∈ Lab ::= h | v | .n (class labels)
h ∈ Hor ::= n | |n (horizontal)
v ∈ V er ::= |n | |n (vertical)

c ∈ Class ::= l : b | l : b↓ | cˆc (classes)
s ∈ Sheet ::= c | c→ | s|s (sheets)

Fig. 6. Syntax of the textual representation of ClassSheets.

Vertically Expandable Tables. In order to illustrate how ClassSheets can
be used in practice we shall consider the example spreadsheet defining a airline
scheduling system as introduced in Sect. 3. In Fig. 7a we present a spreadsheet
containing the pilot’s information only. This table has a title, Pilots, and a row
with labels, one for each of the table’s column: ID represents a unique pilot
identifier, Name represents the pilot’s name and Phone represents the pilot’s
phone contact. Each of the subsequent rows represents a concrete pilot.

(a) Pilots’ table.
(b) Pilots’ visual ClassSheet model.

Pilots : Pilots � � � � ˆ
Pilots : ID � Name � Phone ˆ

Pilots : (id= "" � name= "" � phone= 0)↓

(c) Pilots’ textual ClassSheet model.

Fig. 7. Pilots’ example.

Spreadsheet Engineering 261

Tables such as the one presented in Fig. 7a are frequently used within spread-
sheets, and it is fairly simple to create a model specifying them. In fact, Fig. 7b
represents a visual ClassSheet model for this pilot’s table, whilst Fig. 7c shows
the textual ClassSheet representation. In the next paragraphs we explain such a
model. To model the labels we use a textual representation and the exact same
names as in the data sheet (Pilots, ID, Name and Phone). To model the
actual data we abstract concrete column cell values by using a single identifier:
we use the one-worded, lower-case equivalent of the corresponding column label
(id, name, and phone). Next, a default value is associated with each column:
columns A and B hold strings (denoted in the model by the empty string “”
following the = sign), and column C holds integer values (denoted by 0 follow-
ing =). Note that the last row of the model is labeled on the left hand-side with
vertical ellipses. This means that it is possible for the previous block of rows
to expand vertically, that is, the tables that conform to this model can have as
many rows/pilots as needed. The scope of the expansion is between the ellipsis
and the black line (between labels 2 and 3). Note that, by definition, ClassSheets
do not allow for nested expansion blocks, and thus, there is no possible ambiguity
associated with this feature. The instance shown in Fig. 7a has three pilots.

Horizontally Expandable Tables. In the lines of what we described in the
previous section, airline companies must also store information on their airplanes.
This is the purpose of table Planes in the spreadsheet illustrated in Fig. 8a,
which is organized as follows: the first column holds labels that identify each
row, namely, Planes (labeling the table itself), N-Number, Model and Name;
cells in row N-Number (respectively Model and Name) contain the unique
n-number identifier of a plane, (respectively the model of the plane and the name
of the plane). Each of the subsequent columns contains information about one
particular aircraft.

The Planes table can be visually modeled by the illustration in Fig. 8b and
textually by the definition in Fig. 8c. This model may be constructed following
the same strategy as in the previous section, but now swapping columns and

(a) Planes’ table. (b) Planes’ visual ClassSheet model.

⎛
⎜⎜⎝

|Planes: Planes ˆ
⎞
⎟⎟⎠
�

N-Number r̂ebmuN-N:
Model
Name

: Model ˆ
: Name

⎛
⎜⎜⎝

|Planes: � ˆ
⎞
⎟⎟⎠

→
N-Number =rebmun-n: ""̂

Model: model= "" ˆ
Name: name= ""

(c) Planes’ textual ClassSheet model.

Fig. 8. Planes’ example.

262 J. Cunha et al.

rows: the first column contains the label information and the second one the
names abstracting concrete data values: again, each cell has a name and the
default value of the elements in that row (in this example, all the cells have
as default values empty strings); the third column is labeled not as C but with
ellipses meaning that the immediately previous column is horizontally expand-
able. Note that the instance table has information about three planes.

Relationship Tables. The examples used so far (the tables for pilots and
planes) are useful to store the data, but another kind of table exists and can be
used to relate information, being of more practical interest.

Having pilots and planes, we can set up a new table to store information
from the flights that the pilots make with the planes. This new table is called a
relationship table since it relates two entities, which are the pilots and the planes.
A possible model for this example is presented in Fig. 9, which also depicts an
instance of that model.

(a) Flights’ visual ClassSheet model.

(b) Flights’ table.

Fig. 9. Flights’ table, relating pilots and planes.

The flights’ table contains information from distinct entities. In the model
(Fig. 9a), there is the class Flights that contains all the information, including:

– information about planes (class PlanesKey, columns B to E), namely a ref-
erence to the planes table (cell B2);

– information about pilots (class PilotsKey, rows 3 and 4), namely a reference
to the pilots table (cell A4);

– information about the flights (in the range B3:E4), namely the depart location
(cell B4), the destination (cell C4), the time of departure (cell D4) and the
duration of the flight (cell E4);

– the total hours flown by each pilot (cell F4), and also a grand total (cell F5).
We assume that the same pilot does not appear in two different rows. In fact,
we could use ClassSheet extensions to ensure this [23,25].

Spreadsheet Engineering 263

For the first flight stored in the data (Fig. 9b), we know that the pilot has
the identifier pl1, the plane has the n-number N2342, it departed from OPO in
direction to NAT at 14:00 on December 12, 2010, with a duration of 7 h.

Note that we do not show the textual representation of this part of the model
because of its complexity and because it would not improve the understandability
of this document.

Exercise 5. Consider we would like to construct a spreadsheet to handle a
school budget. This budget should consider different categories of expenses such
as personnel, books, maintenance, etc. These different items should be laid along
the rows of the spreadsheet. The budget must also consider the expenses for dif-
ferent years. Each year must have information about the number of items bought,
the price per unit, and the total amount of money spent. Each year should be
created after the previous one in an horizontal displacement.

1. Define a standard spreadsheet that contains data at least for two years and
several expenses.

2. Define now a ClassSheet defining the business logic of the school budget.
Please note that the spreadsheet data defined in the previous item should be
an instance of this model.

Exercise 6. Consider the spreadsheets given in all previous exercises. Define a
ClassSheet that implements the business logic of the spreadsheet data.

4.2 Inferring Spreadsheet Models

In this section we explain in detail the steps to automatically extract a ClassSheet
model from a spreadsheet [19]. Essentially, our method involves the following
steps:

1. Detect all functional dependencies and identify model-relevant functional
dependencies;

2. Determine relational schemas with candidate, foreign, and primary keys;
3. Generate and refactor a relational graph;
4. Translate the relational graph into a ClassSheet.

We have already introduced steps 1 and 2 in Sect. 3. In the following sub-
sections we will explain the steps 3 and 4.

The Relational Intermediate Directed Graph. In this sub-section we
explain how to produce a Relational Intermediate Directed (RID) Graph [11].
This graph includes all the relationships between a given set of schemas. Nodes
in the graph represent schemas and directed edges represent foreign keys between
those schemas. For each schema, a node in the graph is created, and for each
foreign key, an edge with cardinality “*” at both ends is added to the graph.

Figure 10 represents the RID graph for the flights scheduling. This graph can
generally be improved in several ways. For example, the information about foreign

264 J. Cunha et al.

Flights

Pilots

*

*

Planes

*

*

Fig. 10. RID graph for our running example.

keys may lead to additional links in the RID graph. If two relations reference each
other, their relationship is said to be symmetric [11]. One of the foreign keys can
then be removed. In our example there are no symmetric references.

Another improvement to the RID graph is the detection of relationships, that
is, whether a schema is a relationship connecting other schemas. In such cases,
the schema is transformed into a relationship. The details of this algorithm are
not so important and left out for brevity.

Since the only candidate key of the schema Flights is the combination of
all the other schemas’ primary keys, it is a relationship between all the other
schemas and is therefore transformed into a relationship. The improved RID
graph can be seen in Fig. 11.

Flights

Pilots

*

Planes

*

Fig. 11. Refactored RID graph.

Generating ClassSheets. The RID graph generated in Sect. 4.2 can be directly
translated into a ClassSheet diagram. By default, each node is translated into
a class with the same name as the relation and a vertically expanding block. In
general, for a relation of the form

A1, . . . , An, An+1, . . . , Am

and default values da1, . . . , dan, dn+1, . . . , dm, a ClassSheet class/table is gener-
ated as shown in Fig. 1210. From now on this rule is termed rule 1.
10 We omit here the column labels, whose names depend on the number of columns in

the generated table.

Spreadsheet Engineering 265

Fig. 12. Generated class for a relation A.

This ClassSheet represents a spreadsheet “table” with name A. For each
attribute, a column is created and is labeled with the attribute’s name. The
default values depend on the attribute’s domain. This table expands vertically,
as indicated by the ellipses. The key attributes become underlined labels.

A special case occurs when there is a foreign key from one relation to another.
The two relations are created basically as described above but the attributes that
compose the foreign key do not have default values, but references to the corre-
sponding attributes in the other class. Let us use the following generic relations:

M(M1, . . . ,Mr,Mr+1, . . . ,Ms)
N(N1, . . . , Nt,Mm, . . . ,Mn,Mo, . . . ,Mp, Nt+1, . . . , Nu)

Note that Mn, . . . ,Mm,Mo, . . . ,Mp are foreign keys from the relation N to
the relation M , where 1 � n,m, o, p � r, n � m, and o � p. This means that
the foreign key attributes in N can only reference key attributes in the M . The
corresponding ClassSheet is illustrated in Fig. 13. This rule is termed rule 2.

Fig. 13. Generated ClassSheet for relations with foreign keys.

Relationships are treated differently and will be translated into cell classes.
We distinguish between two cases: (A) relationships between two schemas, and
(B) relationships between more than two schemas.

For case (A), let us consider the following set of schemas:

M(M1, . . . ,Mr,Mr+1, . . . ,Ms)
N(N1, . . . , Nt, Nt+1, . . . , Nu)
R(M1, . . . ,Mr, N1, . . . , Nt, R1, . . . , Rx, Rx+1, . . . , Ry)

266 J. Cunha et al.

Fig. 14. ClassSheet of a relationship connecting two relations.

The ClassSheet that is produced by this translation is shown in Fig. 14 and
explained next.

For both nodes M and N a class is created as explained before (lower part of
the ClassSheet). The top part of the ClassSheet is divided in two classes and one
cell class. The first class, NKey, is created using the key attributes from the N
class. All its values are references to N. For example, n1 = N.N1 references the
values in column A in class N. This makes the spreadsheet easier to maintain
while avoiding insertion, modification and deletion anomalies [17]. Class Mkey is
created using the key attributes of the class M and the rest of the key attributes
of the relationship R. The cell class (with blue border) is created using the rest
of the attributes of the relationship R.

In principle, the positions of M and N are interchangeable and we have to
choose which one expands vertically and which one expands horizontally. We
choose whichever combination minimizes the number of empty cells created by
the cell class, that is, the number of key attributes from M and R should be
similar to the number of non-key attributes of R. This rule is named rule A.
Three special cases can occur with this configuration.

Case 1. The first case occurs when one of the relations M or N might have only
key attributes. Let us assume that M is in this situation:

M(M1, . . . ,Mr)
N(N1, . . . , Nt, Nt+1, . . . , Nu)
R(M1, . . . ,Mr, N1, . . . , Nt, R1, . . . , Rx, Rx+1, . . . , Ry)

In this case, and since all the attributes of that class are already included in
the class MKey or NKey, no separated class is created for it. The resultant
ClassSheet would be similar to the one presented in Fig. 14, but a separated
class would not be created for M or for N or for both. Figure 15 illustrates this
situation. This rule is from now on termed rule A1.

Spreadsheet Engineering 267

Fig. 15. ClassSheet where one entity has only key attributes.

Case 2. The second case occurs when the key of the relationship R is only com-
posed by the keys of M and N (defined as before), that is, R is defined as follows:

M(M1, . . . ,Mr,Mr+1, . . . ,Ms)
N(N1, . . . , Nt, Nt+1, . . . , Nu)
R(M1, . . . ,Mr, N1, . . . , Nt, R1, . . . , Rx)

The resultant ClassSheet is shown in Fig. 16.
The difference between this ClassSheet model and the general one is that the

MKey class on the top does not contain any attribute from R: all its attributes
are contained in the cell class. This rule is from now on named rule A2.

Case 3. Finally, the third case occurs when the relationship is composed only
by key attributes as illustrated next:

M(M1, . . . ,Mr,Mr+1, . . . ,Ms)
N(N1, . . . , Nt, Nt+1, . . . , Nu)
R(M1, . . . ,Mr, N1, . . . , Nt)

In this situation, the attributes that appear in the cell class are the non-key
attributes of N and no class is created for N. Figure 17 illustrates this case.
From now on this rule is named rule A3.

For case (B), that is, for relationships between more than two tables, we
choose between the candidates to span the cell class using the following criteria:

1. M and N should have small keys;
2. the number of empty cells created by the cell class should be minimal.

This rule is from now on named rule B.
After having chosen the two relations (and the relationship), the generation

proceeds as described above. The remaining relations are created as explained
in the beginning of this section.

268 J. Cunha et al.

Fig. 16. ClassSheet of a relationship with all the key attributes being foreign keys.

Fig. 17. ClassSheet of a relationship composed only by key attributes.

4.3 Mapping Strategy

In this section we present the mapping function between RID graphs and
ClassSheets, which builds on the rules presented before. For that, we use the
common strategic combinators listed below [48,73,74]:

In this context,Rule encodes a transformation fromRIDgraphs toClassSheets.
Using the rules defined in the previous section and the combinators listed

above, we can construct a strategy that generates a ClassSheet:

genCS =
many (once (rule B)) �
many (once (rule A)) �

Spreadsheet Engineering 269

many (once (rule A1) � once (rule A2) � once (rule A3)) �
many (once (rule 2)) �
many (once (rule 1))

Fig. 18. The ClassSheet generated by our algorithm for the running example.

The strategy works as follows: it tries to apply rule B as many times as
possible, consuming all the relationships with more than two relations; it then
tries to apply rule A as many times as possible, consuming relationships with
two relations; next the three sub-cases of rule A are applied as many times as
possible consuming all the relationships with two relations that match some of
the sub-rules; after consuming all the relationships and corresponding relations,
the strategy consumes all the relations that are connected through a foreign key
using rule 2 ; finally, all the remaining relations are mapped using rule 1.

In Fig. 18 we present the ClassSheet model that is generated by our tool for
the flight scheduling spreadsheet.

4.4 Generation of Model-Driven Spreadsheets

Together with the definition of ClassSheet models, Erwig et al. developed a
visual tool, Vitsl, to allow the easy creation and manipulation of the visual
representation of ClassSheet models [9]. The visual and domain specific modeling
language used by Vitsl is visually similar to spreadsheets (see Fig. 19).

The approach proposed by Erwig et al. follows a traditional compiler construc-
tion architecture [10] and generative approach [49]: first a language is defined (a
visual domain specific language, in this case). Then a specific tool/compiler (the
Vitsl tool, in this case) compiles it into a target lower level representation: an
Excel spreadsheet. This generated representation is then interpreted by a different
software system: the Excel spreadsheet system through the Gencel extension [33].
Given that model representation, Gencel generates an initial spreadsheet instance

270 J. Cunha et al.

Fig. 19. Screen shot of the Vitsl editor, taken from [9].

(conforming to the model) with embedded (spreadsheet) operations that express
the underlying business logic. The architecture of these tools is shown in Fig. 20.

Fig. 20. Vitsl/Gencel -based environment for spreadsheet development.

The idea is that, when using such generated spreadsheets, end users are
restricted to only perform operations that are logically and technically correct
for that model. The generated spreadsheet not only guides end users to introduce
correct data, but it also provides operations to perform some repetitive tasks like
the repetition of a set of columns with some default values.

In fact, this approach provides a form of model-driven software development
for spreadsheet users. Unfortunately, it provides a very limited form of model-
driven spreadsheet development: it does not support model/instance synchro-
nization. Indeed, if the user needs to evolve the model, then he has to do it using
the Vitsl tool. Then, the tool compiles this new model to a new Excel spread-
sheet instance. However, there are no techniques to co-evolve the spreadsheet
data from the new instance to the newly generated one. In the next sections,
we present embedded spreadsheet models and data refinement techniques that
provide a full model-driven spreadsheet development setting.

4.5 Embedding ClassSheet Models in Spreadsheets

The ClassSheet language is a domain specific language to represent the busi-
ness model of spreadsheet data. Furthermore, as we have seen in the previous
section, the visual representation of ClassSheets very much resembles spread-
sheets themselves. Indeed, the visual representation of ClassSheet models is a
Visual Domain Specific Language. These two facts combined motivated the use

Spreadsheet Engineering 271

of spreadsheet systems to define ClassSheet models [26], i.e., to natively embed
ClassSheets in a spreadsheet host system. In this line, we have adopted the well-
known techniques to embed Domain Specific Languages (DSL) in a host general
purpose language [38,44,70]. In this way, both the model and the spreadsheet
can be stored in the same file, and model creation along with data editing can
be handled in the same environment that users are familiar with.

The embedding of ClassSheets within spreadsheets is not direct, since
ClassSheets were not meant to be embedded inside spreadsheets. Their resem-
blance helps, but some limitations arise due to syntactic restrictions imposed
by spreadsheet host systems. Several options are available to overcome the syn-
tactic restrictions, like writing a new spreadsheet host system from start, mod-
ifying an existing one, or adapting the ClassSheet visual language. The two
first options are not viable to distribute Model-Driven Spreadsheet Engineering
(MDSE) widely, since both require users to switch their system, which can be
inconvenient. Also, to accomplish the first option would be a tremendous effort
and would change the focus of the work from the embedding to building a tool.

The solution adopted modifies slightly the ClassSheet visual language so it
can be embedded in a worksheet without doing major changes on a spreadsheet
host system (see Fig. 21). The modifications are:

1. identify expansion using cells (in the ClassSheet language, this identification
is done between columns/rows letters/numbers);

2. draw an expansion limitation black line in the spreadsheet (originally this is
done between column/row letters/numbers);

3. fill classes with a background color (instead of using lines as in the original
ClassSheets).

The last change (3) is not mandatory, but it is easier to identify the classes
and, along with the first change (2), eases the identification of classes’ parts.
This way, users do not need to think which role the line is playing (expansion
limitation or class identification).

Fig. 21. Embedded ClassSheet for the flights’ table.

We can use the flights’ table to compare the differences between the original
ClassSheet and its embedded representation:

– In the original ClassSheet (Fig. 9a), there are two expansions: one denoted by
the column between columns E and F for the horizontal expansion, and another
denoted by the row between rows 4 and 5 for the vertical one. Applying

272 J. Cunha et al.

change 1 to the original model will add an extra column (F) and an extra row
(5) to identify the expansions in the embedding (Fig. 21).

– To define the expansion limits in the original ClassSheet, there are no lines
between the column headers of columns B, C, D and E which makes the hor-
izontal expansion to use three columns and the vertical expansion only uses
one row. This translates to a line between columns A and B and another line
between rows 3 and 4 in the embedded ClassSheet as per change 2.

– To identify the classes, background colors are used (change 3), so that the
class Flights is identified by the green11 background, the class PlanesKey
by the cyan background, the class PilotsKey by the yellow background, and
the class that relates the PlanesKey with the PilotsKey by the dark green
background. Moreover, the relation class (range B3:E5), called PilotsKey
PlanesKey, is colored in dark green.

Given the embedding of the spreadsheet model in one worksheet, it is now
possible to have one of its instances in a second worksheet, as we will shortly
discuss. As we will also see, this setting has some advantages: for once, users
may evolve the model having the data automatically coevolved. Also, having
the model near the data helps to document the latter, since users can identify
clearly the structure of the logic behind the spreadsheet. Figure 22a illustrates
the complete embedding for the ClassSheet model of the running example, whilst
Fig. 22b shows one of its possible instances.

To be noted that the data also is colored in the same manner as the model.
This allows a correspondence between the data and the model to be made quickly,
relating parts of the data to the respective parts in the model. This feature is not
mandatory to implement the embedding, but can help the end users. One can
provide this coloring as an optional feature that could be activated on demand.

Model Creation. To create a model, several operations are available such as
addition and deletion of columns and rows, cell editing, and addition or deletion
of classes.

To create, for example, the flights’ part of the spreadsheet used so far, one can:

1. add a class for the flights, selecting the range A1:G6 and choosing the green
color for its background;

2. add a class for the planes, selecting the range B1:F6, choosing the cyan color
for its background, and setting the class to expand horizontally;

3. add a class for the pilots, selecting the range A3:G5, choosing the yellow color
for its background, and setting the class to expand vertically; and,

4. set the labels and formulas for the cells.

The addition of the relation class (range B3:E4) is not needed since it is
added automatically when the environment detects superposing classes at the
same level (PlanesKey and PilotsKey are within Flights, which leads to the
automatic insertion of the relation class).
11 We assume colors are visible in the digital version of this paper.

Spreadsheet Engineering 273

(a) Model on the first worksheet of the spreadsheet.

(b) Data on the second worksheet of the spreadsheet.

Fig. 22. Flights’ spreadsheet, with an embedded model and a conforming instance.

Instance Generation. From the flights’ model described above, an instance
without any data can be generated. This is performed by copying the structure
of the model to another worksheet. In this process labels copied as they are, and
attributes are replaced in one of two ways: (i), if the attribute is simple (i.e., it
is like a = ϕ), it is replaced by its default value; (ii), otherwise, it is replaced by
an instance of the formula. An instance of a formula is similar to the original one
defined in the model, but the attribute references are replaced by references to
cells where those attributes are instantiated. Moreover, columns and rows with
ellipses have no content, having instead buttons to perform operations of adding
new instances of their respective classes.

274 J. Cunha et al.

An empty instance generated by the flights’ model is pictured in Fig. 23. All
the labels (text in bold) are the same as the ones in the model, and in the same
position, attributes have the default values, and four buttons are available to
add new instances of the expandable classes.

Fig. 23. Spreadsheet generated from the flights’ model.

Data Editing. The editing of the data is performed like with plain spreadsheets,
i.e., the user just edits the cell content. The insertion of new data is different
since editing assistance must be used through the buttons available.

For example, to insert a new flight for pilot pl1 in the Flights table, without
models one would need to:

1. insert four new columns;
2. copy all the labels;
3. update all the necessary formulas in the last column; and,
4. insert the values for the new flight.

With a large spreadsheet, the step to update the formulas can be very error
prone, and users may forget to update all of them. Using models, this process
consists on two steps only:

1. press the button with label “· · · ” (in column J, Fig. 22b); and,
2. insert the values for the new flight.

The model-driven environment automatically inserts four new columns, the
labels for those columns, updates the formulas, and inserts default values in all
the new input cells.

Note that, to keep the consistency between instance and model, all the cells in
the instance that are not data entry cells are non-editable, that is, all the labels
and formulas cannot be edited in the instance, only in the model. In Sect. 5 we
will detail how to handle model evolutions.

Spreadsheet Engineering 275

Embedded Domain Specific Languages. In this section we have described
the embedding of a visual, domain specific language in a general purpose visual
spreadsheet system. The embedding of textual DSLs in host functional program-
ming languages is a well-known technique to develop DSLs [44,70]. In our visual
embedding, and very much like in textual languages, we get for free the powerful
features of the host system: in our case, a simple, but powerful visual program-
ming environment. As a consequence, we did not have to develop from scratch
such a visual system (like the developers of Vitsl did). Moreover, we offer a
visual interface familiar to users, namely, a spreadsheet system. Thus, they do
not have to learn and use a different system to define their spreadsheet models.

The embedding of DSL is also known to have disadvantages when compared
to building a specific compiler for that language. Our embedding is no exception:
firstly, when building models in our setting, we are not able to provide domain-
specific feedback (that is, error messages) to guide users. For example, a tool like
Vitsl can produce better error messages and support for end users to construct
(syntactic) correct models. Secondly, there are some syntactic limitations offered
by the host language/system. In our embedding, we can see the syntactic differ-
ences in the vertical/horizontal ellipses defined in visual and embedded models
(see Figs. 9 and 18).

5 Evolution of Model-Driven Spreadsheets

The example we have been using manages pilots, planes and flights, but it misses
a critical piece of information about flights: the number of passengers. In this
case, additional columns need to be inserted in the block of each flight. Figure 24
shows an evolved spreadsheet with new columns (F and K) to store the number
of passengers (Fig. 22b), as well as the new model that it instantiates (Fig. 22a).

(a) Evolved flights’ model.

(b) Evolved flights’ instance.

Fig. 24. Evolved spreadsheet and the model that it instantiates.

Note that a modification of the year block in the model (in this case, inserting
a new column) captures modifications to all repetitions of the block throughout
the instance.

In this section, we will demonstrate that modifications to spreadsheet models
can be supported by an appropriate combinator language, and that these model

276 J. Cunha et al.

modifications can be propagated automatically to the spreadsheets that instan-
tiate the models [28]. In the case of the flights example, the model modification
is captured by the following expression:

addPassengers = once
(inside "PilotsKey_PlanesKey"

(after "Hours"
(insertCol "Passengers")))

The actual column insertion is done by the innermost insertCol step. The after
and inside combinators specify the location constraints of applying this step. The
once combinator traverses the spreadsheet model to search for a single location
where these constraints are satisfied and the insertion can be performed.

The application of addPassengers to the initial model (Fig. 22a) will yield:

1. the modified model (Fig. 24a),
2. a spreadsheet migration function that can be applied to instances of the

initial model (e.g. Fig. 22b) to produce instances of the modified model (e.g.
Fig. 24b), and

3. an inverse spreadsheet migration function to backport instances of the mod-
ified model to instances of the initial model.

In the remaining of this section we will explain the machinery required for
this type of coupled transformation of spreadsheet instances and models.

5.1 A Framework for Evolution of Spreadsheets in Haskell

Data refinement theory provides an algebraic framework for calculating with
data types and corresponding values [52,54,55]. It consists of type-level cou-
pled with value-level transformations. The type-level transformations deal with
the evolution of the model and the value-level transformations deal with the
instances of the model (e.g. values). Figure 25 depicts the general scenario of a
transformation in this framework.

A

to

��
� A′

from

��
A, A′ data type and transformed data type
to witness function of type A → A′ (injective)
from witness function of type A′ → A (surjective)

Fig. 25. Coupled transformation of data type A into data type A′.

Each transformation is coupled with witness functions to and from, which
are responsible for converting values of type A into type A′ and back.

2LT is a framework written in Haskell implementing this theory [12,18]. It
provides the basic combinators to define and compose transformations for data
types and witness functions. Since 2LT is statically typed, transformations are
guaranteed to be type-safe ensuring consistency of data types and data instances.

Spreadsheet Engineering 277

To represent the witness functions from and to 2LT relies once again on the
definition of a Generalized Algebraic Data Type12 (GADT) [43,61]:

This GADT represents the types of the functions used in the transformations.
For example, π1 represents the type of the function that projects the first part of
a pair. The comments should clarify which function each constructor represents.
Given these representations of types and functions, we can turn to the encoding
of refinements. Each refinement is encoded as a two-level rewriting rule:

type Rule = ∀ a . Type a → Maybe (View (Type a))
data View a where View :: Rep a b → Type b → View (Type a)
data Rep a b = Rep {to = PF (a → b), from = PF (b → a)}

Although the refinement is from a type a to a type b, this can not be directly
encoded since the type b is only known when the transformation completes, so
the type b is represented as a view of the type a. A view expresses that a type
a can be represented as a type b, denoted as Rep a b, if there are functions
to :: a → b and from :: b → a that allow data conversion between one and the
other. Maybe encapsulates an optional value: a value of type Maybe a either
contains a value of type a (Just a), or it is empty (Nothing).

To better explain this system we will show a small example. The following
code implements a rule to transform a list into a map (represented by · ⇀ ·):

listmap :: Rule
listmap ([a]) = Just (View (Rep {to = seq2index , from = tolist }) (Int ⇀ a))
listmap = mzero

12 “It allows to assign more precise types to data constructors by restricting the vari-
ables of the datatype in the constructors’ result types.”

278 J. Cunha et al.

The witness functions have the following signature (for this example their code
is not important):

tolist :: (Int ⇀ a) → [a]
seq2index :: [a] → (Int ⇀ a)

This rule receives the type of a list of a, [a], and returns a view over the type
map of integers to a, Int ⇀ a. The witness functions are returned in the rep-
resentation Rep. If other argument than a list is received, then the rule fails
returning mzero. All the rules contemplate this last case and so we will not show
it in the definition of other rules.

ClassSheets and Spreadsheets in Haskell. The 2LT was originally designed
to work with algebraic data types. However, this representation is not expressive
enough to represent ClassSheet specifications or their spreadsheet instances. To
overcome this issue, we extended the 2LT representation so it could support
ClassSheet models, by introducing the following GADT:

The comments should clarify what the constructors represent. The values of type
Type a are representations of type a. For example, if t is of type Type V alue,
then t represents the type V alue. The following types are needed to construct
values of type Type a:

Spreadsheet Engineering 279

Once more, the comments should clarify what each type represents. To explain
this representation we will use as an example a small table representing the costs
of maintenance of planes. We do not use the running example as it would be very
complex to explain and understand. For this reduced model only four columns
were defined: plane model, quantity, cost per unit and total cost (product of quan-
tity by cost per unit). The Haskell representation of such model is shown next.

costs =
| Cost : Model � Quantity � Price � Totalˆ
| Cost : (model = "" � quantity = 0 � price = 0 � total =

FFormula "×" [FRef ,FRef])↓

This ClassSheet specifies a class called Cost composed by two parts vertically
composed as indicated by the ˆ operator. The first part is specified in the first
row and defines the labels for four columns: Model , Quantity , Price and Total .
The second row models the rest of the class containing the definition of the
four columns. The first column has default value the empty string (""), the two
following columns have as default value 0, and the last one is defined by a for-
mula (explained latter on). Note that this part is vertical expandable. Figure 26
represents a spreadsheet instance of this model.

Fig. 26. Spreadsheet instance of the maintenance costs ClassSheet.

Note that in the definition of Type a the constructors combining parts of the
spreadsheet (e.g. sheets) return a pair. Thus, a spreadsheet instance is written
as nested pairs of values. The spreadsheet illustrated in Fig. 26 is encoded in
Haskell as follows:

280 J. Cunha et al.

((Model , (Quantity , (Price,Total))),
[("B747", (2 , (1500 ,FFormula "×" [FRef ,FRef]))),
("B777", (5 , (2000 ,FFormula "×" [FRef ,FRef])))])

The Haskell type checker statically ensures that the pairs are well formed and
are constructed in the correct order.

Specifying References. Having defined a GADT to represent ClassSheet mod-
els, we need now a mechanism to define spreadsheet references. The safer way to
accomplish this is making references strongly typed. Figure 27 depicts the sce-
nario of a transformation with references. A reference from a cell s to the a cell
t is defined using a pair of projections, source and target. These projections are
statically-typed functions traversing the data type A to identify the cell defining
the reference (s), and the cell to which the reference is pointing to (t). In this
approach, not only the references are statically typed, but also always guaran-
teed to exist, that is, it is not possible to create a reference from/to a cell that
does not exist.

|s|

A

to

��

target ��

source
��

T �� A′

from

��

source′

��

target′��|t|
source Projection over type A identifying the reference
target Projection over type A identifying the referenced cell

source′ = source ◦ from
target′ = target ◦ from

Fig. 27. Coupled transformation of data type A into data type A′ with references.

The projections defining the reference and the referenced type, in the trans-
formed type A′, are obtained by post-composing the projections with the witness
function from. When source′ and target′ are normalized they work on A′ directly
rather than via A. The formula specification, as previously shown, is specified
directly in the GADT. However, the references are defined separately by defining
projections over the data type. This is required to allow any reference to access
any part of the GADT.

Using the spreadsheet illustrated in Fig. 26, an instance of a reference from
the formula total to price is defined as follows (remember that the second
argument of Ref is the source (reference cell) and that the third is the target
(referenced cell)):

Spreadsheet Engineering 281

costWithReferences =
Ref Int (fhead ◦ head ◦ (π2 ◦ π2 ◦ π2)� ◦ π2) (head ◦ (π1 ◦ π2 ◦ π2)� ◦ π2) cost

The source function refers to the first FRef in the Haskell encoding shown after
Fig. 26. The target projection defines the cell it is pointing to, that is, it defines
a reference to the the value 1500 in column Price.

To help understand this example, we explain how source is constructed. Since
the use of GADTs requires the definition of models combining elements in a
pairwise fashion, π2 is used to get the second element of the model (a pair), that
is, the list of planes and their cost maintenance. Then, we apply (π2 ◦ π2 ◦ π2)�

which will return a list with all the formulas. Finally head will return the first
formula (the one in cell D2) from which fhead gets the first reference in a list
of references, that is, the reference B2 that appears in cell D2.

Note that our reference type has enough information about the cells and
thus we do not need value-level functions, that is, we do not need to specify the
projection functions themselves, just their types. In the cases we reference a list
of values, for example, constructed by the class expandable operator, we need to
be specific about the element within the list we are referencing. For these cases,
we use the type-level constructors head (first element of a list) and tail (all but
first) to get the intended value in the list.

5.2 Evolution of Spreadsheets

In this section we define rules to perform spreadsheet evolution. These rules can
be divided in three main categories: Combinators, used as helper rules, Semantic
rules, intended to change the model itself (e.g. add a new column), and Layout
rules, designed to change the visual arrangement of the spreadsheet (e.g. swap
two columns).

Combinators. The semantic and the layout rules are defined to work on a
specific part of the model. The combinators defined next are then used to apply
those rules in the desired places.

Pull up all references. To avoid having references in different levels of the models,
all the rules pull all references to the topmost level of the model. This allows
to create simpler rules since the positions of all references are know and do not
need to be changed when the model is altered. To pull a reference in a particular
place we use the following rule (we show just its first case):

pullUpRef :: Rule
pullUpRef ((Ref tb fRef tRef ta) � b2) = do

return (View idrep (Ref tb (fRef ◦ π1) (tRef ◦ π1) (ta � b2)))

The representation idrep has the id function in both directions. If part of the
model (in this case the left part of a horizontal composition) of a given type has a
reference, it is pulled to the top level. This is achieved by composing the existing

282 J. Cunha et al.

projections with the necessary functions, in this case π1. This rule has two cases
(left and right hand side) for each binary constructor (e.g. horizontal/vertical
composition).

To pull up all the references in all levels of a model we use the rule

pullUpAllRefs = many (once pullUpRef)

The once operator applies the pullUpRef rule somewhere in the type and the
many ensures that this is applied everywhere in the whole model.

Apply after and friends. The combinator after finds the correct place to apply
the argument rule (second argument) by comparing the given string (first argu-
ment) with the existing labels in the model. When it finds the intended place, it
applies the rule to it. This works because our rules always do their task on the
right-hand side of a type.

after :: String → Rule → Rule
after label r (label ′ � a) | label ≡ label ′ = do

View s l ′ ← r label ′

return (View (Rep {to = to s × id, from = from s × id}) (l ′ � a))

Note that this code represents only part of the complete definition of the func-
tion. The remaining cases, e.g. ·ˆ·, are not shown since they are quite similar to
the one presented.

Other combinators were also developed, namely, before, bellow , above, inside
and at . Their implementations are not shown since they are similar to the after
combinator.

Semantic Rules. Given the support to apply rules in any place of the model
given by the previous definitions, we now present rules that change the semantics
of the model, that is, that change the meaning and the model itself, e.g., adding
columns.

Insert a block. The first rule we present is one of the most fundamentals: the
insertion of a new block into a spreadsheet. It is formally defined as follows:

Block

id�(pnt a)

		
� Block � Block

π1

This diagram means that a horizontal composition of two blocks refines a block
when witnessed by two functions, to and from. The to function, id
(pnt a),
is a split: it injects the existing block in the first part of the result without
modifications (id) and injects the given block instance a into the second part of
the result. The from function is π1 since it is the one that allows the recovery of
the existent block. The Haskell version of the rule is presented next.

Spreadsheet Engineering 283

insertBlock :: Type a → a → Rule
insertBlock ta a tx | isBlock ta ∧ isBlock tx = do

let rep = Rep {to = (id
(pnt a)), from = π1}
View s t ← pullUpAllRefs (tx � ta)
return (View (comprep rep s) t)

The function comprep composes two representations. This rule receives the type
of the new block ta, its default instance a, and returns a Rule. The returned
rule is itself a function that receives the block to modify tx , and returns a
view of the new type. The first step is to verify if the given types are blocks
using the function isBlock . The second step is to create the representation rep
with the witness functions given in the above diagram. Then the references are
pulled up in result type tx � ta. This returns a new representation s and a
new type t (in fact, the type is the same t = tx � ta). The result view has as
representation the composition of the two previous representations, rep and s,
and the corresponding type t .

Rules to insert classes and sheets were also defined, but since these rules are
similar to the rule to insert blocks, we omit them.

Insert a column. To insert a column in a spreadsheet, that is, a cell with a label
lbl and the cell bellow with a default value df and vertically expandable, we first
need to create a new class representing it: clas =| lbl : lblˆ(lbl = df ↓). The label
is used to create the default value (lbl , []). Note that since we want to create an
expandable class, the second part of the pair must be a list. The final step is to
apply insertSheet :

insertCol :: String → VFormula → Rule
insertCol l f @(FFormula name fs) tx | isSheet tx = do

let clas =| lbl : lblˆ(lbl = df ↓)
((insertSheet clas (lbl , [])) � pullUpAllRefs) tx

Note the use of the rule pullUpAllRefs as explained before. The case shown in
the above definition is for a formula as default value and it is similar to the value
case. The case with a reference is more interesting and is shown next:

insertCol l FRef tx | isSheet tx = do
let clas =| lbl : Ref ⊥ ⊥ ⊥ (lblˆ((lbl = RefCell)↓))
((insertSheet clas (lbl , [])) � pullUpAllRefs) tx

Recall that our references are always local, that is, they can only exist with
the type they are associated with. So, it is not possible to insert a column that
references a part of the existing spreadsheet. To overcome this, we first create
the reference with undefined functions and auxiliary type (⊥). We then set these
values to the intended ones.

setFormula :: Type b → PF (a → RefCell) → PF (a → b) → Rule
setFormula tb fRef tRef (Ref t) =

return (View idrep (Ref tb fRef tRef t))

284 J. Cunha et al.

This rule receives the auxiliary type (Type b), the two functions representing
the reference projections and adds them to the type. A complete rule to insert
a column with a reference is defined as follows:

insertFormula =
(once (insertCol label FRef)) � (setFormula auxType fromRef toRef)

Following the original idea described previously in this section, we want to intro-
duce a new column with the number of passengers in a flight. In this case, we
want to insert a column in an existing block and thus our previous rule will not
work. For these cases we write a new rule:

insertColIn :: String → VFormula → Rule
insertColIn l (FValue v) tx | isBlock tx = do

let block = lbl ˆ(lbl = v)
((insertBlock block (lbl , v)) � pullUpAllRefs) tx

This rule is similar to the previous one but it creates a block (not a class) and
inserts it also after a block. The reasoning is analogous to the one in insertCol .

To add the column "Passengers" we can use the rule insertColIn, but apply-
ing it directly to our running example will fail since it expects a block and we
have a spreadsheet. We can use the combinator once to achieve the desired result.
This combinator tries to apply a given rule somewhere in a type, stopping after it
succeeds once. Although this combinator already existed in the 2LT framework,
we extended it to work for spreadsheet models/types.

Make it expandable. It is possible to make a block in a class expandable. For
this, we created the rule expandBlock :

expandBlock :: String → Rule
expandBlock str (label : clas) | compLabel label str = do

let rep = Rep {to = id × tolist, from = id × head}
return (View rep (label : (clas)↓))

It receives the label of the class to make expandable and updates the class to
allow repetition. The result type constructor is · : (·)↓; the to function wraps
the existing block into a list, tolist ; and the from function takes the head of it,
head. We developed a similar rule to make a class expandable. This corresponds
to promote a class c to c→. We do not show its implementation here since it is
quite similar to the one just shown.

Split. It is quite common to move a column in a spreadsheet from on place to
another. The rule split copies a column to another place and substitutes the
original column values by references to the new column (similar to create a

Spreadsheet Engineering 285

pointer). The rule to move part of the spreadsheet is presented in Sect. 5.2. The
first step of split is to get the column that we want to copy:

getColumn :: String → Rule
getColumn h t (l ′ˆb1) | h ≡ l ′ = return (View idrep t)

If the corresponding label is found, the vertical composition is returned. Note
that as in other rules, this one is intended to be applied using the combinator
once. As we said, we aim to write local rules that can be used at any level using
the developed combinators.

In a second step the rule creates a new a class containing the retrieved block:

do View s c′ ← getBlock str c
let nsh =| str : (c′)↓

The last step is to transform the original column that was copied into references
to the new column. The rule makeReferences :: String → Rule receives the label
of the column that was copied (the same as the new column) and creates the
references. We do not shown the rest of the implementation because it is quite
complex and will not help in the understanding of the paper.

Layout Rules. We will now describe rules focused on the layout of spreadsheets,
that is, rules that do not add/remove information to/from the model, but only
rearrange it.

Change orientation. The rule toVertical changes the orientation of a block from
horizontal to vertical.

toVertical :: Rule
toVertical (a � b) = return (View idrep (a ˆb))

Note that since our value-level representation of these compositions are pairs,
the to and the from functions are simply the identity function. The needed
information is kept in the type-level with the different constructors. A rule to
do the inverse was also designed but since it is quite similar to this one, we do
not show it here.

Normalize blocks. When applying some transformations, the resulting types may
not have the correct shape. A common example is to have as result the following
type:

A � B ˆC � Dˆ
E � F

However, given the rules in [29] to ensure the correctness of ClassSheets, the
correct result is the following:

A � B � Dˆ
E � C � F

286 J. Cunha et al.

The rule normalize tries to match these cases and correct them. The types are the
ones presented above and the witness functions are combinations of π1 and π2.

normalize :: Rule
normalize (a � bˆc � d ˆe � f) = do

let to = id × π1 × id ◦ π1
π1 ◦ π2
π2 ◦ π1 ◦ π2 × π2

from = π1 ◦ π1
π1 ◦ π2 × π1 ◦ π2
π2 ◦ π2 ◦ π1
id × π2 ◦ π2

return (View (Rep {to = to, from = from}) (a � b � d ˆe � c � f))

Although the migration functions seem complex, they just rearrange the order
of the pairs so they have the correct arrangement.

Shift. It is quite common to move parts of the spreadsheet across it. We designed
a rule to shift parts of the spreadsheet in the four possible directions. We show
here part of the shiftRight rule, which, as suggested by its name, shifts a piece of
the spreadsheet to the right. In this case, a block is moved and an empty block
is left in its place.

shiftRight :: Type a → Rule
shiftRight ta b1 | isBlock b1 = do

Eq ← teq ta b1
let rep = Rep {to = pnt (⊥ :: EmptyBlock)
id, from = π2}
return (View rep (EmptyBlock � b1))

The function teq verifies if two types are equal. This rule receives a type and a
block, but we can easily write a wrapper function to receive a label in the same
style of insertCol .

Another interesting case of this rules occurs when the user tries to move a
block (or a sheet) that has a reference.

shiftRight ta (Ref tb frRef toRef b1) | isBlock b1 = do
Eq ← teq ta b1
let rep = Rep {to = pnt (⊥ :: EmptyBlock)
id, from = π2}
return (View rep (Ref tb (frRef ◦ π2) (toRef ◦ π2) (EmptyBlock � b1))

As we can see in the above code, the existing reference projections must be
composed with the selector π2 to allow to retrieve the existing block b1 . Only
after this it is possible to apply the defined selection reference functions.

Move blocks. A more complex task is to move a part of the spreadsheet to
another place. We present next a rule to move a block.

moveBlock :: String → Rule
moveBlock str c = do

View s c′ ← getBlock str c
let nsh =| str : c′

View r sh ← once (removeRedundant str) (c � nsh)
return (View (comprep s r) sh)

Spreadsheet Engineering 287

After getting the intended block and creating a new class with it, we need to
remove the old block using removeRedundant .

removeRedundant :: String → Rule
removeRedundant s (s ′) | s ≡ s ′ = do

let rep = Rep {to = pnt (⊥ :: EmptyBlock), from = pnt s ′}
return (View rep EmptyBlock)

This rule will remove the block with the given label leaving an empty block in
its place.

6 Model-Driven Spreadsheet Development in MDSheet

The embedding and evolution techniques presented previously have been
implemented as an add-on to a widely used spreadsheet system, the OpenOffice/
LibreOffice system. The add-on provides a model-driven spreadsheet develop-
ment environment, named MDSheet, where a (model-driven) spreadsheet con-
sists of two type of worksheets: Sheet 0, containing the embedded ClassSheet
model, and Sheet 1, containing the spreadsheet data that conforms to the
model. Users can interact both with the ClassSheet model and the spreadsheet
data. Our techniques guarantee the synchronization of the two representations.

In such an model-driven environment, users can evolve the model by using
standard editing/updating techniques as provided by spreadsheets systems. Our
add-on/environment also provides predefined buttons that implement the usual
ClassSheets evolution steps. Each button implements an evolution rule, as descri-
bed in Sect. 5. For each button, we defined a Basic script that interprets the
desired functionality, and sends the contents of the spreadsheet (both the model
and the data) to our Haskell-based co-evolution framework. This Haskell frame-
work implements the co-evolution of the spreadsheet models and data presented
in Sect. 5.

MDSheet also allows the development of ClassSheet models from scratch
by using the provided buttons or by traditional editing. In this case, a first
instance/spreadsheet is generated from the model which includes some business
logic rules that assist users in the safe and correct introduction/editing of data.
For example, in the spreadsheet presented in Fig. 22, if the user presses the
button in column J, four new columns will automatically be inserted so the
user can add more flights. This automation will also automatically update all
formulas in the spreadsheet.

The global architecture of the model-driven spreadsheet development we con-
structed is presented in Fig. 28.

Tool and demonstration video availability. The MDSheet tool [24] and a video
with a demonstration of its capabilities are available at the SSaaPP – Spread-
Sheets as a Programming Paradigm project’s website13.

In the next section we present in detail the empirical study we have organized
and conducted to assess model-driven spreadsheets running through MDSheet.
13 http://ssaapp.di.uminho.pt.

http://ssaapp.di.uminho.pt

288 J. Cunha et al.

Sync

Sync

Button pressed

Sheet 0Sheet 1

Sheet 0Sheet 1

Haskell ClassSheet data type

Application of evolution rule
chosen by the user

New Haskell
ClassSheet data type

Forward and backward
transformations

New Haskell spreadsheet
representation

BASIC sends sheet 1 (data) to
MDSheet the back-end

Haskell spreadsheet representation

Application of the forward/
backward tansformation

BASIC sends sheet 0 (model) to the
MDSheet back-end

From the model MDSheet generates a template

Fig. 28. Model-driven spreadsheet development environment.

Exercise 7. Consider the spreadsheet and corresponding model defined in Exer-
cise 5. First, write the ClassSheet model in the MDSheet environment. Second,
update the spreadsheet instance with the data.

7 Studies with School Participants

In this section we present the feedback we obtained from school participants
regarding spreadsheets and their engineering. This feedback was solicited in two
different moments and aimed at realizing the participants perspective on two
different spreadsheet aspects.

Spreadsheet Engineering 289

For once, we asked participants to name, from the characteristics that have
been natively incorporated in spreadsheet systems, the ones they realized as
the most important. Also, we asked them to name the single feature they missed
the most. The details on this inquiry are presented in Sect. 7.1, and its results
were already presented to the participants during the summer school.

Secondly, we relied on the participants’ feedback to identify possible improve-
ments for our framework. This occurred after our tutorial sessions, and during a
lab session, where participants volunteered to actually perform concrete spread-
sheet engineering tasks under the framework that we have built and that we
have described in this tutorial. The details on this experiment are described in
Sect. 7.2.

In both cases, we believe that the generalization of the results we observe
here would require a larger sample of participants, namely for statistical rea-
sons. Nevertheless, we also believe that the volunteer nature and the interest
demonstrated by the participants when providing concrete feedback is surely
worth its analyzis and publishing.

7.1 Participants’ Perspective on Spreadsheets

In the beginning of our tutorial, we asked for the participants cooperation in
filling in an inquiry on the spreadsheet characteristics they understood as the
most important and on the feature they would like to see incorporated in tradi-
tional spreadsheet systems. We chose this moment to do so, since we wanted to
understand the participants’ perspective unbiased from the materials we later
exposed.

The inquiry that we conducted consisted in handing a paper form to each
participant, asking:

1. Please provide the three most important characteristics of spreadsheets, in
(descending) order of preference.

2. Please provide the feature you miss the most in spreadsheet systems.

Answers were completely open, in that no pre-defined set of possible answers
was given.

Figure 29 shows the feedback we received with respect to the first (most
important) characteristic identified by the school participants.

Out of a total number of 29 answers, 17 (almost 60%) identify the simplicity
in their usage as the most important characteristic of spreadsheets. Also, the tab-
ular layout of spreadsheets, with 5 answers (exactly 17%), and their underlying
incremental engine, with 3 (10%), were significantly acknowledged. Finally, their
flexibility, multi-purpose, availability on almost any computer as well as their
presentation-oriented nature were also mentioned, with 1 answer each (nearly
3% of all answers).

Next, we follow this same analysis regarding the characteristics pointed out
as the second most important of spreadsheets, and that are presented in Fig. 30.

290 J. Cunha et al.

Fig. 29. Most important spreadsheet characteristic.

Fig. 30. Second most important spreadsheet characteristic.

In this case, we have received a total number of 24 answers. Out of these,
the tabular nature of spreadsheets, with 7 answers (circa 30%), and their sim-
ple usage, with 5 (around 10%) are again the most pointed characteristics.
Characteristics such as availability, multi-purpose, flexibility, functionality or
presentation-orientation were all pointed out by 2 participants (i.e., by 8% of
all answers).

Regarding the answers that were given as the third most important spread-
sheet characteristic, we have received a total of 20 valid answers, which are
sketched in Fig. 31.

We observe a predominance of the availability and functionality of spread-
sheets, with 4 answers each (i.e., 20% of all answers each). The layout of

Spreadsheet Engineering 291

Fig. 31. Third most important spreadsheet characteristic.

spreadsheets was pointed by 3 participants (15%) and all other characteristics
were pointed out by a single participant (corresponding to 5% of all answers).

Considering all the characteristics that were identified, irrespective to their
order of preference, we obtain the results sketched in Fig. 32.

The top three identified characteristics were then the easiness of usage of
spreadsheets, with 24 answers (33%), their tabular format, 15 answers (21%),
and their availability, 7 answers (10%).

Fig. 32. Overall most important spreadsheet characteristic.

292 J. Cunha et al.

Fig. 33. The single most missed feature on spreadsheets.

Finally, regarding our pre-tutorial inquiry, participants were asked to identify
the feature they missed the most on a spreadsheet system. The answers we
received, in number of 23, are depicted in Fig. 33.

We see that analysis tools, integration with other programming languages,
and user defined functions are the most missed features (with 4, 3 and 3 answers,
respectively). Interestingly enough, 3 participants say that spreadsheet systems
are fine in their current state, i.e., that they do not miss a single feature there.
With 2 participants referring to them, recursion, refactorings, and a better scala-
bility model are also identified as missing features. Finally, an improved graphical
user interface, precision and user defined data types were also identified each by
a single participant.

7.2 Participants’ Perspective on MDSheet

In this section, we describe the simple experiment that we have devised in order
to obtain feedback on the MDSheet framework from the participants. Five par-
ticipants volunteered to join the experiment: 4 males and 1 female; all of them
had never had contact with MDSheet prior to the summer school.

Our experiment consisted in executing three specific tasks. Prior to par-
ticipants actually performing each one, we have ourselves demonstrated with
equivalent actions. Also, the tasks that were solicited consisted of editing steps
on an already built model to deal with a simple budget (registering incomes and
expenses). These tasks followed the order:

1. Add an attribute to a class, being given its default value.
2. Add and attribute to a class, being its value defined by a given formula.
3. Remove an attribute from a class.

Spreadsheet Engineering 293

After the execution of each task, we made available a (web) form, where
participants had the opportunity to answer the following questions:

(i) Did you find this functionality useful?
(ii) For this functionality, describe an advantage in using our environment.
(iii) For this functionality, describe a disadvantage in using our environment.
(iv) For this functionality, please give us a suggestion to improve our environ-

ment.
(v) Assuming that you are familiar with our environment, would you prefer to

use standard Excel to complete this task? Please elaborate.

In the remaining of this section, we present our analysis on the feedback that
was provided by participants.

Analyzing task 1. All participants found the functionality of adding attributes
to a class useful. Also, they in general see as beneficial the fact that attributes
may later be called by name, instead of by (alphabetical) column identifiers.
In fact, this is in line with the results presented in [46] where authors showed
that spreadsheet users create a mental model of the spreadsheet that helps them
understand and work with the spreadsheet. These mental models are created
using names from the real world as it is the case with our ClassSheet models.

In terms of disadvantages, they point out the fact that attribute names are
not visible on the instances, and potential efficiency problems when using larger
models. Some participants suggest that we should improve further our graphical
user interface. Still, all participants state that they prefer using our environment
over using a standard spreadsheet system for this type of action.

Analyzing task 2. All participants found the functionality of adding attributes
whose values are given by a formula to a class useful. Indeed, they state that
being able of defining formulas using attribute names is very intuitive and help-
ful. Also, they see as important the fact that a formula is defined only once, in
the model, being automatically copied (and updated) wherever (and whenever)
necessary at the instance level.

In terms of disadvantages, the one thing that is identified is that it would
be better, when defining a formula, to be able to use the mouse to point to an
attribute instead of having to type its name, as our tool in its current state
demands. Actually, overcoming this disadvantage is the main suggestion for
improvement that we receive here. For faster feedback, two participants state
that they would prefer using Excel in the particular scenario that we have set
and for this particular task. However, they also state that if they were dealing
with a larger model, they would prefer MDSheet.

Analyzing task 3. Again, all participants found the functionality of removing an
attribute from a class useful. All participants but one were particularly enthusias-
tic about the fact that all the necessary editions (e.g., in the scopes of all formulas
affected by the deletion of the attribute) are automatically implemented.

294 J. Cunha et al.

Also, most participants found no disadvantages in using our framework for
this type of tasks. Nevertheless, the issues that were raised here concern to the
fact that using our model-based approach may sometimes restrict the flexibil-
ity of standard spreadsheets. The comments with respect to this task mainly
suggest that we should make available a message confirming the will to delete
data. Finally, no participant declared to prefer a standard spreadsheet system
to accomplish a task such as this one.

Apart from feedback on accomplishing specific tasks, we also requested gen-
eral feedback regarding MDSheet. Indeed, we asked each participant to choose
the descriptions they believed were applicable to our framework from the follow-
ing list. Any number of options was selectable.

Helpful Not helpful Useful for professional programmers
Usable Requires specific knowledge Useful for non-professional programmers
Intuitive Counter intuitive Can improve my productivity
Useless Not useful in practice Can not improve my productivity

The options that were selected, and the number of times they were selected
is given next.

Helpful 4
Can improve my productivity 4
Useful for non-professional programmers 3
Usable 3
Intuitive 1
Requires specific knowledge 1

Finally, we asked for comments on MDSheet and for suggestions that could
improve it. The most referred suggestion was to add an undo button to the
framework. In another direction, one participant commented that our framework
may be unfit for agile business practices.

As we explained before, this empirical study was performed in the laboratory
sessions of our tutorial course. The number of participants in the study is small,
and no statistical conclusions can be obtained from the study. However, we have
conducted a larger study with end users where we evaluated their efficiency
(measured as the time needed to complete a task) and effectiveness (measure
as the number of errors produced in solving the task) using regular and model-
driven spreadsheets [20]. Those results show that using our MDSD environment,
end users are both more efficient and effective. In fact, those results just confirm
the feedback we received from summer school participants.

8 Conclusion

This document presents a set of techniques and tools to analyze and evolve
spreadsheets. First, it presents data mining and database techniques to infer a
ClassSheet that represents the business logic of spreadsheet data. Next, it shows
the embedding of the visual, domain specific language of ClassSheet in a general

Spreadsheet Engineering 295

purpose spreadsheet system. Finally, it presents model-driven engineering tech-
niques, based on data refinements, to evolve the model and have the instance
automatically co-evolved. These techniques are implemented in the MDSheet
framework: an add-on for a widely used, open source, spreadsheet system.

In order to validate both our embedding of a visual DSL and the evolution of
our model-driven spreadsheets, we have conducted an empirical study with the
summer school participants. The results show that regular spreadsheet users are
able to perform the proposed tasks, and they recognize the advantages of using
our setting when compared to standard spreadsheet systems.

The techniques and tools described in this paper were developed in the con-
text of the SSaaPP - Spreadsheets as a Programming Paradigm research project.
In the project’s webpage, the reader may find the tools presented in this paper
and other contributions in the area of spreadsheet engineering: namely the defi-
nition of a catalog of spreadsheet bad smells, the definition of a query language
for model-driven spreadsheets, and a quality model for spreadsheets. They are
available, as a set of research papers and software tools, at the following webpage:

http://ssaapp.di.uminho.pt

Acknowledgments. The theories, techniques and tools presented in this tutorial
paper were developed under the project SSaaPP - SpreadSheets as a Programming
Paradigm: a research project funded by the Portuguese Science Foundation (contract
number FCOMP-01-0124-FEDER-010048). We would like to thank the members and con-
sultants of this project who made important contributions for the results presented in
this document, namely: Rui Maranhão Abreu, Tiago Alves, Laura Beckwith, Orlando
Belo, Martin Erwig, Pedro Martins, Hugo Pacheco, Christophe Peixoto, Rui Pereira,
Alexandre Perez, Hugo Ribeiro, André Riboira, André Silva, and Joost Visser.

References

1. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spa-
tial analyses. In: 2004 IEEE Symposium on Visual Languages and Human Centric
Computing, pp. 165–172, September 2004

2. Abraham, R., Erwig, M.: UCheck: a spreadsheet type checker for end users. J. Vis.
Lang. Comput. 18(1), 71–95 (2007)

3. Abraham, R., Erwig, M.: Goal-directed debugging of spreadsheets. In: VL/HCC,
pp. 37–44. IEEE Computer Society (2005)

4. Abraham, R., Erwig, M.: Autotest: a tool for automatic test case generation in
spreadsheets. In: Proceedings of the 2006 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC 2006), pp. 43–50. IEEE Computer Soci-
ety (2006)

5. Abraham, R., Erwig, M.: Inferring templates from spreadsheets. In: Proceedings
of the 28th International Conference on Software Engineering, pp. 182–191. ACM,
New York (2006)

6. Abraham, R., Erwig, M.: Type inference for spreadsheets. In: Bossi, A., Maher,
M.J. (eds.) Proceedings of the 8th International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, Venice, Italy, 10–12 July 2006,
pp. 73–84. ACM (2006)

http://ssaapp.di.uminho.pt

296 J. Cunha et al.

7. Abraham, R., Erwig, M.: Goaldebug: a spreadsheet debugger for end users. In:
ICSE 2007: Proceedings of the 29th International Conference on Software Engi-
neering, pp. 251–260. IEEE Computer Society, Washington, DC (2007)

8. Abraham, R., Erwig, M.: Mutation operators for spreadsheets. IEEE Trans. Softw.
Eng. 35(1), 94–108 (2009)

9. Abraham, R., Erwig, M., Kollmansberger, S., Seifert, E.: Visual specifications of
correct spreadsheets. In: Proceedings of the 2005 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, VL/HCC 2005, pp. 189–196. IEEE Com-
puter Society (2005)

10. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison Wesley, Reading (1986)

11. Alhajj, R.: Extracting the extended entity-relationship model from a legacy rela-
tional database. Inf. Syst. 28(6), 597–618 (2003)

12. Alves, T.L., Silva, P.F., Visser, J.: Constraint-aware schema transformation. Elec-
tron. Notes Theor. Comput. Sci. 290, 3–18 (2012)

13. Bricklin, D.: VisiCalc: Information from its creators, Dan Bricklin and Bob
Frankston. http://www.bricklin.com/visicalc.htm. Accessed 5 Dec 2013

14. Bruins, E.: On Plimpton 322. Pythagorean numbers in Babylonian mathematics.
Koninklijke Nederlandse Akademie van Wetenschappen 52, 629–632 (1949)

15. Burnett, M., Cook, C., Pendse, O., Rothermel, G., Summet, J., Wallace, C.: End-
user software engineering with assertions in the spreadsheet paradigm. In: Proceed-
ings of the 25th International Conference on Software Engineering, ICSE 2003, pp.
93–103. IEEE Computer Society (2003)

16. Campbell-Kelly, M., Croarken, M., Flood, R., Robson, E.: The History of Math-
ematical Tables: From Sumer to Spreadsheets. Oxford University Press, Oxford
(2003)

17. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

18. Cunha, A., Oliveira, J.N., Visser, J.: Type-safe two-level data transformation. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 284–299.
Springer, Heidelberg (2006)

19. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from
spreadsheets. In: IEEE Symposium on Visual Languages and Human-Centric Com-
puting, VL/HCC 2010, pp. 93–100. IEEE Computer Society (2010)

20. Cunha, J., Fernandes, J., Mendes, J., Saraiva, J.: Embedding, evolution, and vali-
dation of model-driven spreadsheets. IEEE Trans. Software Eng. PP(99), 1 (2014)

21. Cunha, J., Fernandes, J.P., Ribeiro, H., Saraiva, J.: Towards a catalog of spread-
sheet smells. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha,
A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol.
7336, pp. 202–216. Springer, Heidelberg (2012)

22. Cunha, J., Fernandes, J.P., Mendes, J., Martins, P., Saraiva, J.: Smellsheet detec-
tive: a tool for detecting bad smells in spreadsheets. In: Proceedings of the 2012
IEEE Symposium on Visual Languages and Human-Centric Computing, VLHCC
2012, pp. 243–244. IEEE Computer Society, Washington, DC (2012)

23. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Extension and implementation
of ClassSheet models. In: Proceedings of the 2012 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, VLHCC 2012, pp. 19–22. IEEE Computer
Society (2012)

24. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: MDSheet: a framework for
model-driven spreadsheet engineering. In: Proceedings of the 34th International
Conference on Software Engineering, ICSE 2012, pp. 1412–1415. ACM (2012)

http://www.bricklin.com/visicalc.htm

Spreadsheet Engineering 297

25. Cunha, J., Fernandes, J.P., Saraiva, J.: From relational ClassSheets to UML+OCL.
In: Proceedings of the Software Engineering Track at the 27th Annual ACM Sym-
posium on Applied Computing, pp. 1151–1158. ACM (2012)

26. Cunha, J., Mendes, J., Fernandes, J.P., Saraiva, J.: Embedding and evolution of
spreadsheet models in spreadsheet systems. In: Proceedings of the 2011 IEEE Sym-
posium on Visual Languages and Human-Centric Computing, VLHCC 2011, pp.
186–201. IEEE (2011)

27. Cunha, J., Saraiva, J., Visser, J.: Model-based programming environments for
spreadsheets. Sci. Comput. Program. (SCP) 96, 254–275 (2014)

28. Cunha, J., Visser, J., Alves, T., Saraiva, J.: Type-safe evolution of spreadsheets. In:
Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 186–201.
Springer, Heidelberg (2011)

29. Engels, G., Erwig, M.: ClassSheets: automatic generation of spreadsheet applica-
tions from object-oriented specifications. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, pp. 124–133. ACM
(2005)

30. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Heidelberg (2013)

31. Erwig, M.: Software engineering for spreadsheets. IEEE Softw. 29(5), 25–30 (2009)
32. Erwig, M., Abraham, R., Cooperstein, I., Kollmansberger, S.: Automatic genera-

tion and maintenance of correct spreadsheets. In: Proceedings of the 27th Interna-
tional Conference on Software Engineering, pp. 136–145. ACM (2005)

33. Erwig, M., Abraham, R., Kollmansberger, S., Cooperstein, I.: Gencel: a program
generator for correct spreadsheets. J. Funct. Program. 16(3), 293–325 (2006)

34. Erwig, M., Burnett, M.: Adding apples and oranges. In: Adsul, B., Ramakrishnan,
C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 173–191. Springer, Heidelberg (2002)

35. Fisher II, M., Cao, M., Rothermel, G., Cook, C., Burnett, M.: Automated test case
generation for spreadsheets. In: Proceedings of the 24th International Conference
on Software Engineering (ICSE 2002), pp. 141–154. ACM Press, New York, 19–25
May 2002

36. Fisher II, M., Rothermel, G., Brown, D., Cao, M., Cook, C., Burnett, M.: Inte-
grating automated test generation into the WYSIWYT spreadsheet testing meth-
dology. ACM Trans. Softw. Eng. Methodol. 15(2), 150–194 (2006)

37. Fisher II, M., Rothermel, G., Creelan, T., Burnett, M.: Scaling a dataflow testing
methodology to the multiparadigm world of commercial spreadsheets. In: Proceed-
ings of the 17th IEEE International Symposium on Software Reliability Engineer-
ing, Raleigh, NC, USA, pp. 13–22, November 2006

38. Gibbons, J.: Functional programming for domain-specific languages. In: Zsok, V.
(ed.) Central European Functional Programming - Summer School on Domain-
Specific Languages, July 2013

39. Hermans, F., Pinzger, M., van Deursen, A.: Automatically extracting class dia-
grams from spreadsheets. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 52–75. Springer, Heidelberg (2010)

40. Hermans, F., Pinzger, M., van Deursen, A.: Supporting professional spreadsheet
users by generating leveled dataflow diagrams. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE 2011, pp. 451–460. ACM (2011)

41. Hermans, F., Pinzger, M., van Deursen, A.: Detecting and visualizing inter-
worksheet smells in spreadsheets. In: Proceedings of the 2012 International Con-
ference on Software Engineering, ICSE 2012, pp. 441–451. IEEE Press (2012)

298 J. Cunha et al.

42. Hermans, F., Pinzger, M., van Deursen, A.: Detecting code smells in spreadsheet
formulas. In: ICSM, pp. 409–418 (2012)

43. Hinze, R., Löh, A., Oliveira, B.C.S.: “Scrap your boilerplate” reloaded. In: Hagiya,
M. (ed.) FLOPS 2006. LNCS, vol. 3945, pp. 13–29. Springer, Heidelberg (2006)

44. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv.
28(4es), 196 (1996)

45. Jones, S.P., Blackwell, A., Burnett, M.: A user-centred approach to functions in
excel. In: Proceedings of the 8th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2003, pp. 165–176. ACM (2003)

46. Kankuzi, B., Sajaniemi, J.: An empirical study of spreadsheet authors’ mental
models in explaining and debugging tasks. In: 2013 IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 2013, pp. 15–18 (2013)

47. Kuiper, M., Saraiva, J.: Lrc - a generator for incremental language-oriented tools.
In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 298–301. Springer, Heidel-
berg (1998)

48. Lämmel, R., Visser, J.: A Strafunski application letter. In: Dahl, V. (ed.) PADL
2003. LNCS, vol. 2562, pp. 357–375. Springer, Heidelberg (2002)

49. Lämmel, R., Saraiva, J., Visser, J. (eds.): GTTSE 2005. LNCS, vol. 4143. Springer,
Heidelberg (2006)

50. Luckey, M., Erwig, M., Engels, G.: Systematic evolution of model-based spread-
sheet applications. J. Vis. Lang. Comput. 23(5), 267–286 (2012)

51. Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville
(1983)

52. Morgan, C., Gardiner, P.: Data refinement by calculation. Acta Inform. 27, 481–
503 (1990)

53. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Comput-
ing, 1st edn. MIT Press, Cambridge (1993)

54. Oliveira, J.: A reification calculus for model-oriented software specification. Form.
Asp. Comput. 2(1), 1–23 (1990)

55. Oliveira, J.N.: Transforming data by calculation. In: Lämmel, R., Visser, J.,
Saraiva, J. (eds.) Generative and Transformational Techniques in Software Engi-
neering II. LNCS, vol. 5235, pp. 134–195. Springer, Heidelberg (2008)

56. Panko, R.R.: What we know about spreadsheet errors. J. End User Comput. (Spe-
cial issue on Scaling Up End User Development) 10(2), 15–21 (1998)

57. Panko, R.R.: Spreadsheet errors: what we know. what we think we can do. In:
Proceedings of the European Spreadsheet Risks Interest Group (EuSpRIG) (2000)

58. Panko, R.R.: Facing the problem of spreadsheet errors. Decis. Line 37(5), 8–10
(2006)

59. Panko, R.R., Aurigemma, S.: Revising the panko-halverson taxonomy of spread-
sheet errors. Decis. Support Syst. 49(2), 235–244 (2010)

60. Panko, R.R., Ordway, N.: Sarbanes-Oxley: What About all the Spreadsheets?
CoRR abs/0804.0797 (2008)

61. Peyton Jones, S., Washburn, G., Weirich, S.: Wobbly types: type inference for
generalised algebraic data types. Technical report, MS-CIS-05-26, University of
Pennsylvania, July 2004

62. Powell, S.G., Baker, K.R., Lawson, B.: A critical review of the literature on spread-
sheet errors. Decis. Support Syst. 46(1), 128–138 (2008)

63. Rajalingham, K., Chadwick, D.R., Knight, B.: Classification of spreadsheet errors.
In: Proceedings of the 2001 European Spreadsheet Risks Interest Group, EuSpRIG
2001, Amsterdam (2001)

Spreadsheet Engineering 299

64. Reinhart, C.M., Rogoff, K.S.: Growth in a time of debt. Am. Econ. Rev. 100(2),
573–578 (2010)

65. Robson, E.: Neither Sherlock Holmes nor Babylon: a reassessment of Plimpton 322.
Historia Mathematica 28(3), 167–206 (2001)

66. Rothermel, G., Burnett, M., Li, L., Sheretov, A.: A methodology for testing spread-
sheets. ACM Trans. Softw. Eng. Methodol. 10, 110–147 (2001)

67. Ruthruff, J., Creswick, E., Burnett, M., Cook, C., Prabhakararao, S., Fisher II, M.,
Main, M.: End-user software visualizations for fault localization. In: Proceedings
of the ACM Symposium on Software Visualization, San Diego, CA, USA, pp. 123–
132, June 2003

68. Scaffidi, C., Shaw, M., Myers, B.: Estimating the numbers of end users and end user
programmers. In: Proceedings of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, pp. 207–214 (2005)

69. Stevens, P., Whittle, J., Booch, G. (eds.): UML 2003. LNCS, vol. 2863. Springer,
Heidelberg (2003)

70. Swierstra, D., Azero, P., Saraiva, J.: Designing and implementing combinator lan-
guages. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608, pp.
150–206. Springer, Heidelberg (1999)

71. Ullman, J.D., Widom, J.: A First Course in Database Systems. Prentice Hall,
Upper Saddle River (1997)

72. Ullman, J.: Principles of Database and Knowledge-Base Systems, vol. I. Computer
Science Press, Rockville (1988)

73. Visser, E.: A survey of strategies in rule-based program transformation systems.
J. Symbolic Comput. 40, 831–873 (2005)

74. Visser, J., Saraiva, J.: Tutorial on strategic programming across programming par-
adigms. In: 8th Brazilian Symposium on Programming Languages, Niteroi, Brazil,
May 2004

	Spreadsheet Engineering
	1 Introduction
	2 Spreadsheets: A History of Success?
	3 Spreadsheet Analysis
	3.1 Spreadsheet Data Mining
	3.2 Databases Technology

	4 Model-Driven Spreadsheet Engineering
	4.1 Spreadsheet Models
	4.2 Inferring Spreadsheet Models
	4.3 Mapping Strategy
	4.4 Generation of Model-Driven Spreadsheets
	4.5 Embedding ClassSheet Models in Spreadsheets

	5 Evolution of Model-Driven Spreadsheets
	5.1 A Framework for Evolution of Spreadsheets in Haskell
	5.2 Evolution of Spreadsheets

	6 Model-Driven Spreadsheet Development in MDSheet
	7 Studies with School Participants
	7.1 Participants' Perspective on Spreadsheets
	7.2 Participants' Perspective on MDSheet

	8 Conclusion
	References

