Modeling of geochemical processes

Numeric Mathematics Refreshment

J. Faimon

Numeric mathematics

- Search of solution by a substitution of exact numerals for variables.
- Large number of repeated numeric operation
 - Personal computers

Iterations and algorithms

- **algorithm** an instruction how to solve the given task
- **iteration algorithm** technique of calculation in the repetitious steps, at which the result from the previous step is input into next step[1].
- iteration the step in the iteration algorithm

[1] Algorithm should ,,converge" (it should approach solution).

Example: Calculation of square root \sqrt{N} It is a solution of the equation $x^2 = N$, for x

We have to find, e.g., square root of 16, N = 16.

The arrangement of the definitional equation gives $x = \frac{16}{x}$. Let us calculate x.

At first (zero step), we substitute for x on the right hand of the equation its estimation (arbitrary number), e.g., $x_0 = 2$, and calculate new value of x, i.e., x_1 . We substitute the found solution for x and repeat the calculation till the solution is not constant.

The solution procedure (algorithm) can be written as $\mathbf{X}(\mathbf{I})$

$$(k+1) = \frac{N}{x_k}$$

where **k** is step number; iteration number (we start by zero step)

Algorithm formulation Solution of non-linear equations: Newton method

Let the function y = f(x) relate to the equation f(x) = 0, which root is x (the intersection point of f(x) and x-axis)

- (1) we estimate the root $\mathbf{x}_{\mathbf{0}}$,
- (2) we keep the tangent through the point $\mathbf{y}(\mathbf{x}_0)$
- (3) section point of the tangent and x-axis, x_1 , is the new estimation of root x.
- (4) the whole procedure is repeated (iterace).

The equation of the tangent in the point

 $\mathbf{x_0}, \mathbf{y(x_0)} \quad \text{is} \quad \mathbf{y} - \mathbf{y(x_0)} = \mathbf{y'(x_0)} (\mathbf{x} - \mathbf{x_0}).$ Its intersection point with x-axis (y = 0) is $-\mathbf{y(x_0)} = \mathbf{y'(x_0)} (\mathbf{x} - \mathbf{x_0})$ The rearranging yields $\mathbf{x} = \mathbf{x_0} - \frac{\mathbf{y(x_0)}}{\mathbf{y'(x_0)}}$ and $\mathbf{x_{(k+1)}} = \mathbf{x_k} - \frac{\mathbf{y(x_k)}}{\mathbf{y'(x_k)}}$

Example:

Find the roots of the equation $x^3 - 4x^2 + 5x - 2 = 0$. The derivation of f(x) for x is

 $3x^2 - 8x + 5$

$$x_{k+1} = x_k - \frac{x^3 - 4x^2 + 5x - 2}{3x^2 - 8x + 5}$$

The roots are

$$\mathbf{x}_1 = 2, \ \mathbf{x}_{2,3} = 1$$

	iteration	X ₁	$x_2 = x_3$	iteration	X ₁	$x_2 = x_3$
	0	5	0	13	2	0,999776
	1	3,8	0,4	14	2	0,999888
	2	3,0125	0,652632	15	2	0,999944
7	3	2,507817	0,806483	16	2	0,999972
\$	4	2,204385	0,895986	17	2	0,999986
	5	2,051791	0,945653	18	2	0,999993
	6	2,004643	0,972144	19	2	0,999997
,	7	2,000043	0,985886	20	2	0,999998
-	8	2	0,992894	21	2	0,999999
	9	2	0,996435	22	2	1
	10	2	0,998214	23	2	1
	11	2	0,999106	24	2	1
	12	2	0,999553	25	2	1

Example: Equilibrium in the open system calcite-H₂**O-CO**₂ *system:* CaCO_{3(s)}, CO₂, H₂O, Ca²⁺, HCO₃⁻, CO₃²⁻, OH⁻, H⁺, H₂CO₃ (9 components) activity coefficient ~ 1, a ~ mol/l,

- 4 components are given: activity of $CaCO_{3(s)}$ and H_2O , $\mathbf{p}_{CO2} = const = 3.10^{-4}$ atm and $[H_2CO_3] = const = K_H p_{CO2}$
- 5 variables: $x_1 = [H^+]$, $x_2 = [OH^-]$, $x_3 = [Ca^{2+}]$, $x_4 = [HCO_3^-]$, $x_5 = [CO_3^{2-}]$ 5 equations: (1) electro-neutrality $[H^+] + 2[Ca^{2+}] = [OH^-] + [HCO_3^-] + 2[CO_3^{2-}]$

and equilibrium equations for:

(2) H₂O, (3) calcite-H₂O system, carbonate dissociation into (4) first and (5) second stage!

5 variables in 5 functions: $f_1(\mathbf{x}) = x_1 - x_2 + 2 x_3 - x_4 - 2 x_5 = 0$ $f_2(\mathbf{x}) = x_1 x_2 - K_w = 0$ $f_3(\mathbf{x}) = x_1 x_5 / x_4 - K_2 = 0$ $f_4(\mathbf{x}) = x_1 x_4 - K_1 K_H p_{CO2} = 0$ $f_5(\mathbf{x}) = x_3 x_5 - K_s = 0$

(electro-neutrality)
(water ion product)
(dissociation constant K₂)
(dissociation constant K₁)
(calcite dissolution product)