Modeling of geochemical processes Linear Algebra Refreshing

J. Faimon

Eigen Values and Eigen Vectors of Matrix

The square matrix \mathbf{A}_{nxn} can be decomposed (factorized) into a product of three matrix

$$\mathbf{A}_{nxn} = \mathbf{U}_{nxn} \mathbf{\Lambda}_{nxn} \mathbf{U}_{nxn}^{-1}$$

 $\boldsymbol{\Lambda}_{nxn}$ is diagonal matrix with diagonal components $\boldsymbol{\lambda}_i$ called eigen values of matrix \boldsymbol{A}

 $U_{\mbox{\scriptsize nxn}}$ is a square matrix that comprises column vectors u_i called eigen vectors of matrix A

An example:

$$\begin{bmatrix} -1 & -6 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix}$$

$$\lambda_1 = 1 \qquad \lambda_2 = 2 \qquad \mathbf{u}_1 = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \qquad \mathbf{u}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

The eigencomponents (every eigen value and eigen vector) are connected by linear equation (in vectors): $\mathbf{A} \mathbf{u}_i = \lambda_i \mathbf{u}_i$

the example
$$\begin{bmatrix} -1 & -6 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
, and $\begin{bmatrix} -1 & -6 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

Determination λ_i and \mathbf{u}_i

It results from the former equation that $det(\mathbf{A} - \lambda_i \mathbf{I}) = 0$; it is

$$det \begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{bmatrix} = 0$$

The example:
$$det \begin{bmatrix} -1-\lambda & -6\\ 1 & 4-\lambda \end{bmatrix} = 0$$

characteristic equation is $(-1-\lambda)(4-\lambda) - (-6) \cdot 1 = 0$

rewriting gives $(-1-\lambda)(4-\lambda)+6=0$; solution is $\lambda_1 = 1, \lambda_2 = 2$

Diagonal matrix of eigen values is $\mathbf{\Lambda} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

Substituting of the eigen values yields the equation set

$$\begin{bmatrix} -1 & -6 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{21} \end{bmatrix} = 1 \begin{bmatrix} u_{11} \\ u_{21} \end{bmatrix} \qquad \begin{bmatrix} -1 & -6 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} u_{12} \\ u_{22} \end{bmatrix} = 2 \begin{bmatrix} u_{12} \\ u_{22} \end{bmatrix}$$

A decomposition gives

$$\begin{array}{ll} - u_{12} - 6 \ u_{22} &= 2 \ u_{12} \\ u_{12} + 4 \ u_{22} &= 2 \ u_{22} \\ \end{array} \qquad \begin{array}{ll} u_{12} = -2 \ u_{22} \\ u_{12} = -2 \ u_{22} \\ \end{array} \qquad \begin{array}{ll} \text{both equations are depended} \end{array}$$

If it is chosen $u_{21} = -1$, then $u_{11} = 3$. If $u_{22} = -1$, then $u_{12} = 2!$

$$\mathbf{U} = \begin{bmatrix} 3 & 2 \\ -1 & -1 \end{bmatrix} \qquad \mathbf{u}_1 = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \qquad \mathbf{u}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

The equations give only **direction** of the eigen vectors; they give not coordinates of end point. Therefore, **unitary lengths of vectors** are often chosen:

 $u_{11}^2 + u_{21}^2 = 1$, and $u_{12}^2 + u_{22}^2 = 1$ It results from the former example and $10 u_{21}^2 = 1$ $u_{11}^2 = 9 u_{21}^2$ The substituting yields $u_{21} = \sqrt{\frac{1}{10}}$ and $u_{11} = -\sqrt{\frac{9}{10}}$ It results from the second equation set $u_{12}^2 = 4 u_{22}^2$ The substituting yields $u_{22} = \sqrt{\frac{1}{5}}$ and $u_{12} = -\sqrt{\frac{4}{5}}$ The matrix of eigen vectors $\mathbf{U} = \begin{bmatrix} -\sqrt{\frac{9}{10}} & -\sqrt{\frac{4}{5}} \\ \sqrt{\frac{1}{10}} & \sqrt{\frac{1}{5}} \end{bmatrix} = \begin{bmatrix} -0.94868 & -0.89443 \\ 0.31622 & 0.44721 \end{bmatrix}$

Inverse matrix can be find, e.g., under using of MS Excel

$$\mathbf{U}^{-1} = \begin{bmatrix} -3.16228 & -6.32456\\ 2.23607 & 6.70820 \end{bmatrix}$$

Verifying

$$\mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1} = \begin{bmatrix} -0.94868 & -0.89443 \\ 0.31622 & 0.44721 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -3.16228 & -6.32456 \\ 2.23607 & 6.70820 \end{bmatrix}$$
$$\mathbf{U} \mathbf{\Lambda} = \begin{bmatrix} -0.94868 & -1.78885 \\ 0.31623 & 0.89443 \end{bmatrix}$$
$$\mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1} = \begin{bmatrix} -1 & -6 \\ 1 & 4 \end{bmatrix}$$