Inductively Coupled Plasma Spectrometry

Viktor Kanický Laboratory of Atomic Spectrochemistry Faculty of Science Masaryk University Brno Czech Republic

Methods of chemical analysis

- Main fields of analytical chemistry:
 - **7** separation methods
 - **7** spectroscopic methods
 - **7** electrochemistry
- Classification of spectroscopic methods according to carriers of analytical signal:
 - **7** electromagnetic radiation (photons)
 - **7** particles (ions, electrons)

Elemental chemical analysis

- **O** Elemental analysis makes it possible
 - **↗** to verify the presence of an element (qualitative analysis)
 - **↗** to determine its concentration (quantitative analysis)
 - ↗ to identify a structure in which it is present (structure anal.)
 - ↗ to identify a compound in which it is bound (speciation)

O WHOWHO analysis

- **⊅what (qualitative)**
- **7**how much (quantitative)
- **⊅**where (structure)
- **7**how bound (speciation)
- **O** The aim is to relate the composition to the properties

Photon-based spectroscopic methods used for elemental analysis

- **O** Atomic Emission Spectrometry (AES)
- **O** Atomic Absorption Spectrometry (AAS)
- **O** Atomic Fluorescence Spectrometry (AFS)

- **7** AES is one of the oldest analytical methods
- **7** Principles of AES are known since 19th century
- AES underwent considerable technological development
- Plasmas play a dominant role as radiation sources for AES

Definition of a plasma

- A plasma is a neutral gas of charged particles which possess collective behaviour.
- Practically, any ionized gas can be considered as a plasma.
- **O** Presence of free electrons

Role of a plasma source in AES

- **O** Atomization: from compound to free atoms
 - **High kinetic temperature**
 - **Efficient energy transfer**
 - **Processes of the order of the** *ms*
- **O** Excitation/ionization
 - **Energy transfer to higher energy levels**
 - **Processes of the order of the** *ns*

Wavelength and energy

hc $E_2 - E_1 = h\upsilon = \frac{1}{\lambda}$

- v: frequency
- λ : wavelength
- c: light velocity
- h: Planck's constant

Generating of analytical signal in AES - from sample to photon

- 1666 Newton, a sunlight dispersion with a prism, particulate nature of light
- 17thc.-Huygens, wave nature of light
- 1678 Johannes Marcus Marci, a rainbow principle
- 1752 Melvill, a candle flame through a prism
- 1802 Davy, electric arc
- 1802 Wollaston, dark lines in the Sun spectrum
- 1817 Fraunhofer, transmission diffraction grating
- 1826 Talbot, Sr emission in an alcohol flame, recommended for determining of substances

- 1846 Herschel, Na, K, Ca, Li, Ba, Cu, and Fe could be detected in alcohol flame
- 1859 Bunsen, Kirchhoff, spectral lines emitted by elements, not compounds, emission/absorption
- 1860 Foucault, sodium doublet
- 1865 Balmer, formula for calculating H-wavelenghts
- 1869 Angstrom, reflection diffraction grating
- 1869 Janssen, quantitative spectroscopy
- 1877 Gouy, pneumatic nebulizer to introduce liquids into flames
- 1879 Lockyer, arc and spark spectra

- 1882 Rowland, concave diffraction grating
- 20thc.- photographic plate for a light detection
- 1930 Gerlach, Schweitzer, internal standard
- 1930 AC current arc, HV spark excitation
- 1935 Thanheiser, Heyes, first photoelectric detection
- 1940 photomultiplier tube, direct-reading analyzers
- 1950s- grating spectrometers
- 1960 DC plasma for analysis of liquids
- 1965 Fassel, Greenfield, Inductively Coupled Plasma
- 1975 first commercial ICP-AES with polychromator

ICP principle

- **O High-frequency generator 27 64 MHz**
- Discharge initiation by spark seed electrons accelerated by electromagnetic field
- **O** Avalanche ionization $Ar + e^- \rightarrow Ar^+ + 2 e^-$
- **O Induction coil, 3-5 turns primary winding**
- **O** Electrons in plasma secondary winding
- **OICP plasma gas 12 L/min**
- Centrally introduced carrier argon with aerosol 0.6 - 1 L/min

ICP features

- **O Annular (toroidal) plasma**
- Induction region (10 000 K), skin-effect
- O Central analytical channel (5000-6000 K)
- High temperature and sufficient residence time
 (3 ms) ⇒ efficient atomization
- High concentration of Ar⁺, Ar^{*}, Ar^m
 efficient ionization / excitation (E_{ion}= 15.8 eV)
- High concentration of electrons 10²⁰-10²¹ m⁻³ (0.1% ionization of Ar) >> in flame (10¹⁴-10¹⁷ m⁻³)
 ⇒ low influence of matrix ionization on shift of ionization equilibria ⇒ no typical ionization interferences

ICP features

Hot annular plasma encloses cooler central channel containing a sample

- excited analyte atoms in the channel are not surrounded with analyte atoms in lower energy states
- there is no or only minimum selfabsorption in the induction region

linearity of calibration extends over
4 to 5 orders of magnitude.

ICP excitation

- •Ar⁺ + X \rightarrow Ar + X^{+*} $\pm \Delta E$ Charge transfer
- $Ar^m + X \rightarrow Ar + X^{+*}$
- • $e^- + X \rightarrow e^- + e^- + X^+$ Collisional ionization
- $\bullet e^- + X \rightarrow e^- + X^*$

Penning effects

- **Collisional excitation**
- (X atom of analyte)

supratermal concentrations of X^{+*} and X^{+} preferential excitation of ionic spectral lines

Energy (J) emitted by excited atoms or ions at a transition from upper p to lower q energy level per unit of time (s) from unit volume (m³) to unit solid angle (sr) is <u>emissivity</u> (Wsr⁻¹m⁻³)

$$J_{pq} = \frac{h v_{pq}}{4\pi} A_{pq} n_p = \frac{hc}{4\pi} A_{pq} n_p$$

where v_{pq} and λ_{pq} are radiation frequency and wavelength, 4π is total solid angle, A_{pq} is probability of spontaneous emission $p \rightarrow q$ (number of transitions per sec), n_p is concentration of atoms or ions on level p (m⁻³), h is Planck's constant and c is velocity of light. Spatial distribution of emission in ICP Emissivity J_{pq} corresponds to radial intensity distribution

Radiant intensity I_{pq} is energy emitted per unit time into unit solid angle by unit area of plasma layer of thickness d, i.e. power per unit area per unit solid angle (Wsr⁻¹m⁻²). This relates to axial and lateral intensity distribution.

Spatial distribution of emission in ICP AXIAL OBSERVATION

• Preheating Zone - PHZ:

aerosol desolvation

vaporization of solid particles

atomization of molecules and radicals

• Initial Radiation Zone - IRZ:

- excitation of atomic lines of low to medium 1st ionization energies which exhibits here maxima of their axial intensity distributions
- less intensive ionic (II) emission and low values of their signal-to-background ratios S/B
- **<u>non-spectral (matrix) interferences</u>** enhancement of both atomic and ionic emission in the presence of excess of easily ionisable elements - <u>excitation interferences</u>

Spatial distribution of emission in ICP Normal Analytical Zone - NAZ:

- higher concentration of electrons and temperature × IRZ
- excitation of ionic lines exhibiting here maxima of their axial intensity distributions and maximum S/B
- sufficient intensity of atomic lines with low to medium 1st ionization energies, higher S/B in comparison to IRZ
- minimum matrix interferences combination of effects at nebulization and aerosol transport with interferences in plasma, mostly non-specific depression < 5% under optimum conditions

• Tailflame T:

- lower temperature and electron density than in NAZ
- recombination reactions, ionization interferences, alkali metals intensive emission

- Power emitted by a certain surface area of an ICP is measured for a time period (integrated).
- Signal intensity is corresponding electrical quantity (photoelectric current, voltage, charge).
- Frequency of ICP oscillator influences electron density and excitation temperature. For a certain ICP generator the signal intensity depends on:
 - geometry of plasma torch power input to plasma, *P*
 - gas flow rates (outer F_p , intermediate F_a , carrier F_c)
 - \bigcirc observation mode (axial, lateral observation height)
 - ionization E_i, E_{i+1} and excitation energies E_{exc} of

elements and transitions

amount and composition of sample transported into ICP

- <u>Axial intensity distribution</u> exhibits maximum at a certain observation height *h* depending of electron density and concentration of argon species Ar^+ , Ar^* and Ar^m , and E_i , E_{i+1} and E_{exc} at which "norm temperature" of the line is achieved. For stable compounds, dissociation energies are also important.
- Number density of atoms n_{ap} excited on the level p is related to total number density n_a of atoms by Boltzmann relation (g_p^a) being statistical weight, Z_a partition function, E_p^a excitation energy considered form the fundamental state of atom E=0).

$$n_{ap} = n_a \left(\frac{g_p^a}{Z_a}\right) \exp\left(-\frac{E_p^a}{kT}\right)$$

where partition function (sum over k states) reads

$$Z_a = \sum_k g_k^a \exp\left(-\frac{E_k^a}{kT}\right)$$

Atomic line emission intensity is then

$$I_{pq} = \left(\frac{hc}{4\pi\lambda_{pq}}\right) A_{pq} n_a \left(\frac{g_p^a}{Z_a}\right) \exp\left(-\frac{E_p^a}{kT}\right)$$

• Ionization equilibrium is described by Saha equation

$$\frac{n_i n_e}{n_a} = \left(\frac{2\pi m_e k T_{ion}}{h^3}\right)^{3/2} 2 \frac{Z_i}{Z_a} \exp\left(-\frac{E_i}{k T_{ion}}\right)$$

where Z_a and Z_i are partition functions of atomic and ionic states, n_i , n_e and n_a are ion, electron and neutral atom number densities, m_e - electron mass, T_{ion} is ionization temperature and E_i ionization energy. Saha equation can be taken into account for evaluation of atomic emission by means of the degree of ionization

$$\alpha = \frac{n_i}{n_a + n_i}$$

• Consequently, for atomic line emission intensity yields

$$I_{pq} = \left(\frac{hc}{4\pi\lambda_{pq}}\right) A_{pq} n_0 (1-\alpha) \left(\frac{g_p^a}{Z_a}\right) \exp\left(-\frac{E_p^a}{kT}\right)$$

where $n_0 = n_a + n_i$ is total concentration of particles (atoms and ions) of a certain element. As a result, atomic line intensity increases with temperature in Boltzmann exponential term, however, at the same time the concentration of atoms decreases according to Saha equation due to ionization. The Intensity - Temperature dependence reaches maximum at a norm temperature.

• Ionic line emission intensity is described by relation

$$I_{pq} = K \left(\frac{g_p^i A_{pq} n_i}{\lambda_{pq} Z_i} \right) \cdot \exp \left(-\frac{E_i + E_{exc}}{kT} \right)$$

• The most significant constituent of the background of Ar ICP is Ar recombination continuum

$$I_{\nu < \nu_L} = K \frac{n_e n_i}{\sqrt{kT_e}} \quad I_{\nu > \nu_L} = K \frac{n_e n_i}{\sqrt{kT_e}} \exp\left(\frac{h(\nu_L - \nu)}{kT_e}\right)$$

• As it is approximately $n_i = n_{Ar^+} = n_e$

it means that the intensity of recombination continuum background rises with the second power of concentration of electrons, which again increases with temperature, i.e. with power input. Usually the Ar-background rises more steeply than line intensity with power.

Different spatial distribution of emission and different behaviour of lines led to the following classification:
 <u>Hard lines</u> – atomic lines of elements with high 1st ionization energies and most of ionic lines

Soft lines – at. lines with low and medium 1st ioniz. energies Between these 2 groups are ionic lines with low and medium 2nd ionization energies (Ba II 455.403 nm, La II 408.672 nm).

Inductively Coupled Plasma Atomic Emission Spectrometry

- Determination of 73 elements (P, S, Cl, Br, J)
- Simultaneous and fast sequential measurement
- High selectivity
- Low limits of detection (0.1-10 ng/mL)
- Linear dynamic range (5-7 orders of magnitude)
- Minimum matrix effects (< ± 10 % rel.)
- Introduction of liquid, solid, gaseous samples
- Conventional flows of liquids (mL/min) or microsamples (µL/min)

Inductively Coupled Plasma Atomic Emission Spectrometry

- Acceptable precision (0.5 2 % rel.)
- Acceptable accuracy (~ 1 % rel.)
- High sample throughput ~ routinely 10² 10³ determinations per hour
- **Automation of operation**