
Article

Inke Arns

Code as performative
speech act

http://www.uoc.edu/artnodes/eng/art/arns0505.pdf

July 2005 ISSN: 1695-5951
www.uoc.edu/artnodes

QXP Arns 73 06/07/05 09:35 Página I

Artnodes July 2005

Code as performative speech act

Abstract
Software art involves an artistic activity which, in the medium —or rather, the material— of software, allows for cri-
tical reflection on software (and its cultural impact). It thus highlights the aesthetic and political subtexts of seemingly
neutral technical commands. In this article Inke Arns argues that, in the context of software art, a far more interes-
ting notion than the “generative” nature of code is its “performativity”. This notion —borrowed from speech act the-
ory— not only involves the ability to generate in a technical context, but also encompasses the implications and reper-
cussions of code in terms of aesthetics, politics and society. This article proposes the notion of the performativity of
code as one of the reasons for contemporary artists’ growing interest in using software as an artistic material.

Keywords
Software art, generative art, code, performativity

Introduction

Let’s start at the very beginning (I won’t spare you this classic).
Before discussing my theses, I would like to give you three his-
torical examples of the performativity of speech or texts in gen-
eral: one biblical, one mythological and one example from
Russian Futurism, ie, from the early 20th century.

According to the Bible, God created the world through
speech. God spoke and the world came into being. According to
Sefer Yesira (the Book of Creation), God’s “speech” was not
talking in the sense of someone speaking, but rather a manipu-
lation of the letters of the Hebrew alphabet. These letters, the
Book of Creation teaches, are not merely linguistic symbols.
They are real. They are made of a special spiritual substance
and, hence, could be formed, weighed, shaped, etc. by God.
Creation, then, was the process of shaping letters so as to form
reality (David R. Blumenthal,1 The Creator and the Computer
article, late 1970s).

A similar, but indeed far more interesting, story for our
context is that of the Golem. In 1580 in Prague, as the leg-
end goes, the famous Rabbi Loew created a Golem, an artifi-
cial human being made from clay. This artificial mute man was
created in order to protect the Jewish people in times of per-
secution. What is interesting in the context of a “pre-history”
of the performative is the fact that this Golem would come
alive simply by the Rabbi engraving the word “Emet”, or
truth, on the Golem’s forehead. But as soon as the first
letter of the word “Emet” is erased, the Golem immediately
collapses. By deleting the first letter Aleph (which represents
God, or more generally, the creative power) from the word
“Emet”, the word now reads “met”, , which stands for
“dead man”, “dead” or “death”. Thus, one small letter
–aleph– marks the border between life and death, creation
and destruction of the clay man —reminding one of the need
to stick strictly to orthographic rules when programming:
here, the difference between a comma and a semicolon could
be fatal. Interestingly enough, when the first computer main-

Artnodes
July 2005 ISSN: 1695-5951

Inke Arns

Code as performative speech act
http://www.uoc.edu/artnodes/eng/art/arns0505.pdf

Article

© 2005 by Inke Arns 1
© 2005 by FUOC

1. This article first appeared in David R. Blumenthal: Understanding Jewish Mysticism (New York: Ktav Publishing: 1978) 22-29. It was subsequently published
as an article in History, Religion, and Spiritual Democracy: Essays in Honor of Joseph L. Blau, ed. M. Wohlgelernter (New York: Columbia University Press,
1980) 114-29. http://www.emory.edu/UDR/BLUMENTHAL/CreatorandComputer.html.

QXP Arns 73 06/07/05 09:35 Página 1

Generative art ≠ software art

According to Philip Galanter (2003), generative art refers to “any
art practice where the artist uses a system, such as a set of nat-
ural language rules, a computer program, a machine, or other
procedural invention, which is set into motion with some degree
of autonomy contributing to or resulting in a completed work of
art”.4 Generative art thus describes processes defined by rules,
processes which are automated to a certain degree by the use of
a machine or computer, or by using mathematical or pragmatic
instructions. By following these pre-defined rules or instructions,
once set in motion these “self-organising” processes run inde-
pendently from their authors or artist-programmers. Depending
on the technical context in which the process is unfolding, the
result is “unpredictable” and thus less the result of individual
agency or authorship, and much more the result of the respec-
tive production conditions or, if you wish, the result of the tech-
nical ecology of a certain system.5 Galanter’s definition of gener-
ative art is, like definitions by other authors, an “inclusive”, all-
embracing and comprehensive definition, leading Galanter to the
conclusion that, surprisingly or not, “generative art is as old as art
itself”.6 But let’s return to the essential feature: the most promi-
nent element in all these attempts to define generative art (in
electronic music and algorithmic composition, computer graphics
and animation, the Demo scene and VJ culture and industrial
design and architecture)7 is the employment of generative
processes for the negation of intentionality. Most generative art
is interested in generative processes (and in software or code)
only insofar as they generate “unpredictable” events. In this
sense, and in this context, software and code are understood as
pragmatic tools which remain unquestioned in themselves.
Exactly because of this, because of generative art’s focus on the
negation of intentionality and the fact that its main interest does
not lie in the questioning of the tools employed, the notion of
generative art cannot be used as a synonym for software art.

Software art, on the contrary, involves an artistic activity
which, in the medium —or rather, the material— of software,

© 2005 by Inke Arns 2
© 2005 by FUOC

Artnodes July 2005

Code as performative speech act

2. Cf. on this Gershom Scholem, “The Idea of the Golem,” On the Kabbalah and its Symbolism (New York: Schocken, 1965) 158-204 with special attention to
165-73, 184-95 as well as the full-fledged study by M. Idel, Golem (New York: SUNY Press, 1990). In 1981 Stanislav Lem (*1921) described in Also sprach
GOLEM the lectures of the computer GOLEM XIV. Golem XIV belongs to the machine intelligentsia of the 21st century superior to the human race who in his
lectures deals with the position of the human race in the cosmos.

3. Cf. Roman Jakobson: “Über die neueste russische Poesie” (1919), in: Die Erweckung des Wortes. Essays der russischen Formalen Schule, Fritz Mierau (ed.),
p. 177-210; Roman Jakobson [1921]: “Novejsaja russkaja poezija / Neueste russische Dichtung“, in: W.-D. Stempel (ed.), Texte der russischen Formalisten
vol. II, Munich 1972, 18-135; Jurij Tynjanov, “Velimir Chlebnikov“ (1928), in: Die literarischen Kunstmittel und die Evolution in der Literatur, Frankfurt 1967,
p. 69.

4. Galanter, P.: “What is Generative Art? Complexity Theory as a Context for Art Theory”, Generative Art Proceedings, Milan 2003, p. 4, http://www.philipga-
lanter.com/pages/acad/media/ga2003%20proceedings%20paper.pdf. The mailing list eu-gene is devoted to the discussion of generative art, see http://www.gene-
rative.net/.

5. See also Cox, G.: anti-thesis: the dialectics of generative art (as praxis), MPhil/PhD Transfer Report 2002, http://www.anti-thesis.net/. A similar definition
can be found in Adrian Ward: “Generative art is a term given to work which stems from concentrating on the processes involved in producing an artwork,
usually (although not strictly) automated by the use of a machine or computer, or by using mathematic or pragmatic instructions to define the rules by which
such artworks are executed.” (http://www.generative.net).

6. Galanter, ibid., p. 1.
7. Galanter, ibid., p. 2, calls these four areas the four “main clusters” of generative art.

frame was presented in Israel in 1965, the Kabbalah special-
ist Gershom Scholem named it “Golem”2 (see the name on
the chip).

Another example of the performativity of speech is the
Russian Futurist poet Velimir Khlebnikov.3 It would definitely
be rewarding to research this poet’s experimental work with
language more closely, as he could be considered a kind of
precursor to software and code art (Olga Goriunova has
already pointed to this fact in March this year). Khlebnikov’s
“star language” (zvezdnyj jazyk), a kind of universal lan-
guage which he developed between 1915 and 1922 (the year
of his death), and which also included an “alphabet of num-
bers”, is set in the context of early 20th-century avant-garde
experimentation with language, but also very clearly dis-
tances itself from all these practices (such as Dadaist sound
poetry, zaumnyj jazyk from the Russian Futurists, immagi-
nazione senza fili / parole in libertà from the Italian Futurists,
and the Surrealists’ écriture automatique). Khlebnikov’s “star
language” is special because it combines extremely archaic
and utopian elements. For example, for Khlebnikov, the first
letters of words (and numbers) embody ontological relations
linking words to history, time and the cosmos. The “star lan-
guage” is thus not created at random, but presents (through
the letters’ ontological relations) a complex system function-
ing globally and throughout time.

These scarce episodes in a yet to be written history of the
performative are entertaining and useful to form the basis of my
argument, as I wish to stress the importance of the notion of the
performative —in contrast to the notion of the generative, or
generative art, which has become fashionable over the past few
years. Very often, generative art is used as a synonym for soft-
ware art which, to my understanding, is not entirely correct. To
shed some light on this connection between generative art and
software art is thus one aim of this presentation. The other is to
propose the notion of the performativity of code as one of the
reasons for contemporary artists’ interest in using software as an
artistic material. The performativity of code in this case refers to
its ability to act and perform as in speech act theory.

QXP Arns 73 06/07/05 09:35 Página 2

allows for critical reflection on software (and its cultural impact).
Software art does not regard software merely as a pragmatic,
invisible tool generating certain visible results or surfaces, but on
the contrary focuses on the program code itself —even if this
code is not explicitly being laid open or put in the foreground.
According to Florian Cramer, software art highlights the aes-
thetic and political subtexts of seemingly neutral technical com-
mands. By doing so, software art can take place on different lev-
els: it can be located at the level of the source code, at the level
of abstract algorithms or at the level of the result generated by
a certain program code. Thus it comes as no surprise that there
is a broad spectrum of software artworks ranging from so-called
“Codeworks” consisting predominantly of ASCII-Code (not
executables), to experimental web browsers (eg, I/O/D’s
WebStalker, 1997), and fully-executable programs (eg, Antoine
Schmitt’s Vexation 1,8 2000, or Adrian Ward’s Auto-Illustrator,9

2000). In generative art, software is only one material amongst
others. Software art, on the other hand, can contain elements of
generative art but does not necessarily have to be generative in
a strict technical sense (see the “Codeworks”). Software art and
generative art can therefore not be used synonymously. Rather,
these two notions function in different registers, as I hope to
show in the following examples.

My first example is the insert_coin10 project by Dragan
Espenschied and Alvar Freude. As part of their diploma work
in 2000/2001, which they carried out under the motto “two
people control 250 people”, the two media art students
secretly installed a web proxy server at the Merz Academy in
Stuttgart, Germany, which, via a Perl script, manipulated all
the web traffic of students and professors on the Academy’s
computer network. According to Espenschied and Freude, the
aim of this project was to critically assess the “competence and
the critical faculty of the users concerning the everyday medi-
um internet”.11 The manipulated proxy server redirected the
URLs entered to other addresses, modified HTML code, trans-
formed the content of the latest news on news websites via a
simple search-and-replace function (eg, by replacing the
names of politicians) as well as the content of private e-mails
that were read through web interfaces such as Hotmail or
Yahoo!. During four weeks this project manipulated web
access for the entire Academy —and remained unnoticed.
When Espenschied and Freude announced the project publicly,
almost nobody was interested. They even published a simple-
to-follow instruction manual which would enable everybody
to independently switch off the filter that was manipulating
the web content. But only a minority of those affected took

the time to make the minor adjustment in order to regain
access to unfiltered information. Several months after the end
of the experiment web access from most of the Academy’s
computers was still being filtered.

© 2005 by Inke Arns 3
© 2005 by FUOC

Artnodes July 2005

Code as performative speech act

Image 1. Insert_coin (2000) by Dragan Espenschied and Alvar
Freude

My second example, walser.php (2002) by textz.com/Project
Gnutenberg (ie, Sebastian Lütgert), has been called “political”
or “literary”12 software. It could be called anticopyright-activist
software, written in response to one of the biggest literary
scandals in Germany after the Second World War. The file
name walser.php is not only an ironic allusion to the file
“walser.pdf”, a digital pre-print version of Martin Walser’s con-
troversial novel which was distributed by the Suhrkamp pub-
lishing house as an e-mail attachment —and later on, due to
the unfavourable circumstances, called back by the publisher
(nice try: calling back a digital document). Rather, walser.php
(or rather walser.pl) by textz.com is a Perl script which, via an
appropriate Perl interpreter, can generate a human-readable
ASCII text version of Walser’s novel Death of a Critic from the
10,000 lines of source code.13 The source code written in Perl
contains the novel itself in an “invisible”, machine-readable
form and thus can be distributed and modified as free software
under the GNU General Public Licence. However, it may be
only executed with the written permission of the Suhrkamp
publishing house.14

8. http://www.gratin.org/as/.
9. http://www.signwave.co.uk.

10. http://www.odem.org/insert_coin/.
11. Cf. Espenschied/Freude’s text for the Internationaler Medienkunstpreis 2001, http://www.online-demonstration.org/insert_coin/imkp2001.html.
12. Cramer, F.: “walser.php”, in: Goriunova, O. / Shulgin, A. (eds.): Read_Me 2.3. Reader. Helsinki: Nifca, 2003, pp. 76-78, here: p. 76.
13. http://textz.com/trash/walser.pl.txt.
14. Cf. textz.com: “Suhrkamp calls back walser.pdf, textz.com releases walser.php”, http://textz.com/trash/readme.txt.

QXP Arns 73 06/07/05 09:35 Página 3

My third example is Maurizio Bolognini’s installation Sealed
Computers (since 1992). It consists in total of over 200 com-
puters producing and exchanging a continuous flow of random
images. These computers are sealed and left to work indefinite-
ly, and remain unconnected to any kind of output device (eg, a
monitor). As there is no visible result of what is generated and
exchanged by these machines, we are left with a somewhat
uncomfortable feeling of an invisible, self-contained performa-
tive which cannot be controlled.

While Espenschied and Freude’s experiment in filtering and
censorship of internet content points to the relatively unlimited
potential for control contained in software, walser.php offers a
practical solution for dealing with the commercial restrictions
which threaten the freedom of information on the internet in
the form of Digital Rights Management systems (DRM). While
insert_coin temporarily produces a dystopian scenario in the
form of manipulated software, textz.com with its walser.php
project develops genuinely utopian “countermeasures in the
form of software”.15 Bolognini’s Sealed Computers, on the
other hand, embody the invisible performativity of code as a
mute and autistic entity or process.

All of these projects are generative in the best sense of the
word. However, neither insert_coin nor walser.php comply with
the definitions of “generative art” currently predominating in the

field of design. Philip Galanter for example, whom I quoted above,
defines generative art as a process contributing to or resulting in a
completed work of art. Similarly, Celestino Soddu, director of the
Generative Design Lab at the Politecnico di Milano University and
organiser of the Generative Art16 conferences, defines “generative
art” as a procedural tool enabling the artist or designer to “syn-
thesize […] an ever-changing and unpredictable series of events,
pictures, industrial objects, architectures, musical works, environ-
ments, and communications”.17 And finally, the Codemuse web-
site also defines generative art as a process with parameters that
the artist should experiment with “until the final results are aes-
thetically pleasing and/or in some way surprising”.18

What becomes apparent from these quotations is the fact that
generative art is interested predominantly in the results created by
generative processes. Software in this context is seen and
employed as a pragmatic-generative tool or device for the creation
of certain results —without being questioned itself. The generative
processes brought about by software here primarily serve to avoid
intentionality and produce an unexpected, arbitrary and inex-
haustible diversity of form. The n_Gen Design Machine by Move
Design, submitted to the Read_Me Festival 2003 in Helsinki, or
Cornelia Sollfranks’ net.art Generator19 (1999), which at the push
of a button generates net art, should be seen as ironic commen-
taries on “generative design” (mis-)understood in such a way.20

© 2005 by Inke Arns 4
© 2005 by FUOC

Artnodes July 2005

Code as performative speech act

Image 2. Walser.php (2002) by textz.com/Project Gnutenberg

15. Cramer, ibid., p. 77.
16. Cf. http://www.generativeart.com/.
17. Soddu, C.: “Generative Art and Architecture”, Abstract, undated, http://www.nyu.edu/studio/generative.html.
18. http://www.codemusenet/html_files/GenerativeArt.html [Dec. 23, 2003].
19. Cornelia Sollfrank, net.art generator (1999), http://soundwarez.org/generator/.
20. Cf. Goriunova, O. / Shulgin, A.: “n_Gen Design Machine”, in: Goriunova, O. / Shulgin, A. (eds.): Read_Me 2.3. Reader. Helsinki: Nifca, 2003, pp. 66-67,

here: p. 66.

Image 3. Sealed Computers (since 1992) by Amurizio
Bolognini

QXP Arns 73 06/07/05 09:35 Página 4

insert_coin and walser.php go beyond such definitions of
“generative art” or “design” insofar as these projects are inter-
ested far more in the coded processes generating certain results
or surfaces. This interest in the coded processes, or, to be more
precise, in the significance and implications of software and
coded structures, sharply distinguishes them not only from gen-
erative art, but also from many interactive installations of the
1990s which displayed their disinterest in software by hiding the
program code in black boxes. Instead, projects like insert_coin
and walser.php aim to question software and code as culture,
and to question culture as implemented in software. To do so,
they develop “experimental software” (in insert_coin a proxy
server and in walser.php a Perl script), which not only generates
arbitrary surfaces but which critically investigates the techno-
logical, cultural or social impact of software. Furthermore, the

© 2005 by Inke Arns 5
© 2005 by FUOC

Artnodes July 2005

Code as performative speech act

21. Cramer, F. / Gabriel, U.: “Software Art”, in: Broeckmann, A. / Jaschko, S. (eds.): DIY Media — Art and Digital Media: Software - Participation - Distribu-
tion. Transmediale.01. Berlin, 2001, pp. 29-33, here p. 33.

22. Other notable events: “Kontrollfelder” (Dortmund 2001, curated by Andreas Broeckmann and Matthias Weiß, http://www.hartware-projekte.de/pro-
gramm/inhalt/kontroll.htm [Jan. 2, 2004]); the “Read_Me” Festival, conceived by Olga Goruinova and Alexei Shulgin (Moscow 2002, Helsinki 2003, http://www.m-
cult.org/read_me/ [Dec. 31, 2003]) and the exhibitions “Generator” (GB 2002, curated by Geoff Cox, http://www.generative.net/generator.html [Dec. 31,
2003]), “CODeDOC”(New York, Sept. 2002, curated by Christiane Paul, http://artport.whitney.org/commissions/codedoc/ [Dec. 31, 2003]), “I love you
- computer_viren_hacker_kultur” (Frankfurt/Main, Jan. 31-Feb. 5, 2003, http://www.digitalcraft.org/index.php?artikel_id=269 [Jan. 2, 2004]) and the soft-
ware art repository “Runme”, launched in January 2003 (http://runme.org [Dec. 31, 2003]). Further examples of software art can be found on these web-
sites. The most historically significant year in terms of software art is 1970, during which three software art-related events took place: Jack Burnham’s exhi-
bition “Software — Information Technology: Its New Meaning for Art”, which took place at the Jewish Museum; the exhibition curated by Kynaston McShine
at MoMA in New York, entitled “Information”; and the foundation of the magazine “Radical Software” by Beryl Korot, Phyllis Gershuny and Ira Schneider
(http://www.radicalsoftware.org/ [Dec. 31, 2003]).

23. For an early, programmatic concept paper on software programming and art, see Geoff Cox / Alex McLean / Adrian Ward, “The Aesthetics of Generative
Code” (2000), http://generative.net/papers/aesthetics/ [Dec. 18, 2003]. An attempt to formally define and research the archaeological history of softwa-
re art using literary and artistic examples can be found in Florian Cramer, “Concepts. Notations. Software. Art”, Mar. 23, 2002, http://userpage.fu-ber-
lin.de/~cantsin/homepage/writings/software_art/concept _notations/concepts_notations_software_art.html [Nov. 19, 2003].

24. Tilman Baumgärtel, “Experimentelle Software. Zu einigen neueren Computerprogrammen von Künstlern”, in: Telepolis, Oct. 28, 2001, http://www.heise.de/tp/deutsch/
inhalt/sa/9908/1.html [Dec. 31, 2003].

Table 1.

Generative art Software art

Focus on the surface (“phenotext”) created by Focus on the generative process (set in motion by a “genotext”) which
a generative process (“black box problem”) may generate surfaces or other results

Software as a pragmatic/neutral tool serving Software as culture which is being questioned; interest in aesthetic and
to create a certain result; the tool itself is political subtexts; software can be “experimental” and “non-pragmatic”
not being questioned

Software as a pragmatic-generative tool Software or code as a work of its own (possibly experimental)

Efficient code (“beautiful algorithms”*) Code as excess, code as extravagance, not necessarily efficient

Employment of generative processes in order “Software artists […] seem to conceive of generative systems not as
to negate intentionality negation of intentionality, but as balancing of randomness and control.

[…] Far from being simply art for machines, software art is highly
concerned with artistic subjectivity and its reflection and extension into
generative systems.”** (Cramer/Gabriel)

Fascination of the generative Interest in the “performativity” of code

* Cf. Donald Knuth, The Art Of Computer Programming: Vol. 1, Fundamental Algorithms, Reading, Mass. 1997.
** Florian Cramer / Ulrike Gabriel, quoted after Andreas Broeckmann, “On Software as Art”, in: Sarai Reader 2003: Shaping Technologies, New Delhi
2003, pp. 215-218, here: p. 216

writing of “experimental software” is closely connected to artis-
tic subjectivity, as can be seen in the use of different private
languages, and less so with proving evidence of machinic cre-
ativity (whatever that may be): “Code can be diaries, poetic,
obscure, ironic or disruptive, defunct or impossible, it can simu-
late and disguise, it has rhetoric and style, it can be an atti-
tude”,21 as the emphatic definition by Florian Cramer and Ulrike
Gabriel states, both members of the transmediale software art
jury in 2001.

I have tried to set up a somewhat polemical comparison between
generative art and software art which you can see in Table 1.

The term “software art” was first defined in 2001 by the
Berlin media art festival transmediale22 and introduced as one of
the festival’s competition categories.23 Software art, referred to
by other authors as “experimental”24 and “speculative soft-

QXP Arns 73 06/07/05 09:35 Página 5

ware”25 or “unpragmatic” and “irrational”26 software, compris-
es projects that use program code as their main artistic material
or that deal with the cultural understanding of software, accord-
ing to the definition developed by the transmediale jury. Here,
program code is not considered a pragmatic-functional tool that
serves the ‘real’ artwork, but rather as a generative material
consisting of machinic and social processes. Software art can be
the result of an autonomous and formal creative practice, but
can also refer critically to existing software and the technologi-
cal, cultural or social significance of software.27

Interestingly, the difference between software art and gen-
erative design is reminiscent of the difference between the soft-
ware art that was developed in the late 1990s and the early
computer art of the 1960s. The difference can be described as
follows: works from the field of software art “are not art creat-
ed using a computer, but art that takes place in the computer;
it is not software programmed by artists in order to create
autonomous works of art, but software that is itself a work of
art. With these programs, it is not the result that is important,
but the process triggered in the computer (and on the comput-
er monitor) by the program code.”28 Computer art of the 1960s
is close to concept art in its privileging of the concept as
opposed to its realisation. However, it does not follow this idea
through to its logical conclusion: the work, executed on plotters
and dot matrix printers, has an emphasis on the final product
and not the program or process that created the work.29

Performativity of the Code v Fascination
with the Generative

The current interest in software, according to my hypothesis, is
not only attributable to a fascination with the generative aspect

of software, ie, to its ability to (pro)create and generate in a
purely technical sense. Of interest to the authors of these proj-
ects is something that I would call the performativity of code.
By the performativity of code I mean its ability to act and per-
form in terms of speech act theory.

I am thinking here of a series of lectures by John Langshaw
Austin at Harvard University in 1955. In these lectures, entitled
How to Do Things With Words, Austin outlined the ground-
breaking theory that language does not only have a descriptive,
referential or constative function, but also possesses a perfor-
mative dimension.30 According to Austin, linguistic utterances
by no means only serve the purpose of describing a situation or
stating a fact, but are used to commit acts. Austin’s speech act
theory regards speech essentially as action and sees it as being
effective not on the merit of its results, but in and of itself. This
is precisely where speech act theory meets code’s assumed per-
formativity: “[when] a word not only means something, but
performatively generates exactly that which it names”.31

Austin identifies three distinct linguistic acts in all speech
acts: the locutionary,32 the illocutionary33 and the perlocution-
ary34 act. He defines the locutionary act as the propositional
content, which can be true or false. This act is not of further
interest to us in this context. Illocutionary acts are acts that are
performed by the words spoken. These ‘performatives’ (that
create or do what they describe) are defined as acts in which a
person who says something also does something (for example,
a judge’s verdict: “I sentence you” is not a declaration of intent,
but an action). The message and execution come together:
here, simply “uttering [the message] is committing an act”.35

This draws attention to the importance of the context of a per-
formative utterance. Illocutionary, or performative, utterances
have certain consequences and can either succeed or fail,
depending on whether certain extra-linguistic conventions are

© 2005 by Inke Arns 6
© 2005 by FUOC

Artnodes July 2005

Code as performative speech act

25. Matthew Fuller, for example, distinguishes between ‘critical’, ‘social’ and ‘speculative software’. See Matthew Fuller, “Behind the Blip: Software as Culture,”
in: Nettime, Jan. 7, 2002, http://amsterdam.nettime.org/Lists-Archives/nettime-l-0201/msg00025.html [Dec. 19, 2003].

26. Olga Goriunova and Alexei Shulgin define ‘artistic software’ as ‘unpragmatic’ and ‘irrational’: “if conventional programs are instruments serving purely prag-
matic purposes, the result of the work of artistic programs often finds itself outside of the pragmatic and the rational.” (Olga Goriunova / Alexei Shulgin,
“Artistic Software for Dummies and, by the way, Thoughts About the New World Order,” in: Nettime, May 26, 2002, http://amsterdam.nettime.org/Lists-
Archives/nettime-l-0205/msg00169.html [Nov. 19, 2003]).

27. See: http://www.transmediale.de/04/pdf/tm04clubtm04_formular_ausschreibung.pdf Nov. 17, 2003]. See also the panel discussion from transmediale.03
(Künstlerhaus Bethanien, Feb. 4, 2003), [http://www.softwareart.net/ [Nov. 19, 2003], and Olga Goriunova / Alexei Shulgin (Hg.), Read_Me 2.3 Reader
— about software art, Helsinki 2003, http://www.m-cult.org/read_me [Nov. 17, 2003].

28. Baumgärtel, ibid. [my italics].
29. Typical in this context are the artworks by the so-called “Algorists”, who were co-founded by Roman Verostko. Cf. Verostko, R.: “Epigenetic Painting: Soft-

ware As Genotype, A New Dimension of Art” (1988), http://www.verostko.com/epigenet.html; Verostko, R.: “Epigenetic Art Revisited: Software as Genoty-
pe”, in: Schöpf, C. / Stocker, G. (eds.): Ars Electronica 2003: Code - The Language of Our Time. Ostfildern: Cantz, 2003, pp. 156-167. Here one finds for-
mulations such as: “The essential character of each finished work is derived from the ‘form-generating-procedure’ or ‘algorithm’ acting as genotype. For this
reason one could say that the finished work is an epiphany, or manifestation, of its generator, the code. For me each work celebrates its code […].”

30. For a discussion of Austin’s elementary distinction between performative and constative utterances cf. Kent Bach: Performatives, in: Routledge Encyclope-
dia of Philosophy, http://online.sfsu.edu/~kbach/perform.html; Richard van Oort: Performative-Constative Revisited: The Genetics of Austin’s Theory of
Speech Acts, in: Anthropoetics II, no. 2 (January 1997), http://www.humnet.ucla.edu/humnet/anthropoetics/Ap0202/Vano.htm.

31. Judith Butler, Hass spricht. Zur Politik des Performativen, Berlin 1998, p. 67.
32. Locutionary: The speech act as meaningful utterance.
33. Illocutionary: A meaningful utterance with a certain conventional — performative — force.
34. Perlocutionary: A meaningful utterance with a certain conventional force non-conventionally bringing about a certain effect.
35. Ibid., p. 67.

QXP Arns 73 06/07/05 09:35 Página 6

fulfilled or not.36 Perlocutionary acts, on the other hand, are
utterances that trigger a chain of effects. The speech itself and
the consequences of that speech do not occur at the same time.
As Judith Butler notes, the “consequences are not the same as
the speech act, but rather the result or the ‘aftermath’ of the
utterance”.37 Butler summarises the difference in a succinct for-
mula: “While illocutionary acts take place with the help of lin-
guistic conventions, perlocutionary acts are performed with the
help of consequences. This distinction thus implies that illocu-
tionary speech acts produce effects without delay, so that ‘say-
ing’ becomes the same as ‘doing’ and that both take place
simultaneously.”38 Insofar as ‘saying’ and ‘doing’ coincide, pro-
gram codes can be called illocutionary speech acts.

According to Austin, speech acts can also be acts, without
necessarily having to be effective (that is, without having to be
‘successful’). If these acts are unsuccessful, they represent failed
performative utterances. Thus, speech acts are not always effec-
tive acts. “A successful performative utterance [however] is
defined in that the act is not only committed,” writes Butler,
“but rather that it also triggers a certain chain of effects.”39

Program codes, viewed very pragmatically, are only useful as
successful performative utterances; if they do not cause any
effect (regardless of whether the effect is desired or not), or they
are not executable, they are plain and simply redundant. In the
context of functional pragmatic software, only executable code
makes sense. In software art, nonetheless, non-executable code
also has a purpose.

Accordingly, when I speak of the performativity of code, I
mean that this performativity is not to be understood as a pure-
ly technical performativity, ie, it does not only happen in the
context of a closed technical system, but affects the realm of the
aesthetic, political and social. Program code is characterised by
the fact that here “saying” coincides with “doing”. Code as an
effective speech act is not a description or a representation of
something, but, on the contrary, it directly affects, and literally
sets in motion, or even “kills”, a process.40 This “coded perfor-

mativity”41 has immediate and political consequences on the
actual and virtual spaces (amongst others, the internet), in
which we are increasingly moving and living: it means, ulti-
mately, that this coded performativity mobilises or immobilises
its users. Code thus becomes Law, or, as Lawrence Lessig put it
in 1999, “Code [already] is Law”.42 This is the reason why soft-
ware art is more interested in the “performance” than in the
“competence” (terms coined by Noam Chomsky), more inter-
ested in the parole than the langue43 (the famous opposition
coined by Ferdinand de Saussure). In our context, performance
and parole refer to the respective actualisations and concrete
realisations and consequences a certain program code has on,
let’s say, social systems, and not only what it does or generates
in the context of abstract-technical systems. In the insert_coin
and walser.php projects, the generative is deeply political —
specifically because changing existing texts covertly (in the case
of insert_coin) and extracting copyrighted text from a Perl script
(in the case of walser.php) is interesting not in the context of
technical systems, but rather in the context of the social and
political systems that are becoming increasingly dependent on
these technical structures.

Certainly one of the “most radical understanding[s] of com-
puter code as artistic material”44 can be found in the so-called
“Codeworks”45 and the artistic use they make of program code.
“Codeworks” almost exclusively consist of texts which are sent
to mailing lists like Nettime or 7-11 in the form of simple e-mails.
“Codeworks” make use of formal ASCII instruction code and its
aesthetic —without relying on the surfaces or graphical user
interfaces usually created by this code. Works by Jodi, Netochka
Nezvanova, aka antiorp, and mez46 thus highlight the existence
of a hidden, “invisible shadow world of process”,47 as Graham
Harwood has called it. Technically speaking, these “Codeworks”
are located at the opposite end of an imaginary spectrum of gen-
erativity. However, the status of these languages or these lan-
guage-like bits and pieces remains ambivalent. In the perception
of the recipient they oscillate between the supposed executabil-

© 2005 by Inke Arns 7
© 2005 by FUOC

Artnodes July 2005

Code as performative speech act

36. The work on speech acts was extended by John Searle in his Speech Acts (1969) book. He attempted to classify speech acts in terms of five classes: repre-
sentatives (informing), directives (request), commissives (promise), expressives (thanking), and declarations (declare marriage).

37. Butler., p. 31.
38. Ibid., p. 31.
39. Ibid., p. 31.
40. Cf. Arns, I.: “Texte, die (sich) bewegen: zur Performativität von Programmiercodes in Netzkunst und Software Art”, in: Arns, I. / Goller, M. / Strätling, S. /

Witte, G. (eds.): Kinetographien. Bielefeld: Aisthesis, 2004 [forthcoming].
41. Grether, R.: “The Performing Arts in a New Era”, Rohrpost, July 26, 2001, http://coredump.buug.de/pipermail/rohrpost/2001-July/000353.html.
42. Lessig, L.: Code and other Laws of Cyberspace. New York: Basic Books, 1999.
43. The distinction between competence and performance is credited to Noam Chomsky’s generative transformation grammar (see Chomsky, N.: Aspects of the

Theory of Syntax, Cambridge, MA., 1965); the distinction between langue and parole is attributed to Ferdinand de Saussure (see de Saussure, F.: Cours de
linguistique générale, Paris 1967 [1916]).

44. Cramer, F.: “Exe.cut[up]able statements: Das Drängen des Codes an die Nutzeroberflächen”, in: Schöpf, C. / Stocker, G. (eds.): Ars Electronica 2003: Code
- The Language of Our Time. Ostfildern: Cantz, 2003.

45. Cf. on this Sondheim, A.: “Codework” American Book Review, Vol. 22, Issue 6 (September/October 2001), http://www.litline.org/ABR/PDF/Volu-
me22/sondheim.pdf.

46. Cf. for more examples Florian Cramers “<nettime> unstable digest” on http://www.nettime.org/archives.php.
47. Harwood, G.: “Speculative Software”, in: Broeckmann A. / Jaschko, S. (eds.): DIY Media - Art and Digital Media: Software - Participation - Distribution.

Transmediale.01. Berlin, 2001, pp. 47-49, here p. 47.

QXP Arns 73 06/07/05 09:35 Página 7

ity, thus functionality, and non-executability, ie, dysfunctionality,
of the code; in short: between significant information and mean-
ingless noise. This phenomenon can be seen very clearly in Jodi’s
walkmonster_start () e-mail which was sent to the Nettime mail-
ing list on October 22, 2001. While the text contained in this e-
mail resembles executable program code, the non-specialist
reader remains unaware of whether in another location on the
computer this text could in fact be compiled, and thus turned
into machine-readable algorithms, and, ultimately, executed.

What plays a major role here rather than the actual tech-
nical execution is the understanding of the fact that the code
fragments used in the Codeworks can potentially be executed
and thus become performative. However, in “The Aesthetics
of Generative Code” Geoff Cox, Alex McLean and Adrian
Ward claim that “the aesthetic value of code lies in its execu-
tion, not simply in its written form”.48 While I can agree with
this assertion for projects like insert_coin, walser.php and the
Sealed Computers —because their critical (and perhaps even
poetic) momentum lies exactly in their technical execution—
this definition would have to be extended regarding the struc-
ture of the “Codeworks”. The aesthetic and poetic value of
these “Codeworks” indeed is constituted not only by their
textual form, but also by the fact and the knowledge that they
might potentially be executable. I would like to broaden the
notion of the generative in the sense that code is not only exe-
cutable in technical environments, but can become extremely
productive as “imaginary software” in readers themselves.
(Parallels can be seen in J.R. Searle’s 1969 further develop-
ment of Speech Acts).

In contrast to generative art, software art directs our
attention to the fact that our (media) environment is increas-
ingly reliant upon programmed structures. In doing so, the
“Codeworks” use the “poor” medium of text, which at the
same time appears to be performative or executable in the
context of the command line, by using precisely this ambiva-
lence or oscillation between simplicity and totality of execu-
tion, the “Codeworks” and, generally speaking, software art
as a whole point to the potentially totalitarian dimension of
algorithmic program code, the “invisible shadow world of
process”.

© 2005 by Inke Arns 8
© 2005 by FUOC

Artnodes July 2005

Code as performative speech act

Image 4. Walkmonster_start (2001) by Jodi

48. Cox, G. / McLean, A. / Ward, A.: “The Aesthetics of Generative Code” (2000), http://generative.net/papers/aesthetics/.

To cite this document, you could use the following reference:

ARNS, Inke (2005). “Code as performative speech act”. Artnodes [online article]. UOC. [Date of citation: dd/mm/yy].
<http://www.uoc.edu/artnodes/eng/arns0505.pdf>
ISSN 1695-5951

QXP Arns 73 06/07/05 09:35 Página 8

Artnodes July 2005

Code as performative speech act

Inke Arns
Artistic director of Hartware MedienKunstVerein
inke.arns@snafu.de

Inke Arns (PhD) is an independent curator and author focussing on media art, net cultures and Eastern Europe. 2005 saw
her made artistic director of Hartware MedienKunstVerein in Dortmund, Germany (www.hmkv.de).
After spending four years in Paris (1982-86), she studied Eastern European cultural studies, Slavistics, Political Science and
Art History at the Free University Berlin and the University of Amsterdam (Erasmus scholarship 1992); 1996 M.A. thesis Neue
Slowenische Kunst (NSK) –analysis of their artistic strategies in the context of Yugoslavia in the 1980s (published 2002).
1998-2000 PhD grant from the Berlin Senate (NaFöG). 2000-2001 lecturer at the Institute of Slavistics at the Humboldt Uni-
versity, Berlin, Germany. 2002-2004 guest-lecturer at the Hochschule für Grafik und Buchkunst (HGB), Leipzig.
In 2004 she completed her PhD degree at the Institute of Slavistics at the Humboldt University, Berlin, Germany. Her dis-
sertation, entitled Objects in the Mirror may be Closer Than They Appear: The Avant-garde in the Rear View Mirror, rese-
arches a paradigmatic shift in the way artists reflect the historical avant-garde and the notion of utopia in visual and media
art projects of the 1980s and 1990s in the former Yugoslavia and Russia.

QXP Arns 73 06/07/05 09:35 Página 9

