II.

KVAZISTACIONÁRNÍ STAVY

a RELACE $\Delta E.\Delta t \geq \hbar$

19. 10. 2005

5.10.2005: Krátkočasový rozvoj pro Greenovu funkci

... školská "přesná" definice neurčitosti energie se hodí jen při krátkých časech a s dobou života stavu nemá <u>nic</u> společného

5.10.2005: *GF a spektrální hustota*

ve skutečnosti

 $GF = \frac{1}{i\hbar} \langle 0 | t \rangle \vartheta(t)$

Moje definice Greenovy funkce

 $G(t) = \langle 0 | t \rangle = \langle 0 | e^{-i/\hbar \cdot \hat{H} t} | 0 \rangle$

Fourierova transformace tam a zpět

$$G(t) = \int dE e^{-i/\hbar \cdot Et} A(E) \quad \leftrightarrow \quad A(E) = \frac{1}{2\pi\hbar} \int dt e^{+i/\hbar \cdot Et} G(t)$$

Výraz pro spektrální hustotu

invariantní explicitní (definice) $A(E) = \sum \langle 0 | \lambda \rangle \delta(E - E_{\lambda}) \langle \lambda | 0 \rangle \quad A(E) = \langle 0 | \delta(E - \hat{H}) | 0 \rangle$ Dvě základní vlastnosti ... a NIC víc $A(E) \geq 0$ nezáporná (2) $\int dEA(E) = 1$ sumační pravidlo

pravdě-

podobnosti

amplituda přežití

5.10.2005: *GF a spektrální hustota*
Výpočet momentů (vlastně kumulantů)

$$\overline{H} = \left\langle \hat{H} \right\rangle = \left\langle 0 | \hat{H} | 0 \right\rangle \qquad \Delta^{2}H = \left\langle 0 | \left(\hat{H} - \overline{H} \right)^{2} | 0 \right\rangle$$

$$\int dE A(E) \times E = \overline{H} \qquad \int dE A(E) \times (E - \overline{H})^{2} = \Delta^{2}H$$
Krátkočasový rozvoj

$$G(t) = \int dE e^{-i/\hbar \cdot Et} A(E) =$$

$$= e^{-i/\hbar \cdot \overline{H}t} \times \int dE(1 - i/\hbar \cdot (E - \overline{H})t + \frac{1}{2}[i/\hbar \cdot (E - \overline{H})t]^{2} + ...)A(E)$$

$$\int dE A(E) \times (E - \overline{H}) = 0 \qquad \int dE A(E) \times (E - \overline{H})^{2} = \Delta^{2}H$$

19.10.2005

Seminář o základech kvantové fyziky Brno 2005/6

4

5.10.2005:

Zavedení spektrální hustoty a Krylovova representace

... převedení GF na spektrální hustotu --- dá se lépe porozumět

... nízké momenty se Fourierovou transformacípřenášejí do krátkých časů. Neurčitost energie je2. moment spektr. hustoty.

5.10.2005: *Dlouhé časy*

G(t) závisí jen na A(E), ne na specifických podrobnostech Hamiltoniánu/vln. funkcí ...

... ale na celém průběhu, každé podrobnosti funkčního tvaru, singularitách

Rozdělíme na příspěvek spojitého a diskrétního spektra: (další matem. šílenství pominu)

 $A(E) = A_{\rm D}(E) + A_{\rm C}(E) \leftrightarrow G(t) = G_{\rm D}(t) + G_{\rm C}(t)$

5.10.2005: Rozpadový zákon

Zatím jsme uvažovali amplitudu (pravděpodobnosti) přežití stavu

$$G(t) = \langle 0 | t \rangle$$

Příslušná pozorovatelná je však sama pravděpodobnost přežití

$$W(t) = |G(t)|^2$$

ROZPADOVÝ ZÁKON

Hustota pravděpodobnosti rozpadu za jednotku času

$$w(t) = -\frac{\mathrm{d}}{\mathrm{d}t} \ln W(t) = -\frac{\frac{\mathrm{d}}{\mathrm{d}t}W(t)}{W(t)}$$

Kdyby platilo w(t) = const, pak rozpadový zákon by byl $W(t) \propto \exp(-w \cdot t)$ To je známý radioaktivní rozpad, monomolekulární luminiscence, ... Proto je to centrální případ a náš úkol bude zejména najít podmínky a meze platnosti tohoto Wigner-Weisskopfova rozpadu

Rozpadový zákon pomocí spektrální hustoty

$$G(t)|^{2} = \int dE e^{-i/\hbar \cdot Et} \underbrace{\int dE' A(E+E')A(E')}_{(E+E')}$$

autokorelační funkce

19.10.2005

Seminář o základech kvantové fyziky Brno 2005/6

Modelové příklady: úvodní poznámky

STACIONÁRNÍ STAV (VLASTNÍ FUNKCE)

v sumě zůstane jen jeden člen:

$$A(E) = \sum_{\lambda} \langle 0 | \lambda \rangle \delta(E - E_{\lambda}) \langle \lambda | 0 \rangle$$
$$\xrightarrow{|0\rangle = |\mu\rangle} \delta(E - E_{\mu})$$

"VZOROVÁ" SPEKTRÁLNÍ HUSTOTA (model)

... mám na mysli elektron hluboko v pásu, dosti silné interakce, např. el – ph

Modelové příklady: přehled

Postup: zvolíme modelovou spektrální hustotu A(E).

K ní dopočteme Fourierovou transformací G(t) a W(t).

Volba spektrální hustoty: základní vlastnosti 1, 2

nezáporná (2) $\int dE A(E) = 1$ sumační pravidlo $f(E) \ge 0$

I. Spojité modely

- Čistá Lorentzova sp. hustota
- Model kvazičástice kompensovaná Lorentzova hustota
- Gaussova sp. hustota ٠
- Obdélníková hustota
 - Parabolická hustota koncové body (body větvení)

II. Diskrétní modely

- Obdélníkový hřeben
- Termodynamická limita ٠

Modelové příklady: přehled

Postup: zvolíme modelovou spektrální hustotu A(E).

K ní dopočteme Fourierovou transformací G(t) a W(t).

Volba spektrální hustoty: základní vlastnosti 1, 2, k tomu zjednodušení 3

1 $A(E) \ge 0$ nezáporná **2** $\int dE A(E) = 1$ sumační pravidlo **3** A(+E) = A(-E) sudá **3** \Leftrightarrow G(t) je reálná (bez fázových faktorů)

I. Spojité modely

- Čistá Lorentzova sp. hustota pól 1. řádu
- Model kvazičástice kompensovaná Lorentzova hustota •
- Gaussova sp. hustota analytická funkce ٠
- Obdélníková hustota

Parabolická hustota – koncové body (body větvení)

II. Diskrétní modely

- Obdélníkový hřeben
- Termodynamická limita

Pro jednoduchost
$$\hbar = 1$$

<u>Jediný parametr</u> Γ imag. energie/útlum *ekviv.* s τ dobou života/rozpad.časem

<u>Jediný</u> parametr Γ imag. energie/útlum *ekviv.* s τ dobou života/rozpad.časem Jeho empirický význam: FWHM v energiích, nenulový sklon v čase

<u>Jediný</u> parametr Γ imag. energie/útlum *ekviv.* s τ dobou života/rozpad.časem Jeho empirický význam: FWHM v energiích, nenulový sklon v čase

<u>Jediný</u> parametr Γ imag. energie/útlum *ekviv.* s τ dobou života/rozpad.časem Jeho empirický význam: FWHM v energiích, nenulový sklon v čase

DEFINICE KVAZIČÁSTICE

Seminář o základech kvantové fyziky Brno 2005/6

22

RESONANCI POSUNEME DO NULOVÉ ENERGIE

$$A(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{Z}{E - E_0 + i\Gamma} + F(E + i0) \right)$$

= Re Z \cdot $\frac{\Gamma / \pi}{(E - K_0)^2 + \Gamma^2} + \operatorname{Im} Z \cdot \frac{(E - K_0) / \pi}{(E - K_0)^2 + \Gamma^2} + R(E)$

renormalisační konstantu volíme REÁLNOU: symetrická resonance

$$A(E) = -\frac{1}{\pi} \operatorname{Im} \left(\frac{Z}{E - E_0 + i\Gamma} + F(E + i0) \right)$$
$$= \operatorname{Re} Z \cdot \frac{\Gamma / \pi}{(E - \underbrace{E_0})^2 + \Gamma^2} + \operatorname{Im} Z \cdot \frac{(E - \underbrace{E_0}) / \pi}{(E - \underbrace{E_0})^2 + \Gamma^2} + R(E)$$

19.10.2005

Brno 2005/6

Model pro kvazičástici: modifikovaný Lorentz				
PŘEDBĚŽNÝ ROZBOR VLASTNOSTÍ MODELU Γ / π				
$A(E) = Z \cdot \frac{1 + K}{E^2 + \Gamma^2} + R(E)$				
$E \rightarrow 0$	pól je dominantní FWHM odpovídá zhruba $2 \varGamma$	definuje spojité pozadí		
	kvazičásticový útlum určuje dlouhočasové chování	může se uplatnit po zániku kvazičásticového stavu jako slabé nekoherentní oscilace		
$E \rightarrow \infty$	pokles úměrný $1/E^2$ je pomalý nefysikální chování	kompensuje $1/E^2$ a vytváří celkovou strukturu spektrální funkce včetně bodů větvení		
	vede na nenulový sklon při časech konvergujících k nule	dominuje krátkočasové chování v přechodném režimu formo- vání kvazičásticového stavu		
19.10.2005	Seminář o základech kvantové fyziky	Brno 2005/6 26		

... "dobrá" spektrální hustota má pól blízko reálné osy, ale vyhovuje ostatním podmínkám

... empiricky se skutečná spektrální hustota sotva dá odlišit od ideální WW kvazičástice

Modelové příklady: pokračování

Postup: zvolíme modelovou spektrální hustotu A(E).

K ní dopočteme Fourierovou transformací G(t) a W(t).

Volba spektrální hustoty: základní vlastnosti 1, 2, k tomu zjednodušení 3

1 $A(E) \ge 0$ nezáporná **2** $\int dE A(E) = 1$ sumační pravidlo **3** A(+E) = A(-E) sudá **3** \Leftrightarrow G(t) je reálná (bez fázových faktorů)

I. Spojité modely

- Čistá Lorentzova sp. hustota pól 1. řádu
- Model kvazičástice kompensovaná Lorentzova hustota
- Gaussova sp. hustota analytická funkce
- Obdélníková hustota

Parabolická hustota – koncové body (body větvení)

II. Diskrétní modely

- Obdélníkový hřeben
- Termodynamická limita

Pro jednoduchost
$$\hbar = 1$$

Modelové příklady: pokračování

Postup: zvolíme modelovou spektrální hustotu A(E).

K ní dopočteme Fourierovou transformací G(t) a W(t).

Volba spektrální hustoty: základní vlastnosti 1, 2, k tomu zjednodušení 3

1 $A(E) \ge 0$ nezáporná **2** $\int dEA(E) = 1$ sumační pravidlo

3) A(+E) = A(-E) sudá **3**) \Leftrightarrow G(t) je reálná (bez fázových faktorů)

I. Spojité modely

spojité modely, které nevedou na kvazičástice

- Gaussova sp. hustota analytická funkce
- Obdélníková hustota

Parabolická hustota – koncové body (body větvení)

II. Diskrétní modely

- Obdélníkový hřeben
- Termodynamická limita

Pro jednoduchost
$$\hbar=1$$

Gaussova spektrální hustota

$$A(E) = \frac{1}{a\sqrt{\pi}} e^{-\frac{E^2}{a^2}}$$

- analytická v celé komplexní rovině
- nemá póly
- má podstatnou singularitu v ∞

jednoparametrická funkce

Gaussova spektrální hustota

$$A(E) = \frac{1}{a\sqrt{\pi}} e^{-\frac{E^2}{a^2}}$$

$$\Delta H = \frac{a}{\sqrt{2}}$$

$$FWHM \equiv 2\Gamma = 2 \cdot \frac{a}{\sqrt{\ln 2}}$$

- analytická v celé komplexní rovině
- nemá póly
- má podstatnou singularitu v ∞

jednoparametrická funkce

měřítkový parametr

pro srovnatelnost převedeme na FWHM

$$Gaussova spektrální hustota$$

$$A(E) = \frac{1}{a\sqrt{\pi}} e^{-\frac{E^2}{a^2}} \qquad G(t) = \int dE e^{-i/\hbar \cdot Et} A(E)$$

$$\Delta H = \frac{a}{\sqrt{2}} \qquad = e^{-\left(\frac{a}{2\hbar}\right)^2 t^2} \qquad t > 0$$

$$FWHM \equiv 2\Gamma = 2 \cdot \frac{a}{\sqrt{\ln 2}} \qquad \equiv e^{-\left(\frac{t}{\tau}\right)^2} = 1 - \frac{1}{2} \cdot \frac{a^2}{2} \cdot t^2 + \cdots$$

Obdélníková spektrální hustota

$$A(E) = \frac{1}{2a} \mathcal{G}(E-a) \mathcal{G}(a-E)$$

- nenulová jen na konečném nosiči <-a, a>
- •<u>nemá</u>póly
- má hrany-skoky, tj. body větvení

jednoparametrická funkce

Obdélníková spektrální hustota

$$A(E) = \frac{1}{2a} \mathcal{G}(E-a) \mathcal{G}(a-E)$$

$$\Delta H = \frac{a}{\sqrt{3}}$$

FWHM = $2\Gamma = 2 \cdot a$

 \sim

nenulová jen na konečném nosiči <-a, a>

•<u>nemá</u>póly

• má hrany- zlomy, tj. body větvení

jednoparametrická funkce

měřítkový parametr

pro srovnatelnost převedeme na FWHM

$$Obdélníková spektrální hustota$$

$$A(E) = \frac{1}{2a} \mathscr{G}(E-a)\mathscr{G}(a-E) \qquad G(t) = \int dE e^{-i/\hbar \cdot Et} A(E)$$

$$= \frac{\sin(at\hbar^{-1})}{at\hbar^{-1}} \qquad t > 0$$

$$= \frac{\sin(t/\tau)}{t/\tau} = 1 - \frac{1}{2} \cdot \frac{a^2}{3} \cdot t^2 + \cdots$$

19.10.2005

F

Parabolická spektrální hustota

$$A(E) = \frac{3}{4a^3}(E-a)_+(a-E)_+$$

- nenulová jen na konečném nosiči <-a, a>
- •<u>nemá</u>póly
- má hrany- zlomy, tj. body větvení

jednoparametrická funkce

Parabolická spektrální hustota

$$A(E) = \frac{3}{4a^3}(E-a)_+(a-E)_+$$

$$\Delta H = \frac{a}{\sqrt{5}}$$

$$FWHM \equiv 2\Gamma = 2 \cdot \frac{a}{\sqrt{2}}$$

- nenulová jen na konečném nosiči <-a, a>
- nemá póly
- má hrany- zlomy, tj. body větvení

jednoparametrická funkce

měřítkový parametr

pro srovnatelnost převedeme na FWHM

$$\begin{aligned} & \mathcal{P}arabolick\acute{a} spektrální hustota \\ & \mathcal{A}(E) = \frac{3}{4a^3}(E-a)_+(a-E)_+ \qquad G(t) = \int \mathrm{d} E \,\mathrm{e}^{-\mathrm{i}/\hbar \cdot Et} \,\mathcal{A}(E) \\ & \mathcal{\Delta}H = \frac{a}{\sqrt{5}} \qquad \qquad = \frac{\sin(at\hbar^{-1}) \cdot at\hbar^{-1}\cos(at\hbar^{-1})}{(at\hbar^{-1})^3} \\ & \mathrm{FWHM} \equiv 2\Gamma = 2 \cdot \frac{a}{\sqrt{2}} \qquad \qquad \equiv \frac{\sin(t/\tau) \cdot \cdots}{(t/\tau)^3} = 1 - \frac{1}{2} \cdot \frac{a^2}{5} \cdot t^2 + \cdots \end{aligned}$$

Modelové příklady: pokračování II.

Postup: zvolíme modelovou spektrální hustotu A(E).

K ní dopočteme Fourierovou transformací G(t) a W(t).

Volba spektrální hustoty: základní vlastnosti 1, 2, k tomu zjednodušení 3

1 $A(E) \ge 0$ nezáporná **2** $\int dE A(E) = 1$ sumační pravidlo **3** A(+E) = A(-E) sudá **3** \Leftrightarrow G(t) je reálná (bez fázových faktorů)

I. Spojité modely

- Čistá Lorentzova sp. hustota pól 1. řádu
- ✓ Model kvazičástice kompensovaná Lorentzova hustota
- ✓ Gaussova sp. hustota analytická funkce
- Obdélníková hustota

Parabolická hustota – koncové body (body větvení)

II. Diskrétní modely

- Obdélníkový hřeben
- Termodynamická limita

Pro jednoduchost
$$\hbar = 1$$

Modelové příklady: pokračování II.

Postup: zvolíme modelovou spektrální hustotu A(E).

K ní dopočteme Fourierovou transformací G(t) a W(t).

Volba spektrální hustoty: základní vlastnosti 1, 2, k tomu zjednodušení 3

1 $A(E) \ge 0$ nezáporná **2** $\int dE A(E) = 1$ sumační pravidlo **3** A(+E) = A(-E) sudá **3** \Leftrightarrow G(t) je reálná (bez fázových faktorů)

I. Spojité modely

- Čistá Lorentzova sp. hustota pól 1. řádu
- ✓ Model kvazičástice kompensovaná Lorentzova hustota
- ✓ Gaussova sp. hustota analytická funkce
- Obdélníková hustota

Parabolická hustota – koncové body (body větvení)

II. Diskrétní modely

- Obdélníkový hřeben
- Termodynamická limita

Pro jednoduchost
$$\hbar = 1$$

Diskrétní modely

Jednoduché: máme Fourierovu řadu místo Fourierova integrálu

Připomínka:

$$\bigcirc A_{\rm D}(E) = \sum a_{\lambda} \delta(E - E_{\lambda}) \leftrightarrow G_{\rm D}(t) = \sum a_{\lambda} e^{-i/\hbar \cdot E_{\lambda} t}$$

nemá limitu při $t \rightarrow \infty$

ekvidistantní energie periodická funkce perioda ... vzdálenost hladin

nesouměřitelné energie vícenásobně periodická funkce (A. Sommerfeld) téměř periodická funkce (Harald Bohr *bratr*)

Ve fysice ale běžně provádíme termodynamickou limitu: Hodně hustě shloučené hladiny jakoby splynou na spojitý pás.

<u>Otázky:</u>

- dá se to formalisovat pro A(E)?
- jak dopadne G(t) při $t \rightarrow \infty$?

Diskrétní modely

Jednoduché: máme Fourierovu řadu místo Fourierova integrálu

Připomínka:

$$\bigcirc A_{\rm D}(E) = \sum a_{\lambda} \delta(E - E_{\lambda}) \leftrightarrow G_{\rm D}(t) = \sum a_{\lambda} e^{-i/\hbar \cdot E_{\lambda} t} \int e^{-i/\hbar \cdot E_{\lambda} t} dt$$

nemá limitu při $t \rightarrow \infty$

ekvidistantní energie periodická funkce perioda ... vzdálenost hladin

nesouměřitelné energie vícenásobně periodická funkce (A. Sommerfeld) téměř periodická funkce (Harald Bohr *bratr*)

Ve fysice ale běžně provádíme

termodynamickou limitu:

Hodně hustě shloučené hladiny jakoby

splynou na spojitý pás.

<u>Otázky:</u>

- dá se to formalisovat pro A(E)?
- jak dopadne G(t) při $t \rightarrow \infty$?

 ve fysice se s tím setkáme v pásové teorii
 v numerické matematice je to problém Diskrétní Fourierovy transf.

Obdélníkový hřeben

$$A(E) = \frac{1}{2N+1} \sum_{-N}^{N} \delta(E - \frac{na}{N})$$

DVA PARAMETRY

rozdělení nerealistické, ale

snadno zpracovatelné, limita je obdélník

Obdélníkový hřeben

$$A(E) = \frac{1}{2N+1} \sum_{-N}^{N} \delta(E - \frac{na}{N})$$

DVA PARAMETRY

rozdělení nerealistické, ale

snadno zpracovatelné, limita je obdélník

 $G(t) = \int dE e^{-i/\hbar \cdot Et} A(E)$ 2N + 1at sin ħ 2N2N + 1at sin ħ 2N• (-1)

$$\Box \frac{\sin(ath^{-1})}{ath^{-1}} = 1 - \frac{1}{2} \cdot \frac{a^2}{3} \cdot t^2 + \cdots$$

Obdélníkový hřeben

$$A(E) = \frac{1}{2N+1} \sum_{-N}^{N} \delta(E - \frac{na}{N})$$

DVA PARAMETRY

rozdělení nerealistické, ale

snadno zpracovatelné, limita je obdélník

 $G(t) = \int \mathrm{d} E \, \mathrm{e}^{-\mathrm{i}/\hbar \cdot Et} \, A(E)$ 2N + 1at sin ħ 2N2N + 1at sin ħ 2N $sin(at\hbar^{-1})$ $\frac{a^2}{3}$ $at\hbar^{-1}$ o tom více

$$Obdélníkový hřeben$$

$$A(E) = \frac{1}{2N+1} \sum_{-N}^{N} \delta(E - \frac{na}{N}) \qquad G(t) = \int dE e^{-i/\hbar \cdot Et} A(E)$$

$$DVA PARAMETRY \qquad = \frac{1}{2N+1} \frac{\sin\left(\frac{at}{\hbar} \cdot \frac{2N+1}{2N}\right)}{\sin\left(\frac{at}{\hbar} \cdot \frac{1}{2N}\right)}$$

$$\int G(t) = \frac{1}{2N+1} \frac{\sin(2N+1)\phi}{\sin\phi} = \frac{1}{2N+1} \left\{ \sin 2N\phi \frac{\cos\phi}{\sin\phi} + \cos 2N\phi \right\}$$
19.10.2005

Termodynamická limita

... hladiny musejí být tak husté, že Poincarého cyklus je nejdelší doba v celé úloze. Hlavně delší, než pozorovací doba.

The end

Modelové příklady: úvodní poznámky

JEDNOTKY

... vlastně na nich nezáleží, ale pro názornost volím jednotky vhodné pro GF v CM

energie	1 eV	1,602×10 ⁻¹⁹ J
čas	1 fs	1,000×10 ⁻¹⁵ s
ħ	0,6582~ ² / ₃ eV.fs	1,055×10 ⁻³⁴ J.s

Modelové příklady: úvodní poznámky

JEDNOTKY

... vlastně na nich nezáleží, ale pro názornost volím jednotky vhodné pro GF v CM

energie	1 eV	1,602×10 ⁻¹⁹ J
čas	1 fs	1,000×10 ⁻¹⁵ s
\hbar	0,6582~ ² / ₃ eV.fs	1,055×10 ⁻³⁴ J.s
délka	1 nm	1,000×10 ⁻⁹ m
С	299,8 nm/fs	2,998 ×10 ⁸ m/s
α	1/137,0	1/137,0
m _e	5,685	9,109 ×10 ⁻³¹ kg
e '2	1,440	2,306 ×10 ⁻³⁴ J.m

Brno 2005/6