Modeling of geochemical processes

Linear system of differential equations

J. Faimon

Matrix **K** is diagonalized into $U \Lambda U^{-1}$. Then $\mathbf{U}\,\mathbf{\Lambda}\,\mathbf{U}^{-\mathbf{I}}\,\mathbf{x}$ $\frac{\mathbf{X}}{A}$ = 11 $\mathbf{\Lambda}$ 11⁻¹ dtd $=$ \blacksquare \blacksquare Multiplying by U-1 from left side gives $\boldsymbol\Lambda\:{\bf U}^{-1}\:{\bf x}$ $\mathbf X$ $U^{-1} \frac{d \mathbf{x}}{dt} = \mathbf{\Lambda} \mathbf{U}^{-1}$ dtd $=$ Λ U Because U⁻¹ is a matrix of constants, it is $\frac{dU}{dx} = \Lambda U^{-1} x$ U $\frac{\mathbf{X}}{A} = \mathbf{A} \mathbf{U}^{-1}$ 1 $\mathrm{d} \mathbf{U}^$ dt− $\overset{\cdot\cdot\cdot}{=}=$ Let us substitute for $U^{-1}x = y$. Then =y 1 $\mathbf{X} = \mathbf{y}$. Then $\frac{dy}{dt} = \mathbf{\Lambda} \mathbf{y}$ $\frac{\mathbf{y}}{2}$ dtdThis equation can be split into a set of individual equations, $\frac{d\mathbf{x}}{dt} = \lambda_i$ \mathbf{y}_i , $\frac{i}{\tau} = \lambda_i$ y dtd $\frac{dy_i}{dx} =$ λλ

which can be solved at initial conditions, $t = 0$, $y = y_0$ as $y_i = e^{y_i y_j} y_{i0}$ $y_i = e^{\lambda_i t}$ $e^{\alpha y}$ $=$ \bf{c}

The set of the equations can be expressed in vectors as

0Λ $y = e^{\Lambda t} y_0$ and, after re-substitution, as $U^{-1}x = e^{\Lambda t} U^{-1}x_0$ Λ ${\bf U}^{-1} {\bf x} = e^{\Lambda t} {\bf U}^{-1} {\bf x}$ $^{-1}$ **x** = $e^{\mathbf{\Lambda} t}$ **U**⁻¹ $=$ e \blacksquare

Multiplying matrix U from left side gives the expression for vector x

$$
\mathbf{x} = \mathbf{U} e^{\mathbf{\Lambda}t} \mathbf{U}^{-1} \mathbf{x}_0
$$

\n
$$
\mathbf{x} = \sum_{i} e^{\lambda_i t} \left(i^{th} \text{column of } \mathbf{U} \right) \left(i^{th} \text{ row of } \mathbf{U}^{-1} \right) \mathbf{x}_0
$$

\n
$$
\mathbf{x} = \sum_{i} e^{\lambda_i t} \mathbf{U} \mathbf{e}_i \mathbf{e}_i^{\mathrm{T}} \mathbf{U}^{-1} \mathbf{x}_0
$$

$$
\mathbf{x} = \sum_{i} e^{\lambda_i t} \mathbf{U}_i \mathbf{x_0}
$$

Example: system of differential equations

$$
\frac{dx_1}{dt} = 2 x_1
$$

$$
\frac{dx_2}{dt} = x_1 + x_2
$$

$$
\frac{dx}{dt} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} x
$$

Initial conditions: $t = 0$, $x_1 = 1$ $x_2 = -1$ = $1-1$ 0 – \vert – $\mathbf X$

$$
\frac{d\mathbf{x}}{dt} = \mathbf{A} \mathbf{x} \qquad \mathbf{A} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \mathbf{U}\mathbf{A}\mathbf{U}^{-1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -\sqrt{2} & 0 \\ -1 & 1 \end{bmatrix}
$$

 $\overline{}$ \rfloor

 $\overline{}$

−

1

 $\overline{}$

 $\overline{}$

In general: 2 \triangle 0 $_1$ **x**₀ + $e^{\lambda_1 t}$ $\mathbf{x} = e^{\lambda_1 t} \mathbf{U}_1 \mathbf{x}_0 + e^{\lambda_1 t} \mathbf{U}_2 \mathbf{x}$ λλ $=e^{\alpha_1}$ \mathbf{U}_1 \mathbf{X}_2 $+$ e^{α_2}

$$
\mathbf{x} = e^{2t} \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \\ 2 \end{bmatrix} \begin{bmatrix} -\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + e^{t} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$

$$
\mathbf{x} = e^{2t} \begin{bmatrix} -1 \\ -1 \end{bmatrix} + e^{t} \begin{bmatrix} 0 \\ -2 \end{bmatrix}
$$

$$
x1 = -e2t
$$

$$
x2 = -e2t - 2et
$$