Modeling of geochemical processesGlobal Systems

J. Faimon

Global systems

Reservoirs and fluxes

Flux into reservoir, j_{in} , flux out from reservoir, j_{out} , reservoir content **n**. **n** [ton, kg, mol, mol/l ...], \mathbf{j} [ton/year, mol/day ...]

Assumption: the flux from the reservoir is directly proportional to concentration or reservoir content. k is a constant.

Example: the flux of sulfates from ocean to sediments is proportional tosulfate content in ocean. **Example:** a photosynthesis rate is proportional to CO_2 -content in atmosphere

If $\mathbf{j}_{\text{in}} \sim \mathbf{a} = \text{const.}$, it si valid for the reservoir content $\mathbf{n}: \quad +\frac{d\mathbf{n}}{dt} = \mathbf{a} - \mathbf{k}\mathbf{n}$ dn $+\,-$ =−Steady state: reservoir content is constant $+ \frac{d}{dx} = 0$ Then $\mathbf{a} - \mathbf{k} \mathbf{n} = \mathbf{0}$ and $\mathbf{n} = \mathbf{n}_{ss} = \frac{1}{k}$ dtdn $+ \longrightarrow =$ a $n = n_{ss} = =n_{\rm \, ss}=$ The solution of the differential equation $(t = 0, n = n_0):$ $n = \frac{a}{k} - \left(\frac{a}{k} - n_0\right)e^{-kt}$ ne $k \qquad \qquad$ a k a $\mathsf{n}=$ - \int \setminus $=\frac{a}{a}$ reorganizing gives: $\ln n_0 e^{-kt} + \frac{a}{k} (1 - e^{-kt})$ ($\bigg)$ 1e k^{\vee} a $n = n_0 e^{-\alpha}$ ne $=$ $\ln 6$ + $\ln -c$ +

Interpretation:

(1) Initial content of element n_0 is transformed into steady state content $n_{ss} = a/k$, with decrease of the exponential term e^{-kt} with time. In time t = 0 is ^{-kt} with time. In time $t = 0$ is $e^{-kt} = 1$ ^{−⊾}ี (2) Initial content of element n_0 decays in t = ∞ is time! $\frac{a}{k}$ $\left(1-e^{-kt}\right)$ ∞ $(e^{-kt} = 0)$ ^{−κι} = ()e k^{\vee} athe second term is a/k at this time! $\frac{a}{k}$ (1-e⁻¹)

Infinite time is needed for reaching the steady state.

However, significant decrease of the exponential term $m e^{-kt}$ e

is reached at
$$
t = \frac{1}{k}
$$
 where $e^{-kt} = \frac{1}{e} = 0.3679$

This time is a response time

The residence time is given by

$$
\tau_{res} = \frac{n_{ss}}{j_{in}} = \frac{n_{ss}}{j_{out}}
$$
 Substitution gives $\tau_{res} = \frac{a/k}{a} = \frac{1}{k}$

For simple linear model, response time equals residence time

Two-reservoir model

The increments in reservoir contents are expressed by differential equations

$$
+\frac{dx_1}{dt} = -k_{12}x_1 + k_{21}x_2 + \frac{dx_2}{dt} = k_{12}x_1 - k_{21}x_2
$$

In matrix form, it is $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\sqrt{2}$ −− \vert $\overline{}$ $\overline{}$ $\sqrt{2}$ 21 $12 \qquad \qquad \mathbf{\Lambda}_{21}$ $12 \qquad \qquad \mathbf{\Lambda} 21$ 21 $\rm X$ \bf{X} k_1 $- k_2$ kk $\bf X$ \bf{X} dt : d

In vector form, it is K $\mathbf X$ x $- =$ dtd $\frac{\partial u}{\partial t} = \mathbf{K} \mathbf{x}$, where **x** is a vector of variables **x**_i and K is matrix of rate constants