5.7 Optická emisní spektrometrie s indukčně vázaným plazmatem

Texty k obrázkům

Obr. 1

Schéma optického emisního spektrometru s indukčně vázaným plazmatem

Obr. 2

Indukčně vázaný plazmový výboj

Obr. 3

Plazmové hlavice pro generování ICP: A- argon/argonové plazma, B – argon/dusíkové plazma. Trubice: 1 – vnější (plazmová), 2 – prostřední, 3 – injektor. Konfigurační faktor plazmové hlavice = a/b, kde a je vnější průměr prostřední trubice, b je vnitřní průměr vnější (plazmové) trubice. Toky plynů: A: 5 – vnější plazmový (8-15 l/min Ar), 6 – střední plazmový (0-1 l/min Ar), nosný (0,5-1,0 l/min Ar); B: 5 – chladicí (15-20 l/min N₂), 6 – plazmový (5-10 l/min Ar), 7 – nosný (1-3 l/min Ar); 4 – indukční cívka, 5 – chladicí voda.

Obr. 4

Vysokofrekvenční oscilátor ICP generátoru

Obr. 5

Zóny analytického kanálu ICP

Obr. 6

Prostorové rozdělení emise v ICP výboji, emisivita a intenzita vyzařování, radiální rozdělení emise

Obr. 7

Prostorové rozdělení emise v ICP výboji, laterální pozorování výboje, laterální a axiální rozdělení intenzity spektrální čáry a rekombinačního kontinua argonu

Obr. 8

Prostorové rozdělení emise v ICP výboji, axiální pozorování výboje

Obr. 9

Koncentrace ekvivalentní pozadí BEC a mez detekce c_L ; RSD_L – relativní směrodatná odchylka intenzity čáry I_L , S – citlivost, c_A – koncentrace analytu, RSD_B – relativní směrodatná odchylka pozadí, B – intenzita pozadí (I_B)

Obr. 10

Axiální rozdělení intenzity emise některých atomových (I) a iontových (II) čar, λ (nm)

Obr. 11

Radiální rozdělení intenzity emise některých atomových a iontových čar

Obr. 12

Axiální rozdělení intenzity emise čáry Y II 371,030 nm v závislosti na průtoku nosného plynu F_c ; Tečkovaně je znázorněna spojnice maxim průběhů pro jednotlivé hodnoty průtoků F_c , čerchovaně průmět spojnice do roviny h- F_c ; příkon P = 1,2 kW, vnější plazmový $F_p = 18,3$ l/min Ar, střední plazmový $F_a = 0,43$ l/min Ar.

Obr. 13

Axiální rozdělení intenzity emise pásu YO 597,2 nm v závislosti na průtoku nosného plynu F_c ; čerchovaně spojnice minim; příkon P = 1,2 kW, vnější plazmový $F_p = 18,3$ l/min Ar, střední plazmový $F_a=0,43$ l/min Ar.

Obr. 14

Axiální rozdělení intenzity emise pozadí čáry Y II 371,030 nm v závislosti na průtoku nosného plynu F_c (l/min Ar); 1 - 0,79; 2 -0,92; 3 - 1,06; 4 - 1,19; 5 - 1,32; 6 - 1,45; 7 - 1,58; 8 - 1,72;

Obr. 15

Pozadí čar Gd II 335,862 nm a Gd II 336,2233 nm tvořené emisí pásu NH 336,0 nm a spojitým rekombinačním zářením argonu, naměřené při různých výškách pozorování h; křivka č. – h (mm): 1 - 28; 2 - 24; 3 - 20; 4 - 16; 5 - 12; 6 - 8; P = 1,1 kW, průtoky plynů (l/min Ar) $F_c = 1,06$; $F_a = 0,43$; $F_p = 18,3$; 2 mg/l Gd v 1,4 mol/l HNO₃

Obr. 16

Axiální rozdělení nespektrální interference (matrix efektu) X na čáře Nd II 430,358 nm v přítomnosti 0,1 mol/l NaNO₃ v závislosti na průtoku nosného plynu F_c ; křivka č. – F_c (l/min): 1 - 0,79; 2 -0,92; 3 – 1,06; 4 – 1,19; 5 – 1,32; 6 – 1,45; 7 – 1,58; 8 – 1,72; 9 – 1,85; P = 1,1 kW, průtoky plynů (l/min Ar) F_c = 1,06; F_a = 0,43; F_p =18,3; 16 mg/l Nd v 1,4 mol/l HNO₃

Obr. 17

Axiální rozdělení nespektrální interference (matrix efektu) X na čáře Nd II 430,358 nm v závislosti na koncentraci Na (100 – 10000 mg/l Na) pro různé výšky pozorování; křivka č. – h (mm): 1 – 8; 2 – 16; 3 – 20; 4 – 24; P = 1,1 kW; $F_c = 1,06$; $F_a = 0,43$; $F_p = 18,3$; 16 mg/l Nd v 1,4 mol/l HNO₃; měřítko na obou osách je logaritmické

Obr. 18

Laterální rozdělení nespektrální interference (matrix efektu) X na čarách Y II 371,030 nm (1) a Y I 410,238 nm (2); Polohy maxim laterálních rozdělení emise čar Y II – a, Y I – b(rozdělení zde nejsou uvedena); P = 1,1 kW; $F_c = 1,06$; $F_a = 0,43$; $F_p = 18,3$; 0,1 mol/l NaNO₃ v 1,4 mol/l HNO₃

Obr. 19

Závislost nespektrální interference (matrix efektu) X na koncentraci kyseliny chlorovodíkové pro Nd II 430,358 nm; 16 mg/l Nd; podmínky: křivka č. 1: h = 16 mm, $F_c = 1,06$ l/min, křivka č. 2: h = 20 mm, $F_c = 1,45$ l/min; P = 1,1 kW; $F_a = 0,43$ a $F_p = 18,3$ l/min Ar

Obr. 20

Koncentrický zmlžovač podle Meinharda

Obr. 21

Pravoúhlý (úhlový nebo také křížový) zmlžovač podle Kniseleyho

Obr. 22

Žlábkový zmlžovač

Obr. 23

Síťkový zmlžovač dle Hildebranda

Obr. 24

Ultrazvukový zmlžovač

Obr. 25

Mlžná komora dle Scotta

Obr. 26

```
Rovinná mřížka na odraz; \alpha – úhel dopadu, \beta_1, \beta_2 – úhly odrazu, n – počet vrypů na 1 mm, d – vzdálenost vrypů, k – řád spektra, o – normála mřížky, \lambda – vlnová délka
```

Obr. 27

Rayleighovo kritérium rozlišení 2 čar

Obr. 28

Mřížka s odleskovým efektem (blaze effect); o_1 – normála vrypu, o_2 – normála mřížky, α – úhel dopadu, β – úhel odrazu, θ – odleskový úhel, λ_B – vlnová délka odlesku, k – řád spektra, n – počet vrypů na mm

Obr.29

Monochromátor s rovinnou difrakční mřížkou a konkávními zrcadly, montáž Czerny-Turner; 1- zdroj ICP, 2-vstupní štěrbina, 3-konkávní zrcadla (kolimátorový a kamerový objektiv), 4rovinná difrakční mřížka, 5-výstupní štěrbina, 6-fotonásobič, *o*-normála mřížky, α -úhel dopadu, β -úhel odrazu, *i*-úhel mezi paprskem dopadajícím na zrcadlo a paprskem odraženým

Obr. 30

Polychromátor s konkávní mřížkou, montáž Paschen-Runge; 1-zdroj ICP, 2-vstupní štěrbina, 3-konkávní mřížka o poloměru křivosti R (šířka mřížky je z důvodu názornosti zvětšena), 4-Rowlandova kružnice – její průměr d je roven poloměru křivosti R mřížky, 5-výstupní štěrbina, 6-fotonásobič, α -úhel dopadu, β -úhel odrazu, o-normála mřížky, λ_1 , λ_2 – vlnové délky difraktovaného záření

Obr. 31

Stupňovitá mřížka – mřížka echelle

Obr. 32

Echelle spektrometr se zkříženou optikou; 1-echelle mřížka, 2-duté zrcadlo, 3-hranol, 4-"dvojrozměrné" spektrum, λ - vlnová délka, *k* - řád spektra.

Obr. 33

Schéma detektoru CCD.