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during intrathymic T cell development, there are only six 
expressed human V �  genes and a similarly small number 
of V �  genes  [2] . Nevertheless, the  ��  TCR repertoire can 
be at least as diverse as the  ��  TCR repertoire, due to the 
tremendous impact of mechanisms such as N nucleotide 
insertions during TCR gene rearrangement and usage of 
all three reading frames in the case of D �  elements  [3] . 
Interestingly, however, the expressed  ��  TCR repertoire 
is highly biased, resulting in a preferential expression of 
some V � /V �  genes in certain anatomical localizations. 
Thus, in the peripheral blood of adult humans there is a 
clear preponderance of  ��  T cells expressing V � 9 paired 
with V � 2, which can represent 50–95% of all circulating 
 ��  T cells ( [4] ; the nomenclature of the human V � /V �  
genes follows the nomenclature of Porcelli et al.  [5] ). While 
V � 9/V � 2 cells do not dominate early after birth, the shap-
ing of the peripheral blood  ��  TCR repertoire takes place 
during childhood when the relative expansion of V � 9/V � 2 
T cells is thought to occur in response to exposure to en-
vironmental  ��  T cell-stimulating microbial antigens  [6] . 
In most healthy adults, other  ��  T cell subsets are present 
only in low frequency in the blood. The second most fre-
quent subset expresses the V � 1 element which can be 
paired with any of the available V �  chains. While V � 1 cells 
are a minor population in the peripheral blood, they pre-
dominate at mucosal surfaces and are located within the 
epithelial layer of the small and large intestine  [7, 8] . In-
terestingly, the TCR repertoire of intestinal V � 1 T cells is 
highly restricted, as has been shown by sequencing of re-
arranged junctional regions of V � 1 transcripts  [9, 10] . 
Similarly to the situation with the V � 9/V � 2 T cells in the 
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 Abstract 
  ��  T cells constitute a separate lineage of T lymphocytes 
which differ from conventional  ��  T cells with regard to 
T cell receptor (TCR) repertoire and tissue localization. In 
murine skin,  ��  T cells expressing a canonical V � 5 TCR 
are abundant and contribute as so-called dendritic epi-
dermal T cells to local immune surveillance. In humans, 
major subsets of  ��  T cells are recognized on the basis 
of their TCR V �  usage. While V � 2 cells dominate in the 
peripheral blood, V � 1 cells are preferentially localized in 
mucosal tissue including the intestinal epithelia. In this 
article we summarize basic features of intraepithelial  ��  
T cells and discuss their possible role in epithelial de-
fence. 

 Copyright © 2005 S. Karger AG, Basel 

 Basic Features of  ��  T Cells 

 In contrast to  ��  T cells,  ��  T cells do not recognize 
antigen in the context of classical major histocompatibil-
ity complex (MHC) molecules, in line with the absence of 
CD4 or CD8 coreceptors on most  ��  T cells.  ��  T cells also 
differ from  ��  T cells with regard to the germ-line-encod-
ed T cell receptor (TCR) repertoire  [1] . While large num-
bers of variable  �  and  �  genes are available for selection 
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peripheral blood, the V � 1 T cells in the intestine are poly-
clonal at birth and display increasing junctional restric-
tion with age  [11] . Importantly, it was found that the V � 1 
TCR repertoires of circulating and intestinal V � 1 T cells 
were clearly different in the same individual, suggesting 
that intraepithelial V � 1 T cells fulfi l functions linked to 
the recognition of locally displayed ligands or antigens 
 [10] . Alterations in the peripheral blood V � 1 TCR reper-
toire occur in certain conditions, notably in the context of 
viral infections. As an example, characteristic changes in 
the  ��  TCR repertoire are observed in HIV-1 infection 
with a decrease in V � 9/V � 2 T cells being associated with 
a marked expansion of V � 1 T cells  [12–14] . It has been 
proposed that the expansion of peripheral blood V � 1  ��  
T cells in HIV-1-infected individuals might result from 
the recognition of ligands displayed on the polyclonally 
activated B lymphocytes  [15] . An increase in circulating 
V � 1 T cells was also found in renal allograft recipients de-
veloping a cytomegalovirus infection. Interestingly, sub-
stantial evidence indicated that the expanded V � 1 T cells 
responded directly to viral glycoproteins in the absence of 
antigen-presenting cells  [16] . 

 Similar to the above-discussed compartimentalization 
of human  ��  T cell subsets, there is also a strong correla-
tion of the locally expressed  ��  TCR repertoire and ana-
tomical localization in the mouse. In contrast to humans, 
the mouse epidermis harbours large numbers of  ��  T 
cells, commonly known as dendritic epidermal T cells 
(DETC)  [17] . The  ��  DETC appear to be of thymic origin 
and express a canonical V � 5 TCR (nomenclature of Hei-
lig and Tonegawa  [18] ), suggesting that they recognize an 
antigen restricted to the epidermis  [19, 20] . At least some 
 ��  T cells, notably intestinal intraepithelial lymphocytes 
(IEL) expressing V � 7, are generated in the absence of a 
functional thymus  [21] . A very recent study has extended 
these fi ndings to demonstrate that  ��  IEL can develop in 
athymic  nu/nu  mice lacking all lymph nodes including 
mesenteric lymph nodes, Peyer’s patches, and the recent-
ly identifi ed intestinal isolated lymphoid follicles  [22] , 
suggesting that at least some lymphoid cells can undergo 
TCR gene rearrangement in the gut mucosa. 

 Migration of  ��  T Cells to Intestinal Mucosa 
and Skin 

 At least two mutually non-exclusive pathways orches-
trate the ordered migration of lymphocyte subsets to de-
fi ned target tissues, i.e. the interaction between adhesion 
molecules with their corresponding receptors, and the 

chemoattraction by locally produced chemokines of lym-
phocytes selectively expressing the adequate chemokine 
receptor  [23] . Intestinal homing T lymphocytes express 
the chemokine receptor CCR9 and migrate in response 
to the chemokine CCL25/TECK which is produced in the 
small intestine  [24] ; as a consequence, CCR9 knockout 
mice have a severe defi ciency in intraepithelial  ��  T cells 
 [25] . CCR9 is also expressed on intestinal homing human 
T cells and other mucosal lymphocytes  [26] . While the 
expression of CCR9 on human  ��  as compared to  ��  T 
cells has not been analyzed before, we have recently in-
vestigated this issue on peripheral blood and intestinal 
IEL  ��  T cells. We found very low expression of CCR9 
on V � 1 and V � 2 blood  ��  T cell subsets ex vivo and sub-
stantially higher induction on V � 1 as compared to V � 2 T 
cells upon TCR-dependent cellular activation. Further-
more, IEL  ��  T cells strongly expressed CCR9 (as did  ��  
IEL) and maintained high level expression upon extend-
ed in vitro culture, in striking contrast to the  ��  IEL. 
Thus, it appears that CCR9 also plays a crucial role for 
the intestinal localization of human  ��  T cells. 

 The migration of T cells to the skin is governed by 
other chemokines, notably CCL17 (TARC) and CCL27 
(CTACK) and their respective receptors CCR4 and 
CCR10  [27–29] . CCR4, however, is not selective for skin-
homing lymphocytes but also governs migration of lymph 
node homing T cells in response to CCL22/MDC. In hu-
man peripheral blood lymphocytes, CCR4 is induced on 
V � 2  ��  T cells upon TCR-dependent stimulation by bac-
terial phosphoantigens  [30] , and we also observed a strong 
CCR4 expression on IEL-derived human  ��  T cell lines. 
Taken together, it appears that similarly to conventional 
 ��  T cells, the coordinated expression of a selected set of 
chemokine receptors is correlated with the tissue localiza-
tion of  ��  T cells  [31] . In addition to chemokines and their 
receptors, integrins are critically involved in this process. 
The integrin  �  E  �  7  (CD103) is expressed by IEL and me-
diates lymphocyte adhesion to epithelial cells by interact-
ing with the specifi c ligand E-cadherin  [32] . Interestingly, 
the expression and the function of  �  E  �  7  integrin is regu-
lated by the chemokine CCL25, giving rise to a function-
ally important cross-talk with CCR9 on mucosa-seeking 
T cells  [33] . 

 Antigens Recognized by  ��  T Cells 

 Conventional  ��  T cells recognize processed peptides 
in the context of MHC class I (CD8+ T cells) or MHC 
class II molecules (CD4+ T cells). Instead, most  ��  T cells 
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recognize different ligands, and usually in an MHC-non-
restricted fashion [for reviews, see  1, 31] . The dominant 
subset of  ��  T cells in human peripheral blood expressing 
V � 9 paired with V � 2 recognizes small microbial pyrophos-
phates derived from the bacterial non-mevalonate path-
way of isoprenoid biosynthesis (‘phosphoantigens’)  [34, 
35] . Such phosphoantigens are produced by a variety of 
pathogenic bacteria, and rapidly induce proinfl ammatory 
cytokines including tumour necrosis factor- �  and inter-
feron- �  in V � 9V � 2 T cells  [36, 37] . Human  ��  T cells ex-
pressing V � 1 are preferentially found among IEL as com-
pared to peripheral blood. The V � 1-encoded TCR recog-
nizes MHC class I-related molecules (MICA/MICB) that 
are induced on epithelial cells by stress, suggesting that 
V � 1  ��  T cells contribute to local immune surveillance 
 [38–40] . Importantly, the stress-induced MICA antigens 
as well as some distantly related ULBP proteins are also 
ligands for NKG2D, an activating NK receptor expressed 
on  ��  T cells, NK cells and some  ��  T cells  [41, 42] . There-
fore, such MHC class I-related molecules which are in-
duced on damaged (‘stressed’) epithelial cells can alert  ��  
IEL (notably V � 1 cells) via multiple cell surface receptors. 
In addition, human V � 1  ��  T cells have been found to rec-
ognize CD1 antigens  [43]  and cytomegalovirus proteins in 
the absence of MHC-dependent presentation  [16] . 

 In contrast to human V � 9V � 2 T cells, murine  ��  T 
cells do not recognize bacterial phosphoantigens, due to 
a lack of homology in critically important TCR sequence 
residues. Therefore, it is impossible to use simple mouse 
models to address the pathophysiological signifi cance of 
 ��  T cell-mediated phosphoantigen recognition in vivo. 
Instead, murine  ��  T cells have been found to recognize 
mycobacterial heat shock proteins, inducible MHC class 
Ib molecules T10/T22, poorly defi ned ligands on stressed 
keratinocytes and stressed intestinal epithelial cells  [44–
47] , as well as a range of additional ligands  [1, 31] . 

 Effector Functions of  ��  T Cells 

 The effector functions of activated  ��  T cells resemble 
in many aspects those of conventional  ��  T cells. Thus, 
 ��  T cells produce cytokines and frequently exert potent 
cytotoxic effector function involving both perforin/gran-
zyme and Fas/Fas ligand-dependent pathways  [48, 49] . 
Although most  ��  T cells seem to be primed towards the 
production of Th1-type cytokines, they have the intrinsic 
capacity to make Th2 cytokines including IL-4 if activat-
ed under appropriate Th2-driving conditions  [50, 51] . 
However, a few seemingly specifi c effector functions of  ��  

T cells have been described. A striking example is the pro-
duction of keratinocyte growth factor (KGF) by murine 
 ��  DETC and  ��  IEL  [52] . Human  ��  but not  ��  T cells 
produce connective tissue growth factor (CTGF) which 
regulates wound healing and fi brinogenesis  [53] . More-
over, human  ��  T cells also produce fi broblast growth fac-
tor-9 (FGF-9) as well as KGF  [54] . These observations are 
well in line with the notion that  ��  T cells play an impor-
tant role in epithelial repair mechanisms. In addition, sev-
eral groups have searched for  ��  T cell- and possibly lo-
calization-specifi c gene expression using transcriptional 
profi ling and serial analysis of gene expression in murine 
 ��  T cells  [55–57] . These studies identifi ed a variety of 
genes that are preferentially expressed by  ��  IEL, and also 
revealed the rather unexpected overexpression of genes 
involved in lipid metabolism and cholesterol homeostasis 
 [55] . 

 Principles of Antimicrobial Epithelial Defence 

 In recent years it has emerged that naturally occurring 
antimicrobial peptides (AMP) play a central role in innate 
immune defence. Such AMP are produced by epithelial 
cells in the intestine, skin and elsewhere. Major classes of 
AMP comprise the defensins, the cathelicidins, and other 
peptide families including some RNases and members of 
the S100 protein family such as psoriasin  [58–61] . Defen-
sins are small polypeptides which exert their antimicro-
bial activity by permeabilization of the outer and inner 
bacterial cell membrane  [62] . There are two major sub-
families, i.e.  � - and  � -defensins which share certain struc-
tural features but differ in other aspects. In humans,  � -
defensins are constitutively expressed and stored in gran-
ules in neutrophils, Paneth cells of the small intestine, and 
epithelial cells. In contrast, the expression of  � -defensins 
in epithelial cells and the epidermis requires stimulation, 
e.g. by bacteria or bacterial products  [58] . Some AMP 
require processing to exert bactericidal activity. Thus, the 
precursor of  � -defensin is cleaved in murine Paneth cells 
in the small intestine by the matrix metalloprotease-7 
(MMP-7 or matrilysin)  [63–65] . The processing of the 
human cathelicidin hCAP-18 is mediated by a different 
protease, the serine protease proteinase 3. The cleavage 
of the C-terminal part by proteinase 3 liberates the anti-
bacterial and cytotoxic peptide LL-37  [66] . LL-37 is a 
multifunctional molecule which, in addition to its bacte-
ricidal activity, exerts multiple modulatory effects on in-
nate immune responses. In particular, LL-37 modulates 
gene expression in monocytes, induces IL-1 �  processing 
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and release, and infl uences the differentiation of dendrit-
ic cells and dendritic cell-induced T helper cell polariza-
tion  [67–69] . At the molecular level, at least some of these 
effects are linked to the activation of mitogen-activated 
protein kinases ERK1/2 and p38  [70, 71] . Remarkably, 
the production of cathelicidin/LL-37 is not restricted to 
epithelial cells and keratinocytes but is also observed in 
neutrophils, monocytes and mast cells  [72–74] . Most in-
terestingly, LL-37 expression at the mRNA and protein 
level was also found in human  ��  T cells  [73] , well in line 
with our own observations. This raises the possibility that 
 ��  IEL could directly contribute to antimicrobial defence 
by producing certain AMP (see below).  

 Defensins are not typically produced by immune cells. 
 � -defensins HNP1–3, however, are expressed by some 
NK and T cells  [73] , and are induced in NK cells upon 
stimulation with bacterial products such as fl agellin  [75] . 
In addition, Duits et al.  [76]  observed expression of  � -
defensin-1 (hBD-1) and hBD-2 in human blood mono-
cytes and alveolar macrophages, supporting the idea that 
monocyte and/or dendritic cell-derived  � -defensins might 
contribute to orchestrating an immune response by at-
tracting T lymphocytes via the  � -defensin receptor CCR6 
 [76, 77] . In this regard, it is of interest that we recently 
observed the strong expression of CCR6 on IEL-derived 
but not on peripheral blood-derived  ��  T cell lines, sug-
gesting a structural basis for a cross-talk between epithe-
lial cells and  ��  IEL. In addition, we also found expression 
of hBD-2 mRNA by RT-PCR in a proportion of the ana-
lyzed human  ��  T cell lines. A systematic analysis of de-
fensin expression in IEL-derived  ��  T cells is under way 
in our laboratory. 

 Regulatory Role of  ��  T Cells in the Skin 

 As mentioned above, the mouse skin harbours large 
numbers of  ��  DETC. These DETC express a canonical 
V � 5V � 1 TCR with identical junctional sequences and are 
activated by coculture with stressed keratinocytes. The 
activation of DETC by stressed keratinocytes requires 
cell-cell contact, suggesting TCR-mediated recognition of 
self antigen  [46] . In their recent experiments, Jameson et 
al.  [78]  isolated low molecular weight fractions from 
stressed murine keratinocytes which activated  ��  DETC 
but not  ��  T cells from other tissues expressing different 
TCR. Further work is needed, however, to precisely iden-
tify the antigen seen by the DETC TCR. In any case, it 
appears that the  ��  DETC present in murine skin play a 
non-redundant role in the local surveillance of stressed or 

damaged keratinocytes. TCR �  –/–  mice lacking all  ��  T 
cells still have some DETC which express a polyclonal  ��  
TCR instead of the canonical  ��  TCR. Interestingly, these 
 ��  DETC can be activated by mitogen or anti-CD3 anti-
bodies but do not respond to keratinocyte damage, indi-
cating the unique role of the  ��  TCR expressed on DETC 
 [79] . The close contact of epidermal keratinocytes with 
 ��  DETC suggests a critical function of the DETC in the 
process of wound healing. In fact, it has been found that 
 ��  DETC produce KGF-1/FGF-7 in response to contact 
with damaged keratinocytes, which supports keratino-
cyte proliferation and thus wound repair  [80] . As shown 
in a skin organ culture system, keratinocytes proliferated 
at the wound site of wild-type skin but not skin from 
TCR �  –/–  mice. In addition to KGF-1/FGF-7, FGF-10 
was also expressed in  ��  DETC and thus could also con-
tribute to early keratinocyte proliferation  [81] . Taken to-
gether, these results indicate that  ��  T cells play an im-
portant role in the process of wound repair in the mouse 
skin by producing KGF. In addition,  ��  T cells also regu-
late local cutaneous infl ammatory reactions. This was 
nicely shown in a study by Giradi et al.  [82]  where the 
authors investigated spontaneous dermatitis occurring in 
TCR �  –/–  mice of different genetic backgrounds. While 
both NOD. �  –/–  and FVB. �  –/–  mice spontaneously devel-
oped localized chronic dermatitis, C57BL/6. �  –/–  mice did 
not. The dermatitis was associated with the accumulation 
of large numbers of  ��  T cells in the skin, suggesting that 
 ��  DETC are important in controlling migration of in-
fl ammatory  ��  T cells into the skin. Other reports have 
shown that local  ��  T cells also regulate contact hypersen-
sitivity. TCR �  –/–  mice showed increased contact hyper-
sensitivity responses, due to uncontrolled activity of hap-
ten-specifi c CD8+ T cells  [83] . Together with many ad-
ditional studies not cited here for lack of space, these 
results underline the idea that  ��  T cells have important 
immunoregulatory functions, especially when located in 
epithelial and mucosal tissue  [84] . 

  ��  T cells also contribute to the control of cutaneous 
malignancy in mice. As shown by Girardi et al.  [85] , mice 
lacking  ��  T cells were much more susceptible to devel-
oping cutaneous malignancy in a two-stage tumour ini-
tiation and promotion model. After exposure to carcino-
gen, the skin cells expressed MHC class I-related mole-
cules, Rae-1 and H60 molecules, which are ligands for 
NKGD2 receptors on local  ��  T cells in wild-type mice. 
In this model of chemically induced skin cancer develop-
ment,  ��  T cells are strongly protective, while  ��  T cells 
can contribute to tumour progression  [86] . Together, this 
is clear evidence that local  ��  T cells fulfi l an important 
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role in downregulating epithelial malignancy. Other po-
tential functions of  ��  DETC, such as the possible pro-
duction of AMP, have not yet been investigated. 

 Function of  ��  T Cells in the Intestinal Mucosa 

  ��  T cells constitute a major proportion of the IEL 
population in the intestinal mucosa. It appears that IEL 
 ��  T cells also exert a non-redundant function in the mu-
cosal tissue. Chen et al.  [87]  used the dextran sodium sul-
phate (DSS)-induced mouse colitis model to address this 
issue. They noted an accumulation of large numbers of 
 ��  but not of  ��  T cells at the sites of DSS-induced epi-
thelial cell damage. More severe colitis and delayed tissue 
repair were observed in TCR �  –/–  mice lacking all  ��  T 
cells. Again, KGF was identifi ed as the  ��  IEL-derived 
growth factor that promoted localized epithelial cell pro-
liferation and thus tissue repair following DSS-induced 
colitis. Very similar results were obtained by Yang et al. 
 [52]  in a different in vivo model, i.e. villus atrophy in-
duced by total parenteral nutrition and villous hypertro-
phy resulting from a short bowel syndrome. The former 
was associated with a downregulation of  ��  IEL-derived 

KGF, whereas upregulation was observed in the latter 
case. This is additional evidence that IEL  ��  T cells crit-
ically control epithelial cell growth through the produc-
tion of appropriate growth factors. Moreover, a recent 
study points to an important role of the transcription fac-
tor interferon regulatory factor-1 (IRF-1) in the control 
of intestinal  ��  T cell homeostasis. As shown by Sieg-
mund et al.  [88] , IRF-1 knockout mice developed a dra-
matically more severe colitis and showed higher mortal-
ity than wild-type mice following DSS treatment. Inter-
estingly, the IRF-1 –/–  mice had much fewer  ��  IEL ( ! 50%) 
as compared to wild-type mice. While the reduced num-
ber of  ��  IEL might contribute to the development of 
colitis in the IRF-1 –/–  mice, it is clear that other mecha-
nisms are also involved, such as the strongly reduced pro-
duction of the IL-18 antagonizing IL-18 binding protein 
in these mice  [88] . 

 On the basis of their distribution and cluster formation 
with epithelial cells, it is likely that  ��  IEL also play a role 
in the local surveillance of the human gut epithelium  [89] . 
The function of intestinal  ��  T cells in infl ammatory bow-
el disease in humans is not completely understood. Re-
ports on increased numbers of  ��  T cells in the infl amed 
mucosa  [90]  contrast with contradictory studies [see  8, 
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 ��  T cells. The DETC in the mouse skin are 
 ��  T cells expressing a canonical T cell re-
ceptor (V � 5). Although intraepithelial  ��  T 
cells in the gut mucosa are somewhat more 
diverse, they preferentially express V � 7 in 
the mouse and V � 1 in humans. Intraepithe-
lial  ��  T cells can be activated via two path-
ways: (1) TCR-dependent ligand recogni-
tion and (2) binding of stress-induced MHC 
class I-related molecules on epithelial cells 
(MICA/B, ULBP in humans, Rae-1/H60 in 
the mouse) to activating NKG2D receptors 
expressed on the  ��  T cells. Possible effector 
functions of the activated  ��  T cells are list-
ed in the boxes on the left hand side. 
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91] . Several reports indicate an accumulation and clonal 
expansion of  ��  T cells in the infl amed mucosa of patients 
with Crohn’s disease  [92, 93]  as well as increased numbers 
of V � 1  ��  T cells also in the peripheral blood  [91, 94] . 
However, the molecular analysis of the TCR �  repertoire 
revealed a lack of dominant clones in the infl amed mu-
cosa, but distinct repertoires in the intestine as compared 
to blood  [8, 95] . Human  ��  IEL frequently express V � 1 
which recognizes the stress-inducible MICA antigens. 
This allows V � 1  ��  T cells to control epithelial integrity 
by eliminating stressed or damaged cells, similarly to the 
above-described situation in the mouse skin. In addition 
to  ��  T cells, other lymphocyte populations including the 
NKT cells expressing invariant V � 24V � 11 TCR are like-
ly to contribute to intestinal immunity and epithelial de-
fence  [96] . Presently, it is not known whether  ��  IEL con-
tribute to antimicrobial defence by producing AMP. Our 
preliminary results would indicate that some  ��  T cells 
express certain AMP. In addition, we found that  ��  T cells 
can express matrilysin (MMP-7), suggesting that  ��  T 
cells might contribute to epithelial homeostasis via pro-
duction of this metalloprotease known to be required for 
 � -defensin processing in Paneth cells of the mouse gut 
 [63, 64] . 

 Concluding Remarks 

 Local  ��  T cells can be activated by diverse stimuli 
such as stress-induced self antigens expressed on epithe-
lial cells/keratinocytes due to infection, DNA damage, or 
carcinogen contact. As summarized in  fi gure 1 , these  ��  
T cells can among other things (1) assist wound healing 
by providing keratinocyte and fi broblast growth factors, 
(2) kill unwanted damaged cells via perforin/granzyme 
and/or Fas-Fas ligand-dependent pathways, (3) potential-
ly mediate direct antimicrobial activity by producing cer-
tain AMP, (4) possibly communicate with epithelial cells 
via CCR6, and (5) exert immunoregulatory activity 
through the release of cytokines and chemokines  [83, 84, 
97–100] . Therefore,  ��  IEL located in the skin or in the 
intestinal mucosa constitute an integral part of epithelial 
defence mechanisms. 
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