Modeling of geochemical processes Global Systems

J. Faimon

Global systems

Reservoirs and fluxes

Flux into reservoir, \mathbf{j}_{in} , flux out from reservoir, \mathbf{j}_{out} , reservoir content \mathbf{n} . \mathbf{n} [ton, kg, mol, mol/l ...], \mathbf{j} [ton/year, mol/day ...]

Assumption: the flux from the reservoir is directly proportional to concentration or reservoir content. \mathbf{k} is a constant.

Example: the flux of sulfates from ocean to sediments is proportional to sulfate content in ocean. **Example:** a photosynthesis rate is proportional to CO_2 -content in atmosphere

If $\mathbf{j}_{in} \sim \mathbf{a} = \text{const.}$, it si valid for the reservoir content \mathbf{n} : $+\frac{\mathrm{dn}}{\mathrm{dt}} = \mathbf{a} - \mathbf{kn}$ Steady state: reservoir content is constant $+\frac{\mathrm{dn}}{\mathrm{dt}} = 0$ Then $\mathbf{a} - \mathbf{kn} = \mathbf{0}$ and $\mathbf{n} = \mathbf{n}_{ss} = \frac{\mathbf{a}}{\mathbf{k}}$ The solution of the differential equation $(\mathbf{t} = 0, \mathbf{n} = \mathbf{n}_0)$: $\mathbf{n} = \frac{\mathbf{a}}{\mathbf{k}} - \left(\frac{\mathbf{a}}{\mathbf{k}} - \mathbf{n}_0\right) \mathbf{e}^{-\mathbf{kt}}$ reorganizing gives: $\mathbf{n} = \mathbf{n}_0 \, \mathbf{e}^{-\mathbf{kt}} + \frac{\mathbf{a}}{\mathbf{k}} \left(1 - \mathbf{e}^{-\mathbf{kt}}\right)$

Interpretation:

(1) Initial content of element \mathbf{n}_0 is transformed into steady state content $\mathbf{n}_{ss} = \mathbf{a}/\mathbf{k}$, with decrease of the exponential term e^{-kt} with time. In time t = 0 is $e^{-kt} = 1$ (2) Initial content of element \mathbf{n}_0 decays in $t = \infty$ ($e^{-kt} = 0$) the second term is \mathbf{a}/\mathbf{k} at this time! $\frac{\mathbf{a}}{\mathbf{k}} \left(1 - e^{-kt}\right)$

Infinite time is needed for reaching the steady state.

However, significant decrease of the exponential term e^{-kt}

is reached at
$$t = \frac{1}{k}$$
 where $e^{-kt} = \frac{1}{e} = 0.3679$

This time is a *response time*

The residence time is given by

$$\tau_{\rm res} = \frac{n_{\rm ss}}{j_{\rm in}} = \frac{n_{\rm ss}}{j_{\rm out}}$$
 Substitution gives $\tau_{\rm res} = \frac{a/k}{a} = \frac{1}{k}$

For simple linear model, response time equals residence time

Two-reservoir model

The increments in reservoir contents are expressed by differential equations

$$+\frac{dx_1}{dt} = -k_{12}x_1 + k_{21}x_2 + \frac{dx_2}{dt} = k_{12}x_1 - k_{21}x_2$$

In matrix form, it is
$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -k_{12} & k_{21} \\ k_{12} & -k_{21} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

In vector form, it is $\frac{d\mathbf{x}}{dt} = \mathbf{K} \mathbf{x}$, where \mathbf{x} is a vector of variables \mathbf{x}_i and \mathbf{K} is matrix of rate constants