Biomarkers

Biomarkers

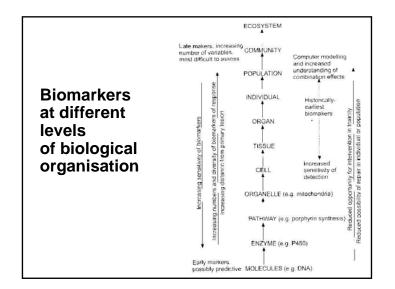
- markers in biological systems with a sufficiently long half-life which allow location *where* in the biological system change occur and *to quantify* the change.

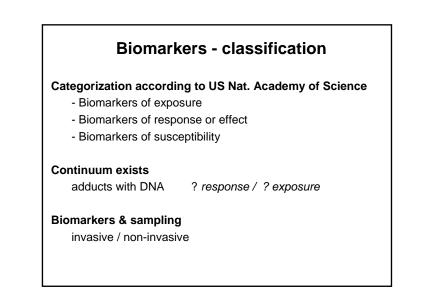
Toxicology – present status:

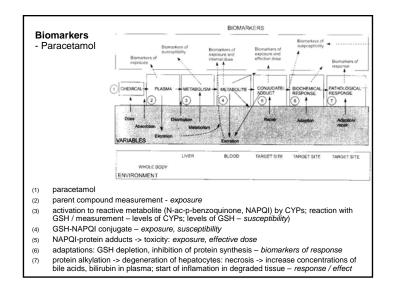
- identification of markers of long-term risks
 - : human toxicology carcinogenesis
 - : ecotoxicology early markers of toxic effects

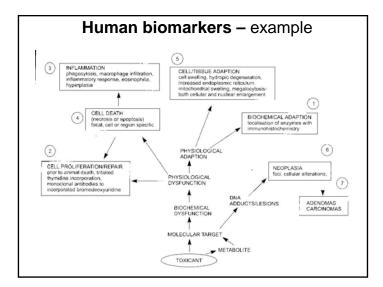
Biomarkers - summary

Biomarker:


change which occurs as response to "stressors" (xenobiotics, disease, temperature...) which extend the adaptive response beyond the normal range


In vivo biomarkers:


changes measured in stressed animals ("classical biomarkers")


In vitro biomarkers

in vitro assessment for characterization of xenobiotic potencies to induce <u>specific biological</u> <u>activity</u> (genotoxicity, estrogenicity, dioxin-like activity, tumor promotion ...)

		iomarkers – exa	•
		mples and examples of the stressor which may result in the Specific example	Stressor
Type of biomarker Exposure	Biomarker DNA adducts Protein adduct DNA fragments	Styrene oxia de O ⁶ guanine N ⁴ Guanyl-attatoxin B ₁ 7,8Dhydro.8-oxoguanine	Styrene exposuré Dietary allatoxin Reactive oxygen spècies
Exposure and effect (response)	Protein adducts Enzyme inhibition Urinary metabolites	Carboxyhaemoglobin Acetylcholnesterase inhibition Mercapturic acids	CO inhalation Organophosphates Buta-1.3 diene, allyl chloride
Effect (response)	Serum/plasma enzymes	AST (aspartate aminotransferase) LDH (lactate dehydrogenase) ALT (alarine aminotransferase) ALP (alarine phosphätase) OK or CPK (creatine kinäse)	Xenobiotics causing necrosis Xenobiotics causing necrosis Hepatotoxic compounds Bile duct toxins Heart/imuscle toxins
	Serum/plasma biochemistry	Urea (changes) Protein (reduced, e.g. albumin) Bilrubin	Hepatotoxic and nephroloxic compound Hepatotoxic compounds Liver injury
	Clotting time Urinary metabolities Raised antioxidant levels Enzyme induction Stress proteins Protective proteins	Protinombin Glucose, raised creatinine, GSH conjugates Liver glutathone P450 induction htsp 60, htsp 70, htsp90 Metallothionein Anthodes, e.e., 4G	Warfanin (rodenticide) Pracecadic abnormalities, kidney damag Reactive oxygen species Polycyclic aromatic hydrocarbons Cadrium, heat Heavy metals, e.g. Cadmium Actigens
	Allergic response Histology Clinical observations Population studies	Dermantis Chromosomal aberrations, micronuclei Heart rate, temporature, stoeping time Breeding patterns, migrations	Nickel Genotoxic agents Barbiturates Olimate change
Susceptibility	Phonotype Oncogenes 'Cancer' genes	Acetylator phenotype (N47.2) Dominant oncogenes (ras. mic) Recessive suppressor gene (p52) Breast-ovary cancer gene (BRCA.1)	-

Specific (selective) in vivo biomarkers

- Biomarkers selectively reflecting specific types (mechanisms) of toxicity
- E.g. inhibition of AcCholE :
 - exposure = organophosphates; effect = neurotoxicity
- + specific information
- multiple biomarkers must be measured

Non-specific (non-selective) in vivo biomarkers

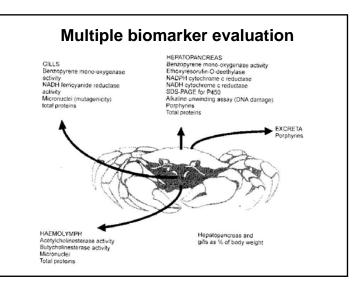
- Biomarkers of general stress
- E.g. induction of Heat Shock Proteins (hsp)
- + general information about stress
- sensitive to many "stressors" (temperature, salinity ...)

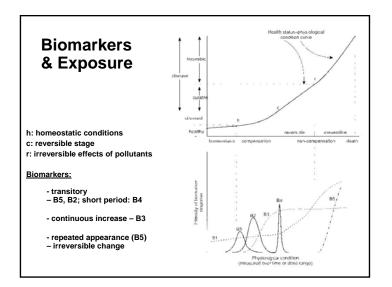
In vivo biomarkers

- Non-destructive
 blood / haemolymph collection & analyses
 skin, feather, hair ... contamination
- Destructive

: whole animal -> multiple biomarker evaluation

	Table 9.2 Availability of	biomark	ers in blood	
Non-destructive	Biomarker	Blood	Tissue of choice	Comment
biomarkers	AChE inhibition	+?	Brain	Effects in blood more transient
	Neurotoxic esterases	-	Brain	Enzyme is limited to brain
	Biogenic amines	-	Brain	Changes in blood too transient
	DNA			
	Strand breakage	?	Wide range	Nucleated avian red blood cells are possible
	Adduct formation	+	Wide range	Haemoglobin is good substitute for DNA
	SCE	+	Wide range	Blood lymphocytes can be used
	Degree of methylation	?	Wide range	Nucleated avian red blood cells are possible
	MFO	-	Liver	Western blotting technique on leucocytes is possible
	Thyroid	+	Thyroid	Circulating levels of T ₃ and T ₄ are sensitive
	Retinols	+	Liver	Advances to use plasma are being made
	Porphyrins	+?	Liver	Advances to use plasma are likely
	ALAD	+	Blood	Tissue of choice
	Enzymes	+	Blood	Tissue of choice
	Immunotoxic	-	Lymphatic cells, bone marrow	Limited number of tests available for blood


What kind of biomarkers to measure ?


Do we know possible exposure (toxicant) ?

- specific biomarkers
- ? estrogenic effects in effluents
- ? dioxin-like effects, mutagenicity in urban areas ? neurotoxicity (AcChE) in rural areas

Do we expect varying exposure / contamination ?

- integrated approach
- non-specific biomarkers (hsp) as predictors of stress level

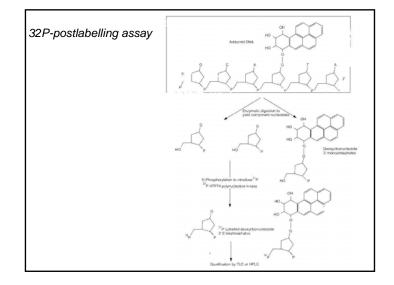
Biomarkers of Exposure

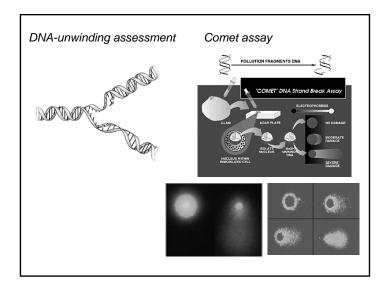
Biomarkers of

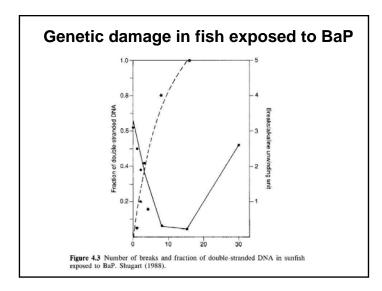
- internal dose (short / long term)
 - Cd in urine, DDE in fat tissues
 - should be easy to sample (urine, breath)

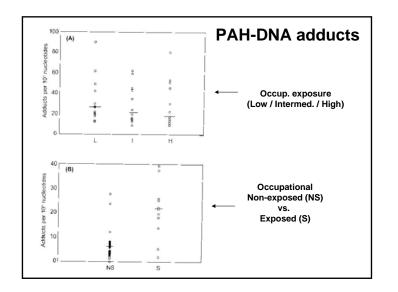
- effective dose

- the chemical interacted with the target = ADDUCTS

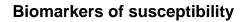

Biomarkers of Exposure - ADDUCTS


Selective aducts (chemical-specific)

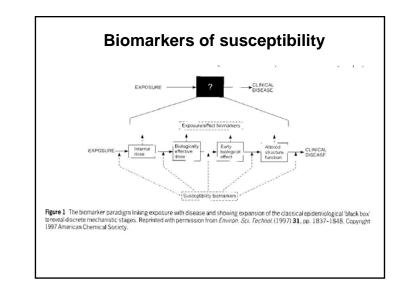

- DNA aducts: styrene-oxide-O6-guanine; N7-guanylaflatoxin B1; hemoglobin-pesticides
- chemical determination (HPLC/GC)

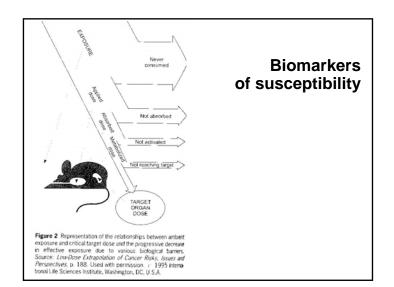

Aselective aducts

- binding with DNA (proteins) but no info on structure of aduct
- 32P-postlabelling assay
- identification of oxy-DNA (8-hydroxy-2 -deoxyguanosine)
- DNA-strand breaks alkaline unwinding assay or comet assay)



Chemical (type of exposure)	Adduct/analyte	Method	Adduct level (nmol g - haemoglobin)
N, N- Dimethylformamide (occupational)	3-Methyl-5-isopropylhydantoin	Hydrolysis; GC-MS	75-1000 (exposed) 4-12 (control)
Epichlorohydrin (occupational)	N-(2, 3-Dihydroxypropyllvaline	Modified Edman; GC–MS	0.020 (exposed smokers) 0.007 (exposed non-smokers) 0.013 (control smokers) 0.007 (control non-smokers)
Acetaminophen (drug overdose)	34Cystein-S-yllacetaminophen	Immunoassay	100-4100
PAHs (occupational)	BPDF-Hb	Spectrofluorimetry	0.005-0.139
Ethylene oxide (occupational)	N-Hydroxyethylvaline	Modified Edman; GC-MS	5–20 (exposed) 0.1–0.5 (control smokers) 0.01–0.1 (control non-smokers)
Ethene (occupational)	N- Hydroxyethylvaline	Modified Edman; GC-MS	0.02
Propylene oxide (occupational)	N- Hydroxypropylvaline	Modified Edman; GC-MS	0.05–3.5 (exposed) < 0.02 (unexposed)
Acrylonitrile (smoking)	N- Cyanoethylvaline	Modified Edman; GC-MS	0.09
NNK (smoking)	 Hydroxy-1-(3 pyridyl) butan-1-one 	Hydrolysis; GC-MS	0.0015 (smokers) 0.0005 (non-smokers)
4-ABP (smoking)	4-ABP-cysteine	Hydralysis; GC-MS	0.00025–0.0025 (smokers) 0.00005–0.0005 (non-smokers)
Acrylamide (occupational, smoking)	N- (2-Carbamoylethyllvaline	Modified Edman; GC-MS	9.5 (production workers) 0.054 (laboratory workers) 0.116 (smokers) 0.031 (non-smokers)
Butadiene (occupational)	N-12,3,4-Trihydroxybutyllvaline	Modified Edman; GC-MS	0.010-0.014 (exposed) 0.002-0.003 (control)
Styrene (occupational)	2-Phenylethanol	Cleavage with Raney nickel, GC-MS	3.7-8.0 (exposed) 2.0-8.6 (control)




Metabolism

- variability in specific enzymes
- susceptibility to modify toxicants: *N*-acetylation of arylamines *NAT*2
- null genotypes for conjugation enzymes (GSTM1)

Genotype

- familial cancers & susceptibility to genotoxins

In vivo biomarkers of effects / response Do we know the agent ? Do we expect the effect ? : specific biomarkers / non-specific changes Behaviour and Clinical biomarkers Pathology Clinical chemistry Enzymatic changes Protein synthesis Oxidative stress markers + Human: Excretory products in urine Tumor genes and tumor markers cancer genes ras, myc, α-fetoprotein (AFP) suppressor genes p53, Rb

Behaviour and clinical biomarkers

Parameters evaluated

- body weight
- food consumption
- fitness & welness

Interpretation

- : ? biomarkers ? effects already demonstrated in vivo
- biomarkers of existing serious stress / intoxication

Behaviour and clinical biomarkers

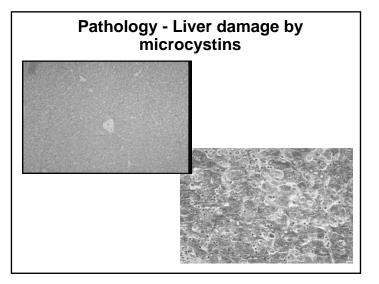
Table 7.4 Effect of some agricultural chemicals on behavioural parameters of the rainbow trout

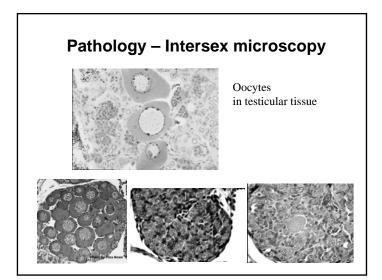
Chemical	LD ₃₀ (96hr)	Swimming capacity	Swimming activity	Strike frequency	Daphnia consumed	% consuming daphnia	% survival from predation
Carbaryl	1.95	0.1-1	0.1-1	>1	0.1-1	0.1-1	<0.01
Chlordane	0.042	>0.02	0.002-0.02	0.002-0.02	0.002-0.02	0.002-0.02	0.002-0.02
DEF	0.66	0.05-0.1	0.005-0.05	0.005-0.05	< 0.005	0.005-0.05	0.005-0.05
2,4-DMA	100	5-50	5-50	550	5 -50	0.5-5	5-50
Methyl parathion	3.7	>0.1	< 0.01	0.01-0.1	<0.1	0.01-0.1	0.01-0.1
Pentachlorophenol	0.052	>0.02	0.002-0.02	0.002-0.02	0.0002-0.002	>0.02	0.002-0.02

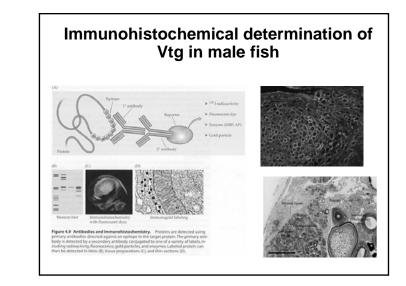
2,4-DMA: 2,4-dichlorophenoxyacetic acid After Little et al. (1990).

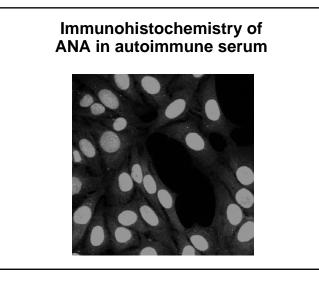
Pathology

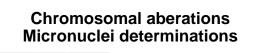
(-) Destructive methods, Time consuming, Professional requirements (+) High relevance – organ/tissue changes

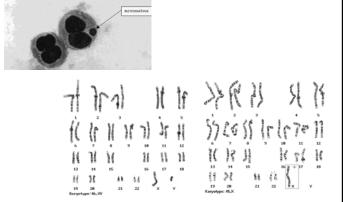

microscopy of internal organs

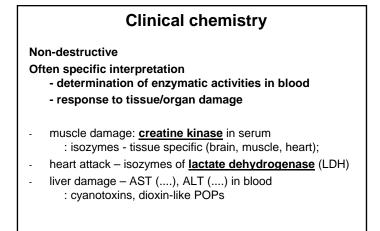

: non-specific changes in internal organs : specific changes in liver (dioxin-like POPs, cyanobacterial toxins) : intersex / imposex formation (xenoestrogenicity)

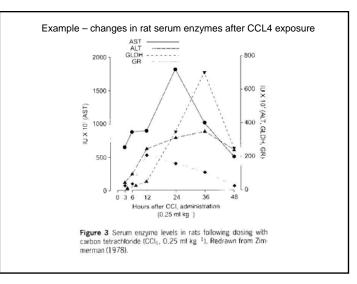

immunohistochemistry & microscopy


: determination of specific changes


- : Fluorescein (FITC)- labeled antibodies (Ab) applications - determination of vitellogenin in male organs (anti-Vtg Ab)
 - autoimmunity (anti-nuclear Ab, ANA, in exposed organisms)
- <u>chromosomal abnormalities & micronuclei evaluation</u>
 : karyotype biomarkers
 : non-destructive (blood samples; plant tissues)

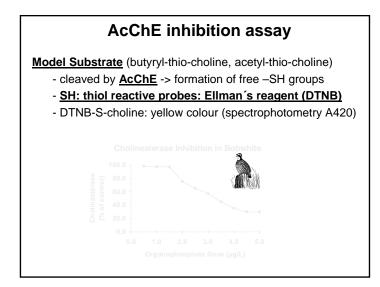


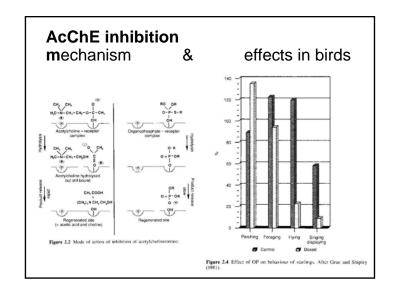




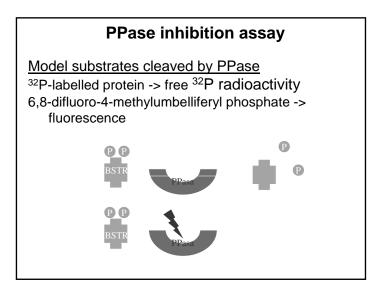
PHAHs		
DDE	+ Quail	Distant (1074)
	+ Starling	Dieter (1974)
DDT	= Redstart	Dieter (1975)
PCBs	= Redstart	Karlsson et al. (1974)
1603	+ Quail	Di contra di contra di
		Dieter (1974)
Endrin	+ Starling	Dieter (1975)
Englin	- Fish	Sharma et al. (1979)
Photomirex	(Ophiocephalus)	
Photomirex	+ Rat	Chu et al. (1981)
OPs		
Malathion	+ Rat	Dragomirescu et al. (1975)
	+ Quail	Dieter (1974)
	+ Starling	Dieter (1975)
	- Carp	
Methylparathion	+ Chicken	Dragomirescu et al. (1975)
Phosmethylan	+ Chicken	Somlyay et al. (1989)
Methidathion	+ Carp	for the second second
Metals	+ Carp	Asztalos et al. (1990)
Cadmium chloride		
	= Brook trout	Christensen et al. (1977)
Copper sulphate	+ Carp	Dragomirescu et al. (1975)
Lead nitrate	= Brook trout	Christensen et al. (1977)
Mercuric chloride	+ Quail	Dieter (1974)
	= Brook trout	Christensen et al. (1977)
	+ Fish	Verma and Chand (1986)
	(Notopterus)	
Methylmercury	+ Starling	Dieter (1975)
Others		
Oil	= Striped mullet	Chambers et al. (1979)
Paraquat	+ Carp	Asztalos et al. (1990)

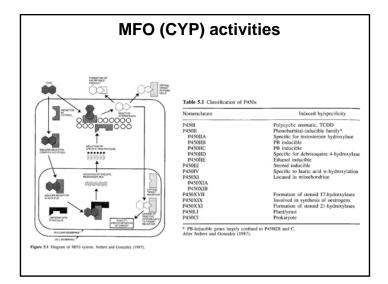
Enzymatic changes

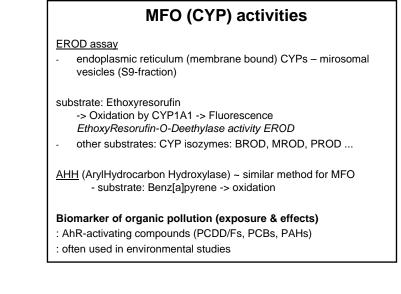

Inhibitions of

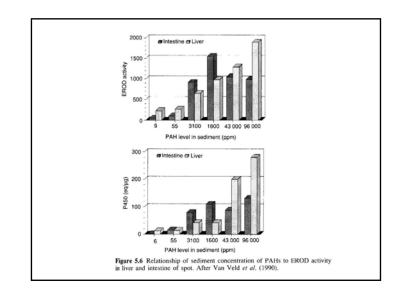

AcChE (organo-phosphates) d-Aminolevulinic Acid Dehydratase (ALAD) (lead - Pb) Proteinphosphatases (microcystins)

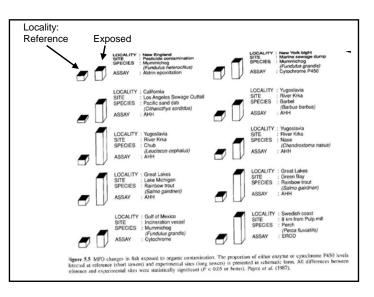
Inductions of detoxication & oxidative stress enzymes

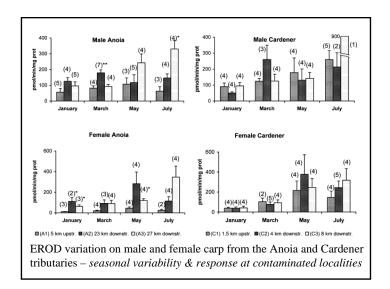

(hepatopancreas / liver / blood) MFO [CYP classes - EROD / MROD / BROD] Phase II enzymes (GSTs) Glutathion metabolism enzymes (GPx, GRs)

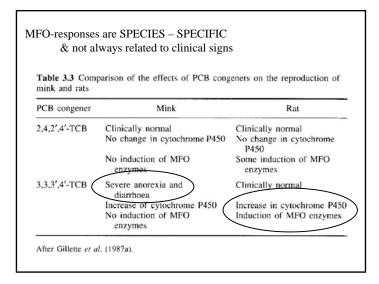

(+) Rapid enzymatic assays, specific responses(-) Some ~ EXPOSURE biomarkers

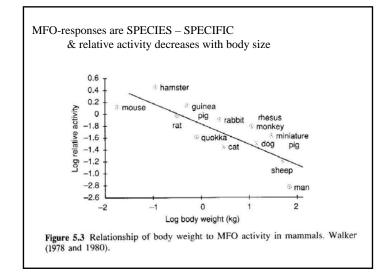


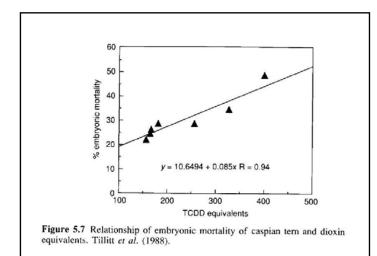












Potencies to in	duce CYPs (AhR)
PCDD/Fs and co-planar PCBs	
 induction of MFO is structure- among compounds differ 	dependent; potencies & toxicities
 international agreement on <u>TE</u> dioxin-toxicity in environmenta 	EF/TEQ approach to characterize al samples (WHO)
 each compound (only few sele potency (TEF) related to 2,3,7 	ected in WHO agreement) relative 7,8-TCDD
2,3,7,8-TCDD	TEF = 1
Several other PCDD/Fs	0.1-1
PCBs	10 ⁻⁵ – 0.1 (No. 77, 126)
- species-specific TEFs for hum	nans / fish / birds
- chemical analyses of samples	
=> SUMA (concentrations :	x TEF) = TEQ (ng TCDD / sample)
- EASY comparison of sample of	contamination

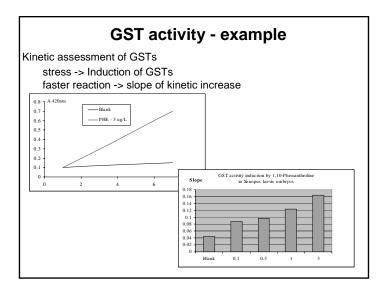
CONGENER	TOXIC EQUIVALENCY FACTOR (T			
	HUMANS/ MAMMALS	FISH ^a	BIRDS 3	
2,3,7,8-TCDD	1	1	1	
1,2,3,7,8-PeCDD	1	1	1 1	
1,2,3,4,7,8-HxCDD	0.1 ^a	0.5	0.05	
1,2,3,6,7,8-HxCDD	0.1 ^a	0.01	0.01	
1,2,3,7,8,9-HxCDD	0.1 ^a	0.01 °	0.1	
1,2,3,4,6,7,8-HpCDD	0.01	0.001	< 0.001	
OCDD	0.0001 ^a	-	-	

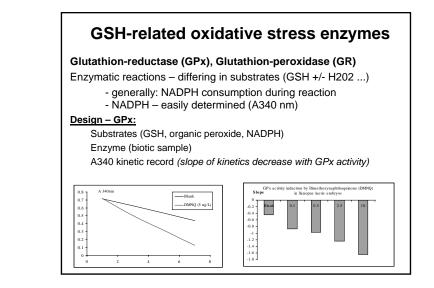
				1997 WHO TEFs(2)		
Congener Number	IUPAC Chlorobiphenyl Prefix	1994 WHO TEFs(1)	Humans/ Mammals	Fish	Birds	
PCB-77	3,3',4,4'-Tetra-	0.0005	0.0001	0.0001	0.05	
PCB-81	3,4,4',5-Tetra-		0.0001	0.0005	0.1	
PCB-105	2,3,3',4,4'-Penta-	0.0001	0.0001	<0.000005	0.0001	
PCB-114	2,3,4,4',5-Penta-	0.0005	0.0005	<0.000005	0.0001	
PCB-118	2,3',4,4',5-Penta-	0.0001	0.0001	<0.000005	0.00001	
PCB-123	2,3',4,4',5'-Penta-	0.0001	0.0001	<0.000005	0.00001	
PCB-126	3,3',4,4',5-Penta-	0.1	0.1	0.005	0.1	
PCB-156	2,3,3',4,4',5-Hexa-	0.0005	0.0005	<0.000005	0.0001	
PCB-157	2,3,3',4,4',5'-Hexa-	0.0005	0.0005	<0.000005	0.0001	
PCB-167	2,3',4,4',5,5'-Hexa-	0.00001	0.00001	<0.000005	0.00001	
PCB-169	3,3',4,4',5,5'-Hexa-	0.01	0.01	0.00005	0.001	
PCB-170	2,2',3,3',4,4',5-Hepta-	0.0001	-			
PCB-180	2,2',3,4,4',5,5'-Hepta-	0.00001				
PCB-189	2,3,3',4,4',5,5'-Hepta-	0.0001	0.0001	<0.00005	0.00001	

Phase II conjugation enzymes - GSTs

GSTs

- soluble and membrane (ER) variants
- activities in cytoplasm or microsomes


Substrates reduced GSH + thiol selective probe (CDNB


GST

GSH + CDNB -> GS-CDNB yellow product (A420), kinetic or endpoint determination

Kinetic assessment

stress -> Induction of GSTs faster reaction -> slope of kinetic increase

PROTEIN SYNTHESIS

Determination of specific proteins

amount quantification

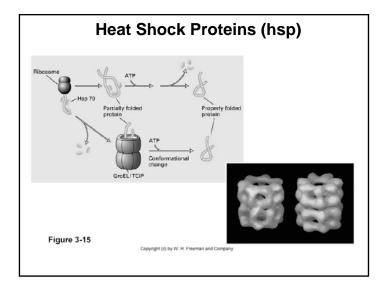
- mRNA (*in vitro assays*)
- protein
 - electrophoresis and Western-(immuno)blotting
 ELISA techniques

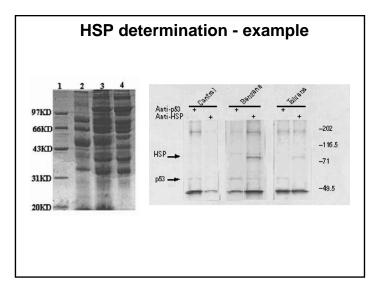
Complementary to enzymatic assays !!!

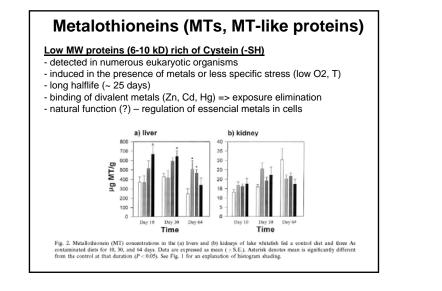
e.g. CYPs - mRNA -> protein amount -> activity

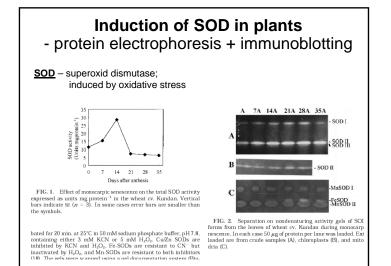
Examples

heat shock proteins (hsp90, hsp60, hsp 70, ubiquitin) metalothioneins Vitellogenin(-like) Vtg proteins in male Superoxid dismutase (SOD)


Heat Shock Proteins (hsp)


Stress - synthesis of new proteins


- equilibrium and homeostasis buffering
 - temperature (cold / heat) cryo-preservation
- salinity & metals ion buffering
- organic xenobiotics detoxication


New proteins must be folded (3D-structure) - "CHAPERONES"

- hsp90, hsp60, hsp 70 60-90 kD molecular weight kD
- GENERAL STRESS biomarker, non-specific
- phylogenetically conserved (similar sequences in "all" organisms)
- structural similarity => easy determination: electrophoresis + immunoblotting

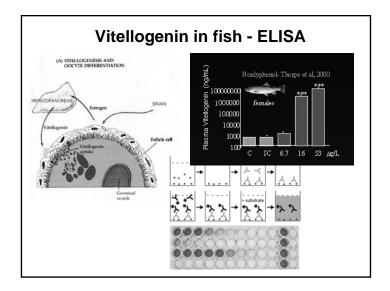
Vitellogenin

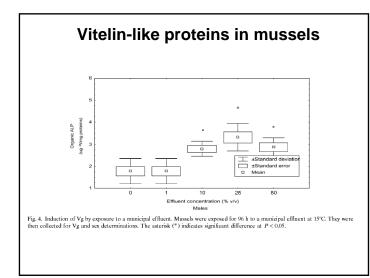
Vtg

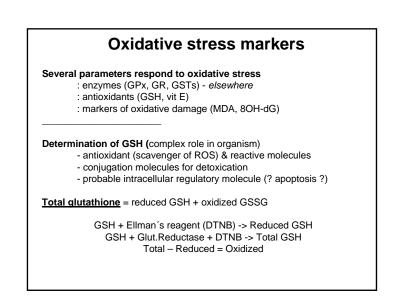
precursor of yolk proteins, phospho-protein

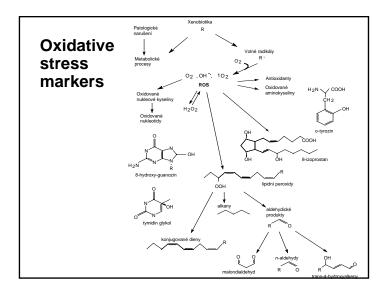
 egg formations (females) at oviparous animals
 synthesised in liver and distributed via blood (haemolymph)
 xenoestrogens & other endocrine disruptors

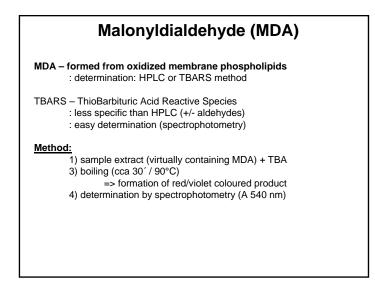
 increased levels or early production in FEMALES
 production in MALES


Determination


1) ELISA (exposed organisms - F/M, in vitro


- in vivo exposed organisms (*biomarker in vivo*)
 in vitro production in hepatocytes exposed to effluents (marker of estrogen-like presence
- (-) specific Antibodies necessary for each species (low crossreactivity)


2) "Vitelin-like proteins"


- total amount of "alkali-labile" phosphate in haemolymph (mussels)
- alkaline extraction of P from sample & determination

